A Fault Diagnosis Method for PV Arrays Based on New Feature Extraction and Improved the Fuzzy C-Mean Clustering

Photovoltaic (PV) array fault diagnosis is vital for the safe and stable operation of PV systems. Up to now, there are many methods to diagnose and classify PV array faults successfully. However, the difficulty of fault diagnosis is increased because the PV arrays have nonlinear output characteristi...

Full description

Saved in:
Bibliographic Details
Published inIEEE journal of photovoltaics Vol. 12; no. 3; pp. 833 - 843
Main Authors Xu, Liuchao, Pan, Zhiheng, Liang, Chuandong, Lu, Min
Format Journal Article
LanguageEnglish
Published Piscataway IEEE 01.05.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN2156-3381
2156-3403
DOI10.1109/JPHOTOV.2022.3151330

Cover

Abstract Photovoltaic (PV) array fault diagnosis is vital for the safe and stable operation of PV systems. Up to now, there are many methods to diagnose and classify PV array faults successfully. However, the difficulty of fault diagnosis is increased because the PV arrays have nonlinear output characteristics and complex working environments. In practice, the difference in characteristic parameters of different faults is not apparent, and it is not easy to effectively obtain labels of many samples. In order to address the above problems, this article proposes a new fault detection method for PV arrays based on the output current-voltage ( I - V ) characteristic, an improved fuzzy C-mean clustering (FCM) algorithm to identify four common PV array faults. The measured I - V characteristic curves are used to extract the initial feature parameters and then calculate the initial parameters to obtain characteristic parameters. In addition, it used characteristic parameters as feature variables of the FCM fault diagnosis model. Finally, classification results are verified by inner cluster maximum mean discrepancy and reclassification pseudoparameter based on the relationship between characteristic parameters. This method defines new characteristic parameters and achieves the purpose of fault detection by reclassification; in addition, we verify the high accuracy and simplicity of the method through simulation and experiment.
AbstractList Photovoltaic (PV) array fault diagnosis is vital for the safe and stable operation of PV systems. Up to now, there are many methods to diagnose and classify PV array faults successfully. However, the difficulty of fault diagnosis is increased because the PV arrays have nonlinear output characteristics and complex working environments. In practice, the difference in characteristic parameters of different faults is not apparent, and it is not easy to effectively obtain labels of many samples. In order to address the above problems, this article proposes a new fault detection method for PV arrays based on the output current–voltage ( I – V ) characteristic, an improved fuzzy C-mean clustering (FCM) algorithm to identify four common PV array faults. The measured I – V characteristic curves are used to extract the initial feature parameters and then calculate the initial parameters to obtain characteristic parameters. In addition, it used characteristic parameters as feature variables of the FCM fault diagnosis model. Finally, classification results are verified by inner cluster maximum mean discrepancy and reclassification pseudoparameter based on the relationship between characteristic parameters. This method defines new characteristic parameters and achieves the purpose of fault detection by reclassification; in addition, we verify the high accuracy and simplicity of the method through simulation and experiment.
Author Liang, Chuandong
Lu, Min
Pan, Zhiheng
Xu, Liuchao
Author_xml – sequence: 1
  givenname: Liuchao
  orcidid: 0000-0003-1601-010X
  surname: Xu
  fullname: Xu, Liuchao
  email: xlc_shzu@163.com
  organization: Shihezi University, Shihezi, China
– sequence: 2
  givenname: Zhiheng
  orcidid: 0000-0003-2502-4132
  surname: Pan
  fullname: Pan, Zhiheng
  email: 824702778@qq.com
  organization: Shihezi University, Shihezi, China
– sequence: 3
  givenname: Chuandong
  surname: Liang
  fullname: Liang, Chuandong
  email: 1577902164@qq.com
  organization: Shihezi University, Shihezi, China
– sequence: 4
  givenname: Min
  surname: Lu
  fullname: Lu, Min
  email: lm_shz@163.com
  organization: Shihezi University, Shihezi, China
BookMark eNqFkMlOwzAQhi0EElufAA6WOKd4iZ2aWykti4D2UHGNJskYgkoMtgOUpydVCwcuzGVGo_-b5d8n241rkJBjzvqcM3N6M7uazqcPfcGE6EuuuJRsi-wJrnQiUya3f2o54LukF8Iz60IzpXW6R9yQTqBdRHpRw2PjQh3oHcYnV1HrPJ090KH3sAz0HAJW1DX0Hj_oBCG2Hun4M3ooY921oano9curd--dLD4hnbRfX0s6Su4QGjpatCGir5vHQ7JjYRGwt8kHZD4Zz0dXye308no0vE1KYUxMZCGFZsZmHIpUobImM2VqrChsqSpVFcglDFQF1laZRs00FnZQAkCJqRDygJysx3YXvbUYYv7sWt90G3OhlcgYy-RKdbZWld6F4NHmZR1h9U_3V73IOctXFucbi_OVxfnG4g5O_8Cvvn4Bv_wPO1pjNSL-IiYTqTBcfgNARosf
CODEN IJPEG8
CitedBy_id crossref_primary_10_1016_j_energy_2024_133533
crossref_primary_10_1049_smt2_12166
crossref_primary_10_1016_j_engfailanal_2024_108980
crossref_primary_10_1016_j_enconman_2024_119311
crossref_primary_10_1109_TIA_2024_3473897
crossref_primary_10_1109_ACCESS_2023_3292516
crossref_primary_10_1016_j_epsr_2024_111132
crossref_primary_10_1109_ACCESS_2023_3298542
crossref_primary_10_1016_j_enconman_2023_116742
crossref_primary_10_1016_j_psep_2024_11_135
crossref_primary_10_1016_j_energy_2024_132766
crossref_primary_10_1016_j_solener_2023_02_041
crossref_primary_10_1016_j_rser_2023_114039
crossref_primary_10_1109_TIM_2023_3287247
crossref_primary_10_1109_TIM_2023_3300408
crossref_primary_10_1007_s12667_024_00706_3
crossref_primary_10_1016_j_cosrev_2025_100729
crossref_primary_10_1016_j_energ_2024_100010
crossref_primary_10_1002_eng2_13016
crossref_primary_10_1016_j_engappai_2024_109068
crossref_primary_10_1007_s42452_024_06446_4
crossref_primary_10_1109_TIM_2024_3425492
Cites_doi 10.1109/ICM.2012.6471415
10.1016/j.enconman.2014.05.008
10.1016/j.enconman.2019.111793
10.1007/s11356-021-15255-w
10.1109/TPEL.2017.2755592
10.1016/j.renene.2020.05.091
10.1016/j.solener.2013.12.003
10.1109/TIM.2018.2809078
10.1016/j.asoc.2016.06.037
10.1016/j.enconman.2018.10.040
10.1109/TII.2019.2908992
10.1093/bioinformatics/btl242
10.1109/TPEL.2014.2325062
10.1109/TIM.2021.3077675
10.1109/TFUZZ.2004.825079
10.1109/JPHOTOV.2020.3038335
10.1016/j.rser.2009.07.021
10.3390/en11010238
10.1016/j.apenergy.2014.05.014
10.1016/j.energy.2015.03.123
10.1016/j.enconman.2020.113018
10.1016/j.apenergy.2017.05.034
10.1109/TIE.2012.2205355
10.3390/en12091712
10.1016/j.solener.2020.07.043
10.1016/j.enconman.2019.06.062
10.1016/j.apenergy.2015.05.035
10.1016/j.renene.2018.05.008
10.1016/j.rser.2016.04.079
10.1016/j.enconman.2019.03.001
10.1155/2012/396792
10.1109/JPHOTOV.2015.2397599
10.1109/JPHOTOV.2019.2959951
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
DBID 97E
RIA
RIE
AAYXX
CITATION
7SP
8FD
L7M
DOI 10.1109/JPHOTOV.2022.3151330
DatabaseName Accès UTTOP - IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Electronics & Communications Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Technology Research Database
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList Technology Research Database

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2156-3403
EndPage 843
ExternalDocumentID 10_1109_JPHOTOV_2022_3151330
9724291
Genre orig-research
GrantInformation_xml – fundername: Shihezi University
  grantid: RCZK202005
  funderid: 10.13039/501100004317
– fundername: Shihezi University
  grantid: GJHZ202108
  funderid: 10.13039/501100004317
GroupedDBID 0R~
4.4
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACIWK
AENEX
AGQYO
AGSQL
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
HZ~
IFIPE
IPLJI
JAVBF
M43
O9-
OCL
RIA
RIE
RNS
AAYXX
CITATION
7SP
8FD
L7M
ID FETCH-LOGICAL-c299t-3b32609f71ab45e5f979c49f2bfc5d5dbe13a85daffd76e606ebf8caaace4223
IEDL.DBID RIE
ISSN 2156-3381
IngestDate Mon Jun 30 09:59:15 EDT 2025
Wed Oct 01 05:00:14 EDT 2025
Thu Apr 24 23:04:34 EDT 2025
Wed Aug 27 02:29:09 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c299t-3b32609f71ab45e5f979c49f2bfc5d5dbe13a85daffd76e606ebf8caaace4223
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-1601-010X
0000-0003-2502-4132
PQID 2652700732
PQPubID 2040418
PageCount 11
ParticipantIDs crossref_citationtrail_10_1109_JPHOTOV_2022_3151330
ieee_primary_9724291
proquest_journals_2652700732
crossref_primary_10_1109_JPHOTOV_2022_3151330
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-05-01
PublicationDateYYYYMMDD 2022-05-01
PublicationDate_xml – month: 05
  year: 2022
  text: 2022-05-01
  day: 01
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE journal of photovoltaics
PublicationTitleAbbrev JPHOTOV
PublicationYear 2022
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref35
ref12
ref15
ref14
ref31
ref30
ref11
ref33
ref10
ref32
ref2
ref1
ref17
Wamg (ref34) 2017; 54
ref16
ref19
ref18
Cai (ref27) 2020; 37
ref24
ref23
ref26
ref25
ref20
ref22
ref21
ref28
ref29
ref8
ref7
ref9
ref4
ref3
ref6
ref5
References_xml – ident: ref4
  doi: 10.1109/ICM.2012.6471415
– ident: ref14
  doi: 10.1016/j.enconman.2014.05.008
– ident: ref16
  doi: 10.1016/j.enconman.2019.111793
– ident: ref2
  doi: 10.1007/s11356-021-15255-w
– ident: ref12
  doi: 10.1109/TPEL.2017.2755592
– ident: ref15
  doi: 10.1016/j.renene.2020.05.091
– volume: 37
  start-page: 2371
  year: 2020
  ident: ref27
  article-title: Unsupervised domain adaptive algorithm with intra-class maximum mean discrepancy
  publication-title: Comput. Appl. Res.
– ident: ref33
  doi: 10.1016/j.solener.2013.12.003
– ident: ref9
  doi: 10.1109/TIM.2018.2809078
– ident: ref29
  doi: 10.1016/j.asoc.2016.06.037
– ident: ref17
  doi: 10.1016/j.enconman.2018.10.040
– ident: ref19
  doi: 10.1109/TII.2019.2908992
– ident: ref26
  doi: 10.1093/bioinformatics/btl242
– volume: 54
  start-page: 2
  issue: 6
  year: 2017
  ident: ref34
  article-title: Problems and analysis of outdoor IV characteristic test of photovoltaic modules
  publication-title: Qual. Tech. Supervision Res.
– ident: ref11
  doi: 10.1109/TPEL.2014.2325062
– ident: ref32
  doi: 10.1109/TIM.2021.3077675
– ident: ref25
  doi: 10.1109/TFUZZ.2004.825079
– ident: ref1
  doi: 10.1109/JPHOTOV.2020.3038335
– ident: ref3
  doi: 10.1016/j.rser.2009.07.021
– ident: ref35
  doi: 10.3390/en11010238
– ident: ref5
  doi: 10.1016/j.apenergy.2014.05.014
– ident: ref24
  doi: 10.1016/j.energy.2015.03.123
– ident: ref21
  doi: 10.1016/j.enconman.2020.113018
– ident: ref28
  doi: 10.1016/j.apenergy.2017.05.034
– ident: ref6
  doi: 10.1109/TIE.2012.2205355
– ident: ref7
  doi: 10.3390/en12091712
– ident: ref13
  doi: 10.1016/j.solener.2020.07.043
– ident: ref18
  doi: 10.1016/j.enconman.2019.06.062
– ident: ref20
  doi: 10.1016/j.apenergy.2015.05.035
– ident: ref30
  doi: 10.1016/j.renene.2018.05.008
– ident: ref10
  doi: 10.1016/j.rser.2016.04.079
– ident: ref22
  doi: 10.1016/j.enconman.2019.03.001
– ident: ref8
  doi: 10.1155/2012/396792
– ident: ref23
  doi: 10.1109/JPHOTOV.2015.2397599
– ident: ref31
  doi: 10.1109/JPHOTOV.2019.2959951
SSID ssj0000605664
Score 2.441708
Snippet Photovoltaic (PV) array fault diagnosis is vital for the safe and stable operation of PV systems. Up to now, there are many methods to diagnose and classify PV...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 833
SubjectTerms Algorithms
Arrays
Circuit faults
Clustering
Clustering algorithms
Degradation
Fault detection
Fault diagnosis
Faults
Feature extraction
fuzzy C-mean clustering (FCM) algorithm
ICMMD
Integrated circuit modeling
Parameters
photovoltaic (PV) array
Photovoltaic cells
Resistance
Title A Fault Diagnosis Method for PV Arrays Based on New Feature Extraction and Improved the Fuzzy C-Mean Clustering
URI https://ieeexplore.ieee.org/document/9724291
https://www.proquest.com/docview/2652700732
Volume 12
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 2156-3403
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000605664
  issn: 2156-3381
  databaseCode: RIE
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NT9swFLcYp3HYxgCtG0PvwBGXfDmxj6yjqpAKHDrELfLHszStSlGbSKN__Z6TtGJsEtxyeE4s_Wz_fs95H4ydploILyTy1JiUZ0UiuSYW4JJ2l5VOozDBUZxe55Mf2dW9uN9hZ9tcGERsg89wGB7bf_luYZtwVXauCiKUkKr-ppB5l6u1vU-JSJfnbbUoIrGck-cV95lycaTOr24nN7ObO_IHk4Tc1NDUJPqLidrWKv-cxy3JjN-z6WZ6XWzJr2FTm6FdP6vc-Nr5f2DverUJF93y2Gc7WH1ke09qEB6wxQWMdTOv4XsXdPdzBdO2qzSQnIXbOxq81I8r-EZ052BRAR2LEIRjs0S4_F0vu8wI0JWD7oaCzEhVwrhZrx9hxKeoKxjNm1CRgb54yGbjy9lowvsuDNwSVdUEIim8SPki1iYTKLwqlM2UT4y3wglnME61FE5774ocySFC46XVWlvMSHwcsd1qUeEnBlJY5WJN5qizgpRRljsnrfeKThmZ-QFLN4CUtq9QHhplzMvWU4lU2cNYBhjLHsYB49tRD12FjhfsDwIyW9selAE73mBf9tt4VSa5CD_mizT5_P9RX9jb8O4uAvKY7dbLBr-SSqnNSbs8_wCzleLX
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3Nb9MwFLemcRgcgDEQhbH5wBF3-bAT-zjKqrIt2w5l2i3yx7OEqFLUJtLWv37PSVptMAluOTzLiX62f7_nvA9CPqdaCC8ksNSYlPE8kUwjCzCJu8tKp0GY4CgWF9nkBz-9ETdb5MsmFwYA2uAzGIbH9l--m9smXJUdqRwJJaSqPxOcc9Fla21uVCJU5llbLwppLGPoe8V9rlwcqaPTq8nl9PIaPcIkQUc1tDWJHnFR21zlrxO5pZnxK1KsX7CLLvk1bGoztKs_ajf-7xe8Ji97vUmPuwWyS7agekNePKhCuEfmx3Ssm1lNv3Vhdz-XtGj7SlMUtPTqGgcv9N2SfkXCc3ReUTwYaZCOzQLoyW296HIjqK4c7e4o0Ax1JR03q9UdHbECdEVHsybUZMAZ35Lp-GQ6mrC-DwOzSFY1wogaL1I-j7XhAoRXubJc-cR4K5xwBuJUS-G09y7PAF0iMF5arbUFjvLjHdmu5hW8J1QKq1ys0Rw0z1Eb8cw5ab1XeM5I7gckXQNS2r5GeWiVMStbXyVSZQ9jGWAsexgHhG1G_e5qdPzDfi8gs7HtQRmQ_TX2Zb-Rl2WSifBrPk-TD0-POiQ7k2lxXp5_vzj7SJ6Hebp4yH2yXS8a-ISapTYH7VK9B7s15iQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Fault+Diagnosis+Method+for+PV+Arrays+Based+on+New+Feature+Extraction+and+Improved+the+Fuzzy+C-Mean+Clustering&rft.jtitle=IEEE+journal+of+photovoltaics&rft.au=Xu%2C+Liuchao&rft.au=Pan%2C+Zhiheng&rft.au=Liang%2C+Chuandong&rft.au=Lu%2C+Min&rft.date=2022-05-01&rft.issn=2156-3381&rft.eissn=2156-3403&rft.volume=12&rft.issue=3&rft.spage=833&rft.epage=843&rft_id=info:doi/10.1109%2FJPHOTOV.2022.3151330&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_JPHOTOV_2022_3151330
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2156-3381&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2156-3381&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2156-3381&client=summon