Coupled canonical polyadic decomposition of multi-group fMRI data with spatial reference and orthonormality constraints
•A novel constrained CCPD by incorporating spatial reference and orthonormality is proposed for multi-group fMRI data.•The shared SMs and group-specific TCs and subject differences can be decomposed by the proposed method.•Based on accelerated ALS, shared SMs are further twice updated by orthnormali...
Saved in:
| Published in | Biomedical signal processing and control Vol. 80; p. 104232 |
|---|---|
| Main Authors | , , , |
| Format | Journal Article |
| Language | English |
| Published |
Elsevier Ltd
01.02.2023
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 1746-8094 1746-8108 |
| DOI | 10.1016/j.bspc.2022.104232 |
Cover
| Abstract | •A novel constrained CCPD by incorporating spatial reference and orthonormality is proposed for multi-group fMRI data.•The shared SMs and group-specific TCs and subject differences can be decomposed by the proposed method.•Based on accelerated ALS, shared SMs are further twice updated by orthnormalization and minimizing square error of shared SMs and spatial references.•By using AdaBoost, resting-state group-specific TCs estimated by the proposed method exhibit significant difference between HC and SZ groups.
Multi-group fMRI data may possess different types of subjects, tasks, scans, etc. Fortunately, coupled canonical polyadic decomposition (CCPD) requires multiple tensor datasets to share one or more factor matrices. Considering that spatial variability is generally smaller than temporal variability, we attempt CCPD to decompose multi-group fMRI data into shared spatial maps (SMs), group-specific time courses (TCs) and subject intensities. As spatial references of interested components are generally available and the spatial orthonormality can reduce crosstalk among components, we propose a novel CCPD by adding spatial reference and orthonormality constraints. Specifically, based on accelerated alternating least squares, we further update shared SMs twice: 1) we orthonormalize shared SM components by orthogonal Procrustes solution; 2) after identifying the interested components by maximizing Pearson correlation coefficients between shared SMs and spatial references, we update interested shared SMs by minimizing the square error between magnitude part of normalized shared SMs and corresponding normalized spatial references. The results of two-group simulated and experimental task-related fMRI data as well as resting-state fMRI data with 24 healthy controls (HCs) and 24 schizophrenia patients (SZs) all show outperformed performance for the proposed method compared with unconstrained CCPD, CCPD with a spatial orthonormality constraint, widely-used tensor independent component analysis (ICA) and semi-blind group information guide ICA in both magnitude-only analysis and complex-valued analysis. Moreover, by using AdaBoost, resting-state group-specific TCs estimated by the proposed method significantly exhibit larger group differences, especially for the sensorimotor network, and thus provide a potential biomarker for schizophrenia. |
|---|---|
| AbstractList | •A novel constrained CCPD by incorporating spatial reference and orthonormality is proposed for multi-group fMRI data.•The shared SMs and group-specific TCs and subject differences can be decomposed by the proposed method.•Based on accelerated ALS, shared SMs are further twice updated by orthnormalization and minimizing square error of shared SMs and spatial references.•By using AdaBoost, resting-state group-specific TCs estimated by the proposed method exhibit significant difference between HC and SZ groups.
Multi-group fMRI data may possess different types of subjects, tasks, scans, etc. Fortunately, coupled canonical polyadic decomposition (CCPD) requires multiple tensor datasets to share one or more factor matrices. Considering that spatial variability is generally smaller than temporal variability, we attempt CCPD to decompose multi-group fMRI data into shared spatial maps (SMs), group-specific time courses (TCs) and subject intensities. As spatial references of interested components are generally available and the spatial orthonormality can reduce crosstalk among components, we propose a novel CCPD by adding spatial reference and orthonormality constraints. Specifically, based on accelerated alternating least squares, we further update shared SMs twice: 1) we orthonormalize shared SM components by orthogonal Procrustes solution; 2) after identifying the interested components by maximizing Pearson correlation coefficients between shared SMs and spatial references, we update interested shared SMs by minimizing the square error between magnitude part of normalized shared SMs and corresponding normalized spatial references. The results of two-group simulated and experimental task-related fMRI data as well as resting-state fMRI data with 24 healthy controls (HCs) and 24 schizophrenia patients (SZs) all show outperformed performance for the proposed method compared with unconstrained CCPD, CCPD with a spatial orthonormality constraint, widely-used tensor independent component analysis (ICA) and semi-blind group information guide ICA in both magnitude-only analysis and complex-valued analysis. Moreover, by using AdaBoost, resting-state group-specific TCs estimated by the proposed method significantly exhibit larger group differences, especially for the sensorimotor network, and thus provide a potential biomarker for schizophrenia. |
| ArticleNumber | 104232 |
| Author | Li, Feng He, Zhi-Ming Zhang, Jianming Kuang, Li-Dan |
| Author_xml | – sequence: 1 givenname: Li-Dan surname: Kuang fullname: Kuang, Li-Dan email: kuangld@csust.edu.cn organization: School of Computer and Communication Engineering, Changsha University of Science and Technology, Changsha 410114, China – sequence: 2 givenname: Zhi-Ming surname: He fullname: He, Zhi-Ming organization: Changsha Institute of Educational Science – sequence: 3 givenname: Jianming surname: Zhang fullname: Zhang, Jianming organization: School of Computer and Communication Engineering, Changsha University of Science and Technology, Changsha 410114, China – sequence: 4 givenname: Feng surname: Li fullname: Li, Feng organization: School of Computer and Communication Engineering, Changsha University of Science and Technology, Changsha 410114, China |
| BookMark | eNp9kM9KAzEQh4NUsK2-gKe8wNZJsrvdghcp_ilUBNFzyE4Sm7LdLElq6du7S_XioacZZvh-zHwTMmp9awi5ZTBjwMq77ayOHc44cN4Pci74BRmzeV5mFYNq9NfDIr8ikxi3AHk1Z_mYHJZ-3zVGU1R9pEPV0M43R6UdUm3Q7zofXXK-pd7S3b5JLvsKPULt6_uKapUUPbi0obFTyfVwMNYE06KhqtXUh7TxrQ871bh0pOjbmIJybYrX5NKqJpqb3zoln0-PH8uXbP32vFo-rDMUACljSugKQfCy0taWAhaiNKbgHKEodM0EGmPrRcUQwJaoeL9nFkAxBQKLWkwJP-Vi8DH218kuuJ0KR8lADurkVg7q5KBOntT1UPUPQpfUYGG4vjmP3p9Q0z_17UyQEd3gQ7tgMEnt3Tn8ByDvjyw |
| CitedBy_id | crossref_primary_10_1109_TSP_2024_3510680 crossref_primary_10_1016_j_bspc_2024_106058 crossref_primary_10_1016_j_sigpro_2025_110004 |
| Cites_doi | 10.1137/130916084 10.3389/fams.2019.00040 10.1109/ICASSP.2017.7952329 10.1016/j.bspc.2020.102071 10.1109/MSP.2013.2297439 10.1016/j.neuroimage.2007.11.019 10.1016/j.patcog.2021.108280 10.1002/hbm.20919 10.1109/TBME.2020.3011363 10.1109/TNSRE.2021.3111564 10.1109/TMI.2021.3122226 10.3389/fnins.2020.00261 10.1109/TBME.2022.3152413 10.1016/j.jneumeth.2018.12.007 10.1109/JSTSP.2020.3003891 10.1145/2487575.2487619 10.1109/RBME.2012.2211076 10.1109/JSTSP.2021.3054338 10.1109/TGRS.2019.2936486 10.1109/TCSVT.2019.2961267 10.1002/hbm.24551 10.1016/j.asoc.2022.108485 10.1137/140956865 10.1016/j.neuroimage.2015.07.054 10.1109/TMI.2019.2936046 10.1109/LSP.2021.3099074 10.1002/hbm.25717 10.1137/140956853 10.1073/pnas.0905267106 10.32604/cmc.2020.06130 10.1016/j.neuroimage.2011.10.010 10.1016/j.jneumeth.2015.08.023 10.1016/j.nicl.2020.102218 10.1109/TGRS.2020.2992788 10.1016/j.jneumeth.2017.01.017 10.3389/fnins.2016.00417 10.1016/j.neuroimage.2004.02.026 10.1162/neco.1995.7.6.1129 10.1007/s11517-017-1716-9 10.1002/hbm.1048 10.3389/fnins.2020.00221 10.1016/j.jneumeth.2017.03.018 10.1016/j.neuroimage.2004.10.043 |
| ContentType | Journal Article |
| Copyright | 2022 Elsevier Ltd |
| Copyright_xml | – notice: 2022 Elsevier Ltd |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.bspc.2022.104232 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1746-8108 |
| ExternalDocumentID | 10_1016_j_bspc_2022_104232 S1746809422006863 |
| GroupedDBID | --- --K --M .~1 0R~ 1B1 1~. 1~5 23N 4.4 457 4G. 5GY 5VS 6J9 7-5 71M 8P~ AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO AAYFN ABBOA ABFNM ABFRF ABJNI ABMAC ABXDB ABYKQ ACDAQ ACGFO ACGFS ACNNM ACRLP ACZNC ADBBV ADEZE ADMUD ADTZH AEBSH AECPX AEFWE AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD AXJTR BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ HZ~ IHE J1W JJJVA KOM M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RIG ROL RPZ SDF SDG SES SPC SPCBC SST SSV SSZ T5K UNMZH ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD |
| ID | FETCH-LOGICAL-c300t-1a3d8c03268dff630936ee522c055db13ceefb981c00f6ca29361f00a1a03c5b3 |
| IEDL.DBID | .~1 |
| ISSN | 1746-8094 |
| IngestDate | Wed Oct 29 21:08:45 EDT 2025 Thu Apr 24 22:55:58 EDT 2025 Fri Feb 23 02:38:47 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Coupled Canonical Polyadic Decomposition (CCPD) Schizophrenia ALS GLM CCPD EBM NLS SNR SMs HCs tSNE TCs ICA Orthonormality GIGICA SZs PCA fMRI AdaBoost BTD TICA IVA CPD Reference constraint CCPD-O fMRI Data SSICA |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c300t-1a3d8c03268dff630936ee522c055db13ceefb981c00f6ca29361f00a1a03c5b3 |
| ParticipantIDs | crossref_primary_10_1016_j_bspc_2022_104232 crossref_citationtrail_10_1016_j_bspc_2022_104232 elsevier_sciencedirect_doi_10_1016_j_bspc_2022_104232 |
| PublicationCentury | 2000 |
| PublicationDate | February 2023 2023-02-00 |
| PublicationDateYYYYMMDD | 2023-02-01 |
| PublicationDate_xml | – month: 02 year: 2023 text: February 2023 |
| PublicationDecade | 2020 |
| PublicationTitle | Biomedical signal processing and control |
| PublicationYear | 2023 |
| Publisher | Elsevier Ltd |
| Publisher_xml | – name: Elsevier Ltd |
| References | Chatzichristos, Kofidis, Morante, Theodoridis (b0040) 2019; 315 Lu, Ren, Yeh, Tan, Chanussot (b0125) 2020; 10 R. Mosayebi and G.-A. Hossein-Zadeh, Correlated coupled matrix tensor factorization method for simultaneous EEG-fMRI data fusion, Biomed. Signal Process. Control, vol. 62, article no. 102071, (2020). Shi, Zeng, Tang, Kong, Yin (b0180) 2018; 56 M. Maneshi, S. Vahdat, J. Gotman, and C. Grova, Validation of shared and specific independent component analysis (SSICA) for between-group comparisons in fMRI, Front. Neurosci., vol. 10, article no. 417, (2016). Li, Adali (b0220) 2010; 57 He, Li, Tang, Liao, Li, Lim (b0244) 2020; 62 Smith, Fox, Miller, Glahn, Fox, Mackay, Filippini, Watkins, Toro, Laird (b0005) 2009; 106 Walker, Gilpin, Fooshee, Davidson (b0045) 2015 Chatzichristos, Kofidis, Van Paesschen, De Lathauwer, Theodoridis, Van Huffel (b0100) 2022; 43 Allen, Erhardt, Wei, Eichele, Calhoun (b0240) 2012; 59 Andersen, Rayens (b0035) 2004; 22 Li, Wisnowski, Joshi, Leahy (b0070) 2021; 227 Cichocki (b0030) 2015; 32 Kuang, Lin, Gong, Cong, Wang, Calhoun (b0055) 2020; 39 I. Davidson, S. Gilpin, O. Carmichael, P. Walker, Network discovery via constrained tensor analysis of fMRI data, in: Proceedings of the 19th ACM SIGKDD international conference on Knowledge discovery and data mining, Chicago, Illinois, USA, 2013, pp. 194–202. Calhoun, Adali, Pearlson, Pekar (b0010) 2001; 14 Lee, Lee, Jolesz, Yoo (b0020) 2008; 40 Gui, Tian, Zeng, Xie, Cai (b0243) 2020; 30 Domanov, Lathauwer (b0160) 2014; 35 Han, Lin, Kuang, Gong, Cong, Wang, Calhoun (b0075) 2022; 41 Qiu, Lin, Gong, Cong, Wang, Calhoun (b0215) 2019; 40 Bu, Zhao, Xue, Chan, Kong, Yi, Wen, Wang (b0135) 2020; 59 Sørensen, De Lathauwer (b0095) 2015; 36 Xu, Wu, Chanussot, Comon, Wei (b0130) 2020; 58 Zhang, Zou, Kuang, Wang, Sherratt, Yu (b0230) 2022; 12 W. He, Y. Chen, N. Yokoya, C. Li, Q. Zhao, Hyperspectral super-resolution via coupled tensor ring factorization, Pattern Recogn., vol. 122, article no. 108280, 2022. Borsoi, Prevost, Usevich, Brie, Bermudez, Richard (b0115) 2021; 15 Kuang, Lin, Gong, Cong, Calhoun (b0025) 2017; 281 Shi, Zeng, Wang, Zhao (b0195) 2017; 283 Lin, Liu, Zheng, Liang, Calhoun (b0170) 2010; 31 Beckmann, Smith (b0205) 2005; 25 K. Naskovska, S. Lau, A. A. Korobkov, J. Haueisen, and M. Haardt, Coupled CP decomposition of Simultaneous MEG-EEG signals for differentiating oscillators during photic driving, Front. Neurosci., vol. 14, article no. 261, (2020). Calhoun, Adalı (b0165) 2012; 5 J. Liang, J. Zou, D. Hong, Non-Gaussian penalized PARAFAC analysis for fMRI data, Front. Appl. Mathem. Stat., vol. 5, article no. 40, (2019). Sørensen, Domanov, De Lathauwer (b0155) 2015; 36 Zheng, Shi, Zhou, Haardt, Chen (b0120) 2021; 28 Sen, Parhi (b0241) 2021; 68 Kuang, Lin, Gong, Cong, Sui, Calhoun (b0050) 2015; 256 Liu, Wang, Xu, Chang, Hamalainen, Cong (b0145) 2021; 29 Bhinge, Long, Calhoun, Adalı (b0190) 2020; 14 Schapire (b0225) 2013 S. Wein, A.M. Tomé, M. Goldhacker, M.W. Greenlee, and E.W. Lang, A constrained ICA-EMD model for group level fMRI analysis, Front. Neurosci., vol. 14, article no. 221, (2020). B. Sen, K.K. Parhi, Extraction of common task signals and spatial maps from group fMRI using a PARAFAC-based tensor decomposition technique, in: 2017 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), New Orleans, LA, USA, 2017, pp. 1113–1117. Bell, Sejnowski (b0210) 1995; 7 M. Zhang, F. Yang, F. Fan, Z. Wang, L.E. Hong, Abnormal amygdala subregional-sensorimotor connectivity correlates with positive symptom in schizophrenia, NeuroImage: Clinical, vol. 26, article no. 102218, (2020). Zhang, Feng, Yuan, Wang, Sangaiah (b0242) 2022; 118 Liu, Liu, Long, Zhu (b0080) 2022 W. Liu, X. Wang, T. Hamalainen, and F. Cong, Exploring oscillatory dysconnectivity networks in major depression during resting state using coupled tensor decomposition, IEEE Trans. Bio-Med. Eng., 2022, in press. Du (b0175) 2015; 122 He (10.1016/j.bspc.2022.104232_b0244) 2020; 62 Zheng (10.1016/j.bspc.2022.104232_b0120) 2021; 28 Domanov (10.1016/j.bspc.2022.104232_b0160) 2014; 35 Liu (10.1016/j.bspc.2022.104232_b0080) 2022 Liu (10.1016/j.bspc.2022.104232_b0145) 2021; 29 10.1016/j.bspc.2022.104232_b0185 Kuang (10.1016/j.bspc.2022.104232_b0050) 2015; 256 10.1016/j.bspc.2022.104232_b0140 10.1016/j.bspc.2022.104232_b0065 Sørensen (10.1016/j.bspc.2022.104232_b0155) 2015; 36 Beckmann (10.1016/j.bspc.2022.104232_b0205) 2005; 25 10.1016/j.bspc.2022.104232_b0105 Lu (10.1016/j.bspc.2022.104232_b0125) 2020; 10 Cichocki (10.1016/j.bspc.2022.104232_b0030) 2015; 32 Borsoi (10.1016/j.bspc.2022.104232_b0115) 2021; 15 10.1016/j.bspc.2022.104232_b0150 10.1016/j.bspc.2022.104232_b0110 Han (10.1016/j.bspc.2022.104232_b0075) 2022; 41 10.1016/j.bspc.2022.104232_b0235 Chatzichristos (10.1016/j.bspc.2022.104232_b0100) 2022; 43 Calhoun (10.1016/j.bspc.2022.104232_b0165) 2012; 5 Li (10.1016/j.bspc.2022.104232_b0220) 2010; 57 Xu (10.1016/j.bspc.2022.104232_b0130) 2020; 58 Shi (10.1016/j.bspc.2022.104232_b0180) 2018; 56 Lee (10.1016/j.bspc.2022.104232_b0020) 2008; 40 10.1016/j.bspc.2022.104232_b0090 Walker (10.1016/j.bspc.2022.104232_b0045) 2015 Lin (10.1016/j.bspc.2022.104232_b0170) 2010; 31 Smith (10.1016/j.bspc.2022.104232_b0005) 2009; 106 Calhoun (10.1016/j.bspc.2022.104232_b0010) 2001; 14 10.1016/j.bspc.2022.104232_b0085 Sørensen (10.1016/j.bspc.2022.104232_b0095) 2015; 36 Sen (10.1016/j.bspc.2022.104232_b0241) 2021; 68 Bhinge (10.1016/j.bspc.2022.104232_b0190) 2020; 14 10.1016/j.bspc.2022.104232_b0200 Qiu (10.1016/j.bspc.2022.104232_b0215) 2019; 40 Gui (10.1016/j.bspc.2022.104232_b0243) 2020; 30 Zhang (10.1016/j.bspc.2022.104232_b0242) 2022; 118 Andersen (10.1016/j.bspc.2022.104232_b0035) 2004; 22 Li (10.1016/j.bspc.2022.104232_b0070) 2021; 227 Zhang (10.1016/j.bspc.2022.104232_b0230) 2022; 12 Chatzichristos (10.1016/j.bspc.2022.104232_b0040) 2019; 315 Bell (10.1016/j.bspc.2022.104232_b0210) 1995; 7 Allen (10.1016/j.bspc.2022.104232_b0240) 2012; 59 Kuang (10.1016/j.bspc.2022.104232_b0025) 2017; 281 Bu (10.1016/j.bspc.2022.104232_b0135) 2020; 59 Shi (10.1016/j.bspc.2022.104232_b0195) 2017; 283 Kuang (10.1016/j.bspc.2022.104232_b0055) 2020; 39 Schapire (10.1016/j.bspc.2022.104232_b0225) 2013 Du (10.1016/j.bspc.2022.104232_b0175) 2015; 122 |
| References_xml | – volume: 40 start-page: 2662 year: 2019 end-page: 2676 ident: b0215 article-title: Spatial source phase: A new feature for identifying spatial differences based on complex-valued resting-state fMRI data publication-title: Hum. Brain Mapp. – volume: 15 start-page: 702 year: 2021 end-page: 717 ident: b0115 article-title: Coupled tensor decomposition for hyperspectral and multispectral image fusion with inter-image variability publication-title: IEEE J. Sel. Top. Signal Process. – volume: 122 start-page: 272 year: 2015 end-page: 280 ident: b0175 article-title: A group ICA based framework for evaluating resting fMRI markers when disease categories are unclear: application to schizophrenia, bipolar, and schizoaffective disorders publication-title: Neuroimage – volume: 22 start-page: 728 year: 2004 end-page: 739 ident: b0035 article-title: Structure-seeking multilinear methods for the analysis of fMRI data publication-title: Neuroimage – reference: I. Davidson, S. Gilpin, O. Carmichael, P. Walker, Network discovery via constrained tensor analysis of fMRI data, in: Proceedings of the 19th ACM SIGKDD international conference on Knowledge discovery and data mining, Chicago, Illinois, USA, 2013, pp. 194–202. – volume: 35 start-page: 636 year: 2014 end-page: 660 ident: b0160 article-title: Canonical polyadic decomposition of third-order tensors: Reduction to generalized eigenvalue decomposition publication-title: SIAM J. Matrix Anal. Appl. – start-page: 361 year: 2015 end-page: 369 ident: b0045 article-title: “Constrained tensor decomposition via guidance: Increased inter and intra-group reliability in fMRI analyses publication-title: Foundations of Augmented Cognition – volume: 12 start-page: 1 year: 2022 end-page: 18 ident: b0230 article-title: CCTSDB 2021: A more comprehensive traffic sign detection benchmark publication-title: Human-centric Comput. Inform. Sci. – volume: 14 start-page: 1255 year: 2020 end-page: 1264 ident: b0190 article-title: Adaptive constrained independent vector analysis: An effective solution for analysis of large-scale medical imaging data publication-title: IEEE J. Sel. Top. Signal Process. – volume: 62 start-page: 321 year: 2020 end-page: 336 ident: b0244 article-title: Parameters Compressing in Deep Learning publication-title: CMC: Computers, Materials & Continua – volume: 10 start-page: 1231 year: 2020 end-page: 1255 ident: b0125 article-title: Exploring coupled images fusion based on joint tensor decomposition publication-title: Human-centric Comput. Inform. Sci. – volume: 41 start-page: 667 year: 2022 end-page: 679 ident: b0075 article-title: Low-rank Tucker-2 model for multi-subject fMRI data decomposition with spatial sparsity constraint publication-title: IEEE Trans. Med. Imaging – reference: J. Liang, J. Zou, D. Hong, Non-Gaussian penalized PARAFAC analysis for fMRI data, Front. Appl. Mathem. Stat., vol. 5, article no. 40, (2019). – reference: K. Naskovska, S. Lau, A. A. Korobkov, J. Haueisen, and M. Haardt, Coupled CP decomposition of Simultaneous MEG-EEG signals for differentiating oscillators during photic driving, Front. Neurosci., vol. 14, article no. 261, (2020). – volume: 256 start-page: 127 year: 2015 end-page: 140 ident: b0050 article-title: Multi-subject fMRI analysis via combined independent component analysis and shift-invariant canonical polyadic decomposition publication-title: J. Neurosci. Methods – volume: 31 start-page: 1076 year: 2010 end-page: 1088 ident: b0170 article-title: Semiblind spatial ICA of fMRI using spatial constraints publication-title: Hum. Brain Mapp. – volume: 7 start-page: 1129 year: 1995 end-page: 1159 ident: b0210 article-title: An information-maximization approach to blind separation and blind deconvolution publication-title: Neural Comput. – volume: 59 start-page: 648 year: 2020 end-page: 662 ident: b0135 article-title: Hyperspectral and multispectral image fusion via graph Laplacian-guided coupled tensor decomposition publication-title: IEEE Trans. Geosci. Remote Sens.: A Publ. IEEE Geosci. Remote Sens. Soc. – reference: S. Wein, A.M. Tomé, M. Goldhacker, M.W. Greenlee, and E.W. Lang, A constrained ICA-EMD model for group level fMRI analysis, Front. Neurosci., vol. 14, article no. 221, (2020). – start-page: 115 year: 2022 end-page: 131 ident: b0080 article-title: Coupled tensor for data analysis publication-title: Tensor Computation for Data Analysis – volume: 30 start-page: 4781 year: 2020 end-page: 4795 ident: b0243 article-title: Reliable and dynamic appearance modeling and label consistency enforcing for fast and coherent video object segmentation with the bilateral grid publication-title: IEEE Transactions on Circuits and Systems for Video Technology – volume: 58 start-page: 348 year: 2020 end-page: 362 ident: b0130 article-title: Nonlocal coupled tensor CP decomposition for hyperspectral and multispectral image fusion publication-title: IEEE Trans. Geosci. Remote Sens.: A Publ. IEEE Geosci. Remote Sens. Soc. – volume: 56 start-page: 683 year: 2018 end-page: 694 ident: b0180 article-title: An improved multi-objective optimization-based CICA method with data-driver temporal reference for group fMRI data analysis publication-title: Med. Biol. Eng. Compu. – reference: R. Mosayebi and G.-A. Hossein-Zadeh, Correlated coupled matrix tensor factorization method for simultaneous EEG-fMRI data fusion, Biomed. Signal Process. Control, vol. 62, article no. 102071, (2020). – reference: W. He, Y. Chen, N. Yokoya, C. Li, Q. Zhao, Hyperspectral super-resolution via coupled tensor ring factorization, Pattern Recogn., vol. 122, article no. 108280, 2022. – volume: 29 start-page: 1895 year: 2021 end-page: 1904 ident: b0145 article-title: Identifying oscillatory hyperconnectivity and hypoconnectivity networks in major depression using coupled tensor decomposition publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. – volume: 283 start-page: 72 year: 2017 end-page: 82 ident: b0195 article-title: A new method for independent component analysis with priori information based on multi-objective optimization publication-title: J. Neurosci. Methods – volume: 39 start-page: 844 year: 2020 end-page: 853 ident: b0055 article-title: Shift-invariant canonical polyadic decomposition of complex-valued multi-subject fMRI data with a phase sparsity constraint publication-title: IEEE Trans. Med. Imaging – volume: 5 start-page: 60 year: 2012 end-page: 73 ident: b0165 article-title: Multisubject independent component analysis of fMRI: a decade of intrinsic networks, default mode, and neurodiagnostic discovery publication-title: IEEE Rev. Biomed. Eng. – volume: 68 start-page: 815 year: 2021 end-page: 825 ident: b0241 article-title: Predicting biological gender and intelligence from fmri via dynamic functional connectivity publication-title: IEEE Transactions on Biomedical Engineering – volume: 28 start-page: 1545 year: 2021 end-page: 1549 ident: b0120 article-title: Coupled coarray tensor CPD for DOA estimation with coprime L-shaped array publication-title: IEEE Signal Process Lett. – start-page: 37 year: 2013 end-page: 52 ident: b0225 article-title: Explaining AdaBoost publication-title: In Empirical Inference – volume: 315 start-page: 17 year: 2019 end-page: 47 ident: b0040 article-title: Blind fMRI source unmixing via higher-order tensor decompositions publication-title: J. Neurosci. Methods – volume: 25 start-page: 294 year: 2005 end-page: 311 ident: b0205 article-title: Tensorial extensions of independent component analysis for multisubject FMRI analysis publication-title: Neuroimage – volume: 40 start-page: 86 year: 2008 end-page: 109 ident: b0020 article-title: Independent vector analysis (IVA): Multivariate approach for fMRI group study publication-title: Neuroimage – volume: 281 start-page: 49 year: 2017 end-page: 63 ident: b0025 article-title: Adaptive independent vector analysis for multi-subject complex-valued fMRI data publication-title: J. Neurosci. Methods – volume: 118 start-page: 1 year: 2022 end-page: 20 ident: b0242 article-title: SCSTCF: Spatial-channel selection and temporal regularized correlation filters for visual tracking publication-title: Applied Soft Computing – reference: M. Zhang, F. Yang, F. Fan, Z. Wang, L.E. Hong, Abnormal amygdala subregional-sensorimotor connectivity correlates with positive symptom in schizophrenia, NeuroImage: Clinical, vol. 26, article no. 102218, (2020). – reference: B. Sen, K.K. Parhi, Extraction of common task signals and spatial maps from group fMRI using a PARAFAC-based tensor decomposition technique, in: 2017 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), New Orleans, LA, USA, 2017, pp. 1113–1117. – reference: M. Maneshi, S. Vahdat, J. Gotman, and C. Grova, Validation of shared and specific independent component analysis (SSICA) for between-group comparisons in fMRI, Front. Neurosci., vol. 10, article no. 417, (2016). – volume: 36 start-page: 496 year: 2015 end-page: 522 ident: b0095 article-title: Coupled canonical polyadic decompositions and (coupled) decompositions in multilinear rank-(L_r, n, L_r, n,1) terms–-part I: Uniqueness publication-title: SIAM J. Matrix Anal. Appl. – volume: 36 start-page: 1015 year: 2015 end-page: 1045 ident: b0155 article-title: Coupled canonical polyadic decompositions and (coupled) decompositions in multilinear rank- (L_r, n, L_r, n,1) terms–-part II: Algorithms publication-title: SIAM J. Matrix Anal. Appl. – volume: 32 start-page: 145 year: 2015 end-page: 163 ident: b0030 article-title: Tensor decompositions for signal processing applications: From two-way to multiway component analysis publication-title: IEEE Signal Process Mag. – volume: 14 start-page: 140 year: 2001 end-page: 151 ident: b0010 article-title: A method for making group inferences from functional MRI data using independent component analysis publication-title: Hum. Brain Mapp. – volume: 227 year: 2021 ident: b0070 article-title: Robust brain network identification from multi-subject asynchronous fMRI data publication-title: Neuroimage – volume: 43 start-page: 1231 year: 2022 end-page: 1255 ident: b0100 article-title: Early soft and flexible fusion of electroencephalography and functional magnetic resonance imaging via double coupled matrix tensor factorization for multisubject group analysis publication-title: Hum. Brain Mapp. – reference: W. Liu, X. Wang, T. Hamalainen, and F. Cong, Exploring oscillatory dysconnectivity networks in major depression during resting state using coupled tensor decomposition, IEEE Trans. Bio-Med. Eng., 2022, in press. – volume: 57 start-page: 1417 year: 2010 end-page: 1430 ident: b0220 article-title: Complex independent component analysis by entropy bound minimization publication-title: IEEE Trans. Circ. Syst. I, Regular Papers: A Publ. IEEE Circ. Syst. Soc. – volume: 106 start-page: 13040 year: 2009 end-page: 13045 ident: b0005 article-title: Correspondence of the brain’s functional architecture during activation and rest publication-title: PNAS – volume: 59 start-page: 4141 year: 2012 end-page: 4159 ident: b0240 article-title: Capturing inter-subject variability with group independent component analysis of fMRI data: a simulation study publication-title: Neuroimage – volume: 35 start-page: 636 issue: 2 year: 2014 ident: 10.1016/j.bspc.2022.104232_b0160 article-title: Canonical polyadic decomposition of third-order tensors: Reduction to generalized eigenvalue decomposition publication-title: SIAM J. Matrix Anal. Appl. doi: 10.1137/130916084 – ident: 10.1016/j.bspc.2022.104232_b0065 doi: 10.3389/fams.2019.00040 – volume: 10 start-page: 1231 issue: 1 year: 2020 ident: 10.1016/j.bspc.2022.104232_b0125 article-title: Exploring coupled images fusion based on joint tensor decomposition publication-title: Human-centric Comput. Inform. Sci. – ident: 10.1016/j.bspc.2022.104232_b0200 doi: 10.1109/ICASSP.2017.7952329 – ident: 10.1016/j.bspc.2022.104232_b0110 doi: 10.1016/j.bspc.2020.102071 – volume: 32 start-page: 145 issue: 2 year: 2015 ident: 10.1016/j.bspc.2022.104232_b0030 article-title: Tensor decompositions for signal processing applications: From two-way to multiway component analysis publication-title: IEEE Signal Process Mag. doi: 10.1109/MSP.2013.2297439 – volume: 40 start-page: 86 issue: 1 year: 2008 ident: 10.1016/j.bspc.2022.104232_b0020 article-title: Independent vector analysis (IVA): Multivariate approach for fMRI group study publication-title: Neuroimage doi: 10.1016/j.neuroimage.2007.11.019 – ident: 10.1016/j.bspc.2022.104232_b0140 doi: 10.1016/j.patcog.2021.108280 – volume: 31 start-page: 1076 issue: 7 year: 2010 ident: 10.1016/j.bspc.2022.104232_b0170 article-title: Semiblind spatial ICA of fMRI using spatial constraints publication-title: Hum. Brain Mapp. doi: 10.1002/hbm.20919 – volume: 68 start-page: 815 issue: 3 year: 2021 ident: 10.1016/j.bspc.2022.104232_b0241 article-title: Predicting biological gender and intelligence from fmri via dynamic functional connectivity publication-title: IEEE Transactions on Biomedical Engineering doi: 10.1109/TBME.2020.3011363 – volume: 29 start-page: 1895 year: 2021 ident: 10.1016/j.bspc.2022.104232_b0145 article-title: Identifying oscillatory hyperconnectivity and hypoconnectivity networks in major depression using coupled tensor decomposition publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. doi: 10.1109/TNSRE.2021.3111564 – volume: 41 start-page: 667 issue: 3 year: 2022 ident: 10.1016/j.bspc.2022.104232_b0075 article-title: Low-rank Tucker-2 model for multi-subject fMRI data decomposition with spatial sparsity constraint publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.2021.3122226 – ident: 10.1016/j.bspc.2022.104232_b0105 doi: 10.3389/fnins.2020.00261 – ident: 10.1016/j.bspc.2022.104232_b0150 doi: 10.1109/TBME.2022.3152413 – volume: 315 start-page: 17 year: 2019 ident: 10.1016/j.bspc.2022.104232_b0040 article-title: Blind fMRI source unmixing via higher-order tensor decompositions publication-title: J. Neurosci. Methods doi: 10.1016/j.jneumeth.2018.12.007 – volume: 14 start-page: 1255 issue: 6 year: 2020 ident: 10.1016/j.bspc.2022.104232_b0190 article-title: Adaptive constrained independent vector analysis: An effective solution for analysis of large-scale medical imaging data publication-title: IEEE J. Sel. Top. Signal Process. doi: 10.1109/JSTSP.2020.3003891 – ident: 10.1016/j.bspc.2022.104232_b0085 doi: 10.1145/2487575.2487619 – volume: 5 start-page: 60 year: 2012 ident: 10.1016/j.bspc.2022.104232_b0165 article-title: Multisubject independent component analysis of fMRI: a decade of intrinsic networks, default mode, and neurodiagnostic discovery publication-title: IEEE Rev. Biomed. Eng. doi: 10.1109/RBME.2012.2211076 – volume: 15 start-page: 702 issue: 3 year: 2021 ident: 10.1016/j.bspc.2022.104232_b0115 article-title: Coupled tensor decomposition for hyperspectral and multispectral image fusion with inter-image variability publication-title: IEEE J. Sel. Top. Signal Process. doi: 10.1109/JSTSP.2021.3054338 – volume: 58 start-page: 348 issue: 1 year: 2020 ident: 10.1016/j.bspc.2022.104232_b0130 article-title: Nonlocal coupled tensor CP decomposition for hyperspectral and multispectral image fusion publication-title: IEEE Trans. Geosci. Remote Sens.: A Publ. IEEE Geosci. Remote Sens. Soc. doi: 10.1109/TGRS.2019.2936486 – volume: 30 start-page: 4781 issue: 12 year: 2020 ident: 10.1016/j.bspc.2022.104232_b0243 article-title: Reliable and dynamic appearance modeling and label consistency enforcing for fast and coherent video object segmentation with the bilateral grid publication-title: IEEE Transactions on Circuits and Systems for Video Technology doi: 10.1109/TCSVT.2019.2961267 – volume: 40 start-page: 2662 issue: 9 year: 2019 ident: 10.1016/j.bspc.2022.104232_b0215 article-title: Spatial source phase: A new feature for identifying spatial differences based on complex-valued resting-state fMRI data publication-title: Hum. Brain Mapp. doi: 10.1002/hbm.24551 – volume: 118 start-page: 1 year: 2022 ident: 10.1016/j.bspc.2022.104232_b0242 article-title: SCSTCF: Spatial-channel selection and temporal regularized correlation filters for visual tracking publication-title: Applied Soft Computing doi: 10.1016/j.asoc.2022.108485 – start-page: 361 year: 2015 ident: 10.1016/j.bspc.2022.104232_b0045 article-title: “Constrained tensor decomposition via guidance: Increased inter and intra-group reliability in fMRI analyses – volume: 36 start-page: 1015 issue: 3 year: 2015 ident: 10.1016/j.bspc.2022.104232_b0155 article-title: Coupled canonical polyadic decompositions and (coupled) decompositions in multilinear rank- (L_r, n, L_r, n,1) terms–-part II: Algorithms publication-title: SIAM J. Matrix Anal. Appl. doi: 10.1137/140956865 – volume: 122 start-page: 272 year: 2015 ident: 10.1016/j.bspc.2022.104232_b0175 article-title: A group ICA based framework for evaluating resting fMRI markers when disease categories are unclear: application to schizophrenia, bipolar, and schizoaffective disorders publication-title: Neuroimage doi: 10.1016/j.neuroimage.2015.07.054 – volume: 39 start-page: 844 issue: 4 year: 2020 ident: 10.1016/j.bspc.2022.104232_b0055 article-title: Shift-invariant canonical polyadic decomposition of complex-valued multi-subject fMRI data with a phase sparsity constraint publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.2019.2936046 – volume: 28 start-page: 1545 year: 2021 ident: 10.1016/j.bspc.2022.104232_b0120 article-title: Coupled coarray tensor CPD for DOA estimation with coprime L-shaped array publication-title: IEEE Signal Process Lett. doi: 10.1109/LSP.2021.3099074 – volume: 43 start-page: 1231 issue: 4 year: 2022 ident: 10.1016/j.bspc.2022.104232_b0100 article-title: Early soft and flexible fusion of electroencephalography and functional magnetic resonance imaging via double coupled matrix tensor factorization for multisubject group analysis publication-title: Hum. Brain Mapp. doi: 10.1002/hbm.25717 – volume: 36 start-page: 496 issue: 2 year: 2015 ident: 10.1016/j.bspc.2022.104232_b0095 article-title: Coupled canonical polyadic decompositions and (coupled) decompositions in multilinear rank-(L_r, n, L_r, n,1) terms–-part I: Uniqueness publication-title: SIAM J. Matrix Anal. Appl. doi: 10.1137/140956853 – volume: 12 start-page: 1 issue: 1 year: 2022 ident: 10.1016/j.bspc.2022.104232_b0230 article-title: CCTSDB 2021: A more comprehensive traffic sign detection benchmark publication-title: Human-centric Comput. Inform. Sci. – start-page: 37 year: 2013 ident: 10.1016/j.bspc.2022.104232_b0225 article-title: Explaining AdaBoost – volume: 106 start-page: 13040 issue: 31 year: 2009 ident: 10.1016/j.bspc.2022.104232_b0005 article-title: Correspondence of the brain’s functional architecture during activation and rest publication-title: PNAS doi: 10.1073/pnas.0905267106 – volume: 62 start-page: 321 issue: 1 year: 2020 ident: 10.1016/j.bspc.2022.104232_b0244 article-title: Parameters Compressing in Deep Learning publication-title: CMC: Computers, Materials & Continua doi: 10.32604/cmc.2020.06130 – volume: 59 start-page: 4141 issue: 4 year: 2012 ident: 10.1016/j.bspc.2022.104232_b0240 article-title: Capturing inter-subject variability with group independent component analysis of fMRI data: a simulation study publication-title: Neuroimage doi: 10.1016/j.neuroimage.2011.10.010 – volume: 256 start-page: 127 year: 2015 ident: 10.1016/j.bspc.2022.104232_b0050 article-title: Multi-subject fMRI analysis via combined independent component analysis and shift-invariant canonical polyadic decomposition publication-title: J. Neurosci. Methods doi: 10.1016/j.jneumeth.2015.08.023 – start-page: 115 year: 2022 ident: 10.1016/j.bspc.2022.104232_b0080 article-title: Coupled tensor for data analysis – ident: 10.1016/j.bspc.2022.104232_b0235 doi: 10.1016/j.nicl.2020.102218 – volume: 57 start-page: 1417 issue: 7 year: 2010 ident: 10.1016/j.bspc.2022.104232_b0220 article-title: Complex independent component analysis by entropy bound minimization publication-title: IEEE Trans. Circ. Syst. I, Regular Papers: A Publ. IEEE Circ. Syst. Soc. – volume: 227 issue: 117615 year: 2021 ident: 10.1016/j.bspc.2022.104232_b0070 article-title: Robust brain network identification from multi-subject asynchronous fMRI data publication-title: Neuroimage – volume: 59 start-page: 648 issue: 1 year: 2020 ident: 10.1016/j.bspc.2022.104232_b0135 article-title: Hyperspectral and multispectral image fusion via graph Laplacian-guided coupled tensor decomposition publication-title: IEEE Trans. Geosci. Remote Sens.: A Publ. IEEE Geosci. Remote Sens. Soc. doi: 10.1109/TGRS.2020.2992788 – volume: 281 start-page: 49 year: 2017 ident: 10.1016/j.bspc.2022.104232_b0025 article-title: Adaptive independent vector analysis for multi-subject complex-valued fMRI data publication-title: J. Neurosci. Methods doi: 10.1016/j.jneumeth.2017.01.017 – ident: 10.1016/j.bspc.2022.104232_b0090 doi: 10.3389/fnins.2016.00417 – volume: 22 start-page: 728 issue: 2 year: 2004 ident: 10.1016/j.bspc.2022.104232_b0035 article-title: Structure-seeking multilinear methods for the analysis of fMRI data publication-title: Neuroimage doi: 10.1016/j.neuroimage.2004.02.026 – volume: 7 start-page: 1129 issue: 6 year: 1995 ident: 10.1016/j.bspc.2022.104232_b0210 article-title: An information-maximization approach to blind separation and blind deconvolution publication-title: Neural Comput. doi: 10.1162/neco.1995.7.6.1129 – volume: 56 start-page: 683 issue: 4 year: 2018 ident: 10.1016/j.bspc.2022.104232_b0180 article-title: An improved multi-objective optimization-based CICA method with data-driver temporal reference for group fMRI data analysis publication-title: Med. Biol. Eng. Compu. doi: 10.1007/s11517-017-1716-9 – volume: 14 start-page: 140 issue: 3 year: 2001 ident: 10.1016/j.bspc.2022.104232_b0010 article-title: A method for making group inferences from functional MRI data using independent component analysis publication-title: Hum. Brain Mapp. doi: 10.1002/hbm.1048 – ident: 10.1016/j.bspc.2022.104232_b0185 doi: 10.3389/fnins.2020.00221 – volume: 283 start-page: 72 year: 2017 ident: 10.1016/j.bspc.2022.104232_b0195 article-title: A new method for independent component analysis with priori information based on multi-objective optimization publication-title: J. Neurosci. Methods doi: 10.1016/j.jneumeth.2017.03.018 – volume: 25 start-page: 294 issue: 1 year: 2005 ident: 10.1016/j.bspc.2022.104232_b0205 article-title: Tensorial extensions of independent component analysis for multisubject FMRI analysis publication-title: Neuroimage doi: 10.1016/j.neuroimage.2004.10.043 |
| SSID | ssj0048714 |
| Score | 2.319668 |
| Snippet | •A novel constrained CCPD by incorporating spatial reference and orthonormality is proposed for multi-group fMRI data.•The shared SMs and group-specific TCs... |
| SourceID | crossref elsevier |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 104232 |
| SubjectTerms | Coupled Canonical Polyadic Decomposition (CCPD) fMRI Data Orthonormality Reference constraint Schizophrenia |
| Title | Coupled canonical polyadic decomposition of multi-group fMRI data with spatial reference and orthonormality constraints |
| URI | https://dx.doi.org/10.1016/j.bspc.2022.104232 |
| Volume | 80 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1746-8108 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0048714 issn: 1746-8094 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Complete Freedom Collection [SCCMFC] customDbUrl: eissn: 1746-8108 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0048714 issn: 1746-8094 databaseCode: ACRLP dateStart: 20060101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Science Direct customDbUrl: eissn: 1746-8108 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0048714 issn: 1746-8094 databaseCode: .~1 dateStart: 20060101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: ScienceDirect Freedom Collection Journals customDbUrl: eissn: 1746-8108 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0048714 issn: 1746-8094 databaseCode: AIKHN dateStart: 20060101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1746-8108 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0048714 issn: 1746-8094 databaseCode: AKRWK dateStart: 20060101 isFulltext: true providerName: Library Specific Holdings |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF5KvehBfGJ9lD14k9jdTbJJjqVYqtIe1EJvYbMPqJQm2BTx4m93Z5OUCtKD1zADm8lm5kv2m_kQulVMZ9wPEi_iWeIFOjOe0PZ9FLZ22oIVaunUGsYTPpoGT7Nw1kKDphcGaJV17q9yusvW9ZVeHc1eMZ_3Xi2W5rH9OmHM9TnAxM8giEDF4P57Q_OweNzN9wZjD6zrxpmK45WtChhjyBgcdTKf_V2ctgrO8Agd1kgR96vFHKOWXp6gg635gafoc5Cvi4VW2MYndw2OuMgXX0LNJVYa2OI1JQvnBjvqoOe6OLAZvzxiIIdi-A-LV0Crts4bzREslgrDiU6-BEwLUB1LQJIgKFGuztB0-PA2GHm1koInfUJKjwpfxZJYqBYrYzicfnKtLfSSJAxVRn1bKk2WxFQSYrgUFgNwaggRVBBfhpl_jtr2PvQFwjriIVVGxgm30EVSQSOpuGRMRzSRsewg2oQwlfWYcVjcIm34ZO8phD2FsKdV2DvobuNTVEM2dlqHzZNJf22V1FaBHX6X__S7QvugMV9Rta9Ru_xY6xuLRMqs67ZaF-31H59Hkx_apd9L |
| linkProvider | Elsevier |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF5qPagH8Yn1uQdvEru7STbJUYql1bYHbaG3sNkHVEoTbIp48be7k0epIB68hhnYTHZnvs18M4PQrWI64a4XOQFPIsfTiXGEtudR2NhpA5avZTGtYTjivYn3NPWnDdSpa2GAVln5_tKnF966etKurNnOZrP2q8XSPLS3E8aKOgd3C217PgvgBnb_teZ5WEBeNPgGaQfEq8qZkuSVLDPoY8gY5DqZy36PThsRp3uA9iuoiB_K1Ryihl4cob2NBoLH6KOTrrK5VtgaKC0qHHGWzj-FmkmsNNDFK04WTg0uuINOUcaBzfClj4EdiuFHLF4Cr9oqr4eOYLFQGFI66QJALWB1LAFKwkSJfHmCJt3HcafnVKMUHOkSkjtUuCqUxGK1UBnDIf3JtbbYSxLfVwl1baw0SRRSSYjhUlgQwKkhRFBBXOkn7ilq2vfQZwjrgPtUGRlG3GIXSQUNpOKSMR3QSIayhWhtwlhWfcZhcfO4JpS9xWD2GMwel2Zvobu1TlZ22fhT2q-_TPxjr8Q2DPyhd_5PvRu00xsPB_GgP3q-QLswcL6kPF6iZv6-0lcWluTJdbHtvgEgJuDj |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Coupled+canonical+polyadic+decomposition+of+multi-group+fMRI+data+with+spatial+reference+and+orthonormality+constraints&rft.jtitle=Biomedical+signal+processing+and+control&rft.au=Kuang%2C+Li-Dan&rft.au=He%2C+Zhi-Ming&rft.au=Zhang%2C+Jianming&rft.au=Li%2C+Feng&rft.date=2023-02-01&rft.pub=Elsevier+Ltd&rft.issn=1746-8094&rft.eissn=1746-8108&rft.volume=80&rft_id=info:doi/10.1016%2Fj.bspc.2022.104232&rft.externalDocID=S1746809422006863 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1746-8094&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1746-8094&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1746-8094&client=summon |