Status Updating Under Partial Battery Knowledge in Energy Harvesting IoT Networks
We study status updating under inexact knowledge about the battery levels of the energy harvesting sensors in an IoT network, where users make on-demand requests to a cache-enabled edge node to send updates about various random processes monitored by the sensors. To serve the request(s), the edge no...
        Saved in:
      
    
          | Published in | IEEE transactions on green communications and networking Vol. 9; no. 3; pp. 1003 - 1020 | 
|---|---|
| Main Authors | , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
            IEEE
    
        01.09.2025
     | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 2473-2400 2473-2400  | 
| DOI | 10.1109/TGCN.2024.3484132 | 
Cover
| Abstract | We study status updating under inexact knowledge about the battery levels of the energy harvesting sensors in an IoT network, where users make on-demand requests to a cache-enabled edge node to send updates about various random processes monitored by the sensors. To serve the request(s), the edge node either commands the corresponding sensor to send an update or uses the aged data from the cache. We find a control policy that minimizes the average on-demand AoI subject to per-slot energy harvesting constraints under partial battery knowledge at the edge node. Namely, the edge node is informed about sensors' battery levels only via received status updates, leading to uncertainty about the battery levels for the decision-making. We model the problem as a POMDP which is then reformulated as an equivalent belief-MDP. The belief-MDP in its original form is difficult to solve due to the infinite belief space. However, by exploiting a specific pattern in the evolution of beliefs, we truncate the belief space and develop a dynamic programming algorithm to obtain an optimal policy. Moreover, we address a multi-sensor setup under a transmission limitation for which we develop an asymptotically optimal algorithm. Simulation results assess the performance of the proposed methods. | 
    
|---|---|
| AbstractList | We study status updating under inexact knowledge about the battery levels of the energy harvesting sensors in an IoT network, where users make on-demand requests to a cache-enabled edge node to send updates about various random processes monitored by the sensors. To serve the request(s), the edge node either commands the corresponding sensor to send an update or uses the aged data from the cache. We find a control policy that minimizes the average on-demand AoI subject to per-slot energy harvesting constraints under partial battery knowledge at the edge node. Namely, the edge node is informed about sensors' battery levels only via received status updates, leading to uncertainty about the battery levels for the decision-making. We model the problem as a POMDP which is then reformulated as an equivalent belief-MDP. The belief-MDP in its original form is difficult to solve due to the infinite belief space. However, by exploiting a specific pattern in the evolution of beliefs, we truncate the belief space and develop a dynamic programming algorithm to obtain an optimal policy. Moreover, we address a multi-sensor setup under a transmission limitation for which we develop an asymptotically optimal algorithm. Simulation results assess the performance of the proposed methods. | 
    
| Author | Hatami, Mohammad Leinonen, Markus Codreanu, Marian  | 
    
| Author_xml | – sequence: 1 givenname: Mohammad orcidid: 0000-0002-0730-7668 surname: Hatami fullname: Hatami, Mohammad email: mohammad.hatami@oulu.fi organization: Centre for Wireless Communications-Radio Technologies, University of Oulu, Oulu, Finland – sequence: 2 givenname: Markus orcidid: 0000-0002-5639-3144 surname: Leinonen fullname: Leinonen, Markus email: markus.leinonen@oulu.fi organization: Centre for Wireless Communications-Radio Technologies, University of Oulu, Oulu, Finland – sequence: 3 givenname: Marian orcidid: 0000-0003-0210-4375 surname: Codreanu fullname: Codreanu, Marian email: marian.codreanu@liu.se organization: Department of Science and Technology, Linköping University, Linköping, Sweden  | 
    
| BackLink | https://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-217476$$DView record from Swedish Publication Index | 
    
| BookMark | eNplkN1OwjAYhhuDiYhcgIkHvYFh2_10PUREIBLUCJ42bdct09ktbSfZ3QtCDNGj7zt4n_dNnkvQM7XRAFxjNMIYsdv1bLIaEUSiURilEQ7JGeiTiIYBiRDqnfwXYOjcO0KIsBgnLOyDl1cvfOvgpsmEL00BNybTFj4L60tRwTvhvbYdfDT1ttJZoWFp4NRoW3RwLuyXdj_Qol7Dlfbb2n64K3Cei8rp4fEOwOZhup7Mg-XTbDEZLwNFGPOBTEnKWBpRQnAqUapQJjKpolRJmWClEWUki1EcK0klZYnKRU4VkTGOwyyP83AAyKG3NY3otqKqeGPLT2E7jhHfe-G-UIbvvfCjlx0UHCC31U0rf4lalPy-fBvz2ha8KltOMI1ossvjQ17Z2jmr838be_d_N24OTKm1PslTksRJGn4DX3qBEg | 
    
| CODEN | ITGCBM | 
    
| Cites_doi | 10.1109/JSAC.2021.3065057 10.1109/SURV.2011.060710.00094 10.1109/TWC.2019.2899303 10.1017/CBO9780511804441 10.1109/TGCN.2017.2778501 10.1002/9781118557426 10.1109/TCCN.2019.2916097 10.1109/GLOBECOM42002.2020.9348022 10.1109/TGCN.2021.3092272 10.1109/TVT.2018.2797002 10.2200/s00954ed2v01y201909cnt023 10.1109/SPAWC51858.2021.9593235 10.1109/TCOMM.2023.3265091 10.1109/ISIT50566.2022.9834773 10.1109/INFCOM.2012.6195689 10.3390/en16217433 10.1109/TCOMM.2022.3141786 10.1109/TMC.2019.2936199 10.1109/TIT.2021.3121257 10.1109/OJCOMS.2024.3363731 10.1109/JSAC.2020.2980911 10.1038/s41598-021-03882-9 10.1109/IEEECONF44664.2019.9048659 10.1201/9781315140223 10.1109/VTCFall.2016.7881209 10.1109/TVT.2020.3029018 10.1109/TCOMM.2021.3123362 10.1109/TWC.2020.3032237 10.1017/CBO9781316471104 10.23919/WiOpt58741.2023.10349817 10.1137/S0036144503423264 10.1109/TCOMM.2021.3114681 10.1109/ISIT.2018.8437496 10.1109/TNET.2020.3041654 10.1109/SPAWC51304.2022.9833986 10.1109/TNET.2018.2873606 10.1109/TWC.2023.3278460 10.1109/TGCN.2022.3190007 10.1109/ICTAI.2010.101 10.1016/j.orl.2006.06.005 10.1109/ACCESS.2020.3006255 10.1109/TMC.2022.3160050 10.1109/TVT.2023.3310190 10.1109/GCWkshps45667.2019.9024463 10.1109/PIMRC48278.2020.9217302 10.1109/TCOMM.2022.3208873 10.1109/TCOMM.2020.2991992 10.1109/TGCN.2021.3105881  | 
    
| ContentType | Journal Article | 
    
| DBID | 97E ESBDL RIA RIE AAYXX CITATION ABXSW ADTPV AOWAS D8T DG8 ZZAVC ADTOC UNPAY  | 
    
| DOI | 10.1109/TGCN.2024.3484132 | 
    
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE Xplore Open Access Journals IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef SWEPUB Linköpings universitet full text SwePub SwePub Articles SWEPUB Freely available online SWEPUB Linköpings universitet SwePub Articles full text Unpaywall for CDI: Periodical Content Unpaywall  | 
    
| DatabaseTitle | CrossRef | 
    
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher – sequence: 2 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Engineering | 
    
| EISSN | 2473-2400 | 
    
| EndPage | 1020 | 
    
| ExternalDocumentID | 10.1109/tgcn.2024.3484132 oai_DiVA_org_liu_217476 10_1109_TGCN_2024_3484132 10726568  | 
    
| Genre | orig-research | 
    
| GrantInformation_xml | – fundername: Research Council of Finland 6G Flagship Programme grantid: 346208 – fundername: Infotech Oulu, the Research Council of Finland (formerly Academy of Finland) grantid: 323698 – fundername: Research Council of Finland; Academy of Finland grantid: 340171 funderid: 10.13039/501100002341 – fundername: Vetenskapsrådet; Swedish Research Council grantid: 2022-03664 funderid: 10.13039/501100004359  | 
    
| GroupedDBID | 0R~ 6IK 97E AAJGR AASAJ AAWTH ABAZT ABJNI ABQJQ ABVLG ACGFS AGQYO AHBIQ AKJIK ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD ESBDL IES IFIPE IPLJI JAVBF OCL RIA RIE AAYXX CITATION ABXSW ADTPV AOWAS D8T DG8 ZZAVC ADTOC UNPAY  | 
    
| ID | FETCH-LOGICAL-c299t-b828998472218b08c0dadbc48cbb61ce0792d5055cb7b796cfaf7c2b5153df5f3 | 
    
| IEDL.DBID | UNPAY | 
    
| ISSN | 2473-2400 | 
    
| IngestDate | Mon Sep 15 08:21:13 EDT 2025 Mon Oct 20 03:22:11 EDT 2025 Wed Oct 01 05:39:53 EDT 2025 Wed Aug 27 07:40:15 EDT 2025  | 
    
| IsDoiOpenAccess | true | 
    
| IsOpenAccess | true | 
    
| IsPeerReviewed | false | 
    
| IsScholarly | true | 
    
| Issue | 3 | 
    
| Keywords | Knowledge engineering partially observable Markov decision process (POMDP) Optimal scheduling Sensor phenomena and characterization Sensor systems Batteries Age of information (AoI) Energy harvesting Wireless communication Temperature sensors Sensors energy harvesting (EH) Monitoring  | 
    
| Language | English | 
    
| License | https://creativecommons.org/licenses/by/4.0/legalcode cc-by  | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c299t-b828998472218b08c0dadbc48cbb61ce0792d5055cb7b796cfaf7c2b5153df5f3 | 
    
| ORCID | 0000-0002-5639-3144 0000-0003-0210-4375 0000-0002-0730-7668  | 
    
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://doi.org/10.1109/tgcn.2024.3484132 | 
    
| PageCount | 18 | 
    
| ParticipantIDs | unpaywall_primary_10_1109_tgcn_2024_3484132 swepub_primary_oai_DiVA_org_liu_217476 crossref_primary_10_1109_TGCN_2024_3484132 ieee_primary_10726568  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2025-09-01 | 
    
| PublicationDateYYYYMMDD | 2025-09-01 | 
    
| PublicationDate_xml | – month: 09 year: 2025 text: 2025-09-01 day: 01  | 
    
| PublicationDecade | 2020 | 
    
| PublicationTitle | IEEE transactions on green communications and networking | 
    
| PublicationTitleAbbrev | TGCN | 
    
| PublicationYear | 2025 | 
    
| Publisher | IEEE | 
    
| Publisher_xml | – name: IEEE | 
    
| References | ref13 ref12 ref15 ref14 ref11 ref10 ref17 ref16 ref19 ref18 ref50 ref46 Puterman (ref45) 2014 ref48 ref47 ref42 ref41 ref44 ref43 ref49 ref8 ref7 ref9 ref4 ref3 ref6 ref5 ref40 ref35 ref34 ref37 ref36 ref30 ref33 ref32 ref2 ref1 ref39 Ceran (ref31) 2021 ref38 ref24 ref23 ref26 ref25 ref20 ref22 ref21 ref28 ref27 ref29  | 
    
| References_xml | – ident: ref16 doi: 10.1109/JSAC.2021.3065057 – ident: ref3 doi: 10.1109/SURV.2011.060710.00094 – ident: ref15 doi: 10.1109/TWC.2019.2899303 – ident: ref48 doi: 10.1017/CBO9780511804441 – ident: ref29 doi: 10.1109/TGCN.2017.2778501 – ident: ref13 doi: 10.1002/9781118557426 – ident: ref33 doi: 10.1109/TCCN.2019.2916097 – ident: ref24 doi: 10.1109/GLOBECOM42002.2020.9348022 – ident: ref34 doi: 10.1109/TGCN.2021.3092272 – volume-title: Markov Decision Processes: Discrete Stochastic Dynamic Programming year: 2014 ident: ref45 – ident: ref5 doi: 10.1109/TVT.2018.2797002 – ident: ref2 doi: 10.2200/s00954ed2v01y201909cnt023 – ident: ref11 doi: 10.1109/SPAWC51858.2021.9593235 – ident: ref27 doi: 10.1109/TCOMM.2023.3265091 – ident: ref39 doi: 10.1109/ISIT50566.2022.9834773 – ident: ref1 doi: 10.1109/INFCOM.2012.6195689 – ident: ref4 doi: 10.3390/en16217433 – ident: ref41 doi: 10.1109/TCOMM.2022.3141786 – ident: ref21 doi: 10.1109/TMC.2019.2936199 – ident: ref20 doi: 10.1109/TIT.2021.3121257 – ident: ref26 doi: 10.1109/OJCOMS.2024.3363731 – ident: ref17 doi: 10.1109/JSAC.2020.2980911 – ident: ref8 doi: 10.1038/s41598-021-03882-9 – ident: ref32 doi: 10.1109/IEEECONF44664.2019.9048659 – ident: ref49 doi: 10.1201/9781315140223 – ident: ref7 doi: 10.1109/VTCFall.2016.7881209 – ident: ref36 doi: 10.1109/TVT.2020.3029018 – ident: ref25 doi: 10.1109/TCOMM.2021.3123362 – ident: ref19 doi: 10.1109/TWC.2020.3032237 – ident: ref14 doi: 10.1017/CBO9781316471104 – ident: ref50 doi: 10.23919/WiOpt58741.2023.10349817 – ident: ref47 doi: 10.1137/S0036144503423264 – ident: ref10 doi: 10.1109/TCOMM.2021.3114681 – ident: ref43 doi: 10.1109/ISIT.2018.8437496 – year: 2021 ident: ref31 article-title: Learning to minimize age of information over an unreliable channel with energy harvesting publication-title: arXiv:2106.16037 – ident: ref42 doi: 10.1109/TNET.2020.3041654 – ident: ref40 doi: 10.1109/SPAWC51304.2022.9833986 – ident: ref18 doi: 10.1109/TNET.2018.2873606 – ident: ref22 doi: 10.1109/TWC.2023.3278460 – ident: ref37 doi: 10.1109/TGCN.2022.3190007 – ident: ref44 doi: 10.1109/ICTAI.2010.101 – ident: ref46 doi: 10.1016/j.orl.2006.06.005 – ident: ref6 doi: 10.1109/ACCESS.2020.3006255 – ident: ref23 doi: 10.1109/TMC.2022.3160050 – ident: ref28 doi: 10.1109/TVT.2023.3310190 – ident: ref30 doi: 10.1109/GCWkshps45667.2019.9024463 – ident: ref9 doi: 10.1109/PIMRC48278.2020.9217302 – ident: ref12 doi: 10.1109/TCOMM.2022.3208873 – ident: ref35 doi: 10.1109/TCOMM.2020.2991992 – ident: ref38 doi: 10.1109/TGCN.2021.3105881  | 
    
| SSID | ssj0002951693 | 
    
| Score | 2.3178601 | 
    
| Snippet | We study status updating under inexact knowledge about the battery levels of the energy harvesting sensors in an IoT network, where users make on-demand... | 
    
| SourceID | unpaywall swepub crossref ieee  | 
    
| SourceType | Open Access Repository Index Database Publisher  | 
    
| StartPage | 1003 | 
    
| SubjectTerms | Age of information (AoI) Batteries Energy harvesting energy harvesting (EH) Knowledge engineering Monitoring Optimal scheduling partially observable Markov decision process (POMDP) Sensor phenomena and characterization Sensor systems Sensors Temperature sensors Wireless communication  | 
    
| SummonAdditionalLinks | – databaseName: IEEE Electronic Library (IEL) dbid: RIE link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8QwEB7Ui3rwLa4vchAPStc-0qY5im_FRWFXvJXmscvi0l20RfTXO0m6y6oI3gptSJiZJt9kZr4BOAioilOeU4-iv2HCjMLL0dFCIBcwNCGlqSXSvm8l1x16-xw_18XqthZGa22Tz3TTPNpYvhrKylyV4R_OQsQf6SzMsjRxxVqTC5WQm5BPVEcuA5-ftK_OWugBhrQZ0RQ36_Db2WObqUwIQhdhvipG-cd7PhhMHTCXy9AaL83llbw0q1I05ecP1sZ_r30FlmqoSU6dbazCjC7WYHGKgHAdHg3WrN5IZ2SqHIoesW2QyIOxJxzqyDc_yN344o30C3JhqwWJaSpkGDpw0M2wTVounfxtAzqXF-2za69usuBJPIlKTziXy3BGBqnwU-mrXAlJUylEEkjtMx4qhEmxFEwwnshu3mUyFIiDItWNu9EmzBXDQm8BSXTAdRIziRiPSqU5V8pnuYgkbmK-ShtwNBZ_NnJcGpn1QXyeGV1lRldZrasGbBghTn3o5NeAQ6exyRtDkH3efzrNUN7ZoF9lxstiSQOOJxr9NV3Zk8W36bb_mG4HFkLT8ddmle3CXPla6T2EIaXYt-b3BSWc2bo priority: 102 providerName: IEEE  | 
    
| Title | Status Updating Under Partial Battery Knowledge in Energy Harvesting IoT Networks | 
    
| URI | https://ieeexplore.ieee.org/document/10726568 https://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-217476 https://doi.org/10.1109/tgcn.2024.3484132  | 
    
| UnpaywallVersion | publishedVersion | 
    
| Volume | 9 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 2473-2400 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002951693 issn: 2473-2400 databaseCode: RIE dateStart: 20170101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8JAEN4YOKgHnxjxQfZgPGiKfWy77ZEgiBoJJmDw1HR3CyGSQqSNwV_vTFsIqAc9d7fbzExmv-nMfEPIhcGU7XoB0xjEG5hmFFoAgRYAOYODCamQpUTaT22n1WMPfbufk0VjL8xq_t7QvZt4KJGl1GRVi7ngcMHbFh0bYHeBFHvtTu0Vh8cxbmGWYJG1_HXf2r2TDlJZkoNuk80kmgbzj2A8XrlcmrtZWdYs5STEmpK3ahKLqvz8xtj4p-_eIzs5xKS1zCb2yUYYHZDtFeLBQ_KMGDOZ0d4UuxuiIU3HH9EO2hFszUg35_Rx8cONjiLaSLsEKQ4TQmYO2HQ_6dJ2VkY-K5Fes9Gtt7R8uIIm4QaKNZGFWsgVabhCd6WuAiUkc6UQjiFDnXumAnhkS8EF9xw5CAZcmgLwj6UG9sA6IoVoEoXHhDqh4YWOzSVgOyZV6HlK6TwQlgTnpSu3TK4WovenGYeGn8Yeuud37-ptH-Xk53IqkxIqZ2UhNwFzwksuM20tnyAx9u3opeaD3P3xKPExuuJOmVwvtfnjOFTL2nEn_1p9SrZMnP-b1pidkUL8noTnAEpiUUk7Byu5UX4BhPDaTA | 
    
| linkProvider | Unpaywall | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwED_BeNj6wPgYosCYHxAPoJR8OHH8OG0t3Ve0Se20Nyv-aFVRpRVNhMZfz9lOq24IibdIiWXr7mL_znf3O4BPEdVpzksaUPQ3bJhRBiU6WgjkIoYmpA11RNpXRTYc0_O79K4tVne1MMYYl3xmevbRxfL1QjX2qgz_cBYj_sifwrOUUpr6cq3NlUrMbdAnaWOXUci_jb6fFOgDxrSX0By36_jB6ePaqWwoQjuw21TL8v5XOZ9vHTGDfSjWi_OZJT96TS176vcj3sb_Xv0LeN6CTXLsreMlPDHVK-hsURC-hhuLNpsVGS9tnUM1Ja4RErm2FoVDPf3mPblYX72RWUX6rl6Q2LZClqMDB50tRqTwCeWrAxgP-qOTYdC2WQgUnkV1IL3TZVkjo1yGuQp1qaWiuZIyi5QJGY81AqVUSSYZz9SknDAVS0RCiZ6kk-QN7FSLyrwFkpmImyxlClEeVdpwrnXISpko3MZCnXfhy1r8YunZNITzQkIurK6E1ZVoddWFAyvErQ-9_Lrw2Wts88ZSZJ_Obo8FylvMZ42wfhbLuvB1o9G_pqunqnow3bt_THcEu8PR1aW4PCsu3sNebPv_uhyzD7BT_2zMIYKSWn50pvgHscndBw | 
    
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8JAEN4YOCgHnxjxlT0YD5piH9tueyQIokaCCRg8Nd3dQoikEGlj8Nc70xYC6kHP3ek2M5Odbzqz3xByYTBlu17ANAb5BpYZhRZAogVAzuDgQipkKZH2U9tp9dhD3-7nZNF4F2a1fm_o3k08lMhSarKqxVw4cOG0LTo2wO4CKfbandorDo9j3MIqwaJq-avcWtxJB6ksyUFLZDOJpsH8IxiPV4JLcydry5qlnITYU_JWTWJRlZ_fGBv_9N27ZDuHmLSW-cQe2QijfVJaIR48IM-IMZMZ7U3xdkM0pOn4I9pBPwLRjHRzTh8XP9zoKKKN9JYgxWFCyMwBQveTLm1nbeSzMuk1G916S8uHK2gSIlCsiSzVQq5IwxW6K3UVKCGZK4VwDBnq3DMVwCNbCi6458hBMODSFIB_LDWwB9YhKUSTKDwi1AkNL3RsLgHbMalCz1NK54GwJBxeunIr5Gqhen-acWj4ae6he373rt72UU9-rqcKKaNxVhZyEzAnvOQys9byCRJj345eaj7o3R-PEh-zK-5UyPXSmj-2Q7OsbXf8r9UnZMvE-b9pj9kpKcTvSXgGoCQW57k7fgFsbtlL | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Status+Updating+Under+Partial+Battery+Knowledge+in+Energy+Harvesting+IoT+Networks&rft.jtitle=IEEE+transactions+on+green+communications+and+networking&rft.au=Hatami%2C+Mohammad&rft.au=Leinonen%2C+Markus&rft.au=Codreanu%2C+Marian&rft.date=2025-09-01&rft.pub=IEEE&rft.eissn=2473-2400&rft.volume=9&rft.issue=3&rft.spage=1003&rft.epage=1020&rft_id=info:doi/10.1109%2FTGCN.2024.3484132&rft.externalDocID=10726568 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2473-2400&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2473-2400&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2473-2400&client=summon |