Automatic Segmentation of Stabilometric Signals Using Hidden Markov Model Regression
Posture analysis in quiet standing is an essential element in evaluating human balance control. Many factors enhance the human control system's ability to maintain stability, such as the visual system and base of support (feet) placement. In contrast, many neural pathologies, such as Parkinson&...
Saved in:
Published in | IEEE transactions on automation science and engineering Vol. 15; no. 2; pp. 545 - 555 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
IEEE
01.04.2018
Institute of Electrical and Electronics Engineers |
Subjects | |
Online Access | Get full text |
ISSN | 1545-5955 1558-3783 |
DOI | 10.1109/TASE.2016.2637165 |
Cover
Abstract | Posture analysis in quiet standing is an essential element in evaluating human balance control. Many factors enhance the human control system's ability to maintain stability, such as the visual system and base of support (feet) placement. In contrast, many neural pathologies, such as Parkinson's disease (PD) and cerebellar disorder, disturb human stability. This paper addresses the problem of the automatic segmentation of stabilometric signals recorded under four different conditions related to vision and foot position. This is achieved for both control subjects and PD subjects. A hidden Markov model (HMM)-regression-based approach is used to carry out the segmentation between the different conditions using simple and multiple regression processes. Twenty-eight control subjects and thirty-two PD subjects participated in this study. They were asked to stand upright while recording stabilometric signals in mediolateral and anteroposterior directions under two permutations: feet apart and together with eyes open or closed. The results show high values for the correct segmentation rates, up to 98%, for the separation between the different conditions. The present findings could help clinicians better understand the motor strategies used by the patients during their orthostatic postures and may guide the rehabilitation process. The proposed method compares favorably with standard segmentation approaches.
Note to Practitioners -In this paper, the problem of human balance control assessment is analyzed through the segmentation of the multidimensional time series of the center of pressure (CoP) displacement measurements during orthostatic postures of healthy and Parkinsonian subjects. The proposed model for automatic temporal segmentation is a specific statistical latent process model that assumes that the observed stabilometric sequence is governed by a sequence of hidden (unobserved) states or conditions. More specifically, the proposed approach is based on a specific multiple regression model that incorporates a hidden Markov process that governs the switching from one condition to another over time. The model is learned in an unsupervised context by maximizing the observed data log-likelihood via a dedicated expectation-maximization algorithm. We applied it on a real-world automatic CoP displacement excursion segmentation problem and assessed its performance by performing comparisons with alternative approaches, including well-known supervised static classifiers and the standard HMM. The results obtained are very encouraging and show that the proposed approach is quite competitive, though it works in an entirely unsupervised fashion and does not requires a feature extraction preprocessing step. The present findings could help clinicians to better understand the motor strategies used by the patients during their orthostatic postures and may guide the rehabilitation process. |
---|---|
AbstractList | Posture analysis in quiet standing is an essential element in evaluating human balance control. Many factors enhance the human control system's ability to maintain stability, such as the visual system and base of support (feet) placement. In contrast, many neural pathologies, such as Parkinson's disease (PD) and cerebellar disorder, disturb human stability. This paper addresses the problem of the automatic segmentation of stabilometric signals recorded under four different conditions related to vision and foot position. This is achieved for both control subjects and PD subjects. A hidden Markov model (HMM)-regression-based approach is used to carry out the segmentation between the different conditions using simple and multiple regression processes. Twenty-eight control subjects and thirty-two PD subjects participated in this study. They were asked to stand upright while recording stabilometric signals in mediolateral and anteroposterior directions under two permutations: feet apart and together with eyes open or closed. The results show high values for the correct segmentation rates, up to 98%, for the separation between the different conditions. The present findings could help clinicians better understand the motor strategies used by the patients during their orthostatic postures and may guide the rehabilitation process. The proposed method compares favorably with standard segmentation approaches. Posture analysis in quiet standing is an essential element in evaluating human balance control. Many factors enhance the human control system's ability to maintain stability, such as the visual system and base of support (feet) placement. In contrast, many neural pathologies, such as Parkinson's disease (PD) and cerebellar disorder, disturb human stability. This paper addresses the problem of the automatic segmentation of stabilometric signals recorded under four different conditions related to vision and foot position. This is achieved for both control subjects and PD subjects. A hidden Markov model (HMM)-regression-based approach is used to carry out the segmentation between the different conditions using simple and multiple regression processes. Twenty-eight control subjects and thirty-two PD subjects participated in this study. They were asked to stand upright while recording stabilometric signals in mediolateral and anteroposterior directions under two permutations: feet apart and together with eyes open or closed. The results show high values for the correct segmentation rates, up to 98%, for the separation between the different conditions. The present findings could help clinicians better understand the motor strategies used by the patients during their orthostatic postures and may guide the rehabilitation process. The proposed method compares favorably with standard segmentation approaches. Note to Practitioners -In this paper, the problem of human balance control assessment is analyzed through the segmentation of the multidimensional time series of the center of pressure (CoP) displacement measurements during orthostatic postures of healthy and Parkinsonian subjects. The proposed model for automatic temporal segmentation is a specific statistical latent process model that assumes that the observed stabilometric sequence is governed by a sequence of hidden (unobserved) states or conditions. More specifically, the proposed approach is based on a specific multiple regression model that incorporates a hidden Markov process that governs the switching from one condition to another over time. The model is learned in an unsupervised context by maximizing the observed data log-likelihood via a dedicated expectation-maximization algorithm. We applied it on a real-world automatic CoP displacement excursion segmentation problem and assessed its performance by performing comparisons with alternative approaches, including well-known supervised static classifiers and the standard HMM. The results obtained are very encouraging and show that the proposed approach is quite competitive, though it works in an entirely unsupervised fashion and does not requires a feature extraction preprocessing step. The present findings could help clinicians to better understand the motor strategies used by the patients during their orthostatic postures and may guide the rehabilitation process. |
Author | Attal, Ferhat Mohammed, Samer Amirat, Yacine Oukhellou, Latifa Khalil, Mohamad Hutin, Emilie Gracies, Jean-Michel Safi, Khaled |
Author_xml | – sequence: 1 givenname: Khaled surname: Safi fullname: Safi, Khaled email: khaled.safi@u-pec.fr organization: LISSI Lab, University of Paris-Est Créteil UPEC, Vitry Sur Seine, France – sequence: 2 givenname: Samer surname: Mohammed fullname: Mohammed, Samer email: samer.mohammed@upec.fr organization: LISSI Lab, University of Paris-Est Créteil UPEC, Vitry Sur Seine, France – sequence: 3 givenname: Ferhat surname: Attal fullname: Attal, Ferhat email: ferhat.attal@u-pec.fr organization: LISSI Lab, University of Paris-Est Créteil UPEC, Vitry Sur Seine, France – sequence: 4 givenname: Yacine orcidid: 0000-0001-6738-4529 surname: Amirat fullname: Amirat, Yacine email: amirat@u-pec.fr organization: LISSI Lab, University of Paris-Est Créteil UPEC, Vitry Sur Seine, France – sequence: 5 givenname: Latifa surname: Oukhellou fullname: Oukhellou, Latifa email: latifa.oukhellou@ifsttar.fr organization: IFSTTAR, COSYS, GRETTIA, University of Paris-Est, Marne la Valle, France – sequence: 6 givenname: Mohamad surname: Khalil fullname: Khalil, Mohamad email: mohamad.khalil@ul.edu.lb organization: Centre AZM pour la recherche, EDST, Tripoli, Université Libanaise, Liban and Laboratoire CRSI, Faculté de Genie, Université Libanaise, Liban – sequence: 7 givenname: Jean-Michel surname: Gracies fullname: Gracies, Jean-Michel email: jean-michel.gracies@aphp.fr organization: Laboratoire ARM, EA BIOTN, UPEC, Service de Rééducation, Neurolocomotrice, CHU Henri Mondor, Créteil, France – sequence: 8 givenname: Emilie surname: Hutin fullname: Hutin, Emilie email: emilie.hutin@aphp.fr organization: Laboratoire ARM, EA BIOTN, UPEC, Service de Rééducation, Neurolocomotrice, CHU Henri Mondor, Créteil, France |
BackLink | https://hal.science/hal-01538497$$DView record in HAL |
BookMark | eNp9kc9LwzAUx4NMcJv-AeIlVw-d-dkkxzKmEzYEt51D1r7WaNtIWwf-97ZUdvDgKY_k-3kvfN4MTepQA0K3lCwoJeZhn-xWC0ZovGAxVzSWF2hKpdQRV5pPhlrISBopr9Csbd8JYUIbMkX75KsLlet8indQVFB3fR1qHHK869zRl6GCrhlefVG7ssWH1tcFXvssgxpvXfMRTngbMijxKxQNtG1PX6PLvM_Cze85R4fH1X65jjYvT8_LZBOlzJguMvqYS005o1xrTSQI0X89lwqynAllKDWCpi5LaWwAiFCMC3VUHMAolTHgc3Q_9n1zpf1sfOWabxuct-tkY4c7QiXXwqgT7bN0zKZNaNsG8jNAiR0U2kGhHRTaX4U9o_4wqR_9dI3z5b_k3Uh6ADhP6ldhjDb8Bxapf58 |
CODEN | ITASC7 |
CitedBy_id | crossref_primary_10_1177_16878132231190993 crossref_primary_10_3233_IDA_173704 crossref_primary_10_3390_bioengineering9070283 crossref_primary_10_3390_bioengineering11010088 crossref_primary_10_1109_TASE_2019_2938673 |
Cites_doi | 10.1016/j.gaitpost.2003.11.006 10.1007/BF00241972 10.1109/MASSP.1986.1165342 10.1007/s00221-007-1024-y 10.1016/j.gaitpost.2009.08.232 10.1016/S0268-0033(96)00040-X 10.1016/j.cmpb.2014.06.020 10.1016/j.medengphy.2007.12.002 10.1111/j.1742-1241.2006.01091.x 10.1152/jn.2001.85.6.2630 10.1093/ageing/afp250 10.1016/j.expneurol.2004.12.008 10.1016/S0268-0033(02)00107-9 10.1159/000322196 10.1002/widm.8 10.1016/S0021-9290(00)00097-X 10.1152/jn.2002.88.3.1097 10.1016/S0966-6362(00)00093-X 10.1109/EMBC.2016.7591547 10.1097/01.BRS.0000115134.97854.C9 10.1016/j.clinbiomech.2005.12.003 10.1016/j.neulet.2005.10.020 10.1093/ageing/afl077 10.1016/j.neucom.2013.04.003 10.33549/physiolres.931238 10.1023/A:1010933404324 10.1016/j.cmpb.2011.08.011 10.1109/ROBOT.2010.5509785 10.1103/PhysRevLett.73.764 10.1589/jpts.26.1989 10.1109/TITB.2011.2107916 10.1016/S0304-3940(00)00814-4 10.1016/S0887-6185(00)00043-8 10.1016/j.gaitpost.2004.11.001 10.1016/j.medengphy.2009.06.004 10.1007/s00422-005-0004-1 10.1016/S0140-6736(03)14470-4 10.1109/TASE.2013.2256349 10.1590/S1808-86942010000600018 10.1016/S0079-6123(03)42014-1 10.1007/BF00229788 10.1016/0966-6362(96)82849-9 |
ContentType | Journal Article |
Copyright | Distributed under a Creative Commons Attribution 4.0 International License |
Copyright_xml | – notice: Distributed under a Creative Commons Attribution 4.0 International License |
DBID | 97E RIA RIE AAYXX CITATION 1XC |
DOI | 10.1109/TASE.2016.2637165 |
DatabaseName | IEEE Xplore (IEEE) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Hyper Article en Ligne (HAL) |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Computer Science |
EISSN | 1558-3783 |
EndPage | 555 |
ExternalDocumentID | oai_HAL_hal_01538497v1 10_1109_TASE_2016_2637165 7839989 |
Genre | orig-research |
GroupedDBID | -~X 0R~ 29I 4.4 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK AENEX AETIX AGQYO AGSQL AHBIQ AIBXA AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD F5P HZ~ H~9 IFIPE IPLJI JAVBF LAI M43 O9- OCL PQQKQ RIA RIE RNS AAYXX CITATION 1XC |
ID | FETCH-LOGICAL-c299t-98bf581321388805e44371f57edf247911941cadc169ee0472347b73ee977d2e3 |
IEDL.DBID | RIE |
ISSN | 1545-5955 |
IngestDate | Fri Sep 12 12:41:21 EDT 2025 Thu Apr 24 23:03:12 EDT 2025 Wed Oct 01 03:35:39 EDT 2025 Wed Aug 27 02:52:23 EDT 2025 |
IsPeerReviewed | false |
IsScholarly | true |
Issue | 2 |
Keywords | Hidden Markov model Multiple regression model Signal segmentation Posture analysis Stabilometric data |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c299t-98bf581321388805e44371f57edf247911941cadc169ee0472347b73ee977d2e3 |
ORCID | 0000-0001-6738-4529 0000-0002-3238-0517 0000-0001-5790-2564 0000-0003-0512-104X |
PageCount | 11 |
ParticipantIDs | ieee_primary_7839989 crossref_primary_10_1109_TASE_2016_2637165 hal_primary_oai_HAL_hal_01538497v1 crossref_citationtrail_10_1109_TASE_2016_2637165 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2018-04-01 |
PublicationDateYYYYMMDD | 2018-04-01 |
PublicationDate_xml | – month: 04 year: 2018 text: 2018-04-01 day: 01 |
PublicationDecade | 2010 |
PublicationTitle | IEEE transactions on automation science and engineering |
PublicationTitleAbbrev | TASE |
PublicationYear | 2018 |
Publisher | IEEE Institute of Electrical and Electronics Engineers |
Publisher_xml | – name: IEEE – name: Institute of Electrical and Electronics Engineers |
References | ref35 ref13 ref34 ref12 theodoridis (ref44) 2010 ref15 ref14 ref31 ref30 ref33 ref32 ref10 ref2 ref1 ref39 ref17 ref38 ref16 looney (ref47) 1997 ref18 ref46 ref24 abrahamova (ref11) 2008; 57 ref45 ref23 ref26 ref25 ref20 ref42 ref41 ref22 fridman (ref37) 1993 ref21 ref43 ref28 ref27 ref29 brewer (ref36) 2009 ref8 ref7 ref9 ref4 ref3 ref6 ref5 ref40 nejc (ref19) 2010; 9 |
References_xml | – year: 1997 ident: ref47 publication-title: Pattern Recognition Using Neural Networks Theory and Algorithms for Engineers and Scientists – ident: ref41 doi: 10.1016/j.gaitpost.2003.11.006 – ident: ref27 doi: 10.1007/BF00241972 – ident: ref43 doi: 10.1109/MASSP.1986.1165342 – ident: ref30 doi: 10.1007/s00221-007-1024-y – ident: ref32 doi: 10.1016/j.gaitpost.2009.08.232 – ident: ref39 doi: 10.1016/S0268-0033(96)00040-X – start-page: 214 year: 2009 ident: ref36 article-title: Feature selection for classification based on fine motor signs of Parkinson's disease publication-title: Proc Annu Int Conf IEEE Eng Med Biol Soc (EMBC) – ident: ref22 doi: 10.1016/j.cmpb.2014.06.020 – ident: ref38 doi: 10.1016/j.medengphy.2007.12.002 – ident: ref4 doi: 10.1111/j.1742-1241.2006.01091.x – ident: ref5 doi: 10.1152/jn.2001.85.6.2630 – year: 1993 ident: ref37 article-title: Hidden Markov model regression – ident: ref15 doi: 10.1093/ageing/afp250 – ident: ref33 doi: 10.1016/j.expneurol.2004.12.008 – ident: ref9 doi: 10.1016/S0268-0033(02)00107-9 – ident: ref14 doi: 10.1159/000322196 – volume: 9 start-page: 431 year: 2010 ident: ref19 article-title: Sensitivity of body sway parameters during quiet standing to manipulation of support surface size publication-title: J Sports Sci Med – ident: ref45 doi: 10.1002/widm.8 – ident: ref13 doi: 10.1016/S0021-9290(00)00097-X – ident: ref8 doi: 10.1152/jn.2002.88.3.1097 – ident: ref40 doi: 10.1016/S0966-6362(00)00093-X – ident: ref25 doi: 10.1109/EMBC.2016.7591547 – ident: ref16 doi: 10.1097/01.BRS.0000115134.97854.C9 – ident: ref17 doi: 10.1016/j.clinbiomech.2005.12.003 – ident: ref31 doi: 10.1016/j.neulet.2005.10.020 – ident: ref1 doi: 10.1093/ageing/afl077 – ident: ref35 doi: 10.1016/j.neucom.2013.04.003 – volume: 57 start-page: 957 year: 2008 ident: ref11 article-title: Age-related changes of human balance during quiet stance publication-title: Physiol Res doi: 10.33549/physiolres.931238 – ident: ref46 doi: 10.1023/A:1010933404324 – ident: ref23 doi: 10.1016/j.cmpb.2011.08.011 – ident: ref18 doi: 10.1109/ROBOT.2010.5509785 – ident: ref28 doi: 10.1103/PhysRevLett.73.764 – ident: ref24 doi: 10.1589/jpts.26.1989 – ident: ref34 doi: 10.1109/TITB.2011.2107916 – ident: ref6 doi: 10.1016/S0304-3940(00)00814-4 – year: 2010 ident: ref44 publication-title: Introduction to Pattern Recognition A Matlab Approach A Matlab Approach – ident: ref10 doi: 10.1016/S0887-6185(00)00043-8 – ident: ref12 doi: 10.1016/j.gaitpost.2004.11.001 – ident: ref20 doi: 10.1016/j.medengphy.2009.06.004 – ident: ref3 doi: 10.1007/s00422-005-0004-1 – ident: ref21 doi: 10.1016/S0140-6736(03)14470-4 – ident: ref42 doi: 10.1109/TASE.2013.2256349 – ident: ref29 doi: 10.1590/S1808-86942010000600018 – ident: ref7 doi: 10.1016/S0079-6123(03)42014-1 – ident: ref26 doi: 10.1007/BF00229788 – ident: ref2 doi: 10.1016/0966-6362(96)82849-9 |
SSID | ssj0024890 |
Score | 2.2039876 |
Snippet | Posture analysis in quiet standing is an essential element in evaluating human balance control. Many factors enhance the human control system's ability to... |
SourceID | hal crossref ieee |
SourceType | Open Access Repository Enrichment Source Index Database Publisher |
StartPage | 545 |
SubjectTerms | Automatic Control Engineering Computer Science Control systems Expectation–maximization (EM) algorithm Feature extraction Foot hidden Markov model (HMM) Hidden Markov models human stability multiple regression Robotics signal segmentation Stability criteria stabilometric data Visualization |
Title | Automatic Segmentation of Stabilometric Signals Using Hidden Markov Model Regression |
URI | https://ieeexplore.ieee.org/document/7839989 https://hal.science/hal-01538497 |
Volume | 15 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 1558-3783 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0024890 issn: 1545-5955 databaseCode: RIE dateStart: 20040101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8NAEB6sJz34FuuLRTyJafPYzWaPRVqKWA_aQm8h2UxqsU1EUg_-eneSWKuIeAubDQn7bXZmdr_5BuDSRS0cL9WWjDzf4kJFlgpibQmeOLH2SRyXtgYG935_xG_HYrwG18tcGEQsyWfYosvyLD_J9YK2ytrSWHMVqAY0pFRVrtaXrl5Q7qeQR2AJJUR9gunYqj3sPHaJxOW3XN8z8YH4ZoMaT8SAXCmtUlqW3jYMPr-pIpQ8txZF3NLvP-Qa__vRO7BVu5isU82JXVjDbA82V4QH92HYWRR5KdbKHnEyr_OPMpanzHif8XSWz6nSlrk7nZDAMiuZBaxPeiMZo_ye_I1RGbUZe8BJRaXNDmDU6w5v-lZdX8HSxggVBEoqAhOOOp6Jg22BnJvhSYXEJHW5NMug4o6OEu34CpFkJT0uY-khGqcxcdE7hPUsz_AImBKRdBM3jaTSpNAWRB4J9Qd-nJjfPHWbYH-OeKhr8XGqgTELyyDEViGBFBJIYQ1SE66Wj7xUyht_db4wMC77kWZ2v3MXUptNazpX8s1pwj7Bs-xVI3P8e_MJbJg3BBVL5xTWi9cFnhkHpIjPy5n3Adtk1J8 |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT4QwEJ74OKgH38b12RhPRnZ5tJQeN0aDuutB18QbgTKsxhWMYT346-0Aro8Y442UEki_0plpv_kG4NBFLRwv05aMPd_iQsWWChJtCZ46ifZJHJe2BvpXfnjLL-7E3RQcT3JhELEin2GbLquz_LTQY9oq60hjzVWgpmFWmKhC1tlan8p6QbWjQj6BJZQQzRmmY6vOoHtzSjQuv-36nokQxDcrNH1PHMgvxVUq23K2BP2Pr6opJY_tcZm09dsPwcb_fvYyLDZOJuvWs2IFpjBfhYUv0oNrMOiOy6KSa2U3OHxqMpByVmTM-J_Jw6h4olpb5u7DkCSWWcUtYCEpjuSMMnyKV0aF1EbsGoc1mTZfh9uz08FJaDUVFixtzFBJsGQiMAGp45lI2BbIuRmeTEhMM5dLsxAq7ug41Y6vEElY0uMykR6icRtTF70NmMmLHDeBKRFLN3WzWCpNGm1B7JFUf-AnqfnRM7cF9seIR7qRH6cqGKOoCkNsFRFIEYEUNSC14GjyyHOtvfFX5wMD46QfqWaH3V5EbTat6lzJV6cFawTPpFeDzNbvzfswFw76vah3fnW5DfPmbUHN2dmBmfJljLvGHSmTvWoWvgM0SNfw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Automatic+Segmentation+of+Stabilometric+Signals+Using+Hidden+Markov+Model+Regression&rft.jtitle=IEEE+transactions+on+automation+science+and+engineering&rft.au=Safi%2C+Khaled&rft.au=Mohammed%2C+Samer&rft.au=Attal%2C+Ferhat&rft.au=Amirat%2C+Yacine&rft.date=2018-04-01&rft.issn=1545-5955&rft.eissn=1558-3783&rft.volume=15&rft.issue=2&rft.spage=545&rft.epage=555&rft_id=info:doi/10.1109%2FTASE.2016.2637165&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TASE_2016_2637165 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1545-5955&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1545-5955&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1545-5955&client=summon |