Automatic Segmentation of Stabilometric Signals Using Hidden Markov Model Regression

Posture analysis in quiet standing is an essential element in evaluating human balance control. Many factors enhance the human control system's ability to maintain stability, such as the visual system and base of support (feet) placement. In contrast, many neural pathologies, such as Parkinson&...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on automation science and engineering Vol. 15; no. 2; pp. 545 - 555
Main Authors Safi, Khaled, Mohammed, Samer, Attal, Ferhat, Amirat, Yacine, Oukhellou, Latifa, Khalil, Mohamad, Gracies, Jean-Michel, Hutin, Emilie
Format Journal Article
LanguageEnglish
Published IEEE 01.04.2018
Institute of Electrical and Electronics Engineers
Subjects
Online AccessGet full text
ISSN1545-5955
1558-3783
DOI10.1109/TASE.2016.2637165

Cover

Abstract Posture analysis in quiet standing is an essential element in evaluating human balance control. Many factors enhance the human control system's ability to maintain stability, such as the visual system and base of support (feet) placement. In contrast, many neural pathologies, such as Parkinson's disease (PD) and cerebellar disorder, disturb human stability. This paper addresses the problem of the automatic segmentation of stabilometric signals recorded under four different conditions related to vision and foot position. This is achieved for both control subjects and PD subjects. A hidden Markov model (HMM)-regression-based approach is used to carry out the segmentation between the different conditions using simple and multiple regression processes. Twenty-eight control subjects and thirty-two PD subjects participated in this study. They were asked to stand upright while recording stabilometric signals in mediolateral and anteroposterior directions under two permutations: feet apart and together with eyes open or closed. The results show high values for the correct segmentation rates, up to 98%, for the separation between the different conditions. The present findings could help clinicians better understand the motor strategies used by the patients during their orthostatic postures and may guide the rehabilitation process. The proposed method compares favorably with standard segmentation approaches. Note to Practitioners -In this paper, the problem of human balance control assessment is analyzed through the segmentation of the multidimensional time series of the center of pressure (CoP) displacement measurements during orthostatic postures of healthy and Parkinsonian subjects. The proposed model for automatic temporal segmentation is a specific statistical latent process model that assumes that the observed stabilometric sequence is governed by a sequence of hidden (unobserved) states or conditions. More specifically, the proposed approach is based on a specific multiple regression model that incorporates a hidden Markov process that governs the switching from one condition to another over time. The model is learned in an unsupervised context by maximizing the observed data log-likelihood via a dedicated expectation-maximization algorithm. We applied it on a real-world automatic CoP displacement excursion segmentation problem and assessed its performance by performing comparisons with alternative approaches, including well-known supervised static classifiers and the standard HMM. The results obtained are very encouraging and show that the proposed approach is quite competitive, though it works in an entirely unsupervised fashion and does not requires a feature extraction preprocessing step. The present findings could help clinicians to better understand the motor strategies used by the patients during their orthostatic postures and may guide the rehabilitation process.
AbstractList Posture analysis in quiet standing is an essential element in evaluating human balance control. Many factors enhance the human control system's ability to maintain stability, such as the visual system and base of support (feet) placement. In contrast, many neural pathologies, such as Parkinson's disease (PD) and cerebellar disorder, disturb human stability. This paper addresses the problem of the automatic segmentation of stabilometric signals recorded under four different conditions related to vision and foot position. This is achieved for both control subjects and PD subjects. A hidden Markov model (HMM)-regression-based approach is used to carry out the segmentation between the different conditions using simple and multiple regression processes. Twenty-eight control subjects and thirty-two PD subjects participated in this study. They were asked to stand upright while recording stabilometric signals in mediolateral and anteroposterior directions under two permutations: feet apart and together with eyes open or closed. The results show high values for the correct segmentation rates, up to 98%, for the separation between the different conditions. The present findings could help clinicians better understand the motor strategies used by the patients during their orthostatic postures and may guide the rehabilitation process. The proposed method compares favorably with standard segmentation approaches.
Posture analysis in quiet standing is an essential element in evaluating human balance control. Many factors enhance the human control system's ability to maintain stability, such as the visual system and base of support (feet) placement. In contrast, many neural pathologies, such as Parkinson's disease (PD) and cerebellar disorder, disturb human stability. This paper addresses the problem of the automatic segmentation of stabilometric signals recorded under four different conditions related to vision and foot position. This is achieved for both control subjects and PD subjects. A hidden Markov model (HMM)-regression-based approach is used to carry out the segmentation between the different conditions using simple and multiple regression processes. Twenty-eight control subjects and thirty-two PD subjects participated in this study. They were asked to stand upright while recording stabilometric signals in mediolateral and anteroposterior directions under two permutations: feet apart and together with eyes open or closed. The results show high values for the correct segmentation rates, up to 98%, for the separation between the different conditions. The present findings could help clinicians better understand the motor strategies used by the patients during their orthostatic postures and may guide the rehabilitation process. The proposed method compares favorably with standard segmentation approaches. Note to Practitioners -In this paper, the problem of human balance control assessment is analyzed through the segmentation of the multidimensional time series of the center of pressure (CoP) displacement measurements during orthostatic postures of healthy and Parkinsonian subjects. The proposed model for automatic temporal segmentation is a specific statistical latent process model that assumes that the observed stabilometric sequence is governed by a sequence of hidden (unobserved) states or conditions. More specifically, the proposed approach is based on a specific multiple regression model that incorporates a hidden Markov process that governs the switching from one condition to another over time. The model is learned in an unsupervised context by maximizing the observed data log-likelihood via a dedicated expectation-maximization algorithm. We applied it on a real-world automatic CoP displacement excursion segmentation problem and assessed its performance by performing comparisons with alternative approaches, including well-known supervised static classifiers and the standard HMM. The results obtained are very encouraging and show that the proposed approach is quite competitive, though it works in an entirely unsupervised fashion and does not requires a feature extraction preprocessing step. The present findings could help clinicians to better understand the motor strategies used by the patients during their orthostatic postures and may guide the rehabilitation process.
Author Attal, Ferhat
Mohammed, Samer
Amirat, Yacine
Oukhellou, Latifa
Khalil, Mohamad
Hutin, Emilie
Gracies, Jean-Michel
Safi, Khaled
Author_xml – sequence: 1
  givenname: Khaled
  surname: Safi
  fullname: Safi, Khaled
  email: khaled.safi@u-pec.fr
  organization: LISSI Lab, University of Paris-Est Créteil UPEC, Vitry Sur Seine, France
– sequence: 2
  givenname: Samer
  surname: Mohammed
  fullname: Mohammed, Samer
  email: samer.mohammed@upec.fr
  organization: LISSI Lab, University of Paris-Est Créteil UPEC, Vitry Sur Seine, France
– sequence: 3
  givenname: Ferhat
  surname: Attal
  fullname: Attal, Ferhat
  email: ferhat.attal@u-pec.fr
  organization: LISSI Lab, University of Paris-Est Créteil UPEC, Vitry Sur Seine, France
– sequence: 4
  givenname: Yacine
  orcidid: 0000-0001-6738-4529
  surname: Amirat
  fullname: Amirat, Yacine
  email: amirat@u-pec.fr
  organization: LISSI Lab, University of Paris-Est Créteil UPEC, Vitry Sur Seine, France
– sequence: 5
  givenname: Latifa
  surname: Oukhellou
  fullname: Oukhellou, Latifa
  email: latifa.oukhellou@ifsttar.fr
  organization: IFSTTAR, COSYS, GRETTIA, University of Paris-Est, Marne la Valle, France
– sequence: 6
  givenname: Mohamad
  surname: Khalil
  fullname: Khalil, Mohamad
  email: mohamad.khalil@ul.edu.lb
  organization: Centre AZM pour la recherche, EDST, Tripoli, Université Libanaise, Liban and Laboratoire CRSI, Faculté de Genie, Université Libanaise, Liban
– sequence: 7
  givenname: Jean-Michel
  surname: Gracies
  fullname: Gracies, Jean-Michel
  email: jean-michel.gracies@aphp.fr
  organization: Laboratoire ARM, EA BIOTN, UPEC, Service de Rééducation, Neurolocomotrice, CHU Henri Mondor, Créteil, France
– sequence: 8
  givenname: Emilie
  surname: Hutin
  fullname: Hutin, Emilie
  email: emilie.hutin@aphp.fr
  organization: Laboratoire ARM, EA BIOTN, UPEC, Service de Rééducation, Neurolocomotrice, CHU Henri Mondor, Créteil, France
BackLink https://hal.science/hal-01538497$$DView record in HAL
BookMark eNp9kc9LwzAUx4NMcJv-AeIlVw-d-dkkxzKmEzYEt51D1r7WaNtIWwf-97ZUdvDgKY_k-3kvfN4MTepQA0K3lCwoJeZhn-xWC0ZovGAxVzSWF2hKpdQRV5pPhlrISBopr9Csbd8JYUIbMkX75KsLlet8indQVFB3fR1qHHK869zRl6GCrhlefVG7ssWH1tcFXvssgxpvXfMRTngbMijxKxQNtG1PX6PLvM_Cze85R4fH1X65jjYvT8_LZBOlzJguMvqYS005o1xrTSQI0X89lwqynAllKDWCpi5LaWwAiFCMC3VUHMAolTHgc3Q_9n1zpf1sfOWabxuct-tkY4c7QiXXwqgT7bN0zKZNaNsG8jNAiR0U2kGhHRTaX4U9o_4wqR_9dI3z5b_k3Uh6ADhP6ldhjDb8Bxapf58
CODEN ITASC7
CitedBy_id crossref_primary_10_1177_16878132231190993
crossref_primary_10_3233_IDA_173704
crossref_primary_10_3390_bioengineering9070283
crossref_primary_10_3390_bioengineering11010088
crossref_primary_10_1109_TASE_2019_2938673
Cites_doi 10.1016/j.gaitpost.2003.11.006
10.1007/BF00241972
10.1109/MASSP.1986.1165342
10.1007/s00221-007-1024-y
10.1016/j.gaitpost.2009.08.232
10.1016/S0268-0033(96)00040-X
10.1016/j.cmpb.2014.06.020
10.1016/j.medengphy.2007.12.002
10.1111/j.1742-1241.2006.01091.x
10.1152/jn.2001.85.6.2630
10.1093/ageing/afp250
10.1016/j.expneurol.2004.12.008
10.1016/S0268-0033(02)00107-9
10.1159/000322196
10.1002/widm.8
10.1016/S0021-9290(00)00097-X
10.1152/jn.2002.88.3.1097
10.1016/S0966-6362(00)00093-X
10.1109/EMBC.2016.7591547
10.1097/01.BRS.0000115134.97854.C9
10.1016/j.clinbiomech.2005.12.003
10.1016/j.neulet.2005.10.020
10.1093/ageing/afl077
10.1016/j.neucom.2013.04.003
10.33549/physiolres.931238
10.1023/A:1010933404324
10.1016/j.cmpb.2011.08.011
10.1109/ROBOT.2010.5509785
10.1103/PhysRevLett.73.764
10.1589/jpts.26.1989
10.1109/TITB.2011.2107916
10.1016/S0304-3940(00)00814-4
10.1016/S0887-6185(00)00043-8
10.1016/j.gaitpost.2004.11.001
10.1016/j.medengphy.2009.06.004
10.1007/s00422-005-0004-1
10.1016/S0140-6736(03)14470-4
10.1109/TASE.2013.2256349
10.1590/S1808-86942010000600018
10.1016/S0079-6123(03)42014-1
10.1007/BF00229788
10.1016/0966-6362(96)82849-9
ContentType Journal Article
Copyright Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID 97E
RIA
RIE
AAYXX
CITATION
1XC
DOI 10.1109/TASE.2016.2637165
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Hyper Article en Ligne (HAL)
DatabaseTitle CrossRef
DatabaseTitleList

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 1558-3783
EndPage 555
ExternalDocumentID oai_HAL_hal_01538497v1
10_1109_TASE_2016_2637165
7839989
Genre orig-research
GroupedDBID -~X
0R~
29I
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AIBXA
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
F5P
HZ~
H~9
IFIPE
IPLJI
JAVBF
LAI
M43
O9-
OCL
PQQKQ
RIA
RIE
RNS
AAYXX
CITATION
1XC
ID FETCH-LOGICAL-c299t-98bf581321388805e44371f57edf247911941cadc169ee0472347b73ee977d2e3
IEDL.DBID RIE
ISSN 1545-5955
IngestDate Fri Sep 12 12:41:21 EDT 2025
Thu Apr 24 23:03:12 EDT 2025
Wed Oct 01 03:35:39 EDT 2025
Wed Aug 27 02:52:23 EDT 2025
IsPeerReviewed false
IsScholarly true
Issue 2
Keywords Hidden Markov model
Multiple regression model
Signal segmentation
Posture analysis
Stabilometric data
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c299t-98bf581321388805e44371f57edf247911941cadc169ee0472347b73ee977d2e3
ORCID 0000-0001-6738-4529
0000-0002-3238-0517
0000-0001-5790-2564
0000-0003-0512-104X
PageCount 11
ParticipantIDs ieee_primary_7839989
crossref_primary_10_1109_TASE_2016_2637165
hal_primary_oai_HAL_hal_01538497v1
crossref_citationtrail_10_1109_TASE_2016_2637165
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-04-01
PublicationDateYYYYMMDD 2018-04-01
PublicationDate_xml – month: 04
  year: 2018
  text: 2018-04-01
  day: 01
PublicationDecade 2010
PublicationTitle IEEE transactions on automation science and engineering
PublicationTitleAbbrev TASE
PublicationYear 2018
Publisher IEEE
Institute of Electrical and Electronics Engineers
Publisher_xml – name: IEEE
– name: Institute of Electrical and Electronics Engineers
References ref35
ref13
ref34
ref12
theodoridis (ref44) 2010
ref15
ref14
ref31
ref30
ref33
ref32
ref10
ref2
ref1
ref39
ref17
ref38
ref16
looney (ref47) 1997
ref18
ref46
ref24
abrahamova (ref11) 2008; 57
ref45
ref23
ref26
ref25
ref20
ref42
ref41
ref22
fridman (ref37) 1993
ref21
ref43
ref28
ref27
ref29
brewer (ref36) 2009
ref8
ref7
ref9
ref4
ref3
ref6
ref5
ref40
nejc (ref19) 2010; 9
References_xml – year: 1997
  ident: ref47
  publication-title: Pattern Recognition Using Neural Networks Theory and Algorithms for Engineers and Scientists
– ident: ref41
  doi: 10.1016/j.gaitpost.2003.11.006
– ident: ref27
  doi: 10.1007/BF00241972
– ident: ref43
  doi: 10.1109/MASSP.1986.1165342
– ident: ref30
  doi: 10.1007/s00221-007-1024-y
– ident: ref32
  doi: 10.1016/j.gaitpost.2009.08.232
– ident: ref39
  doi: 10.1016/S0268-0033(96)00040-X
– start-page: 214
  year: 2009
  ident: ref36
  article-title: Feature selection for classification based on fine motor signs of Parkinson's disease
  publication-title: Proc Annu Int Conf IEEE Eng Med Biol Soc (EMBC)
– ident: ref22
  doi: 10.1016/j.cmpb.2014.06.020
– ident: ref38
  doi: 10.1016/j.medengphy.2007.12.002
– ident: ref4
  doi: 10.1111/j.1742-1241.2006.01091.x
– ident: ref5
  doi: 10.1152/jn.2001.85.6.2630
– year: 1993
  ident: ref37
  article-title: Hidden Markov model regression
– ident: ref15
  doi: 10.1093/ageing/afp250
– ident: ref33
  doi: 10.1016/j.expneurol.2004.12.008
– ident: ref9
  doi: 10.1016/S0268-0033(02)00107-9
– ident: ref14
  doi: 10.1159/000322196
– volume: 9
  start-page: 431
  year: 2010
  ident: ref19
  article-title: Sensitivity of body sway parameters during quiet standing to manipulation of support surface size
  publication-title: J Sports Sci Med
– ident: ref45
  doi: 10.1002/widm.8
– ident: ref13
  doi: 10.1016/S0021-9290(00)00097-X
– ident: ref8
  doi: 10.1152/jn.2002.88.3.1097
– ident: ref40
  doi: 10.1016/S0966-6362(00)00093-X
– ident: ref25
  doi: 10.1109/EMBC.2016.7591547
– ident: ref16
  doi: 10.1097/01.BRS.0000115134.97854.C9
– ident: ref17
  doi: 10.1016/j.clinbiomech.2005.12.003
– ident: ref31
  doi: 10.1016/j.neulet.2005.10.020
– ident: ref1
  doi: 10.1093/ageing/afl077
– ident: ref35
  doi: 10.1016/j.neucom.2013.04.003
– volume: 57
  start-page: 957
  year: 2008
  ident: ref11
  article-title: Age-related changes of human balance during quiet stance
  publication-title: Physiol Res
  doi: 10.33549/physiolres.931238
– ident: ref46
  doi: 10.1023/A:1010933404324
– ident: ref23
  doi: 10.1016/j.cmpb.2011.08.011
– ident: ref18
  doi: 10.1109/ROBOT.2010.5509785
– ident: ref28
  doi: 10.1103/PhysRevLett.73.764
– ident: ref24
  doi: 10.1589/jpts.26.1989
– ident: ref34
  doi: 10.1109/TITB.2011.2107916
– ident: ref6
  doi: 10.1016/S0304-3940(00)00814-4
– year: 2010
  ident: ref44
  publication-title: Introduction to Pattern Recognition A Matlab Approach A Matlab Approach
– ident: ref10
  doi: 10.1016/S0887-6185(00)00043-8
– ident: ref12
  doi: 10.1016/j.gaitpost.2004.11.001
– ident: ref20
  doi: 10.1016/j.medengphy.2009.06.004
– ident: ref3
  doi: 10.1007/s00422-005-0004-1
– ident: ref21
  doi: 10.1016/S0140-6736(03)14470-4
– ident: ref42
  doi: 10.1109/TASE.2013.2256349
– ident: ref29
  doi: 10.1590/S1808-86942010000600018
– ident: ref7
  doi: 10.1016/S0079-6123(03)42014-1
– ident: ref26
  doi: 10.1007/BF00229788
– ident: ref2
  doi: 10.1016/0966-6362(96)82849-9
SSID ssj0024890
Score 2.2039876
Snippet Posture analysis in quiet standing is an essential element in evaluating human balance control. Many factors enhance the human control system's ability to...
SourceID hal
crossref
ieee
SourceType Open Access Repository
Enrichment Source
Index Database
Publisher
StartPage 545
SubjectTerms Automatic Control Engineering
Computer Science
Control systems
Expectation–maximization (EM) algorithm
Feature extraction
Foot
hidden Markov model (HMM)
Hidden Markov models
human stability
multiple regression
Robotics
signal segmentation
Stability criteria
stabilometric data
Visualization
Title Automatic Segmentation of Stabilometric Signals Using Hidden Markov Model Regression
URI https://ieeexplore.ieee.org/document/7839989
https://hal.science/hal-01538497
Volume 15
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1558-3783
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0024890
  issn: 1545-5955
  databaseCode: RIE
  dateStart: 20040101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8NAEB6sJz34FuuLRTyJafPYzWaPRVqKWA_aQm8h2UxqsU1EUg_-eneSWKuIeAubDQn7bXZmdr_5BuDSRS0cL9WWjDzf4kJFlgpibQmeOLH2SRyXtgYG935_xG_HYrwG18tcGEQsyWfYosvyLD_J9YK2ytrSWHMVqAY0pFRVrtaXrl5Q7qeQR2AJJUR9gunYqj3sPHaJxOW3XN8z8YH4ZoMaT8SAXCmtUlqW3jYMPr-pIpQ8txZF3NLvP-Qa__vRO7BVu5isU82JXVjDbA82V4QH92HYWRR5KdbKHnEyr_OPMpanzHif8XSWz6nSlrk7nZDAMiuZBaxPeiMZo_ye_I1RGbUZe8BJRaXNDmDU6w5v-lZdX8HSxggVBEoqAhOOOp6Jg22BnJvhSYXEJHW5NMug4o6OEu34CpFkJT0uY-khGqcxcdE7hPUsz_AImBKRdBM3jaTSpNAWRB4J9Qd-nJjfPHWbYH-OeKhr8XGqgTELyyDEViGBFBJIYQ1SE66Wj7xUyht_db4wMC77kWZ2v3MXUptNazpX8s1pwj7Bs-xVI3P8e_MJbJg3BBVL5xTWi9cFnhkHpIjPy5n3Adtk1J8
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT4QwEJ74OKgH38b12RhPRnZ5tJQeN0aDuutB18QbgTKsxhWMYT346-0Aro8Y442UEki_0plpv_kG4NBFLRwv05aMPd_iQsWWChJtCZ46ifZJHJe2BvpXfnjLL-7E3RQcT3JhELEin2GbLquz_LTQY9oq60hjzVWgpmFWmKhC1tlan8p6QbWjQj6BJZQQzRmmY6vOoHtzSjQuv-36nokQxDcrNH1PHMgvxVUq23K2BP2Pr6opJY_tcZm09dsPwcb_fvYyLDZOJuvWs2IFpjBfhYUv0oNrMOiOy6KSa2U3OHxqMpByVmTM-J_Jw6h4olpb5u7DkCSWWcUtYCEpjuSMMnyKV0aF1EbsGoc1mTZfh9uz08FJaDUVFixtzFBJsGQiMAGp45lI2BbIuRmeTEhMM5dLsxAq7ug41Y6vEElY0uMykR6icRtTF70NmMmLHDeBKRFLN3WzWCpNGm1B7JFUf-AnqfnRM7cF9seIR7qRH6cqGKOoCkNsFRFIEYEUNSC14GjyyHOtvfFX5wMD46QfqWaH3V5EbTat6lzJV6cFawTPpFeDzNbvzfswFw76vah3fnW5DfPmbUHN2dmBmfJljLvGHSmTvWoWvgM0SNfw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Automatic+Segmentation+of+Stabilometric+Signals+Using+Hidden+Markov+Model+Regression&rft.jtitle=IEEE+transactions+on+automation+science+and+engineering&rft.au=Safi%2C+Khaled&rft.au=Mohammed%2C+Samer&rft.au=Attal%2C+Ferhat&rft.au=Amirat%2C+Yacine&rft.date=2018-04-01&rft.issn=1545-5955&rft.eissn=1558-3783&rft.volume=15&rft.issue=2&rft.spage=545&rft.epage=555&rft_id=info:doi/10.1109%2FTASE.2016.2637165&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TASE_2016_2637165
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1545-5955&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1545-5955&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1545-5955&client=summon