Efficient high resolution sLORETA in brain source localization
Objective. Estimation of the source location within the brain from electroencephalography (EEG) and magnetoencephalography measures is a challenging task. Among the existing techniques in the field, which are known as brain imaging methods, standardized low-resolution brain electromagnetic tomograph...
Saved in:
| Published in | Journal of neural engineering Vol. 18; no. 1; p. 16013 |
|---|---|
| Main Authors | , |
| Format | Journal Article |
| Language | English |
| Published |
England
01.02.2021
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 1741-2560 1741-2552 1741-2552 |
| DOI | 10.1088/1741-2552/abcc48 |
Cover
| Abstract | Objective.
Estimation of the source location within the brain from electroencephalography (EEG) and magnetoencephalography measures is a challenging task. Among the existing techniques in the field, which are known as brain imaging methods, standardized low-resolution brain electromagnetic tomography (sLORETA) is the most popular method due to its simplicity and high accuracy. However, in this work we illustrate that sLORETA is still noisy and the additive noise is causing the blurry image. The existing pre-fixed/manual thresholding process after sLORETA can partially take care of denoising. However, this ad-hoc theresholding can either remove so much of the desired data or leave much of the noise in the process. Manual correction to avoid such extreme cases can be time-consuming. The objective of this paper is to automate the denoising process in the form of adaptive thresholding.
Approach.
The proposed method, denoted by efficient high-resolution sLORETA (EHR-sLORETA), is based on minimizing the error between the desired denoised source and the source estimates.
Main results.
The approach is evaluated using synthetic EEG and real EEG data. spatial dispersion (SD), and mean square error (MSE) are used as metrics to provide the quantitative performance of the method. In addition, qualitative analysis of the method is provided for real EEG data. This proposed model demonstrates advantages over the existing methods in sense of accuracy and robustness with SD and MSE comparison.
Significance.
EHR-sLORETA could have a significant impact on clinical studies with source estimation task, as it improves the accuracy of source estimation and eliminates the need for manual thresholding. |
|---|---|
| AbstractList | Objective.Estimation of the source location within the brain from electroencephalography (EEG) and magnetoencephalography measures is a challenging task. Among the existing techniques in the field, which are known as brain imaging methods, standardized low-resolution brain electromagnetic tomography (sLORETA) is the most popular method due to its simplicity and high accuracy. However, in this work we illustrate that sLORETA is still noisy and the additive noise is causing the blurry image. The existing pre-fixed/manual thresholding process after sLORETA can partially take care of denoising. However, this ad-hoc theresholding can either remove so much of the desired data or leave much of the noise in the process. Manual correction to avoid such extreme cases can be time-consuming. The objective of this paper is to automate the denoising process in the form of adaptive thresholding.Approach.The proposed method, denoted by efficient high-resolution sLORETA (EHR-sLORETA), is based on minimizing the error between the desired denoised source and the source estimates.Main results.The approach is evaluated using synthetic EEG and real EEG data. spatial dispersion (SD), and mean square error (MSE) are used as metrics to provide the quantitative performance of the method. In addition, qualitative analysis of the method is provided for real EEG data. This proposed model demonstrates advantages over the existing methods in sense of accuracy and robustness with SD and MSE comparison.Significance.EHR-sLORETA could have a significant impact on clinical studies with source estimation task, as it improves the accuracy of source estimation and eliminates the need for manual thresholding.Objective.Estimation of the source location within the brain from electroencephalography (EEG) and magnetoencephalography measures is a challenging task. Among the existing techniques in the field, which are known as brain imaging methods, standardized low-resolution brain electromagnetic tomography (sLORETA) is the most popular method due to its simplicity and high accuracy. However, in this work we illustrate that sLORETA is still noisy and the additive noise is causing the blurry image. The existing pre-fixed/manual thresholding process after sLORETA can partially take care of denoising. However, this ad-hoc theresholding can either remove so much of the desired data or leave much of the noise in the process. Manual correction to avoid such extreme cases can be time-consuming. The objective of this paper is to automate the denoising process in the form of adaptive thresholding.Approach.The proposed method, denoted by efficient high-resolution sLORETA (EHR-sLORETA), is based on minimizing the error between the desired denoised source and the source estimates.Main results.The approach is evaluated using synthetic EEG and real EEG data. spatial dispersion (SD), and mean square error (MSE) are used as metrics to provide the quantitative performance of the method. In addition, qualitative analysis of the method is provided for real EEG data. This proposed model demonstrates advantages over the existing methods in sense of accuracy and robustness with SD and MSE comparison.Significance.EHR-sLORETA could have a significant impact on clinical studies with source estimation task, as it improves the accuracy of source estimation and eliminates the need for manual thresholding. Estimation of the source location within the brain from electroencephalography (EEG) and magnetoencephalography measures is a challenging task. Among the existing techniques in the field, which are known as brain imaging methods, standardized low-resolution brain electromagnetic tomography (sLORETA) is the most popular method due to its simplicity and high accuracy. However, in this work we illustrate that sLORETA is still noisy and the additive noise is causing the blurry image. The existing pre-fixed/manual thresholding process after sLORETA can partially take care of denoising. However, this ad-hoc theresholding can either remove so much of the desired data or leave much of the noise in the process. Manual correction to avoid such extreme cases can be time-consuming. The objective of this paper is to automate the denoising process in the form of adaptive thresholding. The proposed method, denoted by efficient high-resolution sLORETA (EHR-sLORETA), is based on minimizing the error between the desired denoised source and the source estimates. The approach is evaluated using synthetic EEG and real EEG data. spatial dispersion (SD), and mean square error (MSE) are used as metrics to provide the quantitative performance of the method. In addition, qualitative analysis of the method is provided for real EEG data. This proposed model demonstrates advantages over the existing methods in sense of accuracy and robustness with SD and MSE comparison. EHR-sLORETA could have a significant impact on clinical studies with source estimation task, as it improves the accuracy of source estimation and eliminates the need for manual thresholding. Objective. Estimation of the source location within the brain from electroencephalography (EEG) and magnetoencephalography measures is a challenging task. Among the existing techniques in the field, which are known as brain imaging methods, standardized low-resolution brain electromagnetic tomography (sLORETA) is the most popular method due to its simplicity and high accuracy. However, in this work we illustrate that sLORETA is still noisy and the additive noise is causing the blurry image. The existing pre-fixed/manual thresholding process after sLORETA can partially take care of denoising. However, this ad-hoc theresholding can either remove so much of the desired data or leave much of the noise in the process. Manual correction to avoid such extreme cases can be time-consuming. The objective of this paper is to automate the denoising process in the form of adaptive thresholding. Approach. The proposed method, denoted by efficient high-resolution sLORETA (EHR-sLORETA), is based on minimizing the error between the desired denoised source and the source estimates. Main results. The approach is evaluated using synthetic EEG and real EEG data. spatial dispersion (SD), and mean square error (MSE) are used as metrics to provide the quantitative performance of the method. In addition, qualitative analysis of the method is provided for real EEG data. This proposed model demonstrates advantages over the existing methods in sense of accuracy and robustness with SD and MSE comparison. Significance. EHR-sLORETA could have a significant impact on clinical studies with source estimation task, as it improves the accuracy of source estimation and eliminates the need for manual thresholding. |
| Author | Sadat-Nejad, Younes Beheshti, Soosan |
| Author_xml | – sequence: 1 givenname: Younes orcidid: 0000-0001-7946-0701 surname: Sadat-Nejad fullname: Sadat-Nejad, Younes – sequence: 2 givenname: Soosan orcidid: 0000-0001-7161-5887 surname: Beheshti fullname: Beheshti, Soosan |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33212434$$D View this record in MEDLINE/PubMed |
| BookMark | eNp1kEtLAzEUhYMo9qF7VzJLN2PzmkyyEUqpDygUpK5DJk1sJJ3UZGahv94Z-1gIbu69XL5z4JwROK9DbQC4QfAeQc4nqKQox0WBJ6rSmvIzMDy9zk83gwMwSukDQoJKAS_BgBCMMCV0CB7m1jrtTN1kG_e-yaJJwbeNC3WWFsvX-WqauTqroupmCm3UJvNBK---VQ9dgQurfDLXhz0Gb4_z1ew5XyyfXmbTRa6xEE1OFSyoEmpNNCGqG8IavFbcUoiUsJRByMrSGs4sM0hbhAVlmJmC48oIWJAxuNv77mL4bE1q5NYlbbxXtQltkpgyAgVnnHbo7QFtq61Zy110WxW_5DFzB7A9oGNIKRortWt-0zRdTC8RlH25sm9P9k3KfbmdEP4RHr3_lfwAJZN7LQ |
| CitedBy_id | crossref_primary_10_1016_j_neuroscience_2022_10_010 crossref_primary_10_1038_s41380_023_02181_1 crossref_primary_10_1007_s11571_024_10149_2 crossref_primary_10_1016_j_jad_2024_08_092 crossref_primary_10_1016_j_neuroimage_2025_121144 crossref_primary_10_1109_ACCESS_2023_3321794 crossref_primary_10_1142_S0129065724500710 crossref_primary_10_1088_1361_6420_ad14a1 |
| Cites_doi | 10.1109/TSP.2005.855075 10.1016/j.pscychresns.2003.08.006 10.1109/LSP.2009.2030856 10.1016/j.neuroimage.2005.08.053 10.1016/j.neuroimage.2014.12.040 10.1007/s13246-014-0308-3 10.1016/j.neuroimage.2010.05.013 10.1016/j.clinph.2014.05.038 10.1088/1741-2552/aa86d0 10.1088/1741-2552/ab6040 10.1109/EMBC.2019.8856905 10.1016/s0925-4927(99)00013-x 10.1007/s11517-006-0142-1 10.1155/2011/923703 10.1016/j.neuroimage.2008.05.064 10.1016/j.ijpsycho.2013.09.001 10.1016/0013-4694(79)90215-3 10.1155/2011/879716 10.1007/s10548-014-0405-3 10.1002/ana.20857 10.1016/j.clinph.2004.06.001 10.1109/TBME.2006.886640 10.1016/j.pscychresns.2003.08.005 10.1016/j.neuroimage.2013.10.027 10.1088/2057-1976/1/4/045206 10.1109/ICASSP.2014.6854729 10.1016/j.jalz.2007.11.017 10.1088/1741-2552/ab8113 10.1109/79.962275 10.1007/s10548-011-0173-2 10.1186/1475-925X-9-45 10.1016/j.neuroimage.2010.03.001 10.1109/TSP.2009.2032031 10.4149/gpb_2017060 10.1016/S1388-2457(02)00337-1 10.1002/hbm.21276 10.1109/TBME.2018.2859204 10.1097/WNP.0b013e3182767d15 10.3389/fneur.2019.00325 10.1212/01.WNL.0000114507.30388.7E 10.1016/S1053-8119(09)70884-5 10.1109/TBME.2018.2890291 10.1016/j.pneurobio.2014.06.004 10.1038/jcbfm.1993.4 10.1186/1743-0003-5-25 10.1001/archpsyc.1997.01830170059009 10.1109/CAMSAP.2015.7383766. 10.1109/TBME.2013.2297332 10.1109/TBME.2016.2613936 10.1371/journal.pone.0027863 10.1109/MSP.2015.2413711 10.1016/j.neuroimage.2016.05.064 10.1016/j.jneumeth.2020.108740 10.1109/TSMC.1979.4310076 |
| ContentType | Journal Article |
| Copyright | 2021 IOP Publishing Ltd. |
| Copyright_xml | – notice: 2021 IOP Publishing Ltd. |
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 |
| DOI | 10.1088/1741-2552/abcc48 |
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic MEDLINE CrossRef |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Anatomy & Physiology |
| EISSN | 1741-2552 |
| ExternalDocumentID | 33212434 10_1088_1741_2552_abcc48 |
| Genre | Journal Article |
| GroupedDBID | --- 1JI 4.4 53G 5B3 5GY 5VS 5ZH 7.M 7.Q AAGCD AAJIO AAJKP AATNI AAYXX ABHWH ABJNI ABQJV ABVAM ACAFW ACGFS ACHIP ADEQX AEFHF AEINN AENEX AFYNE AKPSB ALMA_UNASSIGNED_HOLDINGS AOAED ASPBG ATQHT AVWKF AZFZN CEBXE CITATION CJUJL CRLBU CS3 DU5 EBS EDWGO EMSAF EPQRW EQZZN F5P IHE IJHAN IOP IZVLO KOT LAP M45 N5L N9A P2P PJBAE RIN RO9 ROL RPA SY9 W28 XPP CGR CUY CVF ECM EIF HAK NPM 7X8 |
| ID | FETCH-LOGICAL-c299t-4a054a9ad3c33a3c39fe2da8f401a9f4600677fe86f6e1cf1294626e582be9053 |
| ISSN | 1741-2560 1741-2552 |
| IngestDate | Fri Sep 05 08:29:46 EDT 2025 Thu Jan 02 22:54:38 EST 2025 Thu Apr 24 23:10:23 EDT 2025 Wed Oct 01 02:41:33 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Keywords | sLORETA EEG/MEG source imaging brain source localization source reconstruction EEG analysis |
| Language | English |
| License | 2021 IOP Publishing Ltd. |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c299t-4a054a9ad3c33a3c39fe2da8f401a9f4600677fe86f6e1cf1294626e582be9053 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| ORCID | 0000-0001-7161-5887 0000-0001-7946-0701 |
| PMID | 33212434 |
| PQID | 2463098684 |
| PQPubID | 23479 |
| ParticipantIDs | proquest_miscellaneous_2463098684 pubmed_primary_33212434 crossref_citationtrail_10_1088_1741_2552_abcc48 crossref_primary_10_1088_1741_2552_abcc48 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2021-02-01 |
| PublicationDateYYYYMMDD | 2021-02-01 |
| PublicationDate_xml | – month: 02 year: 2021 text: 2021-02-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | England |
| PublicationPlace_xml | – name: England |
| PublicationTitle | Journal of neural engineering |
| PublicationTitleAlternate | J Neural Eng |
| PublicationYear | 2021 |
| References | Klamer (jneabcc48bib16) 2015; 28 Sadat-Nejad (jneabcc48bib24) 2019 Lantz (jneabcc48bib48) 2003; 114 Dümpelmann (jneabcc48bib28) 2012; 33 Sheorajpanday (jneabcc48bib6) 2013; 30 Reite (jneabcc48bib4) 1997; 54 Beheshti (jneabcc48bib38) 2005; 53 Pascual-Marqui (jneabcc48bib14) 1999; 1 Michel (jneabcc48bib15) 2019; 10 Grova (jneabcc48bib51) 2006; 29 Van Mierlo (jneabcc48bib13) 2014; 121 Friston (jneabcc48bib12) 1993; 13 Srinivasan (jneabcc48bib1) 1999; 1 Pascual-Marqui (jneabcc48bib26) 2002; 24 Beheshti (jneabcc48bib39) 2009; 58 Neil Cuffin (jneabcc48bib17) 1979; 47 Becker (jneabcc48bib20) 2015; 32 Lu (jneabcc48bib21) 2014; 61 Michel (jneabcc48bib47) 2004; 115 Pascual-Marqui (jneabcc48bib22) 2002; 24 Gramfort (jneabcc48bib44) 2011; 2011 Hosseini (jneabcc48bib52) 2018; 65 Gramfort (jneabcc48bib37) 2014; 86 Mitka (jneabcc48bib46) 2018; 37 Flor-Henry (jneabcc48bib7) 2004; 130 Jatoi (jneabcc48bib29) 2014; 37 Saha (jneabcc48bib30) 2015; 1 Baillet (jneabcc48bib25) 2001; 18 Xu (jneabcc48bib18) 2007; 54 Hashemi (jneabcc48bib40) 2009; 17 Canuet (jneabcc48bib2) 2011; 6 Koles (jneabcc48bib3) 2004; 130 Reisberg (jneabcc48bib5) 2008 Becker (jneabcc48bib43) 2014 Tang (jneabcc48bib8) 2013; 90 Aydin (jneabcc48bib9) 2020; 17 Fonov (jneabcc48bib41) 2009; 47 Engemann (jneabcc48bib36) 2015; 108 Gramfort (jneabcc48bib42) 2010; 9 Otsu (jneabcc48bib54) 1979; 9 Palmini (jneabcc48bib57) 2004; 62 Liu (jneabcc48bib49) 2019; 66 Chang (jneabcc48bib55) 2010; 53 Sohrabpour (jneabcc48bib50) 2015; 126 Sohrabpour (jneabcc48bib35) 2016; 142 Li (jneabcc48bib34) 2016; 63 Molins (jneabcc48bib56) 2008; 42 Tadel (jneabcc48bib32) 2011; 2011 Ou (jneabcc48bib53) 2010; 52 Asadzadeh (jneabcc48bib23) 2020; 339 Im (jneabcc48bib45) 2007; 45 Al-Fahad (jneabcc48bib11) 2020; 17 Lindgren (jneabcc48bib31) 2017; 15 Knowlton (jneabcc48bib10) 2006; 59 Becker (jneabcc48bib19) 2015 Grech (jneabcc48bib27) 2008; 5 Cho (jneabcc48bib33) 2011; 24 |
| References_xml | – volume: 53 start-page: 3613 year: 2005 ident: jneabcc48bib38 article-title: A new information-theoretic approach to signal denoising and best basis selection publication-title: IEEE Trans. Signal Process. doi: 10.1109/TSP.2005.855075 – volume: 130 start-page: 191 year: 2004 ident: jneabcc48bib7 article-title: A source-imaging (low-resolution electromagnetic tomography) study of the EEGs from unmedicated males with depression publication-title: Psychiatry Res.: Neuroimaging doi: 10.1016/j.pscychresns.2003.08.006 – volume: 17 start-page: 12 year: 2009 ident: jneabcc48bib40 article-title: Adaptive noise variance estimation in Bayesshrink publication-title: IEEE Signal Process. Lett. doi: 10.1109/LSP.2009.2030856 – volume: 29 start-page: 734 year: 2006 ident: jneabcc48bib51 article-title: Evaluation of EEG localization methods using realistic simulations of interictal spikes publication-title: Neuroimage doi: 10.1016/j.neuroimage.2005.08.053 – volume: 108 start-page: 328 year: 2015 ident: jneabcc48bib36 article-title: Automated model selection in covariance estimation and spatial whitening of MEG and EEG signals publication-title: Neuroimage doi: 10.1016/j.neuroimage.2014.12.040 – volume: 37 start-page: 713 year: 2014 ident: jneabcc48bib29 article-title: EEG based brain source localization comparison of sLORETA and eLORETA publication-title: Australas. Phys. Eng. Sci. Med. doi: 10.1007/s13246-014-0308-3 – volume: 53 start-page: 146 year: 2010 ident: jneabcc48bib55 article-title: Spatially sparse source cluster modeling by compressive neuromagnetic tomography publication-title: Neuroimage doi: 10.1016/j.neuroimage.2010.05.013 – volume: 126 start-page: 472 year: 2015 ident: jneabcc48bib50 article-title: Effect of EEG electrode number on epileptic source localization in pediatric patients publication-title: Clin. Neurophysiol. doi: 10.1016/j.clinph.2014.05.038 – volume: 15 year: 2017 ident: jneabcc48bib31 article-title: As above, so below? Towards understanding inverse models in BCI publication-title: J. Neural Eng. doi: 10.1088/1741-2552/aa86d0 – volume: 17 year: 2020 ident: jneabcc48bib11 article-title: Decoding of single-trial eeg reveals unique states of functional brain connectivity that drive rapid speech categorization decisions publication-title: J. Neural Eng. doi: 10.1088/1741-2552/ab6040 – start-page: 1690 year: 2019 ident: jneabcc48bib24 article-title: Higher resolution sloreta (HR-sLORETA) in eeg source imaging doi: 10.1109/EMBC.2019.8856905 – volume: 24 start-page: 91 year: 2002 ident: jneabcc48bib26 article-title: Functional imaging with low-resolution brain electromagnetic tomography (LORETA): a review publication-title: Methods Find. Exp. Clin. Pharmacol. doi: 10.1016/s0925-4927(99)00013-x – volume: 45 start-page: 79 year: 2007 ident: jneabcc48bib45 article-title: Dealing with mismatched fMRI activations in fMRI constrained EEG cortical source imaging: a simulation study assuming various mismatch types publication-title: Med. Biol. Eng. Comput. doi: 10.1007/s11517-006-0142-1 – volume: 2011 year: 2011 ident: jneabcc48bib44 article-title: Forward field computation with openMEEG publication-title: Comput. Intell. Neurosci. doi: 10.1155/2011/923703 – volume: 42 start-page: 1069 year: 2008 ident: jneabcc48bib56 article-title: Quantification of the benefit from integrating meg and eeg data in minimum 2-norm estimation publication-title: Neuroimage doi: 10.1016/j.neuroimage.2008.05.064 – volume: 90 start-page: 282 year: 2013 ident: jneabcc48bib8 article-title: Hyperactivity within an extensive cortical distribution associated with excessive sensitivity in error processing in unmedicated depression: a combined event-related potential and sLORETA study publication-title: Int. J. Psychophysiol. doi: 10.1016/j.ijpsycho.2013.09.001 – volume: 47 start-page: 132 year: 1979 ident: jneabcc48bib17 article-title: Comparison of the magnetoencephalogram and electroencephalogram publication-title: Electroencephalogr. Clin. Neurophysiol. doi: 10.1016/0013-4694(79)90215-3 – volume: 2011 start-page: 8 year: 2011 ident: jneabcc48bib32 article-title: Brainstorm: a user-friendly application for MEG/EEG analysis publication-title: Comput. Intell. Neurosci. doi: 10.1155/2011/879716 – volume: 28 start-page: 87 year: 2015 ident: jneabcc48bib16 article-title: Differences between MEG and high-density EEG source localizations using a distributed source model in comparison to fMRI publication-title: Brain Topogr. doi: 10.1007/s10548-014-0405-3 – volume: 59 start-page: 835 year: 2006 ident: jneabcc48bib10 article-title: Magnetic source imaging versus intracranial electroencephalogram in epilepsy surgery: a prospective study publication-title: Ann. Neurol.: Official J. Am. Neurol. Assoc. Child Neurol. Soc. doi: 10.1002/ana.20857 – volume: 115 start-page: 2195 year: 2004 ident: jneabcc48bib47 article-title: EEG source imaging publication-title: Clin. Neurophysiol. doi: 10.1016/j.clinph.2004.06.001 – volume: 1 start-page: 102 year: 1999 ident: jneabcc48bib1 article-title: Methods to improve the spatial resolution of EEG publication-title: Int. J. Bioelectromagnetism – volume: 54 start-page: 400 year: 2007 ident: jneabcc48bib18 article-title: LP norm iterative sparse solution for EEG source localization publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2006.886640 – volume: 130 start-page: 171 year: 2004 ident: jneabcc48bib3 article-title: A source-imaging (low-resolution electromagnetic tomography) study of the EEGs from unmedicated men with schizophrenia publication-title: Psychiatry Res.: Neuroimaging doi: 10.1016/j.pscychresns.2003.08.005 – volume: 86 start-page: 446 year: 2014 ident: jneabcc48bib37 article-title: MNE software for processing MEG and EEG data publication-title: NeuroImage Elsevier doi: 10.1016/j.neuroimage.2013.10.027 – volume: 1 year: 2015 ident: jneabcc48bib30 article-title: Evaluation of spatial resolution and noise sensitivity of sLORETA method for eeg source localization using low-density headsets publication-title: Biomed. Phys. Eng. Express doi: 10.1088/2057-1976/1/4/045206 – start-page: 5869 year: 2014 ident: jneabcc48bib43 article-title: A performance study of various brain source imaging approaches doi: 10.1109/ICASSP.2014.6854729 – year: 2008 ident: jneabcc48bib5 article-title: The pre–mild cognitive impairment, subjective cognitive impairment stage of Alzheimer’s disease doi: 10.1016/j.jalz.2007.11.017 – volume: 17 start-page: 3 year: 2020 ident: jneabcc48bib9 article-title: Magnetoencephalography resting state connectivity patterns as indicatives of surgical outcome in epilepsy patients publication-title: J. Neural Eng. doi: 10.1088/1741-2552/ab8113 – volume: 18 start-page: 14 year: 2001 ident: jneabcc48bib25 article-title: Electromagnetic brain mapping publication-title: IEEE Signal Process. Mag. doi: 10.1109/79.962275 – volume: 24 start-page: 91 year: 2011 ident: jneabcc48bib33 article-title: Evaluation of algorithms for intracranial EEG (iEEG) source imaging of extended sources: feasibility of using iEEG source imaging for localizing epileptogenic zones in secondary generalized epilepsy publication-title: Brain Topogr. doi: 10.1007/s10548-011-0173-2 – volume: 9 start-page: 45 year: 2010 ident: jneabcc48bib42 article-title: OpenMEEG: opensource software for quasistatic bioelectromagnetics publication-title: Biomed. Eng. Online doi: 10.1186/1475-925X-9-45 – volume: 52 start-page: 97 year: 2010 ident: jneabcc48bib53 article-title: Multimodal functional imaging using fMRI-informed regional EEG/MEG source estimation publication-title: Neuroimage doi: 10.1016/j.neuroimage.2010.03.001 – volume: 58 start-page: 510 year: 2009 ident: jneabcc48bib39 article-title: Noisy data and impulse response estimation publication-title: IEEE Trans. Signal Process. doi: 10.1109/TSP.2009.2032031 – volume: 37 start-page: 359 year: 2018 ident: jneabcc48bib46 article-title: Links between brain cortical regions and EEG recording sites derived from forward modelling publication-title: Gen. Physiol. Biophys. doi: 10.4149/gpb_2017060 – volume: 114 start-page: 63 year: 2003 ident: jneabcc48bib48 article-title: Epileptic source localization with high density EEG: how many electrodes are needed? publication-title: Clin. Neurophysiol. doi: 10.1016/S1388-2457(02)00337-1 – volume: 33 start-page: 1172 year: 2012 ident: jneabcc48bib28 article-title: sLORETA allows reliable distributed source reconstruction based on subdural strip and grid recordings publication-title: Hum. Brain Mapp. doi: 10.1002/hbm.21276 – volume: 65 start-page: 2365 year: 2018 ident: jneabcc48bib52 article-title: Electromagnetic brain source imaging by means of a robust minimum variance beamformer publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2018.2859204 – volume: 30 start-page: 178 year: 2013 ident: jneabcc48bib6 article-title: EEG in silent small vessel disease: sLORETA mapping reveals cortical sources of vascular cognitive impairment no dementia in the default mode network publication-title: J. Clin. Neurophysiol. doi: 10.1097/WNP.0b013e3182767d15 – volume: 10 start-page: 325 year: 2019 ident: jneabcc48bib15 article-title: EEG source imaging: a practical review of the analysis steps publication-title: Frontiers Neurol. doi: 10.3389/fneur.2019.00325 – volume: 62 start-page: S2–S8 year: 2004 ident: jneabcc48bib57 article-title: Terminology and classification of the cortical dysplasias publication-title: Neurology doi: 10.1212/01.WNL.0000114507.30388.7E – volume: 47 start-page: S102 year: 2009 ident: jneabcc48bib41 article-title: Unbiased nonlinear average age-appropriate brain templates from birth to adulthood publication-title: Neuroimage doi: 10.1016/S1053-8119(09)70884-5 – volume: 66 start-page: 2457 year: 2019 ident: jneabcc48bib49 article-title: Bayesian electromagnetic spatio-temporal imaging of extended sources based on matrix factorization publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2018.2890291 – volume: 121 start-page: 19 year: 2014 ident: jneabcc48bib13 article-title: Functional brain connectivity from EEG in epilepsy: seizure prediction and epileptogenic focus localization publication-title: Prog. Neurobiol. doi: 10.1016/j.pneurobio.2014.06.004 – volume: 13 start-page: 5 year: 1993 ident: jneabcc48bib12 article-title: Functional connectivity: the principal-component analysis of large (PET) data sets publication-title: J. Cereb. Blood Flow Metab. doi: 10.1038/jcbfm.1993.4 – volume: 5 start-page: 25 year: 2008 ident: jneabcc48bib27 article-title: Review on solving the inverse problem in eeg source analysis publication-title: J. Neuroeng. Rehabil. doi: 10.1186/1743-0003-5-25 – volume: 54 start-page: 433 year: 1997 ident: jneabcc48bib4 article-title: Magnetic source imaging evidence of sex differences in cerebral lateralization in schizophrenia publication-title: Arch. Gen. Psychiatry doi: 10.1001/archpsyc.1997.01830170059009 – start-page: 181 year: 2015 ident: jneabcc48bib19 article-title: Tensor decomposition exploiting structural constraints for brain source imaging doi: 10.1109/CAMSAP.2015.7383766. – volume: 61 start-page: 1660 year: 2014 ident: jneabcc48bib21 article-title: Noninvasive imaging of the high frequency brain activity in focal epilepsy patients publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2013.2297332 – volume: 63 start-page: 2607 year: 2016 ident: jneabcc48bib34 article-title: Epileptogenic source imaging using cross-frequency coupled signals from scalp EEG publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2016.2613936 – volume: 24 start-page: 5 year: 2002 ident: jneabcc48bib22 article-title: Standardized low-resolution brain electromagnetic tomography (sLORETA): technical details publication-title: Methods Find. Exp. Clin. Pharmacol. – volume: 6 year: 2011 ident: jneabcc48bib2 article-title: Resting-state EEG source localization and functional connectivity in schizophrenia-like psychosis of epilepsy publication-title: PloS One doi: 10.1371/journal.pone.0027863 – volume: 32 start-page: 100 year: 2015 ident: jneabcc48bib20 article-title: Brain-source imaging: from sparse to tensor models publication-title: IEEE Signal Process. Mag. doi: 10.1109/MSP.2015.2413711 – volume: 142 start-page: 27 year: 2016 ident: jneabcc48bib35 article-title: Imaging brain source extent from EEG/MEG by means of an iteratively reweighted edge sparsity minimization (IRES) strategy publication-title: Neuroimage doi: 10.1016/j.neuroimage.2016.05.064 – volume: 339 year: 2020 ident: jneabcc48bib23 article-title: A systematic review of eeg source localization techniques and their applications on diagnosis of brain abnormalities publication-title: J. Neurosci. Methods doi: 10.1016/j.jneumeth.2020.108740 – volume: 9 start-page: 62 year: 1979 ident: jneabcc48bib54 article-title: A threshold selection method from gray-level histograms publication-title: IEEE Trans. Syst. Man Cybern. doi: 10.1109/TSMC.1979.4310076 – volume: 1 start-page: 75 year: 1999 ident: jneabcc48bib14 article-title: Review of methods for solving the EEG inverse problem publication-title: Int. J. Bioelectromagnetism |
| SSID | ssj0031790 |
| Score | 2.3687449 |
| Snippet | Objective.
Estimation of the source location within the brain from electroencephalography (EEG) and magnetoencephalography measures is a challenging task.... Estimation of the source location within the brain from electroencephalography (EEG) and magnetoencephalography measures is a challenging task. Among the... Objective.Estimation of the source location within the brain from electroencephalography (EEG) and magnetoencephalography measures is a challenging task. Among... |
| SourceID | proquest pubmed crossref |
| SourceType | Aggregation Database Index Database Enrichment Source |
| StartPage | 16013 |
| SubjectTerms | Brain Brain Mapping - methods Electroencephalography - methods Electromagnetic Phenomena Magnetoencephalography - methods Neuroimaging |
| Title | Efficient high resolution sLORETA in brain source localization |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/33212434 https://www.proquest.com/docview/2463098684 |
| Volume | 18 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIOP databaseName: IOP Science Platform customDbUrl: eissn: 1741-2552 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0031790 issn: 1741-2560 databaseCode: IOP dateStart: 20040101 isFulltext: true titleUrlDefault: https://iopscience.iop.org/ providerName: IOP Publishing |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3daxQxEA9aQfoiatWeVYkgghzr3W2yueyLcMpJFWlFr9C3JZsPqtjd4m0f6l_vTD52W_REfQnLfiQwv-zMbyaTCSHPnFNm6qSAX9yCg2L0NCsNL7KZtmAQXMlK4xNkD8T-EX9_XBwPZ_P53SVd_VL_-O2-kv9BFe4BrrhL9h-Q7TuFG3AN-EILCEP7Vxgvff0HXM3HqsNj8JzjcOP1h8NPy9UCoxk1HgIxDkH6sTddcevlBl6KFS7hyg6FCvsojDKqyw7s1zAtUFEMGYiv7Yldn4TkgM9tm3J9YkAhn6UcZLQHQQkCy8jA1digJdNs-EX5gsLCOED6Gq1MrXUopHkJjbNTDwdjYDV5jGReLXmdHl0nN3JQ1ngix7vDj8nAMiwqFlecYchJP-AkDLdNbqYOrpKNDR6EZxKr2-RWFDVdBDzvkGu2uUt2Fo3q2tML-pz6pFy_2rFDXvUQU4SYDhDTCDH90lAPMQ0Q08sQ3yNHb5erN_tZPPIi08ALuowroNCqVIZpxhQ0pbO5UdKBG6xKxwWyi7mzUjhhZ9oBW-PgktpC5rUtQaHeJ1tN29hdQoG6zfScGTbXhjsOvUnuRKGn2hVaCDUikySbSsd68HgsybfK5yVIWaFgKxRsFQQ7Ii_6L85CLZQ_vPs0ibsChYWrUKqx7fm6yrlg01IKyUfkQcCh7y3h9nDjkz2yPczZR2Sr-35uHwMt7OonfpL8BCiLYEA |
| linkProvider | IOP Publishing |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Efficient+high+resolution+sLORETA+in+brain+source+localization&rft.jtitle=Journal+of+neural+engineering&rft.au=Sadat-Nejad%2C+Younes&rft.au=Beheshti%2C+Soosan&rft.date=2021-02-01&rft.eissn=1741-2552&rft.volume=18&rft.issue=1&rft_id=info:doi/10.1088%2F1741-2552%2Fabcc48&rft_id=info%3Apmid%2F33212434&rft.externalDocID=33212434 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1741-2560&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1741-2560&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1741-2560&client=summon |