A Fault Diagnosis Method for PV Arrays Based on New Feature Extraction and Improved the Fuzzy C-Mean Clustering
Photovoltaic (PV) array fault diagnosis is vital for the safe and stable operation of PV systems. Up to now, there are many methods to diagnose and classify PV array faults successfully. However, the difficulty of fault diagnosis is increased because the PV arrays have nonlinear output characteristi...
Saved in:
| Published in | IEEE journal of photovoltaics Vol. 12; no. 3; pp. 833 - 843 |
|---|---|
| Main Authors | , , , |
| Format | Journal Article |
| Language | English |
| Published |
Piscataway
IEEE
01.05.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subjects | |
| Online Access | Get full text |
| ISSN | 2156-3381 2156-3403 |
| DOI | 10.1109/JPHOTOV.2022.3151330 |
Cover
| Abstract | Photovoltaic (PV) array fault diagnosis is vital for the safe and stable operation of PV systems. Up to now, there are many methods to diagnose and classify PV array faults successfully. However, the difficulty of fault diagnosis is increased because the PV arrays have nonlinear output characteristics and complex working environments. In practice, the difference in characteristic parameters of different faults is not apparent, and it is not easy to effectively obtain labels of many samples. In order to address the above problems, this article proposes a new fault detection method for PV arrays based on the output current-voltage ( I - V ) characteristic, an improved fuzzy C-mean clustering (FCM) algorithm to identify four common PV array faults. The measured I - V characteristic curves are used to extract the initial feature parameters and then calculate the initial parameters to obtain characteristic parameters. In addition, it used characteristic parameters as feature variables of the FCM fault diagnosis model. Finally, classification results are verified by inner cluster maximum mean discrepancy and reclassification pseudoparameter based on the relationship between characteristic parameters. This method defines new characteristic parameters and achieves the purpose of fault detection by reclassification; in addition, we verify the high accuracy and simplicity of the method through simulation and experiment. |
|---|---|
| AbstractList | Photovoltaic (PV) array fault diagnosis is vital for the safe and stable operation of PV systems. Up to now, there are many methods to diagnose and classify PV array faults successfully. However, the difficulty of fault diagnosis is increased because the PV arrays have nonlinear output characteristics and complex working environments. In practice, the difference in characteristic parameters of different faults is not apparent, and it is not easy to effectively obtain labels of many samples. In order to address the above problems, this article proposes a new fault detection method for PV arrays based on the output current–voltage ( I – V ) characteristic, an improved fuzzy C-mean clustering (FCM) algorithm to identify four common PV array faults. The measured I – V characteristic curves are used to extract the initial feature parameters and then calculate the initial parameters to obtain characteristic parameters. In addition, it used characteristic parameters as feature variables of the FCM fault diagnosis model. Finally, classification results are verified by inner cluster maximum mean discrepancy and reclassification pseudoparameter based on the relationship between characteristic parameters. This method defines new characteristic parameters and achieves the purpose of fault detection by reclassification; in addition, we verify the high accuracy and simplicity of the method through simulation and experiment. |
| Author | Liang, Chuandong Lu, Min Pan, Zhiheng Xu, Liuchao |
| Author_xml | – sequence: 1 givenname: Liuchao orcidid: 0000-0003-1601-010X surname: Xu fullname: Xu, Liuchao email: xlc_shzu@163.com organization: Shihezi University, Shihezi, China – sequence: 2 givenname: Zhiheng orcidid: 0000-0003-2502-4132 surname: Pan fullname: Pan, Zhiheng email: 824702778@qq.com organization: Shihezi University, Shihezi, China – sequence: 3 givenname: Chuandong surname: Liang fullname: Liang, Chuandong email: 1577902164@qq.com organization: Shihezi University, Shihezi, China – sequence: 4 givenname: Min surname: Lu fullname: Lu, Min email: lm_shz@163.com organization: Shihezi University, Shihezi, China |
| BookMark | eNqFkMlOwzAQhi0EElufAA6WOKd4iZ2aWykti4D2UHGNJskYgkoMtgOUpydVCwcuzGVGo_-b5d8n241rkJBjzvqcM3N6M7uazqcPfcGE6EuuuJRsi-wJrnQiUya3f2o54LukF8Iz60IzpXW6R9yQTqBdRHpRw2PjQh3oHcYnV1HrPJ090KH3sAz0HAJW1DX0Hj_oBCG2Hun4M3ooY921oano9curd--dLD4hnbRfX0s6Su4QGjpatCGir5vHQ7JjYRGwt8kHZD4Zz0dXye308no0vE1KYUxMZCGFZsZmHIpUobImM2VqrChsqSpVFcglDFQF1laZRs00FnZQAkCJqRDygJysx3YXvbUYYv7sWt90G3OhlcgYy-RKdbZWld6F4NHmZR1h9U_3V73IOctXFucbi_OVxfnG4g5O_8Cvvn4Bv_wPO1pjNSL-IiYTqTBcfgNARosf |
| CODEN | IJPEG8 |
| CitedBy_id | crossref_primary_10_1016_j_energy_2024_133533 crossref_primary_10_1049_smt2_12166 crossref_primary_10_1016_j_engfailanal_2024_108980 crossref_primary_10_1016_j_enconman_2024_119311 crossref_primary_10_1109_TIA_2024_3473897 crossref_primary_10_1109_ACCESS_2023_3292516 crossref_primary_10_1016_j_epsr_2024_111132 crossref_primary_10_1109_ACCESS_2023_3298542 crossref_primary_10_1016_j_enconman_2023_116742 crossref_primary_10_1016_j_psep_2024_11_135 crossref_primary_10_1016_j_energy_2024_132766 crossref_primary_10_1016_j_solener_2023_02_041 crossref_primary_10_1016_j_rser_2023_114039 crossref_primary_10_1109_TIM_2023_3287247 crossref_primary_10_1109_TIM_2023_3300408 crossref_primary_10_1007_s12667_024_00706_3 crossref_primary_10_1016_j_cosrev_2025_100729 crossref_primary_10_1016_j_energ_2024_100010 crossref_primary_10_1002_eng2_13016 crossref_primary_10_1016_j_engappai_2024_109068 crossref_primary_10_1007_s42452_024_06446_4 crossref_primary_10_1109_TIM_2024_3425492 |
| Cites_doi | 10.1109/ICM.2012.6471415 10.1016/j.enconman.2014.05.008 10.1016/j.enconman.2019.111793 10.1007/s11356-021-15255-w 10.1109/TPEL.2017.2755592 10.1016/j.renene.2020.05.091 10.1016/j.solener.2013.12.003 10.1109/TIM.2018.2809078 10.1016/j.asoc.2016.06.037 10.1016/j.enconman.2018.10.040 10.1109/TII.2019.2908992 10.1093/bioinformatics/btl242 10.1109/TPEL.2014.2325062 10.1109/TIM.2021.3077675 10.1109/TFUZZ.2004.825079 10.1109/JPHOTOV.2020.3038335 10.1016/j.rser.2009.07.021 10.3390/en11010238 10.1016/j.apenergy.2014.05.014 10.1016/j.energy.2015.03.123 10.1016/j.enconman.2020.113018 10.1016/j.apenergy.2017.05.034 10.1109/TIE.2012.2205355 10.3390/en12091712 10.1016/j.solener.2020.07.043 10.1016/j.enconman.2019.06.062 10.1016/j.apenergy.2015.05.035 10.1016/j.renene.2018.05.008 10.1016/j.rser.2016.04.079 10.1016/j.enconman.2019.03.001 10.1155/2012/396792 10.1109/JPHOTOV.2015.2397599 10.1109/JPHOTOV.2019.2959951 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
| DBID | 97E RIA RIE AAYXX CITATION 7SP 8FD L7M |
| DOI | 10.1109/JPHOTOV.2022.3151330 |
| DatabaseName | Accès UTTOP - IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Electronics & Communications Abstracts Technology Research Database Advanced Technologies Database with Aerospace |
| DatabaseTitle | CrossRef Technology Research Database Advanced Technologies Database with Aerospace Electronics & Communications Abstracts |
| DatabaseTitleList | Technology Research Database |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 2156-3403 |
| EndPage | 843 |
| ExternalDocumentID | 10_1109_JPHOTOV_2022_3151330 9724291 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: Shihezi University grantid: RCZK202005 funderid: 10.13039/501100004317 – fundername: Shihezi University grantid: GJHZ202108 funderid: 10.13039/501100004317 |
| GroupedDBID | 0R~ 4.4 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACIWK AENEX AGQYO AGSQL AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD HZ~ IFIPE IPLJI JAVBF M43 O9- OCL RIA RIE RNS AAYXX CITATION 7SP 8FD L7M |
| ID | FETCH-LOGICAL-c299t-3b32609f71ab45e5f979c49f2bfc5d5dbe13a85daffd76e606ebf8caaace4223 |
| IEDL.DBID | RIE |
| ISSN | 2156-3381 |
| IngestDate | Mon Jun 30 09:59:15 EDT 2025 Wed Oct 01 05:00:14 EDT 2025 Thu Apr 24 23:04:34 EDT 2025 Wed Aug 27 02:29:09 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 3 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c299t-3b32609f71ab45e5f979c49f2bfc5d5dbe13a85daffd76e606ebf8caaace4223 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0003-1601-010X 0000-0003-2502-4132 |
| PQID | 2652700732 |
| PQPubID | 2040418 |
| PageCount | 11 |
| ParticipantIDs | crossref_citationtrail_10_1109_JPHOTOV_2022_3151330 ieee_primary_9724291 proquest_journals_2652700732 crossref_primary_10_1109_JPHOTOV_2022_3151330 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2022-05-01 |
| PublicationDateYYYYMMDD | 2022-05-01 |
| PublicationDate_xml | – month: 05 year: 2022 text: 2022-05-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Piscataway |
| PublicationPlace_xml | – name: Piscataway |
| PublicationTitle | IEEE journal of photovoltaics |
| PublicationTitleAbbrev | JPHOTOV |
| PublicationYear | 2022 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref13 ref35 ref12 ref15 ref14 ref31 ref30 ref11 ref33 ref10 ref32 ref2 ref1 ref17 Wamg (ref34) 2017; 54 ref16 ref19 ref18 Cai (ref27) 2020; 37 ref24 ref23 ref26 ref25 ref20 ref22 ref21 ref28 ref29 ref8 ref7 ref9 ref4 ref3 ref6 ref5 |
| References_xml | – ident: ref4 doi: 10.1109/ICM.2012.6471415 – ident: ref14 doi: 10.1016/j.enconman.2014.05.008 – ident: ref16 doi: 10.1016/j.enconman.2019.111793 – ident: ref2 doi: 10.1007/s11356-021-15255-w – ident: ref12 doi: 10.1109/TPEL.2017.2755592 – ident: ref15 doi: 10.1016/j.renene.2020.05.091 – volume: 37 start-page: 2371 year: 2020 ident: ref27 article-title: Unsupervised domain adaptive algorithm with intra-class maximum mean discrepancy publication-title: Comput. Appl. Res. – ident: ref33 doi: 10.1016/j.solener.2013.12.003 – ident: ref9 doi: 10.1109/TIM.2018.2809078 – ident: ref29 doi: 10.1016/j.asoc.2016.06.037 – ident: ref17 doi: 10.1016/j.enconman.2018.10.040 – ident: ref19 doi: 10.1109/TII.2019.2908992 – ident: ref26 doi: 10.1093/bioinformatics/btl242 – volume: 54 start-page: 2 issue: 6 year: 2017 ident: ref34 article-title: Problems and analysis of outdoor IV characteristic test of photovoltaic modules publication-title: Qual. Tech. Supervision Res. – ident: ref11 doi: 10.1109/TPEL.2014.2325062 – ident: ref32 doi: 10.1109/TIM.2021.3077675 – ident: ref25 doi: 10.1109/TFUZZ.2004.825079 – ident: ref1 doi: 10.1109/JPHOTOV.2020.3038335 – ident: ref3 doi: 10.1016/j.rser.2009.07.021 – ident: ref35 doi: 10.3390/en11010238 – ident: ref5 doi: 10.1016/j.apenergy.2014.05.014 – ident: ref24 doi: 10.1016/j.energy.2015.03.123 – ident: ref21 doi: 10.1016/j.enconman.2020.113018 – ident: ref28 doi: 10.1016/j.apenergy.2017.05.034 – ident: ref6 doi: 10.1109/TIE.2012.2205355 – ident: ref7 doi: 10.3390/en12091712 – ident: ref13 doi: 10.1016/j.solener.2020.07.043 – ident: ref18 doi: 10.1016/j.enconman.2019.06.062 – ident: ref20 doi: 10.1016/j.apenergy.2015.05.035 – ident: ref30 doi: 10.1016/j.renene.2018.05.008 – ident: ref10 doi: 10.1016/j.rser.2016.04.079 – ident: ref22 doi: 10.1016/j.enconman.2019.03.001 – ident: ref8 doi: 10.1155/2012/396792 – ident: ref23 doi: 10.1109/JPHOTOV.2015.2397599 – ident: ref31 doi: 10.1109/JPHOTOV.2019.2959951 |
| SSID | ssj0000605664 |
| Score | 2.441708 |
| Snippet | Photovoltaic (PV) array fault diagnosis is vital for the safe and stable operation of PV systems. Up to now, there are many methods to diagnose and classify PV... |
| SourceID | proquest crossref ieee |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 833 |
| SubjectTerms | Algorithms Arrays Circuit faults Clustering Clustering algorithms Degradation Fault detection Fault diagnosis Faults Feature extraction fuzzy C-mean clustering (FCM) algorithm ICMMD Integrated circuit modeling Parameters photovoltaic (PV) array Photovoltaic cells Resistance |
| Title | A Fault Diagnosis Method for PV Arrays Based on New Feature Extraction and Improved the Fuzzy C-Mean Clustering |
| URI | https://ieeexplore.ieee.org/document/9724291 https://www.proquest.com/docview/2652700732 |
| Volume | 12 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 2156-3403 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000605664 issn: 2156-3381 databaseCode: RIE dateStart: 20110101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NT9swFLcYp3HYxgCtG0PvwBGXfDmxj6yjqpAKHDrELfLHszStSlGbSKN__Z6TtGJsEtxyeE4s_Wz_fs95H4ydploILyTy1JiUZ0UiuSYW4JJ2l5VOozDBUZxe55Mf2dW9uN9hZ9tcGERsg89wGB7bf_luYZtwVXauCiKUkKr-ppB5l6u1vU-JSJfnbbUoIrGck-cV95lycaTOr24nN7ObO_IHk4Tc1NDUJPqLidrWKv-cxy3JjN-z6WZ6XWzJr2FTm6FdP6vc-Nr5f2DverUJF93y2Gc7WH1ke09qEB6wxQWMdTOv4XsXdPdzBdO2qzSQnIXbOxq81I8r-EZ052BRAR2LEIRjs0S4_F0vu8wI0JWD7oaCzEhVwrhZrx9hxKeoKxjNm1CRgb54yGbjy9lowvsuDNwSVdUEIim8SPki1iYTKLwqlM2UT4y3wglnME61FE5774ocySFC46XVWlvMSHwcsd1qUeEnBlJY5WJN5qizgpRRljsnrfeKThmZ-QFLN4CUtq9QHhplzMvWU4lU2cNYBhjLHsYB49tRD12FjhfsDwIyW9selAE73mBf9tt4VSa5CD_mizT5_P9RX9jb8O4uAvKY7dbLBr-SSqnNSbs8_wCzleLX |
| linkProvider | IEEE |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3Nb9MwFLemcRgcgDEQhbH5wBF3-bAT-zjKqrIt2w5l2i3yx7OEqFLUJtLWv37PSVptMAluOTzLiX62f7_nvA9CPqdaCC8ksNSYlPE8kUwjCzCJu8tKp0GY4CgWF9nkBz-9ETdb5MsmFwYA2uAzGIbH9l--m9smXJUdqRwJJaSqPxOcc9Fla21uVCJU5llbLwppLGPoe8V9rlwcqaPTq8nl9PIaPcIkQUc1tDWJHnFR21zlrxO5pZnxK1KsX7CLLvk1bGoztKs_ajf-7xe8Ji97vUmPuwWyS7agekNePKhCuEfmx3Ssm1lNv3Vhdz-XtGj7SlMUtPTqGgcv9N2SfkXCc3ReUTwYaZCOzQLoyW296HIjqK4c7e4o0Ax1JR03q9UdHbECdEVHsybUZMAZ35Lp-GQ6mrC-DwOzSFY1wogaL1I-j7XhAoRXubJc-cR4K5xwBuJUS-G09y7PAF0iMF5arbUFjvLjHdmu5hW8J1QKq1ys0Rw0z1Eb8cw5ab1XeM5I7gckXQNS2r5GeWiVMStbXyVSZQ9jGWAsexgHhG1G_e5qdPzDfi8gs7HtQRmQ_TX2Zb-Rl2WSifBrPk-TD0-POiQ7k2lxXp5_vzj7SJ6Hebp4yH2yXS8a-ISapTYH7VK9B7s15iQ |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Fault+Diagnosis+Method+for+PV+Arrays+Based+on+New+Feature+Extraction+and+Improved+the+Fuzzy+C-Mean+Clustering&rft.jtitle=IEEE+journal+of+photovoltaics&rft.au=Xu%2C+Liuchao&rft.au=Pan%2C+Zhiheng&rft.au=Liang%2C+Chuandong&rft.au=Lu%2C+Min&rft.date=2022-05-01&rft.issn=2156-3381&rft.eissn=2156-3403&rft.volume=12&rft.issue=3&rft.spage=833&rft.epage=843&rft_id=info:doi/10.1109%2FJPHOTOV.2022.3151330&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_JPHOTOV_2022_3151330 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2156-3381&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2156-3381&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2156-3381&client=summon |