Efficient high resolution sLORETA in brain source localization

Objective. Estimation of the source location within the brain from electroencephalography (EEG) and magnetoencephalography measures is a challenging task. Among the existing techniques in the field, which are known as brain imaging methods, standardized low-resolution brain electromagnetic tomograph...

Full description

Saved in:
Bibliographic Details
Published inJournal of neural engineering Vol. 18; no. 1; p. 16013
Main Authors Sadat-Nejad, Younes, Beheshti, Soosan
Format Journal Article
LanguageEnglish
Published England 01.02.2021
Subjects
Online AccessGet full text
ISSN1741-2560
1741-2552
1741-2552
DOI10.1088/1741-2552/abcc48

Cover

Abstract Objective. Estimation of the source location within the brain from electroencephalography (EEG) and magnetoencephalography measures is a challenging task. Among the existing techniques in the field, which are known as brain imaging methods, standardized low-resolution brain electromagnetic tomography (sLORETA) is the most popular method due to its simplicity and high accuracy. However, in this work we illustrate that sLORETA is still noisy and the additive noise is causing the blurry image. The existing pre-fixed/manual thresholding process after sLORETA can partially take care of denoising. However, this ad-hoc theresholding can either remove so much of the desired data or leave much of the noise in the process. Manual correction to avoid such extreme cases can be time-consuming. The objective of this paper is to automate the denoising process in the form of adaptive thresholding. Approach. The proposed method, denoted by efficient high-resolution sLORETA (EHR-sLORETA), is based on minimizing the error between the desired denoised source and the source estimates. Main results. The approach is evaluated using synthetic EEG and real EEG data. spatial dispersion (SD), and mean square error (MSE) are used as metrics to provide the quantitative performance of the method. In addition, qualitative analysis of the method is provided for real EEG data. This proposed model demonstrates advantages over the existing methods in sense of accuracy and robustness with SD and MSE comparison. Significance. EHR-sLORETA could have a significant impact on clinical studies with source estimation task, as it improves the accuracy of source estimation and eliminates the need for manual thresholding.
AbstractList Objective.Estimation of the source location within the brain from electroencephalography (EEG) and magnetoencephalography measures is a challenging task. Among the existing techniques in the field, which are known as brain imaging methods, standardized low-resolution brain electromagnetic tomography (sLORETA) is the most popular method due to its simplicity and high accuracy. However, in this work we illustrate that sLORETA is still noisy and the additive noise is causing the blurry image. The existing pre-fixed/manual thresholding process after sLORETA can partially take care of denoising. However, this ad-hoc theresholding can either remove so much of the desired data or leave much of the noise in the process. Manual correction to avoid such extreme cases can be time-consuming. The objective of this paper is to automate the denoising process in the form of adaptive thresholding.Approach.The proposed method, denoted by efficient high-resolution sLORETA (EHR-sLORETA), is based on minimizing the error between the desired denoised source and the source estimates.Main results.The approach is evaluated using synthetic EEG and real EEG data. spatial dispersion (SD), and mean square error (MSE) are used as metrics to provide the quantitative performance of the method. In addition, qualitative analysis of the method is provided for real EEG data. This proposed model demonstrates advantages over the existing methods in sense of accuracy and robustness with SD and MSE comparison.Significance.EHR-sLORETA could have a significant impact on clinical studies with source estimation task, as it improves the accuracy of source estimation and eliminates the need for manual thresholding.Objective.Estimation of the source location within the brain from electroencephalography (EEG) and magnetoencephalography measures is a challenging task. Among the existing techniques in the field, which are known as brain imaging methods, standardized low-resolution brain electromagnetic tomography (sLORETA) is the most popular method due to its simplicity and high accuracy. However, in this work we illustrate that sLORETA is still noisy and the additive noise is causing the blurry image. The existing pre-fixed/manual thresholding process after sLORETA can partially take care of denoising. However, this ad-hoc theresholding can either remove so much of the desired data or leave much of the noise in the process. Manual correction to avoid such extreme cases can be time-consuming. The objective of this paper is to automate the denoising process in the form of adaptive thresholding.Approach.The proposed method, denoted by efficient high-resolution sLORETA (EHR-sLORETA), is based on minimizing the error between the desired denoised source and the source estimates.Main results.The approach is evaluated using synthetic EEG and real EEG data. spatial dispersion (SD), and mean square error (MSE) are used as metrics to provide the quantitative performance of the method. In addition, qualitative analysis of the method is provided for real EEG data. This proposed model demonstrates advantages over the existing methods in sense of accuracy and robustness with SD and MSE comparison.Significance.EHR-sLORETA could have a significant impact on clinical studies with source estimation task, as it improves the accuracy of source estimation and eliminates the need for manual thresholding.
Estimation of the source location within the brain from electroencephalography (EEG) and magnetoencephalography measures is a challenging task. Among the existing techniques in the field, which are known as brain imaging methods, standardized low-resolution brain electromagnetic tomography (sLORETA) is the most popular method due to its simplicity and high accuracy. However, in this work we illustrate that sLORETA is still noisy and the additive noise is causing the blurry image. The existing pre-fixed/manual thresholding process after sLORETA can partially take care of denoising. However, this ad-hoc theresholding can either remove so much of the desired data or leave much of the noise in the process. Manual correction to avoid such extreme cases can be time-consuming. The objective of this paper is to automate the denoising process in the form of adaptive thresholding. The proposed method, denoted by efficient high-resolution sLORETA (EHR-sLORETA), is based on minimizing the error between the desired denoised source and the source estimates. The approach is evaluated using synthetic EEG and real EEG data. spatial dispersion (SD), and mean square error (MSE) are used as metrics to provide the quantitative performance of the method. In addition, qualitative analysis of the method is provided for real EEG data. This proposed model demonstrates advantages over the existing methods in sense of accuracy and robustness with SD and MSE comparison. EHR-sLORETA could have a significant impact on clinical studies with source estimation task, as it improves the accuracy of source estimation and eliminates the need for manual thresholding.
Objective. Estimation of the source location within the brain from electroencephalography (EEG) and magnetoencephalography measures is a challenging task. Among the existing techniques in the field, which are known as brain imaging methods, standardized low-resolution brain electromagnetic tomography (sLORETA) is the most popular method due to its simplicity and high accuracy. However, in this work we illustrate that sLORETA is still noisy and the additive noise is causing the blurry image. The existing pre-fixed/manual thresholding process after sLORETA can partially take care of denoising. However, this ad-hoc theresholding can either remove so much of the desired data or leave much of the noise in the process. Manual correction to avoid such extreme cases can be time-consuming. The objective of this paper is to automate the denoising process in the form of adaptive thresholding. Approach. The proposed method, denoted by efficient high-resolution sLORETA (EHR-sLORETA), is based on minimizing the error between the desired denoised source and the source estimates. Main results. The approach is evaluated using synthetic EEG and real EEG data. spatial dispersion (SD), and mean square error (MSE) are used as metrics to provide the quantitative performance of the method. In addition, qualitative analysis of the method is provided for real EEG data. This proposed model demonstrates advantages over the existing methods in sense of accuracy and robustness with SD and MSE comparison. Significance. EHR-sLORETA could have a significant impact on clinical studies with source estimation task, as it improves the accuracy of source estimation and eliminates the need for manual thresholding.
Author Sadat-Nejad, Younes
Beheshti, Soosan
Author_xml – sequence: 1
  givenname: Younes
  orcidid: 0000-0001-7946-0701
  surname: Sadat-Nejad
  fullname: Sadat-Nejad, Younes
– sequence: 2
  givenname: Soosan
  orcidid: 0000-0001-7161-5887
  surname: Beheshti
  fullname: Beheshti, Soosan
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33212434$$D View this record in MEDLINE/PubMed
BookMark eNp1kEtLAzEUhYMo9qF7VzJLN2PzmkyyEUqpDygUpK5DJk1sJJ3UZGahv94Z-1gIbu69XL5z4JwROK9DbQC4QfAeQc4nqKQox0WBJ6rSmvIzMDy9zk83gwMwSukDQoJKAS_BgBCMMCV0CB7m1jrtTN1kG_e-yaJJwbeNC3WWFsvX-WqauTqroupmCm3UJvNBK---VQ9dgQurfDLXhz0Gb4_z1ew5XyyfXmbTRa6xEE1OFSyoEmpNNCGqG8IavFbcUoiUsJRByMrSGs4sM0hbhAVlmJmC48oIWJAxuNv77mL4bE1q5NYlbbxXtQltkpgyAgVnnHbo7QFtq61Zy110WxW_5DFzB7A9oGNIKRortWt-0zRdTC8RlH25sm9P9k3KfbmdEP4RHr3_lfwAJZN7LQ
CitedBy_id crossref_primary_10_1016_j_neuroscience_2022_10_010
crossref_primary_10_1038_s41380_023_02181_1
crossref_primary_10_1007_s11571_024_10149_2
crossref_primary_10_1016_j_jad_2024_08_092
crossref_primary_10_1016_j_neuroimage_2025_121144
crossref_primary_10_1109_ACCESS_2023_3321794
crossref_primary_10_1142_S0129065724500710
crossref_primary_10_1088_1361_6420_ad14a1
Cites_doi 10.1109/TSP.2005.855075
10.1016/j.pscychresns.2003.08.006
10.1109/LSP.2009.2030856
10.1016/j.neuroimage.2005.08.053
10.1016/j.neuroimage.2014.12.040
10.1007/s13246-014-0308-3
10.1016/j.neuroimage.2010.05.013
10.1016/j.clinph.2014.05.038
10.1088/1741-2552/aa86d0
10.1088/1741-2552/ab6040
10.1109/EMBC.2019.8856905
10.1016/s0925-4927(99)00013-x
10.1007/s11517-006-0142-1
10.1155/2011/923703
10.1016/j.neuroimage.2008.05.064
10.1016/j.ijpsycho.2013.09.001
10.1016/0013-4694(79)90215-3
10.1155/2011/879716
10.1007/s10548-014-0405-3
10.1002/ana.20857
10.1016/j.clinph.2004.06.001
10.1109/TBME.2006.886640
10.1016/j.pscychresns.2003.08.005
10.1016/j.neuroimage.2013.10.027
10.1088/2057-1976/1/4/045206
10.1109/ICASSP.2014.6854729
10.1016/j.jalz.2007.11.017
10.1088/1741-2552/ab8113
10.1109/79.962275
10.1007/s10548-011-0173-2
10.1186/1475-925X-9-45
10.1016/j.neuroimage.2010.03.001
10.1109/TSP.2009.2032031
10.4149/gpb_2017060
10.1016/S1388-2457(02)00337-1
10.1002/hbm.21276
10.1109/TBME.2018.2859204
10.1097/WNP.0b013e3182767d15
10.3389/fneur.2019.00325
10.1212/01.WNL.0000114507.30388.7E
10.1016/S1053-8119(09)70884-5
10.1109/TBME.2018.2890291
10.1016/j.pneurobio.2014.06.004
10.1038/jcbfm.1993.4
10.1186/1743-0003-5-25
10.1001/archpsyc.1997.01830170059009
10.1109/CAMSAP.2015.7383766.
10.1109/TBME.2013.2297332
10.1109/TBME.2016.2613936
10.1371/journal.pone.0027863
10.1109/MSP.2015.2413711
10.1016/j.neuroimage.2016.05.064
10.1016/j.jneumeth.2020.108740
10.1109/TSMC.1979.4310076
ContentType Journal Article
Copyright 2021 IOP Publishing Ltd.
Copyright_xml – notice: 2021 IOP Publishing Ltd.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1088/1741-2552/abcc48
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
MEDLINE
CrossRef
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
EISSN 1741-2552
ExternalDocumentID 33212434
10_1088_1741_2552_abcc48
Genre Journal Article
GroupedDBID ---
1JI
4.4
53G
5B3
5GY
5VS
5ZH
7.M
7.Q
AAGCD
AAJIO
AAJKP
AATNI
AAYXX
ABHWH
ABJNI
ABQJV
ABVAM
ACAFW
ACGFS
ACHIP
ADEQX
AEFHF
AEINN
AENEX
AFYNE
AKPSB
ALMA_UNASSIGNED_HOLDINGS
AOAED
ASPBG
ATQHT
AVWKF
AZFZN
CEBXE
CITATION
CJUJL
CRLBU
CS3
DU5
EBS
EDWGO
EMSAF
EPQRW
EQZZN
F5P
IHE
IJHAN
IOP
IZVLO
KOT
LAP
M45
N5L
N9A
P2P
PJBAE
RIN
RO9
ROL
RPA
SY9
W28
XPP
CGR
CUY
CVF
ECM
EIF
HAK
NPM
7X8
ID FETCH-LOGICAL-c299t-4a054a9ad3c33a3c39fe2da8f401a9f4600677fe86f6e1cf1294626e582be9053
ISSN 1741-2560
1741-2552
IngestDate Fri Sep 05 08:29:46 EDT 2025
Thu Jan 02 22:54:38 EST 2025
Thu Apr 24 23:10:23 EDT 2025
Wed Oct 01 02:41:33 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords sLORETA
EEG/MEG source imaging
brain source localization
source reconstruction
EEG analysis
Language English
License 2021 IOP Publishing Ltd.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c299t-4a054a9ad3c33a3c39fe2da8f401a9f4600677fe86f6e1cf1294626e582be9053
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0001-7161-5887
0000-0001-7946-0701
PMID 33212434
PQID 2463098684
PQPubID 23479
ParticipantIDs proquest_miscellaneous_2463098684
pubmed_primary_33212434
crossref_citationtrail_10_1088_1741_2552_abcc48
crossref_primary_10_1088_1741_2552_abcc48
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-02-01
PublicationDateYYYYMMDD 2021-02-01
PublicationDate_xml – month: 02
  year: 2021
  text: 2021-02-01
  day: 01
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Journal of neural engineering
PublicationTitleAlternate J Neural Eng
PublicationYear 2021
References Klamer (jneabcc48bib16) 2015; 28
Sadat-Nejad (jneabcc48bib24) 2019
Lantz (jneabcc48bib48) 2003; 114
Dümpelmann (jneabcc48bib28) 2012; 33
Sheorajpanday (jneabcc48bib6) 2013; 30
Reite (jneabcc48bib4) 1997; 54
Beheshti (jneabcc48bib38) 2005; 53
Pascual-Marqui (jneabcc48bib14) 1999; 1
Michel (jneabcc48bib15) 2019; 10
Grova (jneabcc48bib51) 2006; 29
Van Mierlo (jneabcc48bib13) 2014; 121
Friston (jneabcc48bib12) 1993; 13
Srinivasan (jneabcc48bib1) 1999; 1
Pascual-Marqui (jneabcc48bib26) 2002; 24
Beheshti (jneabcc48bib39) 2009; 58
Neil Cuffin (jneabcc48bib17) 1979; 47
Becker (jneabcc48bib20) 2015; 32
Lu (jneabcc48bib21) 2014; 61
Michel (jneabcc48bib47) 2004; 115
Pascual-Marqui (jneabcc48bib22) 2002; 24
Gramfort (jneabcc48bib44) 2011; 2011
Hosseini (jneabcc48bib52) 2018; 65
Gramfort (jneabcc48bib37) 2014; 86
Mitka (jneabcc48bib46) 2018; 37
Flor-Henry (jneabcc48bib7) 2004; 130
Jatoi (jneabcc48bib29) 2014; 37
Saha (jneabcc48bib30) 2015; 1
Baillet (jneabcc48bib25) 2001; 18
Xu (jneabcc48bib18) 2007; 54
Hashemi (jneabcc48bib40) 2009; 17
Canuet (jneabcc48bib2) 2011; 6
Koles (jneabcc48bib3) 2004; 130
Reisberg (jneabcc48bib5) 2008
Becker (jneabcc48bib43) 2014
Tang (jneabcc48bib8) 2013; 90
Aydin (jneabcc48bib9) 2020; 17
Fonov (jneabcc48bib41) 2009; 47
Engemann (jneabcc48bib36) 2015; 108
Gramfort (jneabcc48bib42) 2010; 9
Otsu (jneabcc48bib54) 1979; 9
Palmini (jneabcc48bib57) 2004; 62
Liu (jneabcc48bib49) 2019; 66
Chang (jneabcc48bib55) 2010; 53
Sohrabpour (jneabcc48bib50) 2015; 126
Sohrabpour (jneabcc48bib35) 2016; 142
Li (jneabcc48bib34) 2016; 63
Molins (jneabcc48bib56) 2008; 42
Tadel (jneabcc48bib32) 2011; 2011
Ou (jneabcc48bib53) 2010; 52
Asadzadeh (jneabcc48bib23) 2020; 339
Im (jneabcc48bib45) 2007; 45
Al-Fahad (jneabcc48bib11) 2020; 17
Lindgren (jneabcc48bib31) 2017; 15
Knowlton (jneabcc48bib10) 2006; 59
Becker (jneabcc48bib19) 2015
Grech (jneabcc48bib27) 2008; 5
Cho (jneabcc48bib33) 2011; 24
References_xml – volume: 53
  start-page: 3613
  year: 2005
  ident: jneabcc48bib38
  article-title: A new information-theoretic approach to signal denoising and best basis selection
  publication-title: IEEE Trans. Signal Process.
  doi: 10.1109/TSP.2005.855075
– volume: 130
  start-page: 191
  year: 2004
  ident: jneabcc48bib7
  article-title: A source-imaging (low-resolution electromagnetic tomography) study of the EEGs from unmedicated males with depression
  publication-title: Psychiatry Res.: Neuroimaging
  doi: 10.1016/j.pscychresns.2003.08.006
– volume: 17
  start-page: 12
  year: 2009
  ident: jneabcc48bib40
  article-title: Adaptive noise variance estimation in Bayesshrink
  publication-title: IEEE Signal Process. Lett.
  doi: 10.1109/LSP.2009.2030856
– volume: 29
  start-page: 734
  year: 2006
  ident: jneabcc48bib51
  article-title: Evaluation of EEG localization methods using realistic simulations of interictal spikes
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2005.08.053
– volume: 108
  start-page: 328
  year: 2015
  ident: jneabcc48bib36
  article-title: Automated model selection in covariance estimation and spatial whitening of MEG and EEG signals
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2014.12.040
– volume: 37
  start-page: 713
  year: 2014
  ident: jneabcc48bib29
  article-title: EEG based brain source localization comparison of sLORETA and eLORETA
  publication-title: Australas. Phys. Eng. Sci. Med.
  doi: 10.1007/s13246-014-0308-3
– volume: 53
  start-page: 146
  year: 2010
  ident: jneabcc48bib55
  article-title: Spatially sparse source cluster modeling by compressive neuromagnetic tomography
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2010.05.013
– volume: 126
  start-page: 472
  year: 2015
  ident: jneabcc48bib50
  article-title: Effect of EEG electrode number on epileptic source localization in pediatric patients
  publication-title: Clin. Neurophysiol.
  doi: 10.1016/j.clinph.2014.05.038
– volume: 15
  year: 2017
  ident: jneabcc48bib31
  article-title: As above, so below? Towards understanding inverse models in BCI
  publication-title: J. Neural Eng.
  doi: 10.1088/1741-2552/aa86d0
– volume: 17
  year: 2020
  ident: jneabcc48bib11
  article-title: Decoding of single-trial eeg reveals unique states of functional brain connectivity that drive rapid speech categorization decisions
  publication-title: J. Neural Eng.
  doi: 10.1088/1741-2552/ab6040
– start-page: 1690
  year: 2019
  ident: jneabcc48bib24
  article-title: Higher resolution sloreta (HR-sLORETA) in eeg source imaging
  doi: 10.1109/EMBC.2019.8856905
– volume: 24
  start-page: 91
  year: 2002
  ident: jneabcc48bib26
  article-title: Functional imaging with low-resolution brain electromagnetic tomography (LORETA): a review
  publication-title: Methods Find. Exp. Clin. Pharmacol.
  doi: 10.1016/s0925-4927(99)00013-x
– volume: 45
  start-page: 79
  year: 2007
  ident: jneabcc48bib45
  article-title: Dealing with mismatched fMRI activations in fMRI constrained EEG cortical source imaging: a simulation study assuming various mismatch types
  publication-title: Med. Biol. Eng. Comput.
  doi: 10.1007/s11517-006-0142-1
– volume: 2011
  year: 2011
  ident: jneabcc48bib44
  article-title: Forward field computation with openMEEG
  publication-title: Comput. Intell. Neurosci.
  doi: 10.1155/2011/923703
– volume: 42
  start-page: 1069
  year: 2008
  ident: jneabcc48bib56
  article-title: Quantification of the benefit from integrating meg and eeg data in minimum 2-norm estimation
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2008.05.064
– volume: 90
  start-page: 282
  year: 2013
  ident: jneabcc48bib8
  article-title: Hyperactivity within an extensive cortical distribution associated with excessive sensitivity in error processing in unmedicated depression: a combined event-related potential and sLORETA study
  publication-title: Int. J. Psychophysiol.
  doi: 10.1016/j.ijpsycho.2013.09.001
– volume: 47
  start-page: 132
  year: 1979
  ident: jneabcc48bib17
  article-title: Comparison of the magnetoencephalogram and electroencephalogram
  publication-title: Electroencephalogr. Clin. Neurophysiol.
  doi: 10.1016/0013-4694(79)90215-3
– volume: 2011
  start-page: 8
  year: 2011
  ident: jneabcc48bib32
  article-title: Brainstorm: a user-friendly application for MEG/EEG analysis
  publication-title: Comput. Intell. Neurosci.
  doi: 10.1155/2011/879716
– volume: 28
  start-page: 87
  year: 2015
  ident: jneabcc48bib16
  article-title: Differences between MEG and high-density EEG source localizations using a distributed source model in comparison to fMRI
  publication-title: Brain Topogr.
  doi: 10.1007/s10548-014-0405-3
– volume: 59
  start-page: 835
  year: 2006
  ident: jneabcc48bib10
  article-title: Magnetic source imaging versus intracranial electroencephalogram in epilepsy surgery: a prospective study
  publication-title: Ann. Neurol.: Official J. Am. Neurol. Assoc. Child Neurol. Soc.
  doi: 10.1002/ana.20857
– volume: 115
  start-page: 2195
  year: 2004
  ident: jneabcc48bib47
  article-title: EEG source imaging
  publication-title: Clin. Neurophysiol.
  doi: 10.1016/j.clinph.2004.06.001
– volume: 1
  start-page: 102
  year: 1999
  ident: jneabcc48bib1
  article-title: Methods to improve the spatial resolution of EEG
  publication-title: Int. J. Bioelectromagnetism
– volume: 54
  start-page: 400
  year: 2007
  ident: jneabcc48bib18
  article-title: LP norm iterative sparse solution for EEG source localization
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2006.886640
– volume: 130
  start-page: 171
  year: 2004
  ident: jneabcc48bib3
  article-title: A source-imaging (low-resolution electromagnetic tomography) study of the EEGs from unmedicated men with schizophrenia
  publication-title: Psychiatry Res.: Neuroimaging
  doi: 10.1016/j.pscychresns.2003.08.005
– volume: 86
  start-page: 446
  year: 2014
  ident: jneabcc48bib37
  article-title: MNE software for processing MEG and EEG data
  publication-title: NeuroImage Elsevier
  doi: 10.1016/j.neuroimage.2013.10.027
– volume: 1
  year: 2015
  ident: jneabcc48bib30
  article-title: Evaluation of spatial resolution and noise sensitivity of sLORETA method for eeg source localization using low-density headsets
  publication-title: Biomed. Phys. Eng. Express
  doi: 10.1088/2057-1976/1/4/045206
– start-page: 5869
  year: 2014
  ident: jneabcc48bib43
  article-title: A performance study of various brain source imaging approaches
  doi: 10.1109/ICASSP.2014.6854729
– year: 2008
  ident: jneabcc48bib5
  article-title: The pre–mild cognitive impairment, subjective cognitive impairment stage of Alzheimer’s disease
  doi: 10.1016/j.jalz.2007.11.017
– volume: 17
  start-page: 3
  year: 2020
  ident: jneabcc48bib9
  article-title: Magnetoencephalography resting state connectivity patterns as indicatives of surgical outcome in epilepsy patients
  publication-title: J. Neural Eng.
  doi: 10.1088/1741-2552/ab8113
– volume: 18
  start-page: 14
  year: 2001
  ident: jneabcc48bib25
  article-title: Electromagnetic brain mapping
  publication-title: IEEE Signal Process. Mag.
  doi: 10.1109/79.962275
– volume: 24
  start-page: 91
  year: 2011
  ident: jneabcc48bib33
  article-title: Evaluation of algorithms for intracranial EEG (iEEG) source imaging of extended sources: feasibility of using iEEG source imaging for localizing epileptogenic zones in secondary generalized epilepsy
  publication-title: Brain Topogr.
  doi: 10.1007/s10548-011-0173-2
– volume: 9
  start-page: 45
  year: 2010
  ident: jneabcc48bib42
  article-title: OpenMEEG: opensource software for quasistatic bioelectromagnetics
  publication-title: Biomed. Eng. Online
  doi: 10.1186/1475-925X-9-45
– volume: 52
  start-page: 97
  year: 2010
  ident: jneabcc48bib53
  article-title: Multimodal functional imaging using fMRI-informed regional EEG/MEG source estimation
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2010.03.001
– volume: 58
  start-page: 510
  year: 2009
  ident: jneabcc48bib39
  article-title: Noisy data and impulse response estimation
  publication-title: IEEE Trans. Signal Process.
  doi: 10.1109/TSP.2009.2032031
– volume: 37
  start-page: 359
  year: 2018
  ident: jneabcc48bib46
  article-title: Links between brain cortical regions and EEG recording sites derived from forward modelling
  publication-title: Gen. Physiol. Biophys.
  doi: 10.4149/gpb_2017060
– volume: 114
  start-page: 63
  year: 2003
  ident: jneabcc48bib48
  article-title: Epileptic source localization with high density EEG: how many electrodes are needed?
  publication-title: Clin. Neurophysiol.
  doi: 10.1016/S1388-2457(02)00337-1
– volume: 33
  start-page: 1172
  year: 2012
  ident: jneabcc48bib28
  article-title: sLORETA allows reliable distributed source reconstruction based on subdural strip and grid recordings
  publication-title: Hum. Brain Mapp.
  doi: 10.1002/hbm.21276
– volume: 65
  start-page: 2365
  year: 2018
  ident: jneabcc48bib52
  article-title: Electromagnetic brain source imaging by means of a robust minimum variance beamformer
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2018.2859204
– volume: 30
  start-page: 178
  year: 2013
  ident: jneabcc48bib6
  article-title: EEG in silent small vessel disease: sLORETA mapping reveals cortical sources of vascular cognitive impairment no dementia in the default mode network
  publication-title: J. Clin. Neurophysiol.
  doi: 10.1097/WNP.0b013e3182767d15
– volume: 10
  start-page: 325
  year: 2019
  ident: jneabcc48bib15
  article-title: EEG source imaging: a practical review of the analysis steps
  publication-title: Frontiers Neurol.
  doi: 10.3389/fneur.2019.00325
– volume: 62
  start-page: S2–S8
  year: 2004
  ident: jneabcc48bib57
  article-title: Terminology and classification of the cortical dysplasias
  publication-title: Neurology
  doi: 10.1212/01.WNL.0000114507.30388.7E
– volume: 47
  start-page: S102
  year: 2009
  ident: jneabcc48bib41
  article-title: Unbiased nonlinear average age-appropriate brain templates from birth to adulthood
  publication-title: Neuroimage
  doi: 10.1016/S1053-8119(09)70884-5
– volume: 66
  start-page: 2457
  year: 2019
  ident: jneabcc48bib49
  article-title: Bayesian electromagnetic spatio-temporal imaging of extended sources based on matrix factorization
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2018.2890291
– volume: 121
  start-page: 19
  year: 2014
  ident: jneabcc48bib13
  article-title: Functional brain connectivity from EEG in epilepsy: seizure prediction and epileptogenic focus localization
  publication-title: Prog. Neurobiol.
  doi: 10.1016/j.pneurobio.2014.06.004
– volume: 13
  start-page: 5
  year: 1993
  ident: jneabcc48bib12
  article-title: Functional connectivity: the principal-component analysis of large (PET) data sets
  publication-title: J. Cereb. Blood Flow Metab.
  doi: 10.1038/jcbfm.1993.4
– volume: 5
  start-page: 25
  year: 2008
  ident: jneabcc48bib27
  article-title: Review on solving the inverse problem in eeg source analysis
  publication-title: J. Neuroeng. Rehabil.
  doi: 10.1186/1743-0003-5-25
– volume: 54
  start-page: 433
  year: 1997
  ident: jneabcc48bib4
  article-title: Magnetic source imaging evidence of sex differences in cerebral lateralization in schizophrenia
  publication-title: Arch. Gen. Psychiatry
  doi: 10.1001/archpsyc.1997.01830170059009
– start-page: 181
  year: 2015
  ident: jneabcc48bib19
  article-title: Tensor decomposition exploiting structural constraints for brain source imaging
  doi: 10.1109/CAMSAP.2015.7383766.
– volume: 61
  start-page: 1660
  year: 2014
  ident: jneabcc48bib21
  article-title: Noninvasive imaging of the high frequency brain activity in focal epilepsy patients
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2013.2297332
– volume: 63
  start-page: 2607
  year: 2016
  ident: jneabcc48bib34
  article-title: Epileptogenic source imaging using cross-frequency coupled signals from scalp EEG
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2016.2613936
– volume: 24
  start-page: 5
  year: 2002
  ident: jneabcc48bib22
  article-title: Standardized low-resolution brain electromagnetic tomography (sLORETA): technical details
  publication-title: Methods Find. Exp. Clin. Pharmacol.
– volume: 6
  year: 2011
  ident: jneabcc48bib2
  article-title: Resting-state EEG source localization and functional connectivity in schizophrenia-like psychosis of epilepsy
  publication-title: PloS One
  doi: 10.1371/journal.pone.0027863
– volume: 32
  start-page: 100
  year: 2015
  ident: jneabcc48bib20
  article-title: Brain-source imaging: from sparse to tensor models
  publication-title: IEEE Signal Process. Mag.
  doi: 10.1109/MSP.2015.2413711
– volume: 142
  start-page: 27
  year: 2016
  ident: jneabcc48bib35
  article-title: Imaging brain source extent from EEG/MEG by means of an iteratively reweighted edge sparsity minimization (IRES) strategy
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2016.05.064
– volume: 339
  year: 2020
  ident: jneabcc48bib23
  article-title: A systematic review of eeg source localization techniques and their applications on diagnosis of brain abnormalities
  publication-title: J. Neurosci. Methods
  doi: 10.1016/j.jneumeth.2020.108740
– volume: 9
  start-page: 62
  year: 1979
  ident: jneabcc48bib54
  article-title: A threshold selection method from gray-level histograms
  publication-title: IEEE Trans. Syst. Man Cybern.
  doi: 10.1109/TSMC.1979.4310076
– volume: 1
  start-page: 75
  year: 1999
  ident: jneabcc48bib14
  article-title: Review of methods for solving the EEG inverse problem
  publication-title: Int. J. Bioelectromagnetism
SSID ssj0031790
Score 2.3687449
Snippet Objective. Estimation of the source location within the brain from electroencephalography (EEG) and magnetoencephalography measures is a challenging task....
Estimation of the source location within the brain from electroencephalography (EEG) and magnetoencephalography measures is a challenging task. Among the...
Objective.Estimation of the source location within the brain from electroencephalography (EEG) and magnetoencephalography measures is a challenging task. Among...
SourceID proquest
pubmed
crossref
SourceType Aggregation Database
Index Database
Enrichment Source
StartPage 16013
SubjectTerms Brain
Brain Mapping - methods
Electroencephalography - methods
Electromagnetic Phenomena
Magnetoencephalography - methods
Neuroimaging
Title Efficient high resolution sLORETA in brain source localization
URI https://www.ncbi.nlm.nih.gov/pubmed/33212434
https://www.proquest.com/docview/2463098684
Volume 18
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIOP
  databaseName: IOP Science Platform
  customDbUrl:
  eissn: 1741-2552
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0031790
  issn: 1741-2560
  databaseCode: IOP
  dateStart: 20040101
  isFulltext: true
  titleUrlDefault: https://iopscience.iop.org/
  providerName: IOP Publishing
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3daxQxEA9aQfoiatWeVYkgghzr3W2yueyLcMpJFWlFr9C3JZsPqtjd4m0f6l_vTD52W_REfQnLfiQwv-zMbyaTCSHPnFNm6qSAX9yCg2L0NCsNL7KZtmAQXMlK4xNkD8T-EX9_XBwPZ_P53SVd_VL_-O2-kv9BFe4BrrhL9h-Q7TuFG3AN-EILCEP7Vxgvff0HXM3HqsNj8JzjcOP1h8NPy9UCoxk1HgIxDkH6sTddcevlBl6KFS7hyg6FCvsojDKqyw7s1zAtUFEMGYiv7Yldn4TkgM9tm3J9YkAhn6UcZLQHQQkCy8jA1digJdNs-EX5gsLCOED6Gq1MrXUopHkJjbNTDwdjYDV5jGReLXmdHl0nN3JQ1ngix7vDj8nAMiwqFlecYchJP-AkDLdNbqYOrpKNDR6EZxKr2-RWFDVdBDzvkGu2uUt2Fo3q2tML-pz6pFy_2rFDXvUQU4SYDhDTCDH90lAPMQ0Q08sQ3yNHb5erN_tZPPIi08ALuowroNCqVIZpxhQ0pbO5UdKBG6xKxwWyi7mzUjhhZ9oBW-PgktpC5rUtQaHeJ1tN29hdQoG6zfScGTbXhjsOvUnuRKGn2hVaCDUikySbSsd68HgsybfK5yVIWaFgKxRsFQQ7Ii_6L85CLZQ_vPs0ibsChYWrUKqx7fm6yrlg01IKyUfkQcCh7y3h9nDjkz2yPczZR2Sr-35uHwMt7OonfpL8BCiLYEA
linkProvider IOP Publishing
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Efficient+high+resolution+sLORETA+in+brain+source+localization&rft.jtitle=Journal+of+neural+engineering&rft.au=Sadat-Nejad%2C+Younes&rft.au=Beheshti%2C+Soosan&rft.date=2021-02-01&rft.eissn=1741-2552&rft.volume=18&rft.issue=1&rft_id=info:doi/10.1088%2F1741-2552%2Fabcc48&rft_id=info%3Apmid%2F33212434&rft.externalDocID=33212434
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1741-2560&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1741-2560&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1741-2560&client=summon