Estimating voluntary elbow torque from biceps brachii electromyography using a particle filter

•Electromyography correlates with voluntary torque during dynamic elbow flexion.•Models with electromyography and sensor measurements approximated torque.•A particle filter combined the models and considered their uncertainties.•The particle filter accurately estimated voluntary torque for ten healt...

Full description

Saved in:
Bibliographic Details
Published inBiomedical signal processing and control Vol. 66; p. 102475
Main Authors Chatfield, Logan T., Pretty, Christopher G., Fortune, Benjamin C., McKenzie, Lachlan R., Whitwham, Guy H., Hayes, Michael P.
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.04.2021
Subjects
Online AccessGet full text
ISSN1746-8094
1746-8108
DOI10.1016/j.bspc.2021.102475

Cover

Abstract •Electromyography correlates with voluntary torque during dynamic elbow flexion.•Models with electromyography and sensor measurements approximated torque.•A particle filter combined the models and considered their uncertainties.•The particle filter accurately estimated voluntary torque for ten healthy subjects.•Allows for future research on optimal assist-as-need control. Stroke is one of the leading causes of disability worldwide. Assist-as-need control is desirable as it can optimise the rehabilitation and potentially greatly improve the patient's recovery from stroke. However, to achieve optimal assistance, the voluntary effort a patient applies must be known. To verify the use of a particle filter to accurately estimate in real-time the voluntary torque from electromyography (EMG) for various subjects and movement speeds, accounting for the non-linear and time-varying behaviour of the muscle. Ten healthy subjects performed dynamic elbow flexion at various speeds. The EMG of the biceps brachii and the torque were recorded. A motion model and different sensor models were developed for each data set, and the particle filter was then applied to improve the estimate of voluntary torque. The performance of the particle filter with the different sensor models was analysed. By combining the motion model and sensor model, and considering their uncertainties, the particle filter improved the estimate of voluntary torque with a mean normalised RMS error across all subjects and movement speeds of 6.56%. The particle filter demonstrated the ability to adapt and improve the estimate of voluntary torque, and so it is suitable for understanding the voluntary efforts and capabilities of a healthy subject. The next stages are to conduct a clinical trial to verify the effectiveness of the particle filter for subjects affected by stroke, and to analyse assist-as-need control based on the estimate of voluntary torque with a wide range of subjects.
AbstractList •Electromyography correlates with voluntary torque during dynamic elbow flexion.•Models with electromyography and sensor measurements approximated torque.•A particle filter combined the models and considered their uncertainties.•The particle filter accurately estimated voluntary torque for ten healthy subjects.•Allows for future research on optimal assist-as-need control. Stroke is one of the leading causes of disability worldwide. Assist-as-need control is desirable as it can optimise the rehabilitation and potentially greatly improve the patient's recovery from stroke. However, to achieve optimal assistance, the voluntary effort a patient applies must be known. To verify the use of a particle filter to accurately estimate in real-time the voluntary torque from electromyography (EMG) for various subjects and movement speeds, accounting for the non-linear and time-varying behaviour of the muscle. Ten healthy subjects performed dynamic elbow flexion at various speeds. The EMG of the biceps brachii and the torque were recorded. A motion model and different sensor models were developed for each data set, and the particle filter was then applied to improve the estimate of voluntary torque. The performance of the particle filter with the different sensor models was analysed. By combining the motion model and sensor model, and considering their uncertainties, the particle filter improved the estimate of voluntary torque with a mean normalised RMS error across all subjects and movement speeds of 6.56%. The particle filter demonstrated the ability to adapt and improve the estimate of voluntary torque, and so it is suitable for understanding the voluntary efforts and capabilities of a healthy subject. The next stages are to conduct a clinical trial to verify the effectiveness of the particle filter for subjects affected by stroke, and to analyse assist-as-need control based on the estimate of voluntary torque with a wide range of subjects.
ArticleNumber 102475
Author Fortune, Benjamin C.
Chatfield, Logan T.
Pretty, Christopher G.
Whitwham, Guy H.
McKenzie, Lachlan R.
Hayes, Michael P.
Author_xml – sequence: 1
  givenname: Logan T.
  surname: Chatfield
  fullname: Chatfield, Logan T.
  email: logan.chatfield@pg.canterbury.ac.nz
– sequence: 2
  givenname: Christopher G.
  surname: Pretty
  fullname: Pretty, Christopher G.
– sequence: 3
  givenname: Benjamin C.
  surname: Fortune
  fullname: Fortune, Benjamin C.
– sequence: 4
  givenname: Lachlan R.
  surname: McKenzie
  fullname: McKenzie, Lachlan R.
– sequence: 5
  givenname: Guy H.
  surname: Whitwham
  fullname: Whitwham, Guy H.
– sequence: 6
  givenname: Michael P.
  surname: Hayes
  fullname: Hayes, Michael P.
BookMark eNp9kMtOwzAQRS1UJNrCD7DyD6T4kSaOxAZV5SEhsYEtlu1MWldpHGy3KH-Po8KGRVczuppzpTkzNOlcBwjdUrKghBZ3u4UOvVkwwmgKWF4uL9CUlnmRCUrE5G8nVX6FZiHsCMlFSfMp-lyHaPcq2m6Dj649dFH5AUOr3TeOzn8dADfe7bG2BvqAtVdma206ABNTPriNV_12wIcwNijcKx-taRNl2wj-Gl02qg1w8zvn6ONx_b56zl7fnl5WD6-Z4YTEjBZClEuWN1RUNVUKck50YaoGWMNhyTVQzTkzTclrKoDVIBRARQvQjFYc-ByJU6_xLgQPjTQ2pq9cF72yraREjp7kTo6e5OhJnjwllP1De5-M-OE8dH-CID11tOBlMBY6A7X1yYysnT2H_wAuUoZb
CitedBy_id crossref_primary_10_26701_ems_1348070
crossref_primary_10_1016_j_heliyon_2021_e06768
crossref_primary_10_1109_ACCESS_2023_3325669
Cites_doi 10.1016/j.medengphy.2011.08.012
10.1016/j.bspc.2019.02.011
10.1016/j.ohx.2019.e00085
10.1016/j.bspc.2017.10.002
10.1016/0021-9290(95)00178-6
10.1109/TNSRE.2016.2639443
10.1186/s12938-018-0622-1
10.1109/TNSRE.2015.2405765
10.1016/j.jbiomech.2010.05.035
10.1109/TNSRE.2008.918389
10.1109/JPROC.2015.2491979
10.1186/s12984-019-0512-1
10.1186/1475-925X-12-86
10.1109/TBME.2011.2170423
10.1186/1475-925X-9-72
10.1080/02701367.1983.10605290
10.1016/j.ifacol.2018.11.620
10.1109/TMECH.2011.2160809
10.1186/s12938-019-0653-2
10.1186/s12984-016-0169-y
10.1186/1743-0003-6-20
10.3109/17483107.2010.544370
10.1016/S1050-6411(02)00012-3
10.1016/S0268-0033(02)00033-5
10.1016/j.sigpro.2016.08.025
10.1186/1743-0003-11-111
10.1109/NER.2015.7146745
10.1016/j.eswa.2013.12.031
10.1007/s11431-018-9354-5
10.1109/TNSRE.2018.2805472
10.1098/rspb.1938.0050
10.1016/j.bspc.2018.12.020
10.1109/RBME.2016.2552201
10.1109/TRO.2015.2503726
10.1109/TIE.2014.2387337
ContentType Journal Article
Copyright 2021 Elsevier Ltd
Copyright_xml – notice: 2021 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.bspc.2021.102475
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1746-8108
ExternalDocumentID 10_1016_j_bspc_2021_102475
S1746809421000720
GroupedDBID ---
--K
--M
.~1
0R~
1B1
1~.
1~5
23N
4.4
457
4G.
5GY
5VS
6J9
7-5
71M
8P~
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
AAYFN
ABBOA
ABFNM
ABFRF
ABJNI
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFO
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADMUD
ADTZH
AEBSH
AECPX
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
AXJTR
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HZ~
IHE
J1W
JJJVA
KOM
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
ROL
RPZ
SDF
SDG
SES
SPC
SPCBC
SST
SSV
SSZ
T5K
UNMZH
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
ID FETCH-LOGICAL-c300t-16887524f189d1aae430b6c9fe2f3e53be1b332cf73d18e2de8aee916eb2193e3
IEDL.DBID .~1
ISSN 1746-8094
IngestDate Wed Oct 29 21:17:30 EDT 2025
Thu Apr 24 23:10:17 EDT 2025
Fri Feb 23 02:44:47 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Logistic function
Probability density function (PDF)
Electromyography (EMG)
Sensor model
Process noise
Voluntary torque
Cumulative distribution function (CDF)
Inverse transform sampling
Particle filter
Motion model
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c300t-16887524f189d1aae430b6c9fe2f3e53be1b332cf73d18e2de8aee916eb2193e3
ParticipantIDs crossref_citationtrail_10_1016_j_bspc_2021_102475
crossref_primary_10_1016_j_bspc_2021_102475
elsevier_sciencedirect_doi_10_1016_j_bspc_2021_102475
PublicationCentury 2000
PublicationDate April 2021
2021-04-00
PublicationDateYYYYMMDD 2021-04-01
PublicationDate_xml – month: 04
  year: 2021
  text: April 2021
PublicationDecade 2020
PublicationTitle Biomedical signal processing and control
PublicationYear 2021
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Pehlivan, Losey, O’Malley (bib0045) 2016; 32
Trigili, Grazi, Crea, Accogli, Carpaneto, Micera, Vitiello, Panarese (bib0060) 2019; 16
Wolbrecht, Chan, Reinkensmeyer, Bobrow (bib0035) 2008; 16
Gerdle, Larsson, Karlsson (bib0070) 2000
de Oliveira, Luporini Menegaldo (bib0095) 2010; 43
Farfán, Politti, Felice (bib0210) 2010; 9
Proietti, Jarrasse, Roby-Brami, Morel (bib0040) 2015
Chatfield, Fortune, McKenzie, Pretty (bib0050) 2019
Liu, Liu, Clancy (bib0135) 2015; 23
Li, Sun, Sattar, Corchado (bib0235) 2014; 41
Han, Ding, Xiong, Zhao (bib0110) 2015; 62
Krishnan, Devanandh, Brahma, Pugazhenthi (bib0200) 2016; 11
Lu, Wang, Hebert, Boger, Galea, Mihailidis (bib0030) 2011; 6
Bilodeau, Houck, Cuddeford, Sharma, Riley (bib0075) 2002; 12
Rong, Tong, Hu, Ho (bib0065) 2015; 10
Allison, Fujiwara (bib0080) 2002; 17
Fortune, Pretty, Chatfield, McKenzie, Hayes (bib0185) 2019; 6
Foundation (bib0010) 2017
Zhang, Hayashibe, Fraisse, Guiraud (bib0115) 2011; 16
Devroye (bib0225) 1986
Yepes, Portela, Saldarriaga, Pérez, Betancur (bib0055) 2019; 18
Dai, Bardizbanian, Clancy (bib0130) 2017; 25
Plagenhoef, Evans, Abdelnour (bib0190) 1983; 54
Basteris, Nijenhuis, Stienen, Buurke, Prange, Amirabdollahian (bib0025) 2014; 11
Lei (bib0150) 2019; 49
Chen, Zhang, Cheng, Xi (bib0155) 2018; 40
Marchal-Crespo, Reinkensmeyer (bib0015) 2009; 6
World-Stroke-Campaign (bib0005) 2017
Golkar, Jalaleddini, Kearney (bib0145) 2018; 26
De Leva (bib0195) 1996; 29
Colacino, Emiliano, Mace (bib0100) 2012; 34
Li, Zhang, Liu, Zhang (bib0175) 2019; 18
Proietti, Crocher, Roby-Brami, Jarrasse (bib0020) 2016; 9
Hayashibe, Guiraud (bib0090) 2013; 12
Thrun, Burgard, Fox (bib0215) 2002
Bi, Feleke, Guan (bib0160) 2019; 51
Zatsiorsky, Seluyanov (bib0205) 1982
Martino, Elvira, Louzada (bib0230) 2017; 131
Chatfield, Fortune, McKenzie, Pretty (bib0180) 2018; 51
Li, Guiraud, Andreu, Benoussaad, Fattal, Hayashibe (bib0125) 2016; 13
Clancy, Liu, Liu, Moyer (bib0165) 2012; 59
Li, Hayashibe, Zhang, Guiraud (bib0120) 2012
Serea, Poboroniuc, Irimia, Hartopanu, Olaru (bib0105) 2013
Hill (bib0085) 1938; 126
Zhou, Liu, Zeng, Li, Liu (bib0170) 2019; 62
Nakamura, Kiyono, Wendt, Abry, Yamamoto (bib0220) 2016; 104
Koirala, Dasog, Liu, Clancy (bib0140) 2014
Foundation (10.1016/j.bspc.2021.102475_bib0010) 2017
Chen (10.1016/j.bspc.2021.102475_bib0155) 2018; 40
Clancy (10.1016/j.bspc.2021.102475_bib0165) 2012; 59
Zhang (10.1016/j.bspc.2021.102475_bib0115) 2011; 16
Golkar (10.1016/j.bspc.2021.102475_bib0145) 2018; 26
Serea (10.1016/j.bspc.2021.102475_bib0105) 2013
Devroye (10.1016/j.bspc.2021.102475_bib0225) 1986
Fortune (10.1016/j.bspc.2021.102475_bib0185) 2019; 6
Li (10.1016/j.bspc.2021.102475_bib0235) 2014; 41
de Oliveira (10.1016/j.bspc.2021.102475_bib0095) 2010; 43
Dai (10.1016/j.bspc.2021.102475_bib0130) 2017; 25
Lei (10.1016/j.bspc.2021.102475_bib0150) 2019; 49
Nakamura (10.1016/j.bspc.2021.102475_bib0220) 2016; 104
World-Stroke-Campaign (10.1016/j.bspc.2021.102475_bib0005) 2017
Martino (10.1016/j.bspc.2021.102475_bib0230) 2017; 131
De Leva (10.1016/j.bspc.2021.102475_bib0195) 1996; 29
Proietti (10.1016/j.bspc.2021.102475_bib0020) 2016; 9
Hayashibe (10.1016/j.bspc.2021.102475_bib0090) 2013; 12
Zhou (10.1016/j.bspc.2021.102475_bib0170) 2019; 62
Plagenhoef (10.1016/j.bspc.2021.102475_bib0190) 1983; 54
Farfán (10.1016/j.bspc.2021.102475_bib0210) 2010; 9
Li (10.1016/j.bspc.2021.102475_bib0120) 2012
Pehlivan (10.1016/j.bspc.2021.102475_bib0045) 2016; 32
Hill (10.1016/j.bspc.2021.102475_bib0085) 1938; 126
Li (10.1016/j.bspc.2021.102475_bib0175) 2019; 18
Basteris (10.1016/j.bspc.2021.102475_bib0025) 2014; 11
Wolbrecht (10.1016/j.bspc.2021.102475_bib0035) 2008; 16
Li (10.1016/j.bspc.2021.102475_bib0125) 2016; 13
Rong (10.1016/j.bspc.2021.102475_bib0065) 2015; 10
Krishnan (10.1016/j.bspc.2021.102475_bib0200) 2016; 11
Proietti (10.1016/j.bspc.2021.102475_bib0040) 2015
Colacino (10.1016/j.bspc.2021.102475_bib0100) 2012; 34
Zatsiorsky (10.1016/j.bspc.2021.102475_bib0205) 1982
Lu (10.1016/j.bspc.2021.102475_bib0030) 2011; 6
Allison (10.1016/j.bspc.2021.102475_bib0080) 2002; 17
Yepes (10.1016/j.bspc.2021.102475_bib0055) 2019; 18
Bilodeau (10.1016/j.bspc.2021.102475_bib0075) 2002; 12
Liu (10.1016/j.bspc.2021.102475_bib0135) 2015; 23
Bi (10.1016/j.bspc.2021.102475_bib0160) 2019; 51
Marchal-Crespo (10.1016/j.bspc.2021.102475_bib0015) 2009; 6
Chatfield (10.1016/j.bspc.2021.102475_bib0050) 2019
Chatfield (10.1016/j.bspc.2021.102475_bib0180) 2018; 51
Trigili (10.1016/j.bspc.2021.102475_bib0060) 2019; 16
Gerdle (10.1016/j.bspc.2021.102475_bib0070) 2000
Koirala (10.1016/j.bspc.2021.102475_bib0140) 2014
Thrun (10.1016/j.bspc.2021.102475_bib0215) 2002
Han (10.1016/j.bspc.2021.102475_bib0110) 2015; 62
References_xml – volume: 54
  start-page: 169
  year: 1983
  end-page: 178
  ident: bib0190
  article-title: Anatomical data for analyzing human motion
  publication-title: Res. Q. Exerc. Sport
– volume: 40
  start-page: 335
  year: 2018
  end-page: 342
  ident: bib0155
  article-title: Surface EMG based continuous estimation of human lower limb joint angles by using deep belief networks
  publication-title: Biomed. Signal Process. Control
– year: 2002
  ident: bib0215
  article-title: Probabilistic Robotics
– volume: 104
  start-page: 242
  year: 2016
  end-page: 261
  ident: bib0220
  article-title: Multiscale analysis of intensive longitudinal biomedical signals and its clinical applications
  publication-title: Proc. IEEE
– volume: 29
  start-page: 1223
  year: 1996
  end-page: 1230
  ident: bib0195
  article-title: Adjustments to Zatsiorsky-Seluyanov's segment inertia parameters
  publication-title: J. Biomech.
– volume: 32
  start-page: 113
  year: 2016
  end-page: 124
  ident: bib0045
  article-title: Minimal assist-as-needed controller for upper limb robotic rehabilitation
  publication-title: IEEE Trans. Robot.
– volume: 34
  start-page: 531
  year: 2012
  end-page: 540
  ident: bib0100
  article-title: Subject-specific musculoskeletal parameters of wrist flexors and extensors estimated by an EMG-driven musculoskeletal model
  publication-title: Med. Eng. Phys.
– volume: 18
  start-page: 3
  year: 2019
  ident: bib0055
  article-title: Myoelectric control algorithm for robot-assisted therapy: a hardware-in-the-loop simulation study
  publication-title: Biomed. Eng. Online
– year: 1986
  ident: bib0225
  article-title: Non-Uniform Random Variate Generation
– volume: 6
  start-page: e00085
  year: 2019
  ident: bib0185
  article-title: Low-cost active electromyography
  publication-title: HardwareX
– volume: 41
  start-page: 3944
  year: 2014
  end-page: 3954
  ident: bib0235
  article-title: Fight sample degeneracy and impoverishment in particle filters: A review of intelligent approaches
  publication-title: Expert Syst. Appl.
– volume: 13
  year: 2016
  ident: bib0125
  article-title: Real-time estimation of FES-induced joint torque with evoked EMG: Application to spinal cord injured patients
  publication-title: J. NeuroEng. Rehabil.
– year: 2019
  ident: bib0050
  article-title: Development of an assist-as-need controller for an upper-limb exoskeleton with voluntary torque estimate
  publication-title: Vol. 9: 15th IEEE/ASME International Conference on Mechatronic and Embedded Systems and Applications
– volume: 59
  start-page: 205
  year: 2012
  end-page: 212
  ident: bib0165
  article-title: Identification of constant-posture EMG-torque relationship about the elbow using nonlinear dynamic models
  publication-title: IEEE Trans. Biomed. Eng.
– volume: 18
  start-page: 31
  year: 2019
  ident: bib0175
  article-title: Estimation of continuous elbow joint movement based on human physiological structure
  publication-title: BioMed. Eng. OnLine
– start-page: 803
  year: 2015
  end-page: 806
  ident: bib0040
  article-title: Adaptive control of a robotic exoskeleton for neurorehabilitation
  publication-title: 2015 7th International IEEE/EMBS Conference on Neural Engineering (NER)
– start-page: 2198
  year: 2012
  end-page: 2203
  ident: bib0120
  article-title: FES-induced muscular torque prediction with evoked EMG synthesized by NARX-type recurrent neural network
  publication-title: 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
– volume: 23
  start-page: 1039
  year: 2015
  end-page: 1046
  ident: bib0135
  article-title: Influence of joint angle on EMG-torque model during constant-posture, torque-varying contractions
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
– start-page: 8
  year: 2000
  ident: bib0070
  article-title: Criterion validation of surface EMG variables as fatigue indicators using peak torque A study of repetitive maximum isokinetic knee extensions
  publication-title: J. Electromyogr. Kinesiol.
– volume: 16
  start-page: 45
  year: 2019
  ident: bib0060
  article-title: Detection of movement onset using EMG signals for upper-limb exoskeletons in reaching tasks
  publication-title: J. Neuroeng. Rehabil.
– year: 2014
  ident: bib0140
  article-title: Using the electromyogram to anticipate torques about the elbow
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
– volume: 17
  start-page: 464
  year: 2002
  end-page: 469
  ident: bib0080
  article-title: The relationship between EMG median frequency and low frequency band amplitude changes at different levels of muscle capacity
  publication-title: Clin. Biomech.
– volume: 9
  start-page: 72
  year: 2010
  ident: bib0210
  article-title: Evaluation of EMG processing techniques using information theory
  publication-title: BioMed. Eng. OnLine
– volume: 11
  start-page: 111
  year: 2014
  ident: bib0025
  article-title: Training modalities in robot-mediated upper limb rehabilitation in stroke: a framework for classification based on a systematic review
  publication-title: J. Neuroeng. Rehabil.
– volume: 11
  start-page: 11
  year: 2016
  ident: bib0200
  article-title: Estimation of mass moment of inertia of human body, when bending forward, for the design of a self-transfer robotic facility
  publication-title: J. Eng. Sci. Technol.
– volume: 10
  start-page: 149
  year: 2015
  end-page: 159
  ident: bib0065
  article-title: Effects of electromyography-driven robot-aided hand training with neuromuscular electrical stimulation on hand control performance after chronic stroke
  publication-title: Front. Neurol.
– year: 2017
  ident: bib0010
  article-title: Stroke
– volume: 6
  start-page: 20
  year: 2009
  ident: bib0015
  article-title: Review of control strategies for robotic movement training after neurologic injury
  publication-title: J. Neuroeng. Rehabil.
– year: 2017
  ident: bib0005
  article-title: Facts and Figures
– year: 1982
  ident: bib0205
  article-title: The mass and inertia characteristics of the main segment of human body
  publication-title: Biomechanics VIII: Proceedings of the Eighth International Congress of Biomechanics. Human Kinetics Publishers Champaign Il 4
– volume: 6
  start-page: 420
  year: 2011
  end-page: 431
  ident: bib0030
  article-title: The development of an upper limb stroke rehabilitation robot: identification of clinical practices and design requirements through a survey of therapists
  publication-title: Disabil. Rehabil. Assist. Technol.
– start-page: 722
  year: 2013
  end-page: 727
  ident: bib0105
  article-title: Preliminary results on a hybrid FES-exoskeleton system aiming to rehabilitate upper limb in disabled people
  publication-title: 2013 17th International Conference in System Theory, Control and Computing (ICSTCC)
– volume: 12
  start-page: 86
  year: 2013
  ident: bib0090
  article-title: Voluntary EMG-to-force estimation with a multi-scale physiological muscle model
  publication-title: BioMed. Eng. OnLine
– volume: 26
  start-page: 807
  year: 2018
  end-page: 816
  ident: bib0145
  article-title: EMG-torque dynamics change with contraction bandwidth
  publication-title: IEEE Trans Neural Syst. Rehabil. Eng.
– volume: 51
  start-page: 113
  year: 2019
  end-page: 127
  ident: bib0160
  article-title: A review on EMG-based motor intention prediction of continuous human upper limb motion for human-robot collaboration
  publication-title: Biomed. Signal Process. Control
– volume: 131
  start-page: 386
  year: 2017
  end-page: 401
  ident: bib0230
  article-title: Effective sample size for importance sampling based on discrepancy measures
  publication-title: Signal Process.
– volume: 16
  start-page: 816
  year: 2011
  end-page: 826
  ident: bib0115
  article-title: FES-induced torque prediction with evoked emg sensing for muscle fatigue tracking
  publication-title: IEEE/ASME Trans. Mechatron.
– volume: 51
  start-page: 327
  year: 2018
  end-page: 332
  ident: bib0180
  article-title: Implementation of a particle filter to estimate torque from electromyography
  publication-title: IFAC PapersOnLine
– volume: 126
  start-page: 136
  year: 1938
  end-page: 195
  ident: bib0085
  article-title: The heat of shortening and the dynamic constants of muscle
  publication-title: Proc. R. Soc. Lond. Ser. B: Biol. Sci.
– volume: 12
  start-page: 137
  year: 2002
  end-page: 145
  ident: bib0075
  article-title: Variations in the relationship between the frequency content of EMG signals and the rate of torque development in voluntary and elicited contractions
  publication-title: J. Electromyogr. Kinesiol.
– volume: 16
  start-page: 286
  year: 2008
  end-page: 297
  ident: bib0035
  article-title: Optimizing compliant, model-based robotic assistance to promote neurorehabilitation
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
– volume: 25
  start-page: 1529
  year: 2017
  end-page: 1538
  ident: bib0130
  article-title: Comparison of constant-posture force-varying EMG-force dynamic models about the elbow
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
– volume: 43
  start-page: 2816
  year: 2010
  end-page: 2821
  ident: bib0095
  article-title: Individual-specific muscle maximum force estimation using ultrasound for ankle joint torque prediction using an EMG-driven Hill-type model
  publication-title: J. Biomech.
– volume: 9
  start-page: 4
  year: 2016
  end-page: 14
  ident: bib0020
  article-title: Upper-limb robotic exoskeletons for neurorehabilitation: a review on control strategies
  publication-title: IEEE Rev. Biomed. Eng.
– volume: 62
  start-page: 21
  year: 2019
  end-page: 30
  ident: bib0170
  article-title: Bio-signal based elbow angle and torque simultaneous prediction during isokinetic contraction
  publication-title: Sci. China Technol. Sci.
– volume: 49
  start-page: 434
  year: 2019
  end-page: 439
  ident: bib0150
  article-title: An upper limb movement estimation from electromyography by using BP neural network
  publication-title: Biomed. Signal Process. Control
– volume: 62
  start-page: 4267
  year: 2015
  end-page: 4275
  ident: bib0110
  article-title: A state-space EMG model for the estimation of continuous joint movements
  publication-title: IEEE Trans. Ind. Electron.
– volume: 34
  start-page: 531
  issue: 5
  year: 2012
  ident: 10.1016/j.bspc.2021.102475_bib0100
  article-title: Subject-specific musculoskeletal parameters of wrist flexors and extensors estimated by an EMG-driven musculoskeletal model
  publication-title: Med. Eng. Phys.
  doi: 10.1016/j.medengphy.2011.08.012
– start-page: 722
  year: 2013
  ident: 10.1016/j.bspc.2021.102475_bib0105
  article-title: Preliminary results on a hybrid FES-exoskeleton system aiming to rehabilitate upper limb in disabled people
  publication-title: 2013 17th International Conference in System Theory, Control and Computing (ICSTCC)
– volume: 51
  start-page: 113
  year: 2019
  ident: 10.1016/j.bspc.2021.102475_bib0160
  article-title: A review on EMG-based motor intention prediction of continuous human upper limb motion for human-robot collaboration
  publication-title: Biomed. Signal Process. Control
  doi: 10.1016/j.bspc.2019.02.011
– volume: 6
  start-page: e00085
  year: 2019
  ident: 10.1016/j.bspc.2021.102475_bib0185
  article-title: Low-cost active electromyography
  publication-title: HardwareX
  doi: 10.1016/j.ohx.2019.e00085
– volume: 40
  start-page: 335
  year: 2018
  ident: 10.1016/j.bspc.2021.102475_bib0155
  article-title: Surface EMG based continuous estimation of human lower limb joint angles by using deep belief networks
  publication-title: Biomed. Signal Process. Control
  doi: 10.1016/j.bspc.2017.10.002
– volume: 29
  start-page: 1223
  issue: 9
  year: 1996
  ident: 10.1016/j.bspc.2021.102475_bib0195
  article-title: Adjustments to Zatsiorsky-Seluyanov's segment inertia parameters
  publication-title: J. Biomech.
  doi: 10.1016/0021-9290(95)00178-6
– volume: 25
  start-page: 1529
  issue: 9
  year: 2017
  ident: 10.1016/j.bspc.2021.102475_bib0130
  article-title: Comparison of constant-posture force-varying EMG-force dynamic models about the elbow
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
  doi: 10.1109/TNSRE.2016.2639443
– volume: 18
  start-page: 3
  issue: 1
  year: 2019
  ident: 10.1016/j.bspc.2021.102475_bib0055
  article-title: Myoelectric control algorithm for robot-assisted therapy: a hardware-in-the-loop simulation study
  publication-title: Biomed. Eng. Online
  doi: 10.1186/s12938-018-0622-1
– start-page: 8
  year: 2000
  ident: 10.1016/j.bspc.2021.102475_bib0070
  article-title: Criterion validation of surface EMG variables as fatigue indicators using peak torque A study of repetitive maximum isokinetic knee extensions
  publication-title: J. Electromyogr. Kinesiol.
– start-page: 2198
  year: 2012
  ident: 10.1016/j.bspc.2021.102475_bib0120
  article-title: FES-induced muscular torque prediction with evoked EMG synthesized by NARX-type recurrent neural network
  publication-title: 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
– volume: 23
  start-page: 1039
  issue: 6
  year: 2015
  ident: 10.1016/j.bspc.2021.102475_bib0135
  article-title: Influence of joint angle on EMG-torque model during constant-posture, torque-varying contractions
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
  doi: 10.1109/TNSRE.2015.2405765
– volume: 11
  start-page: 11
  year: 2016
  ident: 10.1016/j.bspc.2021.102475_bib0200
  article-title: Estimation of mass moment of inertia of human body, when bending forward, for the design of a self-transfer robotic facility
  publication-title: J. Eng. Sci. Technol.
– volume: 43
  start-page: 2816
  issue: 14
  year: 2010
  ident: 10.1016/j.bspc.2021.102475_bib0095
  article-title: Individual-specific muscle maximum force estimation using ultrasound for ankle joint torque prediction using an EMG-driven Hill-type model
  publication-title: J. Biomech.
  doi: 10.1016/j.jbiomech.2010.05.035
– volume: 16
  start-page: 286
  issue: 3
  year: 2008
  ident: 10.1016/j.bspc.2021.102475_bib0035
  article-title: Optimizing compliant, model-based robotic assistance to promote neurorehabilitation
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
  doi: 10.1109/TNSRE.2008.918389
– volume: 104
  start-page: 242
  issue: 2
  year: 2016
  ident: 10.1016/j.bspc.2021.102475_bib0220
  article-title: Multiscale analysis of intensive longitudinal biomedical signals and its clinical applications
  publication-title: Proc. IEEE
  doi: 10.1109/JPROC.2015.2491979
– year: 1986
  ident: 10.1016/j.bspc.2021.102475_bib0225
– volume: 16
  start-page: 45
  issue: 1
  year: 2019
  ident: 10.1016/j.bspc.2021.102475_bib0060
  article-title: Detection of movement onset using EMG signals for upper-limb exoskeletons in reaching tasks
  publication-title: J. Neuroeng. Rehabil.
  doi: 10.1186/s12984-019-0512-1
– volume: 10
  start-page: 149
  issue: 2
  year: 2015
  ident: 10.1016/j.bspc.2021.102475_bib0065
  article-title: Effects of electromyography-driven robot-aided hand training with neuromuscular electrical stimulation on hand control performance after chronic stroke
  publication-title: Front. Neurol.
– volume: 12
  start-page: 86
  issue: 1
  year: 2013
  ident: 10.1016/j.bspc.2021.102475_bib0090
  article-title: Voluntary EMG-to-force estimation with a multi-scale physiological muscle model
  publication-title: BioMed. Eng. OnLine
  doi: 10.1186/1475-925X-12-86
– volume: 59
  start-page: 205
  issue: 1
  year: 2012
  ident: 10.1016/j.bspc.2021.102475_bib0165
  article-title: Identification of constant-posture EMG-torque relationship about the elbow using nonlinear dynamic models
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2011.2170423
– volume: 9
  start-page: 72
  issue: 1
  year: 2010
  ident: 10.1016/j.bspc.2021.102475_bib0210
  article-title: Evaluation of EMG processing techniques using information theory
  publication-title: BioMed. Eng. OnLine
  doi: 10.1186/1475-925X-9-72
– volume: 54
  start-page: 169
  issue: 2
  year: 1983
  ident: 10.1016/j.bspc.2021.102475_bib0190
  article-title: Anatomical data for analyzing human motion
  publication-title: Res. Q. Exerc. Sport
  doi: 10.1080/02701367.1983.10605290
– year: 1982
  ident: 10.1016/j.bspc.2021.102475_bib0205
  article-title: The mass and inertia characteristics of the main segment of human body
  publication-title: Biomechanics VIII: Proceedings of the Eighth International Congress of Biomechanics. Human Kinetics Publishers Champaign Il 4
– year: 2017
  ident: 10.1016/j.bspc.2021.102475_bib0010
– volume: 51
  start-page: 327
  issue: 27
  year: 2018
  ident: 10.1016/j.bspc.2021.102475_bib0180
  article-title: Implementation of a particle filter to estimate torque from electromyography
  publication-title: IFAC PapersOnLine
  doi: 10.1016/j.ifacol.2018.11.620
– volume: 16
  start-page: 816
  issue: 5
  year: 2011
  ident: 10.1016/j.bspc.2021.102475_bib0115
  article-title: FES-induced torque prediction with evoked emg sensing for muscle fatigue tracking
  publication-title: IEEE/ASME Trans. Mechatron.
  doi: 10.1109/TMECH.2011.2160809
– volume: 18
  start-page: 31
  issue: 1
  year: 2019
  ident: 10.1016/j.bspc.2021.102475_bib0175
  article-title: Estimation of continuous elbow joint movement based on human physiological structure
  publication-title: BioMed. Eng. OnLine
  doi: 10.1186/s12938-019-0653-2
– volume: 13
  issue: 1
  year: 2016
  ident: 10.1016/j.bspc.2021.102475_bib0125
  article-title: Real-time estimation of FES-induced joint torque with evoked EMG: Application to spinal cord injured patients
  publication-title: J. NeuroEng. Rehabil.
  doi: 10.1186/s12984-016-0169-y
– volume: 6
  start-page: 20
  issue: 1
  year: 2009
  ident: 10.1016/j.bspc.2021.102475_bib0015
  article-title: Review of control strategies for robotic movement training after neurologic injury
  publication-title: J. Neuroeng. Rehabil.
  doi: 10.1186/1743-0003-6-20
– volume: 6
  start-page: 420
  issue: 5
  year: 2011
  ident: 10.1016/j.bspc.2021.102475_bib0030
  article-title: The development of an upper limb stroke rehabilitation robot: identification of clinical practices and design requirements through a survey of therapists
  publication-title: Disabil. Rehabil. Assist. Technol.
  doi: 10.3109/17483107.2010.544370
– volume: 12
  start-page: 137
  issue: 2
  year: 2002
  ident: 10.1016/j.bspc.2021.102475_bib0075
  article-title: Variations in the relationship between the frequency content of EMG signals and the rate of torque development in voluntary and elicited contractions
  publication-title: J. Electromyogr. Kinesiol.
  doi: 10.1016/S1050-6411(02)00012-3
– year: 2002
  ident: 10.1016/j.bspc.2021.102475_bib0215
– volume: 17
  start-page: 464
  issue: 6
  year: 2002
  ident: 10.1016/j.bspc.2021.102475_bib0080
  article-title: The relationship between EMG median frequency and low frequency band amplitude changes at different levels of muscle capacity
  publication-title: Clin. Biomech.
  doi: 10.1016/S0268-0033(02)00033-5
– volume: 131
  start-page: 386
  year: 2017
  ident: 10.1016/j.bspc.2021.102475_bib0230
  article-title: Effective sample size for importance sampling based on discrepancy measures
  publication-title: Signal Process.
  doi: 10.1016/j.sigpro.2016.08.025
– volume: 11
  start-page: 111
  issue: 1
  year: 2014
  ident: 10.1016/j.bspc.2021.102475_bib0025
  article-title: Training modalities in robot-mediated upper limb rehabilitation in stroke: a framework for classification based on a systematic review
  publication-title: J. Neuroeng. Rehabil.
  doi: 10.1186/1743-0003-11-111
– year: 2014
  ident: 10.1016/j.bspc.2021.102475_bib0140
  article-title: Using the electromyogram to anticipate torques about the elbow
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
– start-page: 803
  year: 2015
  ident: 10.1016/j.bspc.2021.102475_bib0040
  article-title: Adaptive control of a robotic exoskeleton for neurorehabilitation
  publication-title: 2015 7th International IEEE/EMBS Conference on Neural Engineering (NER)
  doi: 10.1109/NER.2015.7146745
– volume: 41
  start-page: 3944
  issue: 8
  year: 2014
  ident: 10.1016/j.bspc.2021.102475_bib0235
  article-title: Fight sample degeneracy and impoverishment in particle filters: A review of intelligent approaches
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2013.12.031
– volume: 62
  start-page: 21
  issue: 1
  year: 2019
  ident: 10.1016/j.bspc.2021.102475_bib0170
  article-title: Bio-signal based elbow angle and torque simultaneous prediction during isokinetic contraction
  publication-title: Sci. China Technol. Sci.
  doi: 10.1007/s11431-018-9354-5
– volume: 26
  start-page: 807
  issue: 4
  year: 2018
  ident: 10.1016/j.bspc.2021.102475_bib0145
  article-title: EMG-torque dynamics change with contraction bandwidth
  publication-title: IEEE Trans Neural Syst. Rehabil. Eng.
  doi: 10.1109/TNSRE.2018.2805472
– volume: 126
  start-page: 136
  issue: 843
  year: 1938
  ident: 10.1016/j.bspc.2021.102475_bib0085
  article-title: The heat of shortening and the dynamic constants of muscle
  publication-title: Proc. R. Soc. Lond. Ser. B: Biol. Sci.
  doi: 10.1098/rspb.1938.0050
– year: 2017
  ident: 10.1016/j.bspc.2021.102475_bib0005
– volume: 49
  start-page: 434
  year: 2019
  ident: 10.1016/j.bspc.2021.102475_bib0150
  article-title: An upper limb movement estimation from electromyography by using BP neural network
  publication-title: Biomed. Signal Process. Control
  doi: 10.1016/j.bspc.2018.12.020
– volume: 9
  start-page: 4
  year: 2016
  ident: 10.1016/j.bspc.2021.102475_bib0020
  article-title: Upper-limb robotic exoskeletons for neurorehabilitation: a review on control strategies
  publication-title: IEEE Rev. Biomed. Eng.
  doi: 10.1109/RBME.2016.2552201
– year: 2019
  ident: 10.1016/j.bspc.2021.102475_bib0050
  article-title: Development of an assist-as-need controller for an upper-limb exoskeleton with voluntary torque estimate
– volume: 32
  start-page: 113
  issue: 1
  year: 2016
  ident: 10.1016/j.bspc.2021.102475_bib0045
  article-title: Minimal assist-as-needed controller for upper limb robotic rehabilitation
  publication-title: IEEE Trans. Robot.
  doi: 10.1109/TRO.2015.2503726
– volume: 62
  start-page: 4267
  issue: 7
  year: 2015
  ident: 10.1016/j.bspc.2021.102475_bib0110
  article-title: A state-space EMG model for the estimation of continuous joint movements
  publication-title: IEEE Trans. Ind. Electron.
  doi: 10.1109/TIE.2014.2387337
SSID ssj0048714
Score 2.2414427
Snippet •Electromyography correlates with voluntary torque during dynamic elbow flexion.•Models with electromyography and sensor measurements approximated torque.•A...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 102475
SubjectTerms Cumulative distribution function (CDF)
Electromyography (EMG)
Inverse transform sampling
Logistic function
Motion model
Particle filter
Probability density function (PDF)
Process noise
Sensor model
Voluntary torque
Title Estimating voluntary elbow torque from biceps brachii electromyography using a particle filter
URI https://dx.doi.org/10.1016/j.bspc.2021.102475
Volume 66
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1746-8108
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0048714
  issn: 1746-8094
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier ScienceDirect
  customDbUrl:
  eissn: 1746-8108
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0048714
  issn: 1746-8094
  databaseCode: .~1
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Complete Freedom Collection [SCCMFC]
  customDbUrl:
  eissn: 1746-8108
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0048714
  issn: 1746-8094
  databaseCode: ACRLP
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Freedom Collection Journals
  customDbUrl:
  eissn: 1746-8108
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0048714
  issn: 1746-8094
  databaseCode: AIKHN
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1746-8108
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0048714
  issn: 1746-8094
  databaseCode: AKRWK
  dateStart: 20060101
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3LSsNAFB1K3ehCfGJ9lFm4k9jMI69lKS1VsRstdGXIJJMaqWloK9KN3-69yUQqSBcuE2YguZk5c0_mzLmEXCutFE8SH2ZaDARF-KkVSeVYsLqKRKJusRSPP47c4VjeT5xJg_TqszAoqzTYX2F6idbmTsdEs1NkWecJcmnXB3bC8Re1x5G3S-lhFYPbrx-ZB-Tjpb83NrawtTk4U2m81LJAG0PO0MFAotbwr8VpY8EZHJB9kynSbvUwh6Sh8yOyt-EfeExe-jBBMeXMpxRhJl9FizXVMzX_pMClAfIpHh-hCtCgWFIgxvFrllFT-uZ9beyqKYrfpzSihXlzmma4iX5CxoP-c29omYIJVixse2UxFyDD4TJlfpCwKNJS2MqNg1TzVGhHKM2UEDxOPZEwX_NE-5HWkCACvYZETotT0sznuT4j1PUSHQNdVI5SwKBdFXA7snmQBjJgwpEtwupIhbFxE8eiFrOwlo29hRjdEKMbVtFtkZufPkXlpbG1tVN_gPDXiAgB7Lf0O_9nvwuyi1eVKueSNFeLD30FCcdKtcsR1SY73buH4egbvQrVjw
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3PT4MwGG2WeVAPxp9x_uzBm8FBWxgczbJl6raLW7KThEKZmMnIhjG7-Lf7fVCWmRgPXqFN4KO8vgevr4TcSCUliyIX3rQQBAp3YyMQ0jZgduWRQN9iYR4fDJ3eWDxO7EmNtKu1MGir1NhfYnqB1vpIU1ezmSVJ8xm4tOOCOmH4ibrFQLdvCZu1UIHdfa19HkDIi4BvbG1gc71ypjR5yWWGOYbMwggDgWbD32anjRmnu0_2NFWk9-XVHJCaSg_J7kaA4BF56cAbipwznVLEmTQPFiuqZnL-SUFMA-ZTXD9CJcBBtqSgjMPXJKF675v3lc6rpuh-n9KAZvrWaZzgX_RjMu52Ru2eoXdMMEJumrlhOYAZNhOx5XqRFQRKcFM6oRcrFnNlc6ksyTkL4xaPLFexSLmBUsAQQV8Dk1P8hNTTeapOCXVakQpBL0pbSpDQjvSYGZjMiz3hWdwWDWJVlfJDHSeOu1rM_Mo39uZjdX2srl9Wt0Fu132yMkzjz9Z29QD8H0PCB7T_o9_ZP_tdk-3eaND3-w_Dp3Oyg2dKi84FqeeLD3UJ7COXV8Xo-gbVYtck
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Estimating+voluntary+elbow+torque+from+biceps+brachii+electromyography+using+a+particle+filter&rft.jtitle=Biomedical+signal+processing+and+control&rft.au=Chatfield%2C+Logan+T.&rft.au=Pretty%2C+Christopher+G.&rft.au=Fortune%2C+Benjamin+C.&rft.au=McKenzie%2C+Lachlan+R.&rft.date=2021-04-01&rft.pub=Elsevier+Ltd&rft.issn=1746-8094&rft.eissn=1746-8108&rft.volume=66&rft_id=info:doi/10.1016%2Fj.bspc.2021.102475&rft.externalDocID=S1746809421000720
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1746-8094&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1746-8094&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1746-8094&client=summon