Coupled canonical polyadic decomposition of multi-group fMRI data with spatial reference and orthonormality constraints

•A novel constrained CCPD by incorporating spatial reference and orthonormality is proposed for multi-group fMRI data.•The shared SMs and group-specific TCs and subject differences can be decomposed by the proposed method.•Based on accelerated ALS, shared SMs are further twice updated by orthnormali...

Full description

Saved in:
Bibliographic Details
Published inBiomedical signal processing and control Vol. 80; p. 104232
Main Authors Kuang, Li-Dan, He, Zhi-Ming, Zhang, Jianming, Li, Feng
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.02.2023
Subjects
Online AccessGet full text
ISSN1746-8094
1746-8108
DOI10.1016/j.bspc.2022.104232

Cover

Abstract •A novel constrained CCPD by incorporating spatial reference and orthonormality is proposed for multi-group fMRI data.•The shared SMs and group-specific TCs and subject differences can be decomposed by the proposed method.•Based on accelerated ALS, shared SMs are further twice updated by orthnormalization and minimizing square error of shared SMs and spatial references.•By using AdaBoost, resting-state group-specific TCs estimated by the proposed method exhibit significant difference between HC and SZ groups. Multi-group fMRI data may possess different types of subjects, tasks, scans, etc. Fortunately, coupled canonical polyadic decomposition (CCPD) requires multiple tensor datasets to share one or more factor matrices. Considering that spatial variability is generally smaller than temporal variability, we attempt CCPD to decompose multi-group fMRI data into shared spatial maps (SMs), group-specific time courses (TCs) and subject intensities. As spatial references of interested components are generally available and the spatial orthonormality can reduce crosstalk among components, we propose a novel CCPD by adding spatial reference and orthonormality constraints. Specifically, based on accelerated alternating least squares, we further update shared SMs twice: 1) we orthonormalize shared SM components by orthogonal Procrustes solution; 2) after identifying the interested components by maximizing Pearson correlation coefficients between shared SMs and spatial references, we update interested shared SMs by minimizing the square error between magnitude part of normalized shared SMs and corresponding normalized spatial references. The results of two-group simulated and experimental task-related fMRI data as well as resting-state fMRI data with 24 healthy controls (HCs) and 24 schizophrenia patients (SZs) all show outperformed performance for the proposed method compared with unconstrained CCPD, CCPD with a spatial orthonormality constraint, widely-used tensor independent component analysis (ICA) and semi-blind group information guide ICA in both magnitude-only analysis and complex-valued analysis. Moreover, by using AdaBoost, resting-state group-specific TCs estimated by the proposed method significantly exhibit larger group differences, especially for the sensorimotor network, and thus provide a potential biomarker for schizophrenia.
AbstractList •A novel constrained CCPD by incorporating spatial reference and orthonormality is proposed for multi-group fMRI data.•The shared SMs and group-specific TCs and subject differences can be decomposed by the proposed method.•Based on accelerated ALS, shared SMs are further twice updated by orthnormalization and minimizing square error of shared SMs and spatial references.•By using AdaBoost, resting-state group-specific TCs estimated by the proposed method exhibit significant difference between HC and SZ groups. Multi-group fMRI data may possess different types of subjects, tasks, scans, etc. Fortunately, coupled canonical polyadic decomposition (CCPD) requires multiple tensor datasets to share one or more factor matrices. Considering that spatial variability is generally smaller than temporal variability, we attempt CCPD to decompose multi-group fMRI data into shared spatial maps (SMs), group-specific time courses (TCs) and subject intensities. As spatial references of interested components are generally available and the spatial orthonormality can reduce crosstalk among components, we propose a novel CCPD by adding spatial reference and orthonormality constraints. Specifically, based on accelerated alternating least squares, we further update shared SMs twice: 1) we orthonormalize shared SM components by orthogonal Procrustes solution; 2) after identifying the interested components by maximizing Pearson correlation coefficients between shared SMs and spatial references, we update interested shared SMs by minimizing the square error between magnitude part of normalized shared SMs and corresponding normalized spatial references. The results of two-group simulated and experimental task-related fMRI data as well as resting-state fMRI data with 24 healthy controls (HCs) and 24 schizophrenia patients (SZs) all show outperformed performance for the proposed method compared with unconstrained CCPD, CCPD with a spatial orthonormality constraint, widely-used tensor independent component analysis (ICA) and semi-blind group information guide ICA in both magnitude-only analysis and complex-valued analysis. Moreover, by using AdaBoost, resting-state group-specific TCs estimated by the proposed method significantly exhibit larger group differences, especially for the sensorimotor network, and thus provide a potential biomarker for schizophrenia.
ArticleNumber 104232
Author Li, Feng
He, Zhi-Ming
Zhang, Jianming
Kuang, Li-Dan
Author_xml – sequence: 1
  givenname: Li-Dan
  surname: Kuang
  fullname: Kuang, Li-Dan
  email: kuangld@csust.edu.cn
  organization: School of Computer and Communication Engineering, Changsha University of Science and Technology, Changsha 410114, China
– sequence: 2
  givenname: Zhi-Ming
  surname: He
  fullname: He, Zhi-Ming
  organization: Changsha Institute of Educational Science
– sequence: 3
  givenname: Jianming
  surname: Zhang
  fullname: Zhang, Jianming
  organization: School of Computer and Communication Engineering, Changsha University of Science and Technology, Changsha 410114, China
– sequence: 4
  givenname: Feng
  surname: Li
  fullname: Li, Feng
  organization: School of Computer and Communication Engineering, Changsha University of Science and Technology, Changsha 410114, China
BookMark eNp9kM9KAzEQh4NUsK2-gKe8wNZJsrvdghcp_ilUBNFzyE4Sm7LdLElq6du7S_XioacZZvh-zHwTMmp9awi5ZTBjwMq77ayOHc44cN4Pci74BRmzeV5mFYNq9NfDIr8ikxi3AHk1Z_mYHJZ-3zVGU1R9pEPV0M43R6UdUm3Q7zofXXK-pd7S3b5JLvsKPULt6_uKapUUPbi0obFTyfVwMNYE06KhqtXUh7TxrQ871bh0pOjbmIJybYrX5NKqJpqb3zoln0-PH8uXbP32vFo-rDMUACljSugKQfCy0taWAhaiNKbgHKEodM0EGmPrRcUQwJaoeL9nFkAxBQKLWkwJP-Vi8DH218kuuJ0KR8lADurkVg7q5KBOntT1UPUPQpfUYGG4vjmP3p9Q0z_17UyQEd3gQ7tgMEnt3Tn8ByDvjyw
CitedBy_id crossref_primary_10_1109_TSP_2024_3510680
crossref_primary_10_1016_j_bspc_2024_106058
crossref_primary_10_1016_j_sigpro_2025_110004
Cites_doi 10.1137/130916084
10.3389/fams.2019.00040
10.1109/ICASSP.2017.7952329
10.1016/j.bspc.2020.102071
10.1109/MSP.2013.2297439
10.1016/j.neuroimage.2007.11.019
10.1016/j.patcog.2021.108280
10.1002/hbm.20919
10.1109/TBME.2020.3011363
10.1109/TNSRE.2021.3111564
10.1109/TMI.2021.3122226
10.3389/fnins.2020.00261
10.1109/TBME.2022.3152413
10.1016/j.jneumeth.2018.12.007
10.1109/JSTSP.2020.3003891
10.1145/2487575.2487619
10.1109/RBME.2012.2211076
10.1109/JSTSP.2021.3054338
10.1109/TGRS.2019.2936486
10.1109/TCSVT.2019.2961267
10.1002/hbm.24551
10.1016/j.asoc.2022.108485
10.1137/140956865
10.1016/j.neuroimage.2015.07.054
10.1109/TMI.2019.2936046
10.1109/LSP.2021.3099074
10.1002/hbm.25717
10.1137/140956853
10.1073/pnas.0905267106
10.32604/cmc.2020.06130
10.1016/j.neuroimage.2011.10.010
10.1016/j.jneumeth.2015.08.023
10.1016/j.nicl.2020.102218
10.1109/TGRS.2020.2992788
10.1016/j.jneumeth.2017.01.017
10.3389/fnins.2016.00417
10.1016/j.neuroimage.2004.02.026
10.1162/neco.1995.7.6.1129
10.1007/s11517-017-1716-9
10.1002/hbm.1048
10.3389/fnins.2020.00221
10.1016/j.jneumeth.2017.03.018
10.1016/j.neuroimage.2004.10.043
ContentType Journal Article
Copyright 2022 Elsevier Ltd
Copyright_xml – notice: 2022 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.bspc.2022.104232
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1746-8108
ExternalDocumentID 10_1016_j_bspc_2022_104232
S1746809422006863
GroupedDBID ---
--K
--M
.~1
0R~
1B1
1~.
1~5
23N
4.4
457
4G.
5GY
5VS
6J9
7-5
71M
8P~
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
AAYFN
ABBOA
ABFNM
ABFRF
ABJNI
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFO
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADMUD
ADTZH
AEBSH
AECPX
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
AXJTR
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HZ~
IHE
J1W
JJJVA
KOM
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
ROL
RPZ
SDF
SDG
SES
SPC
SPCBC
SST
SSV
SSZ
T5K
UNMZH
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
ID FETCH-LOGICAL-c300t-1a3d8c03268dff630936ee522c055db13ceefb981c00f6ca29361f00a1a03c5b3
IEDL.DBID .~1
ISSN 1746-8094
IngestDate Wed Oct 29 21:08:45 EDT 2025
Thu Apr 24 22:55:58 EDT 2025
Fri Feb 23 02:38:47 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Coupled Canonical Polyadic Decomposition (CCPD)
Schizophrenia
ALS
GLM
CCPD
EBM
NLS
SNR
SMs
HCs
tSNE
TCs
ICA
Orthonormality
GIGICA
SZs
PCA
fMRI
AdaBoost
BTD
TICA
IVA
CPD
Reference constraint
CCPD-O
fMRI Data
SSICA
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c300t-1a3d8c03268dff630936ee522c055db13ceefb981c00f6ca29361f00a1a03c5b3
ParticipantIDs crossref_primary_10_1016_j_bspc_2022_104232
crossref_citationtrail_10_1016_j_bspc_2022_104232
elsevier_sciencedirect_doi_10_1016_j_bspc_2022_104232
PublicationCentury 2000
PublicationDate February 2023
2023-02-00
PublicationDateYYYYMMDD 2023-02-01
PublicationDate_xml – month: 02
  year: 2023
  text: February 2023
PublicationDecade 2020
PublicationTitle Biomedical signal processing and control
PublicationYear 2023
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Chatzichristos, Kofidis, Morante, Theodoridis (b0040) 2019; 315
Lu, Ren, Yeh, Tan, Chanussot (b0125) 2020; 10
R. Mosayebi and G.-A. Hossein-Zadeh, Correlated coupled matrix tensor factorization method for simultaneous EEG-fMRI data fusion, Biomed. Signal Process. Control, vol. 62, article no. 102071, (2020).
Shi, Zeng, Tang, Kong, Yin (b0180) 2018; 56
M. Maneshi, S. Vahdat, J. Gotman, and C. Grova, Validation of shared and specific independent component analysis (SSICA) for between-group comparisons in fMRI, Front. Neurosci., vol. 10, article no. 417, (2016).
Li, Adali (b0220) 2010; 57
He, Li, Tang, Liao, Li, Lim (b0244) 2020; 62
Smith, Fox, Miller, Glahn, Fox, Mackay, Filippini, Watkins, Toro, Laird (b0005) 2009; 106
Walker, Gilpin, Fooshee, Davidson (b0045) 2015
Chatzichristos, Kofidis, Van Paesschen, De Lathauwer, Theodoridis, Van Huffel (b0100) 2022; 43
Allen, Erhardt, Wei, Eichele, Calhoun (b0240) 2012; 59
Andersen, Rayens (b0035) 2004; 22
Li, Wisnowski, Joshi, Leahy (b0070) 2021; 227
Cichocki (b0030) 2015; 32
Kuang, Lin, Gong, Cong, Wang, Calhoun (b0055) 2020; 39
I. Davidson, S. Gilpin, O. Carmichael, P. Walker, Network discovery via constrained tensor analysis of fMRI data, in: Proceedings of the 19th ACM SIGKDD international conference on Knowledge discovery and data mining, Chicago, Illinois, USA, 2013, pp. 194–202.
Calhoun, Adali, Pearlson, Pekar (b0010) 2001; 14
Lee, Lee, Jolesz, Yoo (b0020) 2008; 40
Gui, Tian, Zeng, Xie, Cai (b0243) 2020; 30
Domanov, Lathauwer (b0160) 2014; 35
Han, Lin, Kuang, Gong, Cong, Wang, Calhoun (b0075) 2022; 41
Qiu, Lin, Gong, Cong, Wang, Calhoun (b0215) 2019; 40
Bu, Zhao, Xue, Chan, Kong, Yi, Wen, Wang (b0135) 2020; 59
Sørensen, De Lathauwer (b0095) 2015; 36
Xu, Wu, Chanussot, Comon, Wei (b0130) 2020; 58
Zhang, Zou, Kuang, Wang, Sherratt, Yu (b0230) 2022; 12
W. He, Y. Chen, N. Yokoya, C. Li, Q. Zhao, Hyperspectral super-resolution via coupled tensor ring factorization, Pattern Recogn., vol. 122, article no. 108280, 2022.
Borsoi, Prevost, Usevich, Brie, Bermudez, Richard (b0115) 2021; 15
Kuang, Lin, Gong, Cong, Calhoun (b0025) 2017; 281
Shi, Zeng, Wang, Zhao (b0195) 2017; 283
Lin, Liu, Zheng, Liang, Calhoun (b0170) 2010; 31
Beckmann, Smith (b0205) 2005; 25
K. Naskovska, S. Lau, A. A. Korobkov, J. Haueisen, and M. Haardt, Coupled CP decomposition of Simultaneous MEG-EEG signals for differentiating oscillators during photic driving, Front. Neurosci., vol. 14, article no. 261, (2020).
Calhoun, Adalı (b0165) 2012; 5
J. Liang, J. Zou, D. Hong, Non-Gaussian penalized PARAFAC analysis for fMRI data, Front. Appl. Mathem. Stat., vol. 5, article no. 40, (2019).
Sørensen, Domanov, De Lathauwer (b0155) 2015; 36
Zheng, Shi, Zhou, Haardt, Chen (b0120) 2021; 28
Sen, Parhi (b0241) 2021; 68
Kuang, Lin, Gong, Cong, Sui, Calhoun (b0050) 2015; 256
Liu, Wang, Xu, Chang, Hamalainen, Cong (b0145) 2021; 29
Bhinge, Long, Calhoun, Adalı (b0190) 2020; 14
Schapire (b0225) 2013
S. Wein, A.M. Tomé, M. Goldhacker, M.W. Greenlee, and E.W. Lang, A constrained ICA-EMD model for group level fMRI analysis, Front. Neurosci., vol. 14, article no. 221, (2020).
B. Sen, K.K. Parhi, Extraction of common task signals and spatial maps from group fMRI using a PARAFAC-based tensor decomposition technique, in: 2017 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), New Orleans, LA, USA, 2017, pp. 1113–1117.
Bell, Sejnowski (b0210) 1995; 7
M. Zhang, F. Yang, F. Fan, Z. Wang, L.E. Hong, Abnormal amygdala subregional-sensorimotor connectivity correlates with positive symptom in schizophrenia, NeuroImage: Clinical, vol. 26, article no. 102218, (2020).
Zhang, Feng, Yuan, Wang, Sangaiah (b0242) 2022; 118
Liu, Liu, Long, Zhu (b0080) 2022
W. Liu, X. Wang, T. Hamalainen, and F. Cong, Exploring oscillatory dysconnectivity networks in major depression during resting state using coupled tensor decomposition, IEEE Trans. Bio-Med. Eng., 2022, in press.
Du (b0175) 2015; 122
He (10.1016/j.bspc.2022.104232_b0244) 2020; 62
Zheng (10.1016/j.bspc.2022.104232_b0120) 2021; 28
Domanov (10.1016/j.bspc.2022.104232_b0160) 2014; 35
Liu (10.1016/j.bspc.2022.104232_b0080) 2022
Liu (10.1016/j.bspc.2022.104232_b0145) 2021; 29
10.1016/j.bspc.2022.104232_b0185
Kuang (10.1016/j.bspc.2022.104232_b0050) 2015; 256
10.1016/j.bspc.2022.104232_b0140
10.1016/j.bspc.2022.104232_b0065
Sørensen (10.1016/j.bspc.2022.104232_b0155) 2015; 36
Beckmann (10.1016/j.bspc.2022.104232_b0205) 2005; 25
10.1016/j.bspc.2022.104232_b0105
Lu (10.1016/j.bspc.2022.104232_b0125) 2020; 10
Cichocki (10.1016/j.bspc.2022.104232_b0030) 2015; 32
Borsoi (10.1016/j.bspc.2022.104232_b0115) 2021; 15
10.1016/j.bspc.2022.104232_b0150
10.1016/j.bspc.2022.104232_b0110
Han (10.1016/j.bspc.2022.104232_b0075) 2022; 41
10.1016/j.bspc.2022.104232_b0235
Chatzichristos (10.1016/j.bspc.2022.104232_b0100) 2022; 43
Calhoun (10.1016/j.bspc.2022.104232_b0165) 2012; 5
Li (10.1016/j.bspc.2022.104232_b0220) 2010; 57
Xu (10.1016/j.bspc.2022.104232_b0130) 2020; 58
Shi (10.1016/j.bspc.2022.104232_b0180) 2018; 56
Lee (10.1016/j.bspc.2022.104232_b0020) 2008; 40
10.1016/j.bspc.2022.104232_b0090
Walker (10.1016/j.bspc.2022.104232_b0045) 2015
Lin (10.1016/j.bspc.2022.104232_b0170) 2010; 31
Smith (10.1016/j.bspc.2022.104232_b0005) 2009; 106
Calhoun (10.1016/j.bspc.2022.104232_b0010) 2001; 14
10.1016/j.bspc.2022.104232_b0085
Sørensen (10.1016/j.bspc.2022.104232_b0095) 2015; 36
Sen (10.1016/j.bspc.2022.104232_b0241) 2021; 68
Bhinge (10.1016/j.bspc.2022.104232_b0190) 2020; 14
10.1016/j.bspc.2022.104232_b0200
Qiu (10.1016/j.bspc.2022.104232_b0215) 2019; 40
Gui (10.1016/j.bspc.2022.104232_b0243) 2020; 30
Zhang (10.1016/j.bspc.2022.104232_b0242) 2022; 118
Andersen (10.1016/j.bspc.2022.104232_b0035) 2004; 22
Li (10.1016/j.bspc.2022.104232_b0070) 2021; 227
Zhang (10.1016/j.bspc.2022.104232_b0230) 2022; 12
Chatzichristos (10.1016/j.bspc.2022.104232_b0040) 2019; 315
Bell (10.1016/j.bspc.2022.104232_b0210) 1995; 7
Allen (10.1016/j.bspc.2022.104232_b0240) 2012; 59
Kuang (10.1016/j.bspc.2022.104232_b0025) 2017; 281
Bu (10.1016/j.bspc.2022.104232_b0135) 2020; 59
Shi (10.1016/j.bspc.2022.104232_b0195) 2017; 283
Kuang (10.1016/j.bspc.2022.104232_b0055) 2020; 39
Schapire (10.1016/j.bspc.2022.104232_b0225) 2013
Du (10.1016/j.bspc.2022.104232_b0175) 2015; 122
References_xml – volume: 40
  start-page: 2662
  year: 2019
  end-page: 2676
  ident: b0215
  article-title: Spatial source phase: A new feature for identifying spatial differences based on complex-valued resting-state fMRI data
  publication-title: Hum. Brain Mapp.
– volume: 15
  start-page: 702
  year: 2021
  end-page: 717
  ident: b0115
  article-title: Coupled tensor decomposition for hyperspectral and multispectral image fusion with inter-image variability
  publication-title: IEEE J. Sel. Top. Signal Process.
– volume: 122
  start-page: 272
  year: 2015
  end-page: 280
  ident: b0175
  article-title: A group ICA based framework for evaluating resting fMRI markers when disease categories are unclear: application to schizophrenia, bipolar, and schizoaffective disorders
  publication-title: Neuroimage
– volume: 22
  start-page: 728
  year: 2004
  end-page: 739
  ident: b0035
  article-title: Structure-seeking multilinear methods for the analysis of fMRI data
  publication-title: Neuroimage
– reference: I. Davidson, S. Gilpin, O. Carmichael, P. Walker, Network discovery via constrained tensor analysis of fMRI data, in: Proceedings of the 19th ACM SIGKDD international conference on Knowledge discovery and data mining, Chicago, Illinois, USA, 2013, pp. 194–202.
– volume: 35
  start-page: 636
  year: 2014
  end-page: 660
  ident: b0160
  article-title: Canonical polyadic decomposition of third-order tensors: Reduction to generalized eigenvalue decomposition
  publication-title: SIAM J. Matrix Anal. Appl.
– start-page: 361
  year: 2015
  end-page: 369
  ident: b0045
  article-title: “Constrained tensor decomposition via guidance: Increased inter and intra-group reliability in fMRI analyses
  publication-title: Foundations of Augmented Cognition
– volume: 12
  start-page: 1
  year: 2022
  end-page: 18
  ident: b0230
  article-title: CCTSDB 2021: A more comprehensive traffic sign detection benchmark
  publication-title: Human-centric Comput. Inform. Sci.
– volume: 14
  start-page: 1255
  year: 2020
  end-page: 1264
  ident: b0190
  article-title: Adaptive constrained independent vector analysis: An effective solution for analysis of large-scale medical imaging data
  publication-title: IEEE J. Sel. Top. Signal Process.
– volume: 62
  start-page: 321
  year: 2020
  end-page: 336
  ident: b0244
  article-title: Parameters Compressing in Deep Learning
  publication-title: CMC: Computers, Materials & Continua
– volume: 10
  start-page: 1231
  year: 2020
  end-page: 1255
  ident: b0125
  article-title: Exploring coupled images fusion based on joint tensor decomposition
  publication-title: Human-centric Comput. Inform. Sci.
– volume: 41
  start-page: 667
  year: 2022
  end-page: 679
  ident: b0075
  article-title: Low-rank Tucker-2 model for multi-subject fMRI data decomposition with spatial sparsity constraint
  publication-title: IEEE Trans. Med. Imaging
– reference: J. Liang, J. Zou, D. Hong, Non-Gaussian penalized PARAFAC analysis for fMRI data, Front. Appl. Mathem. Stat., vol. 5, article no. 40, (2019).
– reference: K. Naskovska, S. Lau, A. A. Korobkov, J. Haueisen, and M. Haardt, Coupled CP decomposition of Simultaneous MEG-EEG signals for differentiating oscillators during photic driving, Front. Neurosci., vol. 14, article no. 261, (2020).
– volume: 256
  start-page: 127
  year: 2015
  end-page: 140
  ident: b0050
  article-title: Multi-subject fMRI analysis via combined independent component analysis and shift-invariant canonical polyadic decomposition
  publication-title: J. Neurosci. Methods
– volume: 31
  start-page: 1076
  year: 2010
  end-page: 1088
  ident: b0170
  article-title: Semiblind spatial ICA of fMRI using spatial constraints
  publication-title: Hum. Brain Mapp.
– volume: 7
  start-page: 1129
  year: 1995
  end-page: 1159
  ident: b0210
  article-title: An information-maximization approach to blind separation and blind deconvolution
  publication-title: Neural Comput.
– volume: 59
  start-page: 648
  year: 2020
  end-page: 662
  ident: b0135
  article-title: Hyperspectral and multispectral image fusion via graph Laplacian-guided coupled tensor decomposition
  publication-title: IEEE Trans. Geosci. Remote Sens.: A Publ. IEEE Geosci. Remote Sens. Soc.
– reference: S. Wein, A.M. Tomé, M. Goldhacker, M.W. Greenlee, and E.W. Lang, A constrained ICA-EMD model for group level fMRI analysis, Front. Neurosci., vol. 14, article no. 221, (2020).
– start-page: 115
  year: 2022
  end-page: 131
  ident: b0080
  article-title: Coupled tensor for data analysis
  publication-title: Tensor Computation for Data Analysis
– volume: 30
  start-page: 4781
  year: 2020
  end-page: 4795
  ident: b0243
  article-title: Reliable and dynamic appearance modeling and label consistency enforcing for fast and coherent video object segmentation with the bilateral grid
  publication-title: IEEE Transactions on Circuits and Systems for Video Technology
– volume: 58
  start-page: 348
  year: 2020
  end-page: 362
  ident: b0130
  article-title: Nonlocal coupled tensor CP decomposition for hyperspectral and multispectral image fusion
  publication-title: IEEE Trans. Geosci. Remote Sens.: A Publ. IEEE Geosci. Remote Sens. Soc.
– volume: 56
  start-page: 683
  year: 2018
  end-page: 694
  ident: b0180
  article-title: An improved multi-objective optimization-based CICA method with data-driver temporal reference for group fMRI data analysis
  publication-title: Med. Biol. Eng. Compu.
– reference: R. Mosayebi and G.-A. Hossein-Zadeh, Correlated coupled matrix tensor factorization method for simultaneous EEG-fMRI data fusion, Biomed. Signal Process. Control, vol. 62, article no. 102071, (2020).
– reference: W. He, Y. Chen, N. Yokoya, C. Li, Q. Zhao, Hyperspectral super-resolution via coupled tensor ring factorization, Pattern Recogn., vol. 122, article no. 108280, 2022.
– volume: 29
  start-page: 1895
  year: 2021
  end-page: 1904
  ident: b0145
  article-title: Identifying oscillatory hyperconnectivity and hypoconnectivity networks in major depression using coupled tensor decomposition
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
– volume: 283
  start-page: 72
  year: 2017
  end-page: 82
  ident: b0195
  article-title: A new method for independent component analysis with priori information based on multi-objective optimization
  publication-title: J. Neurosci. Methods
– volume: 39
  start-page: 844
  year: 2020
  end-page: 853
  ident: b0055
  article-title: Shift-invariant canonical polyadic decomposition of complex-valued multi-subject fMRI data with a phase sparsity constraint
  publication-title: IEEE Trans. Med. Imaging
– volume: 5
  start-page: 60
  year: 2012
  end-page: 73
  ident: b0165
  article-title: Multisubject independent component analysis of fMRI: a decade of intrinsic networks, default mode, and neurodiagnostic discovery
  publication-title: IEEE Rev. Biomed. Eng.
– volume: 68
  start-page: 815
  year: 2021
  end-page: 825
  ident: b0241
  article-title: Predicting biological gender and intelligence from fmri via dynamic functional connectivity
  publication-title: IEEE Transactions on Biomedical Engineering
– volume: 28
  start-page: 1545
  year: 2021
  end-page: 1549
  ident: b0120
  article-title: Coupled coarray tensor CPD for DOA estimation with coprime L-shaped array
  publication-title: IEEE Signal Process Lett.
– start-page: 37
  year: 2013
  end-page: 52
  ident: b0225
  article-title: Explaining AdaBoost
  publication-title: In Empirical Inference
– volume: 315
  start-page: 17
  year: 2019
  end-page: 47
  ident: b0040
  article-title: Blind fMRI source unmixing via higher-order tensor decompositions
  publication-title: J. Neurosci. Methods
– volume: 25
  start-page: 294
  year: 2005
  end-page: 311
  ident: b0205
  article-title: Tensorial extensions of independent component analysis for multisubject FMRI analysis
  publication-title: Neuroimage
– volume: 40
  start-page: 86
  year: 2008
  end-page: 109
  ident: b0020
  article-title: Independent vector analysis (IVA): Multivariate approach for fMRI group study
  publication-title: Neuroimage
– volume: 281
  start-page: 49
  year: 2017
  end-page: 63
  ident: b0025
  article-title: Adaptive independent vector analysis for multi-subject complex-valued fMRI data
  publication-title: J. Neurosci. Methods
– volume: 118
  start-page: 1
  year: 2022
  end-page: 20
  ident: b0242
  article-title: SCSTCF: Spatial-channel selection and temporal regularized correlation filters for visual tracking
  publication-title: Applied Soft Computing
– reference: M. Zhang, F. Yang, F. Fan, Z. Wang, L.E. Hong, Abnormal amygdala subregional-sensorimotor connectivity correlates with positive symptom in schizophrenia, NeuroImage: Clinical, vol. 26, article no. 102218, (2020).
– reference: B. Sen, K.K. Parhi, Extraction of common task signals and spatial maps from group fMRI using a PARAFAC-based tensor decomposition technique, in: 2017 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), New Orleans, LA, USA, 2017, pp. 1113–1117.
– reference: M. Maneshi, S. Vahdat, J. Gotman, and C. Grova, Validation of shared and specific independent component analysis (SSICA) for between-group comparisons in fMRI, Front. Neurosci., vol. 10, article no. 417, (2016).
– volume: 36
  start-page: 496
  year: 2015
  end-page: 522
  ident: b0095
  article-title: Coupled canonical polyadic decompositions and (coupled) decompositions in multilinear rank-(L_r, n, L_r, n,1) terms–-part I: Uniqueness
  publication-title: SIAM J. Matrix Anal. Appl.
– volume: 36
  start-page: 1015
  year: 2015
  end-page: 1045
  ident: b0155
  article-title: Coupled canonical polyadic decompositions and (coupled) decompositions in multilinear rank- (L_r, n, L_r, n,1) terms–-part II: Algorithms
  publication-title: SIAM J. Matrix Anal. Appl.
– volume: 32
  start-page: 145
  year: 2015
  end-page: 163
  ident: b0030
  article-title: Tensor decompositions for signal processing applications: From two-way to multiway component analysis
  publication-title: IEEE Signal Process Mag.
– volume: 14
  start-page: 140
  year: 2001
  end-page: 151
  ident: b0010
  article-title: A method for making group inferences from functional MRI data using independent component analysis
  publication-title: Hum. Brain Mapp.
– volume: 227
  year: 2021
  ident: b0070
  article-title: Robust brain network identification from multi-subject asynchronous fMRI data
  publication-title: Neuroimage
– volume: 43
  start-page: 1231
  year: 2022
  end-page: 1255
  ident: b0100
  article-title: Early soft and flexible fusion of electroencephalography and functional magnetic resonance imaging via double coupled matrix tensor factorization for multisubject group analysis
  publication-title: Hum. Brain Mapp.
– reference: W. Liu, X. Wang, T. Hamalainen, and F. Cong, Exploring oscillatory dysconnectivity networks in major depression during resting state using coupled tensor decomposition, IEEE Trans. Bio-Med. Eng., 2022, in press.
– volume: 57
  start-page: 1417
  year: 2010
  end-page: 1430
  ident: b0220
  article-title: Complex independent component analysis by entropy bound minimization
  publication-title: IEEE Trans. Circ. Syst. I, Regular Papers: A Publ. IEEE Circ. Syst. Soc.
– volume: 106
  start-page: 13040
  year: 2009
  end-page: 13045
  ident: b0005
  article-title: Correspondence of the brain’s functional architecture during activation and rest
  publication-title: PNAS
– volume: 59
  start-page: 4141
  year: 2012
  end-page: 4159
  ident: b0240
  article-title: Capturing inter-subject variability with group independent component analysis of fMRI data: a simulation study
  publication-title: Neuroimage
– volume: 35
  start-page: 636
  issue: 2
  year: 2014
  ident: 10.1016/j.bspc.2022.104232_b0160
  article-title: Canonical polyadic decomposition of third-order tensors: Reduction to generalized eigenvalue decomposition
  publication-title: SIAM J. Matrix Anal. Appl.
  doi: 10.1137/130916084
– ident: 10.1016/j.bspc.2022.104232_b0065
  doi: 10.3389/fams.2019.00040
– volume: 10
  start-page: 1231
  issue: 1
  year: 2020
  ident: 10.1016/j.bspc.2022.104232_b0125
  article-title: Exploring coupled images fusion based on joint tensor decomposition
  publication-title: Human-centric Comput. Inform. Sci.
– ident: 10.1016/j.bspc.2022.104232_b0200
  doi: 10.1109/ICASSP.2017.7952329
– ident: 10.1016/j.bspc.2022.104232_b0110
  doi: 10.1016/j.bspc.2020.102071
– volume: 32
  start-page: 145
  issue: 2
  year: 2015
  ident: 10.1016/j.bspc.2022.104232_b0030
  article-title: Tensor decompositions for signal processing applications: From two-way to multiway component analysis
  publication-title: IEEE Signal Process Mag.
  doi: 10.1109/MSP.2013.2297439
– volume: 40
  start-page: 86
  issue: 1
  year: 2008
  ident: 10.1016/j.bspc.2022.104232_b0020
  article-title: Independent vector analysis (IVA): Multivariate approach for fMRI group study
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2007.11.019
– ident: 10.1016/j.bspc.2022.104232_b0140
  doi: 10.1016/j.patcog.2021.108280
– volume: 31
  start-page: 1076
  issue: 7
  year: 2010
  ident: 10.1016/j.bspc.2022.104232_b0170
  article-title: Semiblind spatial ICA of fMRI using spatial constraints
  publication-title: Hum. Brain Mapp.
  doi: 10.1002/hbm.20919
– volume: 68
  start-page: 815
  issue: 3
  year: 2021
  ident: 10.1016/j.bspc.2022.104232_b0241
  article-title: Predicting biological gender and intelligence from fmri via dynamic functional connectivity
  publication-title: IEEE Transactions on Biomedical Engineering
  doi: 10.1109/TBME.2020.3011363
– volume: 29
  start-page: 1895
  year: 2021
  ident: 10.1016/j.bspc.2022.104232_b0145
  article-title: Identifying oscillatory hyperconnectivity and hypoconnectivity networks in major depression using coupled tensor decomposition
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
  doi: 10.1109/TNSRE.2021.3111564
– volume: 41
  start-page: 667
  issue: 3
  year: 2022
  ident: 10.1016/j.bspc.2022.104232_b0075
  article-title: Low-rank Tucker-2 model for multi-subject fMRI data decomposition with spatial sparsity constraint
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2021.3122226
– ident: 10.1016/j.bspc.2022.104232_b0105
  doi: 10.3389/fnins.2020.00261
– ident: 10.1016/j.bspc.2022.104232_b0150
  doi: 10.1109/TBME.2022.3152413
– volume: 315
  start-page: 17
  year: 2019
  ident: 10.1016/j.bspc.2022.104232_b0040
  article-title: Blind fMRI source unmixing via higher-order tensor decompositions
  publication-title: J. Neurosci. Methods
  doi: 10.1016/j.jneumeth.2018.12.007
– volume: 14
  start-page: 1255
  issue: 6
  year: 2020
  ident: 10.1016/j.bspc.2022.104232_b0190
  article-title: Adaptive constrained independent vector analysis: An effective solution for analysis of large-scale medical imaging data
  publication-title: IEEE J. Sel. Top. Signal Process.
  doi: 10.1109/JSTSP.2020.3003891
– ident: 10.1016/j.bspc.2022.104232_b0085
  doi: 10.1145/2487575.2487619
– volume: 5
  start-page: 60
  year: 2012
  ident: 10.1016/j.bspc.2022.104232_b0165
  article-title: Multisubject independent component analysis of fMRI: a decade of intrinsic networks, default mode, and neurodiagnostic discovery
  publication-title: IEEE Rev. Biomed. Eng.
  doi: 10.1109/RBME.2012.2211076
– volume: 15
  start-page: 702
  issue: 3
  year: 2021
  ident: 10.1016/j.bspc.2022.104232_b0115
  article-title: Coupled tensor decomposition for hyperspectral and multispectral image fusion with inter-image variability
  publication-title: IEEE J. Sel. Top. Signal Process.
  doi: 10.1109/JSTSP.2021.3054338
– volume: 58
  start-page: 348
  issue: 1
  year: 2020
  ident: 10.1016/j.bspc.2022.104232_b0130
  article-title: Nonlocal coupled tensor CP decomposition for hyperspectral and multispectral image fusion
  publication-title: IEEE Trans. Geosci. Remote Sens.: A Publ. IEEE Geosci. Remote Sens. Soc.
  doi: 10.1109/TGRS.2019.2936486
– volume: 30
  start-page: 4781
  issue: 12
  year: 2020
  ident: 10.1016/j.bspc.2022.104232_b0243
  article-title: Reliable and dynamic appearance modeling and label consistency enforcing for fast and coherent video object segmentation with the bilateral grid
  publication-title: IEEE Transactions on Circuits and Systems for Video Technology
  doi: 10.1109/TCSVT.2019.2961267
– volume: 40
  start-page: 2662
  issue: 9
  year: 2019
  ident: 10.1016/j.bspc.2022.104232_b0215
  article-title: Spatial source phase: A new feature for identifying spatial differences based on complex-valued resting-state fMRI data
  publication-title: Hum. Brain Mapp.
  doi: 10.1002/hbm.24551
– volume: 118
  start-page: 1
  year: 2022
  ident: 10.1016/j.bspc.2022.104232_b0242
  article-title: SCSTCF: Spatial-channel selection and temporal regularized correlation filters for visual tracking
  publication-title: Applied Soft Computing
  doi: 10.1016/j.asoc.2022.108485
– start-page: 361
  year: 2015
  ident: 10.1016/j.bspc.2022.104232_b0045
  article-title: “Constrained tensor decomposition via guidance: Increased inter and intra-group reliability in fMRI analyses
– volume: 36
  start-page: 1015
  issue: 3
  year: 2015
  ident: 10.1016/j.bspc.2022.104232_b0155
  article-title: Coupled canonical polyadic decompositions and (coupled) decompositions in multilinear rank- (L_r, n, L_r, n,1) terms–-part II: Algorithms
  publication-title: SIAM J. Matrix Anal. Appl.
  doi: 10.1137/140956865
– volume: 122
  start-page: 272
  year: 2015
  ident: 10.1016/j.bspc.2022.104232_b0175
  article-title: A group ICA based framework for evaluating resting fMRI markers when disease categories are unclear: application to schizophrenia, bipolar, and schizoaffective disorders
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2015.07.054
– volume: 39
  start-page: 844
  issue: 4
  year: 2020
  ident: 10.1016/j.bspc.2022.104232_b0055
  article-title: Shift-invariant canonical polyadic decomposition of complex-valued multi-subject fMRI data with a phase sparsity constraint
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2019.2936046
– volume: 28
  start-page: 1545
  year: 2021
  ident: 10.1016/j.bspc.2022.104232_b0120
  article-title: Coupled coarray tensor CPD for DOA estimation with coprime L-shaped array
  publication-title: IEEE Signal Process Lett.
  doi: 10.1109/LSP.2021.3099074
– volume: 43
  start-page: 1231
  issue: 4
  year: 2022
  ident: 10.1016/j.bspc.2022.104232_b0100
  article-title: Early soft and flexible fusion of electroencephalography and functional magnetic resonance imaging via double coupled matrix tensor factorization for multisubject group analysis
  publication-title: Hum. Brain Mapp.
  doi: 10.1002/hbm.25717
– volume: 36
  start-page: 496
  issue: 2
  year: 2015
  ident: 10.1016/j.bspc.2022.104232_b0095
  article-title: Coupled canonical polyadic decompositions and (coupled) decompositions in multilinear rank-(L_r, n, L_r, n,1) terms–-part I: Uniqueness
  publication-title: SIAM J. Matrix Anal. Appl.
  doi: 10.1137/140956853
– volume: 12
  start-page: 1
  issue: 1
  year: 2022
  ident: 10.1016/j.bspc.2022.104232_b0230
  article-title: CCTSDB 2021: A more comprehensive traffic sign detection benchmark
  publication-title: Human-centric Comput. Inform. Sci.
– start-page: 37
  year: 2013
  ident: 10.1016/j.bspc.2022.104232_b0225
  article-title: Explaining AdaBoost
– volume: 106
  start-page: 13040
  issue: 31
  year: 2009
  ident: 10.1016/j.bspc.2022.104232_b0005
  article-title: Correspondence of the brain’s functional architecture during activation and rest
  publication-title: PNAS
  doi: 10.1073/pnas.0905267106
– volume: 62
  start-page: 321
  issue: 1
  year: 2020
  ident: 10.1016/j.bspc.2022.104232_b0244
  article-title: Parameters Compressing in Deep Learning
  publication-title: CMC: Computers, Materials & Continua
  doi: 10.32604/cmc.2020.06130
– volume: 59
  start-page: 4141
  issue: 4
  year: 2012
  ident: 10.1016/j.bspc.2022.104232_b0240
  article-title: Capturing inter-subject variability with group independent component analysis of fMRI data: a simulation study
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2011.10.010
– volume: 256
  start-page: 127
  year: 2015
  ident: 10.1016/j.bspc.2022.104232_b0050
  article-title: Multi-subject fMRI analysis via combined independent component analysis and shift-invariant canonical polyadic decomposition
  publication-title: J. Neurosci. Methods
  doi: 10.1016/j.jneumeth.2015.08.023
– start-page: 115
  year: 2022
  ident: 10.1016/j.bspc.2022.104232_b0080
  article-title: Coupled tensor for data analysis
– ident: 10.1016/j.bspc.2022.104232_b0235
  doi: 10.1016/j.nicl.2020.102218
– volume: 57
  start-page: 1417
  issue: 7
  year: 2010
  ident: 10.1016/j.bspc.2022.104232_b0220
  article-title: Complex independent component analysis by entropy bound minimization
  publication-title: IEEE Trans. Circ. Syst. I, Regular Papers: A Publ. IEEE Circ. Syst. Soc.
– volume: 227
  issue: 117615
  year: 2021
  ident: 10.1016/j.bspc.2022.104232_b0070
  article-title: Robust brain network identification from multi-subject asynchronous fMRI data
  publication-title: Neuroimage
– volume: 59
  start-page: 648
  issue: 1
  year: 2020
  ident: 10.1016/j.bspc.2022.104232_b0135
  article-title: Hyperspectral and multispectral image fusion via graph Laplacian-guided coupled tensor decomposition
  publication-title: IEEE Trans. Geosci. Remote Sens.: A Publ. IEEE Geosci. Remote Sens. Soc.
  doi: 10.1109/TGRS.2020.2992788
– volume: 281
  start-page: 49
  year: 2017
  ident: 10.1016/j.bspc.2022.104232_b0025
  article-title: Adaptive independent vector analysis for multi-subject complex-valued fMRI data
  publication-title: J. Neurosci. Methods
  doi: 10.1016/j.jneumeth.2017.01.017
– ident: 10.1016/j.bspc.2022.104232_b0090
  doi: 10.3389/fnins.2016.00417
– volume: 22
  start-page: 728
  issue: 2
  year: 2004
  ident: 10.1016/j.bspc.2022.104232_b0035
  article-title: Structure-seeking multilinear methods for the analysis of fMRI data
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2004.02.026
– volume: 7
  start-page: 1129
  issue: 6
  year: 1995
  ident: 10.1016/j.bspc.2022.104232_b0210
  article-title: An information-maximization approach to blind separation and blind deconvolution
  publication-title: Neural Comput.
  doi: 10.1162/neco.1995.7.6.1129
– volume: 56
  start-page: 683
  issue: 4
  year: 2018
  ident: 10.1016/j.bspc.2022.104232_b0180
  article-title: An improved multi-objective optimization-based CICA method with data-driver temporal reference for group fMRI data analysis
  publication-title: Med. Biol. Eng. Compu.
  doi: 10.1007/s11517-017-1716-9
– volume: 14
  start-page: 140
  issue: 3
  year: 2001
  ident: 10.1016/j.bspc.2022.104232_b0010
  article-title: A method for making group inferences from functional MRI data using independent component analysis
  publication-title: Hum. Brain Mapp.
  doi: 10.1002/hbm.1048
– ident: 10.1016/j.bspc.2022.104232_b0185
  doi: 10.3389/fnins.2020.00221
– volume: 283
  start-page: 72
  year: 2017
  ident: 10.1016/j.bspc.2022.104232_b0195
  article-title: A new method for independent component analysis with priori information based on multi-objective optimization
  publication-title: J. Neurosci. Methods
  doi: 10.1016/j.jneumeth.2017.03.018
– volume: 25
  start-page: 294
  issue: 1
  year: 2005
  ident: 10.1016/j.bspc.2022.104232_b0205
  article-title: Tensorial extensions of independent component analysis for multisubject FMRI analysis
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2004.10.043
SSID ssj0048714
Score 2.319668
Snippet •A novel constrained CCPD by incorporating spatial reference and orthonormality is proposed for multi-group fMRI data.•The shared SMs and group-specific TCs...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 104232
SubjectTerms Coupled Canonical Polyadic Decomposition (CCPD)
fMRI Data
Orthonormality
Reference constraint
Schizophrenia
Title Coupled canonical polyadic decomposition of multi-group fMRI data with spatial reference and orthonormality constraints
URI https://dx.doi.org/10.1016/j.bspc.2022.104232
Volume 80
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1746-8108
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0048714
  issn: 1746-8094
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Complete Freedom Collection [SCCMFC]
  customDbUrl:
  eissn: 1746-8108
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0048714
  issn: 1746-8094
  databaseCode: ACRLP
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Science Direct
  customDbUrl:
  eissn: 1746-8108
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0048714
  issn: 1746-8094
  databaseCode: .~1
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect Freedom Collection Journals
  customDbUrl:
  eissn: 1746-8108
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0048714
  issn: 1746-8094
  databaseCode: AIKHN
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1746-8108
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0048714
  issn: 1746-8094
  databaseCode: AKRWK
  dateStart: 20060101
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF5KvehBfGJ9lD14k9jdTbJJjqVYqtIe1EJvYbMPqJQm2BTx4m93Z5OUCtKD1zADm8lm5kv2m_kQulVMZ9wPEi_iWeIFOjOe0PZ9FLZ22oIVaunUGsYTPpoGT7Nw1kKDphcGaJV17q9yusvW9ZVeHc1eMZ_3Xi2W5rH9OmHM9TnAxM8giEDF4P57Q_OweNzN9wZjD6zrxpmK45WtChhjyBgcdTKf_V2ctgrO8Agd1kgR96vFHKOWXp6gg635gafoc5Cvi4VW2MYndw2OuMgXX0LNJVYa2OI1JQvnBjvqoOe6OLAZvzxiIIdi-A-LV0Crts4bzREslgrDiU6-BEwLUB1LQJIgKFGuztB0-PA2GHm1koInfUJKjwpfxZJYqBYrYzicfnKtLfSSJAxVRn1bKk2WxFQSYrgUFgNwaggRVBBfhpl_jtr2PvQFwjriIVVGxgm30EVSQSOpuGRMRzSRsewg2oQwlfWYcVjcIm34ZO8phD2FsKdV2DvobuNTVEM2dlqHzZNJf22V1FaBHX6X__S7QvugMV9Rta9Ru_xY6xuLRMqs67ZaF-31H59Hkx_apd9L
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF5qPagH8Yn1uQdvEru7STbJUYql1bYHbaG3sNkHVEoTbIp48be7k0epIB68hhnYTHZnvs18M4PQrWI64a4XOQFPIsfTiXGEtudR2NhpA5avZTGtYTjivYn3NPWnDdSpa2GAVln5_tKnF966etKurNnOZrP2q8XSPLS3E8aKOgd3C217PgvgBnb_teZ5WEBeNPgGaQfEq8qZkuSVLDPoY8gY5DqZy36PThsRp3uA9iuoiB_K1Ryihl4cob2NBoLH6KOTrrK5VtgaKC0qHHGWzj-FmkmsNNDFK04WTg0uuINOUcaBzfClj4EdiuFHLF4Cr9oqr4eOYLFQGFI66QJALWB1LAFKwkSJfHmCJt3HcafnVKMUHOkSkjtUuCqUxGK1UBnDIf3JtbbYSxLfVwl1baw0SRRSSYjhUlgQwKkhRFBBXOkn7ilq2vfQZwjrgPtUGRlG3GIXSQUNpOKSMR3QSIayhWhtwlhWfcZhcfO4JpS9xWD2GMwel2Zvobu1TlZ22fhT2q-_TPxjr8Q2DPyhd_5PvRu00xsPB_GgP3q-QLswcL6kPF6iZv6-0lcWluTJdbHtvgEgJuDj
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Coupled+canonical+polyadic+decomposition+of+multi-group+fMRI+data+with+spatial+reference+and+orthonormality+constraints&rft.jtitle=Biomedical+signal+processing+and+control&rft.au=Kuang%2C+Li-Dan&rft.au=He%2C+Zhi-Ming&rft.au=Zhang%2C+Jianming&rft.au=Li%2C+Feng&rft.date=2023-02-01&rft.pub=Elsevier+Ltd&rft.issn=1746-8094&rft.eissn=1746-8108&rft.volume=80&rft_id=info:doi/10.1016%2Fj.bspc.2022.104232&rft.externalDocID=S1746809422006863
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1746-8094&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1746-8094&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1746-8094&client=summon