Estimating voluntary elbow torque from biceps brachii electromyography using a particle filter
•Electromyography correlates with voluntary torque during dynamic elbow flexion.•Models with electromyography and sensor measurements approximated torque.•A particle filter combined the models and considered their uncertainties.•The particle filter accurately estimated voluntary torque for ten healt...
Saved in:
| Published in | Biomedical signal processing and control Vol. 66; p. 102475 |
|---|---|
| Main Authors | , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
Elsevier Ltd
01.04.2021
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 1746-8094 1746-8108 |
| DOI | 10.1016/j.bspc.2021.102475 |
Cover
| Abstract | •Electromyography correlates with voluntary torque during dynamic elbow flexion.•Models with electromyography and sensor measurements approximated torque.•A particle filter combined the models and considered their uncertainties.•The particle filter accurately estimated voluntary torque for ten healthy subjects.•Allows for future research on optimal assist-as-need control.
Stroke is one of the leading causes of disability worldwide. Assist-as-need control is desirable as it can optimise the rehabilitation and potentially greatly improve the patient's recovery from stroke. However, to achieve optimal assistance, the voluntary effort a patient applies must be known.
To verify the use of a particle filter to accurately estimate in real-time the voluntary torque from electromyography (EMG) for various subjects and movement speeds, accounting for the non-linear and time-varying behaviour of the muscle.
Ten healthy subjects performed dynamic elbow flexion at various speeds. The EMG of the biceps brachii and the torque were recorded. A motion model and different sensor models were developed for each data set, and the particle filter was then applied to improve the estimate of voluntary torque. The performance of the particle filter with the different sensor models was analysed.
By combining the motion model and sensor model, and considering their uncertainties, the particle filter improved the estimate of voluntary torque with a mean normalised RMS error across all subjects and movement speeds of 6.56%.
The particle filter demonstrated the ability to adapt and improve the estimate of voluntary torque, and so it is suitable for understanding the voluntary efforts and capabilities of a healthy subject. The next stages are to conduct a clinical trial to verify the effectiveness of the particle filter for subjects affected by stroke, and to analyse assist-as-need control based on the estimate of voluntary torque with a wide range of subjects. |
|---|---|
| AbstractList | •Electromyography correlates with voluntary torque during dynamic elbow flexion.•Models with electromyography and sensor measurements approximated torque.•A particle filter combined the models and considered their uncertainties.•The particle filter accurately estimated voluntary torque for ten healthy subjects.•Allows for future research on optimal assist-as-need control.
Stroke is one of the leading causes of disability worldwide. Assist-as-need control is desirable as it can optimise the rehabilitation and potentially greatly improve the patient's recovery from stroke. However, to achieve optimal assistance, the voluntary effort a patient applies must be known.
To verify the use of a particle filter to accurately estimate in real-time the voluntary torque from electromyography (EMG) for various subjects and movement speeds, accounting for the non-linear and time-varying behaviour of the muscle.
Ten healthy subjects performed dynamic elbow flexion at various speeds. The EMG of the biceps brachii and the torque were recorded. A motion model and different sensor models were developed for each data set, and the particle filter was then applied to improve the estimate of voluntary torque. The performance of the particle filter with the different sensor models was analysed.
By combining the motion model and sensor model, and considering their uncertainties, the particle filter improved the estimate of voluntary torque with a mean normalised RMS error across all subjects and movement speeds of 6.56%.
The particle filter demonstrated the ability to adapt and improve the estimate of voluntary torque, and so it is suitable for understanding the voluntary efforts and capabilities of a healthy subject. The next stages are to conduct a clinical trial to verify the effectiveness of the particle filter for subjects affected by stroke, and to analyse assist-as-need control based on the estimate of voluntary torque with a wide range of subjects. |
| ArticleNumber | 102475 |
| Author | Fortune, Benjamin C. Chatfield, Logan T. Pretty, Christopher G. Whitwham, Guy H. McKenzie, Lachlan R. Hayes, Michael P. |
| Author_xml | – sequence: 1 givenname: Logan T. surname: Chatfield fullname: Chatfield, Logan T. email: logan.chatfield@pg.canterbury.ac.nz – sequence: 2 givenname: Christopher G. surname: Pretty fullname: Pretty, Christopher G. – sequence: 3 givenname: Benjamin C. surname: Fortune fullname: Fortune, Benjamin C. – sequence: 4 givenname: Lachlan R. surname: McKenzie fullname: McKenzie, Lachlan R. – sequence: 5 givenname: Guy H. surname: Whitwham fullname: Whitwham, Guy H. – sequence: 6 givenname: Michael P. surname: Hayes fullname: Hayes, Michael P. |
| BookMark | eNp9kMtOwzAQRS1UJNrCD7DyD6T4kSaOxAZV5SEhsYEtlu1MWldpHGy3KH-Po8KGRVczuppzpTkzNOlcBwjdUrKghBZ3u4UOvVkwwmgKWF4uL9CUlnmRCUrE5G8nVX6FZiHsCMlFSfMp-lyHaPcq2m6Dj649dFH5AUOr3TeOzn8dADfe7bG2BvqAtVdma206ABNTPriNV_12wIcwNijcKx-taRNl2wj-Gl02qg1w8zvn6ONx_b56zl7fnl5WD6-Z4YTEjBZClEuWN1RUNVUKck50YaoGWMNhyTVQzTkzTclrKoDVIBRARQvQjFYc-ByJU6_xLgQPjTQ2pq9cF72yraREjp7kTo6e5OhJnjwllP1De5-M-OE8dH-CID11tOBlMBY6A7X1yYysnT2H_wAuUoZb |
| CitedBy_id | crossref_primary_10_26701_ems_1348070 crossref_primary_10_1016_j_heliyon_2021_e06768 crossref_primary_10_1109_ACCESS_2023_3325669 |
| Cites_doi | 10.1016/j.medengphy.2011.08.012 10.1016/j.bspc.2019.02.011 10.1016/j.ohx.2019.e00085 10.1016/j.bspc.2017.10.002 10.1016/0021-9290(95)00178-6 10.1109/TNSRE.2016.2639443 10.1186/s12938-018-0622-1 10.1109/TNSRE.2015.2405765 10.1016/j.jbiomech.2010.05.035 10.1109/TNSRE.2008.918389 10.1109/JPROC.2015.2491979 10.1186/s12984-019-0512-1 10.1186/1475-925X-12-86 10.1109/TBME.2011.2170423 10.1186/1475-925X-9-72 10.1080/02701367.1983.10605290 10.1016/j.ifacol.2018.11.620 10.1109/TMECH.2011.2160809 10.1186/s12938-019-0653-2 10.1186/s12984-016-0169-y 10.1186/1743-0003-6-20 10.3109/17483107.2010.544370 10.1016/S1050-6411(02)00012-3 10.1016/S0268-0033(02)00033-5 10.1016/j.sigpro.2016.08.025 10.1186/1743-0003-11-111 10.1109/NER.2015.7146745 10.1016/j.eswa.2013.12.031 10.1007/s11431-018-9354-5 10.1109/TNSRE.2018.2805472 10.1098/rspb.1938.0050 10.1016/j.bspc.2018.12.020 10.1109/RBME.2016.2552201 10.1109/TRO.2015.2503726 10.1109/TIE.2014.2387337 |
| ContentType | Journal Article |
| Copyright | 2021 Elsevier Ltd |
| Copyright_xml | – notice: 2021 Elsevier Ltd |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.bspc.2021.102475 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1746-8108 |
| ExternalDocumentID | 10_1016_j_bspc_2021_102475 S1746809421000720 |
| GroupedDBID | --- --K --M .~1 0R~ 1B1 1~. 1~5 23N 4.4 457 4G. 5GY 5VS 6J9 7-5 71M 8P~ AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO AAYFN ABBOA ABFNM ABFRF ABJNI ABMAC ABXDB ABYKQ ACDAQ ACGFO ACGFS ACNNM ACRLP ACZNC ADBBV ADEZE ADMUD ADTZH AEBSH AECPX AEFWE AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD AXJTR BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ HZ~ IHE J1W JJJVA KOM M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RIG ROL RPZ SDF SDG SES SPC SPCBC SST SSV SSZ T5K UNMZH ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD |
| ID | FETCH-LOGICAL-c300t-16887524f189d1aae430b6c9fe2f3e53be1b332cf73d18e2de8aee916eb2193e3 |
| IEDL.DBID | .~1 |
| ISSN | 1746-8094 |
| IngestDate | Wed Oct 29 21:17:30 EDT 2025 Thu Apr 24 23:10:17 EDT 2025 Fri Feb 23 02:44:47 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Logistic function Probability density function (PDF) Electromyography (EMG) Sensor model Process noise Voluntary torque Cumulative distribution function (CDF) Inverse transform sampling Particle filter Motion model |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c300t-16887524f189d1aae430b6c9fe2f3e53be1b332cf73d18e2de8aee916eb2193e3 |
| ParticipantIDs | crossref_citationtrail_10_1016_j_bspc_2021_102475 crossref_primary_10_1016_j_bspc_2021_102475 elsevier_sciencedirect_doi_10_1016_j_bspc_2021_102475 |
| PublicationCentury | 2000 |
| PublicationDate | April 2021 2021-04-00 |
| PublicationDateYYYYMMDD | 2021-04-01 |
| PublicationDate_xml | – month: 04 year: 2021 text: April 2021 |
| PublicationDecade | 2020 |
| PublicationTitle | Biomedical signal processing and control |
| PublicationYear | 2021 |
| Publisher | Elsevier Ltd |
| Publisher_xml | – name: Elsevier Ltd |
| References | Pehlivan, Losey, O’Malley (bib0045) 2016; 32 Trigili, Grazi, Crea, Accogli, Carpaneto, Micera, Vitiello, Panarese (bib0060) 2019; 16 Wolbrecht, Chan, Reinkensmeyer, Bobrow (bib0035) 2008; 16 Gerdle, Larsson, Karlsson (bib0070) 2000 de Oliveira, Luporini Menegaldo (bib0095) 2010; 43 Farfán, Politti, Felice (bib0210) 2010; 9 Proietti, Jarrasse, Roby-Brami, Morel (bib0040) 2015 Chatfield, Fortune, McKenzie, Pretty (bib0050) 2019 Liu, Liu, Clancy (bib0135) 2015; 23 Li, Sun, Sattar, Corchado (bib0235) 2014; 41 Han, Ding, Xiong, Zhao (bib0110) 2015; 62 Krishnan, Devanandh, Brahma, Pugazhenthi (bib0200) 2016; 11 Lu, Wang, Hebert, Boger, Galea, Mihailidis (bib0030) 2011; 6 Bilodeau, Houck, Cuddeford, Sharma, Riley (bib0075) 2002; 12 Rong, Tong, Hu, Ho (bib0065) 2015; 10 Allison, Fujiwara (bib0080) 2002; 17 Fortune, Pretty, Chatfield, McKenzie, Hayes (bib0185) 2019; 6 Foundation (bib0010) 2017 Zhang, Hayashibe, Fraisse, Guiraud (bib0115) 2011; 16 Devroye (bib0225) 1986 Yepes, Portela, Saldarriaga, Pérez, Betancur (bib0055) 2019; 18 Dai, Bardizbanian, Clancy (bib0130) 2017; 25 Plagenhoef, Evans, Abdelnour (bib0190) 1983; 54 Basteris, Nijenhuis, Stienen, Buurke, Prange, Amirabdollahian (bib0025) 2014; 11 Lei (bib0150) 2019; 49 Chen, Zhang, Cheng, Xi (bib0155) 2018; 40 Marchal-Crespo, Reinkensmeyer (bib0015) 2009; 6 World-Stroke-Campaign (bib0005) 2017 Golkar, Jalaleddini, Kearney (bib0145) 2018; 26 De Leva (bib0195) 1996; 29 Colacino, Emiliano, Mace (bib0100) 2012; 34 Li, Zhang, Liu, Zhang (bib0175) 2019; 18 Proietti, Crocher, Roby-Brami, Jarrasse (bib0020) 2016; 9 Hayashibe, Guiraud (bib0090) 2013; 12 Thrun, Burgard, Fox (bib0215) 2002 Bi, Feleke, Guan (bib0160) 2019; 51 Zatsiorsky, Seluyanov (bib0205) 1982 Martino, Elvira, Louzada (bib0230) 2017; 131 Chatfield, Fortune, McKenzie, Pretty (bib0180) 2018; 51 Li, Guiraud, Andreu, Benoussaad, Fattal, Hayashibe (bib0125) 2016; 13 Clancy, Liu, Liu, Moyer (bib0165) 2012; 59 Li, Hayashibe, Zhang, Guiraud (bib0120) 2012 Serea, Poboroniuc, Irimia, Hartopanu, Olaru (bib0105) 2013 Hill (bib0085) 1938; 126 Zhou, Liu, Zeng, Li, Liu (bib0170) 2019; 62 Nakamura, Kiyono, Wendt, Abry, Yamamoto (bib0220) 2016; 104 Koirala, Dasog, Liu, Clancy (bib0140) 2014 Foundation (10.1016/j.bspc.2021.102475_bib0010) 2017 Chen (10.1016/j.bspc.2021.102475_bib0155) 2018; 40 Clancy (10.1016/j.bspc.2021.102475_bib0165) 2012; 59 Zhang (10.1016/j.bspc.2021.102475_bib0115) 2011; 16 Golkar (10.1016/j.bspc.2021.102475_bib0145) 2018; 26 Serea (10.1016/j.bspc.2021.102475_bib0105) 2013 Devroye (10.1016/j.bspc.2021.102475_bib0225) 1986 Fortune (10.1016/j.bspc.2021.102475_bib0185) 2019; 6 Li (10.1016/j.bspc.2021.102475_bib0235) 2014; 41 de Oliveira (10.1016/j.bspc.2021.102475_bib0095) 2010; 43 Dai (10.1016/j.bspc.2021.102475_bib0130) 2017; 25 Lei (10.1016/j.bspc.2021.102475_bib0150) 2019; 49 Nakamura (10.1016/j.bspc.2021.102475_bib0220) 2016; 104 World-Stroke-Campaign (10.1016/j.bspc.2021.102475_bib0005) 2017 Martino (10.1016/j.bspc.2021.102475_bib0230) 2017; 131 De Leva (10.1016/j.bspc.2021.102475_bib0195) 1996; 29 Proietti (10.1016/j.bspc.2021.102475_bib0020) 2016; 9 Hayashibe (10.1016/j.bspc.2021.102475_bib0090) 2013; 12 Zhou (10.1016/j.bspc.2021.102475_bib0170) 2019; 62 Plagenhoef (10.1016/j.bspc.2021.102475_bib0190) 1983; 54 Farfán (10.1016/j.bspc.2021.102475_bib0210) 2010; 9 Li (10.1016/j.bspc.2021.102475_bib0120) 2012 Pehlivan (10.1016/j.bspc.2021.102475_bib0045) 2016; 32 Hill (10.1016/j.bspc.2021.102475_bib0085) 1938; 126 Li (10.1016/j.bspc.2021.102475_bib0175) 2019; 18 Basteris (10.1016/j.bspc.2021.102475_bib0025) 2014; 11 Wolbrecht (10.1016/j.bspc.2021.102475_bib0035) 2008; 16 Li (10.1016/j.bspc.2021.102475_bib0125) 2016; 13 Rong (10.1016/j.bspc.2021.102475_bib0065) 2015; 10 Krishnan (10.1016/j.bspc.2021.102475_bib0200) 2016; 11 Proietti (10.1016/j.bspc.2021.102475_bib0040) 2015 Colacino (10.1016/j.bspc.2021.102475_bib0100) 2012; 34 Zatsiorsky (10.1016/j.bspc.2021.102475_bib0205) 1982 Lu (10.1016/j.bspc.2021.102475_bib0030) 2011; 6 Allison (10.1016/j.bspc.2021.102475_bib0080) 2002; 17 Yepes (10.1016/j.bspc.2021.102475_bib0055) 2019; 18 Bilodeau (10.1016/j.bspc.2021.102475_bib0075) 2002; 12 Liu (10.1016/j.bspc.2021.102475_bib0135) 2015; 23 Bi (10.1016/j.bspc.2021.102475_bib0160) 2019; 51 Marchal-Crespo (10.1016/j.bspc.2021.102475_bib0015) 2009; 6 Chatfield (10.1016/j.bspc.2021.102475_bib0050) 2019 Chatfield (10.1016/j.bspc.2021.102475_bib0180) 2018; 51 Trigili (10.1016/j.bspc.2021.102475_bib0060) 2019; 16 Gerdle (10.1016/j.bspc.2021.102475_bib0070) 2000 Koirala (10.1016/j.bspc.2021.102475_bib0140) 2014 Thrun (10.1016/j.bspc.2021.102475_bib0215) 2002 Han (10.1016/j.bspc.2021.102475_bib0110) 2015; 62 |
| References_xml | – volume: 54 start-page: 169 year: 1983 end-page: 178 ident: bib0190 article-title: Anatomical data for analyzing human motion publication-title: Res. Q. Exerc. Sport – volume: 40 start-page: 335 year: 2018 end-page: 342 ident: bib0155 article-title: Surface EMG based continuous estimation of human lower limb joint angles by using deep belief networks publication-title: Biomed. Signal Process. Control – year: 2002 ident: bib0215 article-title: Probabilistic Robotics – volume: 104 start-page: 242 year: 2016 end-page: 261 ident: bib0220 article-title: Multiscale analysis of intensive longitudinal biomedical signals and its clinical applications publication-title: Proc. IEEE – volume: 29 start-page: 1223 year: 1996 end-page: 1230 ident: bib0195 article-title: Adjustments to Zatsiorsky-Seluyanov's segment inertia parameters publication-title: J. Biomech. – volume: 32 start-page: 113 year: 2016 end-page: 124 ident: bib0045 article-title: Minimal assist-as-needed controller for upper limb robotic rehabilitation publication-title: IEEE Trans. Robot. – volume: 34 start-page: 531 year: 2012 end-page: 540 ident: bib0100 article-title: Subject-specific musculoskeletal parameters of wrist flexors and extensors estimated by an EMG-driven musculoskeletal model publication-title: Med. Eng. Phys. – volume: 18 start-page: 3 year: 2019 ident: bib0055 article-title: Myoelectric control algorithm for robot-assisted therapy: a hardware-in-the-loop simulation study publication-title: Biomed. Eng. Online – year: 1986 ident: bib0225 article-title: Non-Uniform Random Variate Generation – volume: 6 start-page: e00085 year: 2019 ident: bib0185 article-title: Low-cost active electromyography publication-title: HardwareX – volume: 41 start-page: 3944 year: 2014 end-page: 3954 ident: bib0235 article-title: Fight sample degeneracy and impoverishment in particle filters: A review of intelligent approaches publication-title: Expert Syst. Appl. – volume: 13 year: 2016 ident: bib0125 article-title: Real-time estimation of FES-induced joint torque with evoked EMG: Application to spinal cord injured patients publication-title: J. NeuroEng. Rehabil. – year: 2019 ident: bib0050 article-title: Development of an assist-as-need controller for an upper-limb exoskeleton with voluntary torque estimate publication-title: Vol. 9: 15th IEEE/ASME International Conference on Mechatronic and Embedded Systems and Applications – volume: 59 start-page: 205 year: 2012 end-page: 212 ident: bib0165 article-title: Identification of constant-posture EMG-torque relationship about the elbow using nonlinear dynamic models publication-title: IEEE Trans. Biomed. Eng. – volume: 18 start-page: 31 year: 2019 ident: bib0175 article-title: Estimation of continuous elbow joint movement based on human physiological structure publication-title: BioMed. Eng. OnLine – start-page: 803 year: 2015 end-page: 806 ident: bib0040 article-title: Adaptive control of a robotic exoskeleton for neurorehabilitation publication-title: 2015 7th International IEEE/EMBS Conference on Neural Engineering (NER) – start-page: 2198 year: 2012 end-page: 2203 ident: bib0120 article-title: FES-induced muscular torque prediction with evoked EMG synthesized by NARX-type recurrent neural network publication-title: 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) – volume: 23 start-page: 1039 year: 2015 end-page: 1046 ident: bib0135 article-title: Influence of joint angle on EMG-torque model during constant-posture, torque-varying contractions publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. – start-page: 8 year: 2000 ident: bib0070 article-title: Criterion validation of surface EMG variables as fatigue indicators using peak torque A study of repetitive maximum isokinetic knee extensions publication-title: J. Electromyogr. Kinesiol. – volume: 16 start-page: 45 year: 2019 ident: bib0060 article-title: Detection of movement onset using EMG signals for upper-limb exoskeletons in reaching tasks publication-title: J. Neuroeng. Rehabil. – year: 2014 ident: bib0140 article-title: Using the electromyogram to anticipate torques about the elbow publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. – volume: 17 start-page: 464 year: 2002 end-page: 469 ident: bib0080 article-title: The relationship between EMG median frequency and low frequency band amplitude changes at different levels of muscle capacity publication-title: Clin. Biomech. – volume: 9 start-page: 72 year: 2010 ident: bib0210 article-title: Evaluation of EMG processing techniques using information theory publication-title: BioMed. Eng. OnLine – volume: 11 start-page: 111 year: 2014 ident: bib0025 article-title: Training modalities in robot-mediated upper limb rehabilitation in stroke: a framework for classification based on a systematic review publication-title: J. Neuroeng. Rehabil. – volume: 11 start-page: 11 year: 2016 ident: bib0200 article-title: Estimation of mass moment of inertia of human body, when bending forward, for the design of a self-transfer robotic facility publication-title: J. Eng. Sci. Technol. – volume: 10 start-page: 149 year: 2015 end-page: 159 ident: bib0065 article-title: Effects of electromyography-driven robot-aided hand training with neuromuscular electrical stimulation on hand control performance after chronic stroke publication-title: Front. Neurol. – year: 2017 ident: bib0010 article-title: Stroke – volume: 6 start-page: 20 year: 2009 ident: bib0015 article-title: Review of control strategies for robotic movement training after neurologic injury publication-title: J. Neuroeng. Rehabil. – year: 2017 ident: bib0005 article-title: Facts and Figures – year: 1982 ident: bib0205 article-title: The mass and inertia characteristics of the main segment of human body publication-title: Biomechanics VIII: Proceedings of the Eighth International Congress of Biomechanics. Human Kinetics Publishers Champaign Il 4 – volume: 6 start-page: 420 year: 2011 end-page: 431 ident: bib0030 article-title: The development of an upper limb stroke rehabilitation robot: identification of clinical practices and design requirements through a survey of therapists publication-title: Disabil. Rehabil. Assist. Technol. – start-page: 722 year: 2013 end-page: 727 ident: bib0105 article-title: Preliminary results on a hybrid FES-exoskeleton system aiming to rehabilitate upper limb in disabled people publication-title: 2013 17th International Conference in System Theory, Control and Computing (ICSTCC) – volume: 12 start-page: 86 year: 2013 ident: bib0090 article-title: Voluntary EMG-to-force estimation with a multi-scale physiological muscle model publication-title: BioMed. Eng. OnLine – volume: 26 start-page: 807 year: 2018 end-page: 816 ident: bib0145 article-title: EMG-torque dynamics change with contraction bandwidth publication-title: IEEE Trans Neural Syst. Rehabil. Eng. – volume: 51 start-page: 113 year: 2019 end-page: 127 ident: bib0160 article-title: A review on EMG-based motor intention prediction of continuous human upper limb motion for human-robot collaboration publication-title: Biomed. Signal Process. Control – volume: 131 start-page: 386 year: 2017 end-page: 401 ident: bib0230 article-title: Effective sample size for importance sampling based on discrepancy measures publication-title: Signal Process. – volume: 16 start-page: 816 year: 2011 end-page: 826 ident: bib0115 article-title: FES-induced torque prediction with evoked emg sensing for muscle fatigue tracking publication-title: IEEE/ASME Trans. Mechatron. – volume: 51 start-page: 327 year: 2018 end-page: 332 ident: bib0180 article-title: Implementation of a particle filter to estimate torque from electromyography publication-title: IFAC PapersOnLine – volume: 126 start-page: 136 year: 1938 end-page: 195 ident: bib0085 article-title: The heat of shortening and the dynamic constants of muscle publication-title: Proc. R. Soc. Lond. Ser. B: Biol. Sci. – volume: 12 start-page: 137 year: 2002 end-page: 145 ident: bib0075 article-title: Variations in the relationship between the frequency content of EMG signals and the rate of torque development in voluntary and elicited contractions publication-title: J. Electromyogr. Kinesiol. – volume: 16 start-page: 286 year: 2008 end-page: 297 ident: bib0035 article-title: Optimizing compliant, model-based robotic assistance to promote neurorehabilitation publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. – volume: 25 start-page: 1529 year: 2017 end-page: 1538 ident: bib0130 article-title: Comparison of constant-posture force-varying EMG-force dynamic models about the elbow publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. – volume: 43 start-page: 2816 year: 2010 end-page: 2821 ident: bib0095 article-title: Individual-specific muscle maximum force estimation using ultrasound for ankle joint torque prediction using an EMG-driven Hill-type model publication-title: J. Biomech. – volume: 9 start-page: 4 year: 2016 end-page: 14 ident: bib0020 article-title: Upper-limb robotic exoskeletons for neurorehabilitation: a review on control strategies publication-title: IEEE Rev. Biomed. Eng. – volume: 62 start-page: 21 year: 2019 end-page: 30 ident: bib0170 article-title: Bio-signal based elbow angle and torque simultaneous prediction during isokinetic contraction publication-title: Sci. China Technol. Sci. – volume: 49 start-page: 434 year: 2019 end-page: 439 ident: bib0150 article-title: An upper limb movement estimation from electromyography by using BP neural network publication-title: Biomed. Signal Process. Control – volume: 62 start-page: 4267 year: 2015 end-page: 4275 ident: bib0110 article-title: A state-space EMG model for the estimation of continuous joint movements publication-title: IEEE Trans. Ind. Electron. – volume: 34 start-page: 531 issue: 5 year: 2012 ident: 10.1016/j.bspc.2021.102475_bib0100 article-title: Subject-specific musculoskeletal parameters of wrist flexors and extensors estimated by an EMG-driven musculoskeletal model publication-title: Med. Eng. Phys. doi: 10.1016/j.medengphy.2011.08.012 – start-page: 722 year: 2013 ident: 10.1016/j.bspc.2021.102475_bib0105 article-title: Preliminary results on a hybrid FES-exoskeleton system aiming to rehabilitate upper limb in disabled people publication-title: 2013 17th International Conference in System Theory, Control and Computing (ICSTCC) – volume: 51 start-page: 113 year: 2019 ident: 10.1016/j.bspc.2021.102475_bib0160 article-title: A review on EMG-based motor intention prediction of continuous human upper limb motion for human-robot collaboration publication-title: Biomed. Signal Process. Control doi: 10.1016/j.bspc.2019.02.011 – volume: 6 start-page: e00085 year: 2019 ident: 10.1016/j.bspc.2021.102475_bib0185 article-title: Low-cost active electromyography publication-title: HardwareX doi: 10.1016/j.ohx.2019.e00085 – volume: 40 start-page: 335 year: 2018 ident: 10.1016/j.bspc.2021.102475_bib0155 article-title: Surface EMG based continuous estimation of human lower limb joint angles by using deep belief networks publication-title: Biomed. Signal Process. Control doi: 10.1016/j.bspc.2017.10.002 – volume: 29 start-page: 1223 issue: 9 year: 1996 ident: 10.1016/j.bspc.2021.102475_bib0195 article-title: Adjustments to Zatsiorsky-Seluyanov's segment inertia parameters publication-title: J. Biomech. doi: 10.1016/0021-9290(95)00178-6 – volume: 25 start-page: 1529 issue: 9 year: 2017 ident: 10.1016/j.bspc.2021.102475_bib0130 article-title: Comparison of constant-posture force-varying EMG-force dynamic models about the elbow publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. doi: 10.1109/TNSRE.2016.2639443 – volume: 18 start-page: 3 issue: 1 year: 2019 ident: 10.1016/j.bspc.2021.102475_bib0055 article-title: Myoelectric control algorithm for robot-assisted therapy: a hardware-in-the-loop simulation study publication-title: Biomed. Eng. Online doi: 10.1186/s12938-018-0622-1 – start-page: 8 year: 2000 ident: 10.1016/j.bspc.2021.102475_bib0070 article-title: Criterion validation of surface EMG variables as fatigue indicators using peak torque A study of repetitive maximum isokinetic knee extensions publication-title: J. Electromyogr. Kinesiol. – start-page: 2198 year: 2012 ident: 10.1016/j.bspc.2021.102475_bib0120 article-title: FES-induced muscular torque prediction with evoked EMG synthesized by NARX-type recurrent neural network publication-title: 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) – volume: 23 start-page: 1039 issue: 6 year: 2015 ident: 10.1016/j.bspc.2021.102475_bib0135 article-title: Influence of joint angle on EMG-torque model during constant-posture, torque-varying contractions publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. doi: 10.1109/TNSRE.2015.2405765 – volume: 11 start-page: 11 year: 2016 ident: 10.1016/j.bspc.2021.102475_bib0200 article-title: Estimation of mass moment of inertia of human body, when bending forward, for the design of a self-transfer robotic facility publication-title: J. Eng. Sci. Technol. – volume: 43 start-page: 2816 issue: 14 year: 2010 ident: 10.1016/j.bspc.2021.102475_bib0095 article-title: Individual-specific muscle maximum force estimation using ultrasound for ankle joint torque prediction using an EMG-driven Hill-type model publication-title: J. Biomech. doi: 10.1016/j.jbiomech.2010.05.035 – volume: 16 start-page: 286 issue: 3 year: 2008 ident: 10.1016/j.bspc.2021.102475_bib0035 article-title: Optimizing compliant, model-based robotic assistance to promote neurorehabilitation publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. doi: 10.1109/TNSRE.2008.918389 – volume: 104 start-page: 242 issue: 2 year: 2016 ident: 10.1016/j.bspc.2021.102475_bib0220 article-title: Multiscale analysis of intensive longitudinal biomedical signals and its clinical applications publication-title: Proc. IEEE doi: 10.1109/JPROC.2015.2491979 – year: 1986 ident: 10.1016/j.bspc.2021.102475_bib0225 – volume: 16 start-page: 45 issue: 1 year: 2019 ident: 10.1016/j.bspc.2021.102475_bib0060 article-title: Detection of movement onset using EMG signals for upper-limb exoskeletons in reaching tasks publication-title: J. Neuroeng. Rehabil. doi: 10.1186/s12984-019-0512-1 – volume: 10 start-page: 149 issue: 2 year: 2015 ident: 10.1016/j.bspc.2021.102475_bib0065 article-title: Effects of electromyography-driven robot-aided hand training with neuromuscular electrical stimulation on hand control performance after chronic stroke publication-title: Front. Neurol. – volume: 12 start-page: 86 issue: 1 year: 2013 ident: 10.1016/j.bspc.2021.102475_bib0090 article-title: Voluntary EMG-to-force estimation with a multi-scale physiological muscle model publication-title: BioMed. Eng. OnLine doi: 10.1186/1475-925X-12-86 – volume: 59 start-page: 205 issue: 1 year: 2012 ident: 10.1016/j.bspc.2021.102475_bib0165 article-title: Identification of constant-posture EMG-torque relationship about the elbow using nonlinear dynamic models publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2011.2170423 – volume: 9 start-page: 72 issue: 1 year: 2010 ident: 10.1016/j.bspc.2021.102475_bib0210 article-title: Evaluation of EMG processing techniques using information theory publication-title: BioMed. Eng. OnLine doi: 10.1186/1475-925X-9-72 – volume: 54 start-page: 169 issue: 2 year: 1983 ident: 10.1016/j.bspc.2021.102475_bib0190 article-title: Anatomical data for analyzing human motion publication-title: Res. Q. Exerc. Sport doi: 10.1080/02701367.1983.10605290 – year: 1982 ident: 10.1016/j.bspc.2021.102475_bib0205 article-title: The mass and inertia characteristics of the main segment of human body publication-title: Biomechanics VIII: Proceedings of the Eighth International Congress of Biomechanics. Human Kinetics Publishers Champaign Il 4 – year: 2017 ident: 10.1016/j.bspc.2021.102475_bib0010 – volume: 51 start-page: 327 issue: 27 year: 2018 ident: 10.1016/j.bspc.2021.102475_bib0180 article-title: Implementation of a particle filter to estimate torque from electromyography publication-title: IFAC PapersOnLine doi: 10.1016/j.ifacol.2018.11.620 – volume: 16 start-page: 816 issue: 5 year: 2011 ident: 10.1016/j.bspc.2021.102475_bib0115 article-title: FES-induced torque prediction with evoked emg sensing for muscle fatigue tracking publication-title: IEEE/ASME Trans. Mechatron. doi: 10.1109/TMECH.2011.2160809 – volume: 18 start-page: 31 issue: 1 year: 2019 ident: 10.1016/j.bspc.2021.102475_bib0175 article-title: Estimation of continuous elbow joint movement based on human physiological structure publication-title: BioMed. Eng. OnLine doi: 10.1186/s12938-019-0653-2 – volume: 13 issue: 1 year: 2016 ident: 10.1016/j.bspc.2021.102475_bib0125 article-title: Real-time estimation of FES-induced joint torque with evoked EMG: Application to spinal cord injured patients publication-title: J. NeuroEng. Rehabil. doi: 10.1186/s12984-016-0169-y – volume: 6 start-page: 20 issue: 1 year: 2009 ident: 10.1016/j.bspc.2021.102475_bib0015 article-title: Review of control strategies for robotic movement training after neurologic injury publication-title: J. Neuroeng. Rehabil. doi: 10.1186/1743-0003-6-20 – volume: 6 start-page: 420 issue: 5 year: 2011 ident: 10.1016/j.bspc.2021.102475_bib0030 article-title: The development of an upper limb stroke rehabilitation robot: identification of clinical practices and design requirements through a survey of therapists publication-title: Disabil. Rehabil. Assist. Technol. doi: 10.3109/17483107.2010.544370 – volume: 12 start-page: 137 issue: 2 year: 2002 ident: 10.1016/j.bspc.2021.102475_bib0075 article-title: Variations in the relationship between the frequency content of EMG signals and the rate of torque development in voluntary and elicited contractions publication-title: J. Electromyogr. Kinesiol. doi: 10.1016/S1050-6411(02)00012-3 – year: 2002 ident: 10.1016/j.bspc.2021.102475_bib0215 – volume: 17 start-page: 464 issue: 6 year: 2002 ident: 10.1016/j.bspc.2021.102475_bib0080 article-title: The relationship between EMG median frequency and low frequency band amplitude changes at different levels of muscle capacity publication-title: Clin. Biomech. doi: 10.1016/S0268-0033(02)00033-5 – volume: 131 start-page: 386 year: 2017 ident: 10.1016/j.bspc.2021.102475_bib0230 article-title: Effective sample size for importance sampling based on discrepancy measures publication-title: Signal Process. doi: 10.1016/j.sigpro.2016.08.025 – volume: 11 start-page: 111 issue: 1 year: 2014 ident: 10.1016/j.bspc.2021.102475_bib0025 article-title: Training modalities in robot-mediated upper limb rehabilitation in stroke: a framework for classification based on a systematic review publication-title: J. Neuroeng. Rehabil. doi: 10.1186/1743-0003-11-111 – year: 2014 ident: 10.1016/j.bspc.2021.102475_bib0140 article-title: Using the electromyogram to anticipate torques about the elbow publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. – start-page: 803 year: 2015 ident: 10.1016/j.bspc.2021.102475_bib0040 article-title: Adaptive control of a robotic exoskeleton for neurorehabilitation publication-title: 2015 7th International IEEE/EMBS Conference on Neural Engineering (NER) doi: 10.1109/NER.2015.7146745 – volume: 41 start-page: 3944 issue: 8 year: 2014 ident: 10.1016/j.bspc.2021.102475_bib0235 article-title: Fight sample degeneracy and impoverishment in particle filters: A review of intelligent approaches publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2013.12.031 – volume: 62 start-page: 21 issue: 1 year: 2019 ident: 10.1016/j.bspc.2021.102475_bib0170 article-title: Bio-signal based elbow angle and torque simultaneous prediction during isokinetic contraction publication-title: Sci. China Technol. Sci. doi: 10.1007/s11431-018-9354-5 – volume: 26 start-page: 807 issue: 4 year: 2018 ident: 10.1016/j.bspc.2021.102475_bib0145 article-title: EMG-torque dynamics change with contraction bandwidth publication-title: IEEE Trans Neural Syst. Rehabil. Eng. doi: 10.1109/TNSRE.2018.2805472 – volume: 126 start-page: 136 issue: 843 year: 1938 ident: 10.1016/j.bspc.2021.102475_bib0085 article-title: The heat of shortening and the dynamic constants of muscle publication-title: Proc. R. Soc. Lond. Ser. B: Biol. Sci. doi: 10.1098/rspb.1938.0050 – year: 2017 ident: 10.1016/j.bspc.2021.102475_bib0005 – volume: 49 start-page: 434 year: 2019 ident: 10.1016/j.bspc.2021.102475_bib0150 article-title: An upper limb movement estimation from electromyography by using BP neural network publication-title: Biomed. Signal Process. Control doi: 10.1016/j.bspc.2018.12.020 – volume: 9 start-page: 4 year: 2016 ident: 10.1016/j.bspc.2021.102475_bib0020 article-title: Upper-limb robotic exoskeletons for neurorehabilitation: a review on control strategies publication-title: IEEE Rev. Biomed. Eng. doi: 10.1109/RBME.2016.2552201 – year: 2019 ident: 10.1016/j.bspc.2021.102475_bib0050 article-title: Development of an assist-as-need controller for an upper-limb exoskeleton with voluntary torque estimate – volume: 32 start-page: 113 issue: 1 year: 2016 ident: 10.1016/j.bspc.2021.102475_bib0045 article-title: Minimal assist-as-needed controller for upper limb robotic rehabilitation publication-title: IEEE Trans. Robot. doi: 10.1109/TRO.2015.2503726 – volume: 62 start-page: 4267 issue: 7 year: 2015 ident: 10.1016/j.bspc.2021.102475_bib0110 article-title: A state-space EMG model for the estimation of continuous joint movements publication-title: IEEE Trans. Ind. Electron. doi: 10.1109/TIE.2014.2387337 |
| SSID | ssj0048714 |
| Score | 2.2414427 |
| Snippet | •Electromyography correlates with voluntary torque during dynamic elbow flexion.•Models with electromyography and sensor measurements approximated torque.•A... |
| SourceID | crossref elsevier |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 102475 |
| SubjectTerms | Cumulative distribution function (CDF) Electromyography (EMG) Inverse transform sampling Logistic function Motion model Particle filter Probability density function (PDF) Process noise Sensor model Voluntary torque |
| Title | Estimating voluntary elbow torque from biceps brachii electromyography using a particle filter |
| URI | https://dx.doi.org/10.1016/j.bspc.2021.102475 |
| Volume | 66 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1746-8108 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0048714 issn: 1746-8094 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier ScienceDirect customDbUrl: eissn: 1746-8108 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0048714 issn: 1746-8094 databaseCode: .~1 dateStart: 20060101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Complete Freedom Collection [SCCMFC] customDbUrl: eissn: 1746-8108 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0048714 issn: 1746-8094 databaseCode: ACRLP dateStart: 20060101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Freedom Collection Journals customDbUrl: eissn: 1746-8108 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0048714 issn: 1746-8094 databaseCode: AIKHN dateStart: 20060101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1746-8108 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0048714 issn: 1746-8094 databaseCode: AKRWK dateStart: 20060101 isFulltext: true providerName: Library Specific Holdings |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3LSsNAFB1K3ehCfGJ9lFm4k9jMI69lKS1VsRstdGXIJJMaqWloK9KN3-69yUQqSBcuE2YguZk5c0_mzLmEXCutFE8SH2ZaDARF-KkVSeVYsLqKRKJusRSPP47c4VjeT5xJg_TqszAoqzTYX2F6idbmTsdEs1NkWecJcmnXB3bC8Re1x5G3S-lhFYPbrx-ZB-Tjpb83NrawtTk4U2m81LJAG0PO0MFAotbwr8VpY8EZHJB9kynSbvUwh6Sh8yOyt-EfeExe-jBBMeXMpxRhJl9FizXVMzX_pMClAfIpHh-hCtCgWFIgxvFrllFT-uZ9beyqKYrfpzSihXlzmma4iX5CxoP-c29omYIJVixse2UxFyDD4TJlfpCwKNJS2MqNg1TzVGhHKM2UEDxOPZEwX_NE-5HWkCACvYZETotT0sznuT4j1PUSHQNdVI5SwKBdFXA7snmQBjJgwpEtwupIhbFxE8eiFrOwlo29hRjdEKMbVtFtkZufPkXlpbG1tVN_gPDXiAgB7Lf0O_9nvwuyi1eVKueSNFeLD30FCcdKtcsR1SY73buH4egbvQrVjw |
| linkProvider | Elsevier |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3PT4MwGG2WeVAPxp9x_uzBm8FBWxgczbJl6raLW7KThEKZmMnIhjG7-Lf7fVCWmRgPXqFN4KO8vgevr4TcSCUliyIX3rQQBAp3YyMQ0jZgduWRQN9iYR4fDJ3eWDxO7EmNtKu1MGir1NhfYnqB1vpIU1ezmSVJ8xm4tOOCOmH4ibrFQLdvCZu1UIHdfa19HkDIi4BvbG1gc71ypjR5yWWGOYbMwggDgWbD32anjRmnu0_2NFWk9-XVHJCaSg_J7kaA4BF56cAbipwznVLEmTQPFiuqZnL-SUFMA-ZTXD9CJcBBtqSgjMPXJKF675v3lc6rpuh-n9KAZvrWaZzgX_RjMu52Ru2eoXdMMEJumrlhOYAZNhOx5XqRFQRKcFM6oRcrFnNlc6ksyTkL4xaPLFexSLmBUsAQQV8Dk1P8hNTTeapOCXVakQpBL0pbSpDQjvSYGZjMiz3hWdwWDWJVlfJDHSeOu1rM_Mo39uZjdX2srl9Wt0Fu132yMkzjz9Z29QD8H0PCB7T_o9_ZP_tdk-3eaND3-w_Dp3Oyg2dKi84FqeeLD3UJ7COXV8Xo-gbVYtck |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Estimating+voluntary+elbow+torque+from+biceps+brachii+electromyography+using+a+particle+filter&rft.jtitle=Biomedical+signal+processing+and+control&rft.au=Chatfield%2C+Logan+T.&rft.au=Pretty%2C+Christopher+G.&rft.au=Fortune%2C+Benjamin+C.&rft.au=McKenzie%2C+Lachlan+R.&rft.date=2021-04-01&rft.pub=Elsevier+Ltd&rft.issn=1746-8094&rft.eissn=1746-8108&rft.volume=66&rft_id=info:doi/10.1016%2Fj.bspc.2021.102475&rft.externalDocID=S1746809421000720 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1746-8094&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1746-8094&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1746-8094&client=summon |