Biologic Mechanisms Underlying the Heterogeneous Response to Tight Glycemic Control among Differentially Inflamed Patients in the HALF-PINT Trial

Tight glycemic control (TGC) with insulin has not consistently shown benefit in critically ill patients. We previously reported that the subset of children with a hyperinflammatory subphenotype benefited from TGC in the HALF-PINT (Heart and Lung Failure - Pediatric Insulin Titration) study of hyperg...

Full description

Saved in:
Bibliographic Details
Published inAmerican journal of respiratory and critical care medicine Vol. 211; no. 8; pp. 1463 - 1473
Main Authors Zinter, Matt S., Taylor, Clove S., Markovic, Daniela, Pellegrini, Matteo, Wong, Kayley, Balliu, Brunilda, Gala, Kinisha P., Asaro, Lisa A., Nadkarni, Vinay M., McQuillen, Patrick S., Vangala, Sitaram S., Sinha, Pratik, Matthay, Michael A., Agus, Michael S. D., Sapru, Anil
Format Journal Article
LanguageEnglish
Published United States American Thoracic Society 01.08.2025
Subjects
Online AccessGet full text
ISSN1073-449X
1535-4970
1535-4970
DOI10.1164/rccm.202409-1719OC

Cover

Abstract Tight glycemic control (TGC) with insulin has not consistently shown benefit in critically ill patients. We previously reported that the subset of children with a hyperinflammatory subphenotype benefited from TGC in the HALF-PINT (Heart and Lung Failure - Pediatric Insulin Titration) study of hyperglycemic children with heart and lung failure and the IIT-SBPP (Intensive Insulin Treatment - Severely Burned Pediatric Patients) study in severely burned pediatric patients. However, whether this effect was mediated through a reduction in inflammation or some other biologic process is not fully understood. To deepen the understanding of inflammatory subphenotypes and explore the biologic mechanisms underlying heterogeneous response to TGC. Plasma cytokine measurements and whole-blood transcriptomics from 740 blood samples collected on Pre- and Post-treatment Study Days 0, 2, and 4 from 293 HALF-PINT participants (  = 250 hypoinflammatory and  = 43 hyperinflammatory) were used to identify cytokine and gene expression signatures of differential responses to TGC. Patients with the hyperinflammatory subphenotype had greater baseline expression of genes relating to inflammation, cell-cycle activity, and immunometabolism. Hyperinflammatory patients treated to a target glucose range of 80-110 mg/dl experienced greater reductions in inflammatory cytokines, innate immune gene expression, and heme metabolism gene expression, as well as an increase in lymphocyte gene expression, compared with those treated to a target range of 150-180 mg/dl. Causal mediation testing indicated that these changes partly explained the observed mortality benefit of TGC in the hyperinflammatory subgroup of patients. These findings expand our understanding of the biology underlying inflammatory subphenotypes and provide biologic insight into the mortality benefit of TGC in hyperinflammatory children.
AbstractList Tight glycemic control (TGC) with insulin has not consistently improved outcomes in critically ill children, though prior studies suggested benefit in those with a hyperinflammatory subphenotype. This study examined inflammatory and molecular mechanisms underlying variable TGC responses. Plasma cytokine levels and whole-blood transcriptomics were analyzed from 740 samples of 293 participants in the HALF-PINT trial. Compared with hypoinflammatory patients, those with the hyperinflammatory subphenotype exhibited higher baseline expression of inflammatory, cell-cycle, and immunometabolism genes. Among hyperinflammatory patients, targeting glucose levels of 80-110 mg/dl reduced inflammatory cytokines, innate immune and heme metabolism gene expression, and increased lymphocyte gene expression relative to higher glucose targets. Mediation analysis indicated these biologic changes contributed to the mortality benefit of TGC. These findings clarify inflammatory subphenotypes and provide mechanistic insight into TGC's survival advantage in hyperinflammatory pediatric patients.
Tight glycemic control with insulin (TGC) has not consistently shown benefit in critically ill patients. We previously reported that the subset of children with a hyperinflammatory subphenotype benefitted from TGC in the HALF-PINT study of hyperglycemic children with heart and lung failure and the IIT-SBPP study in severely burned pediatric patients. However, whether this effect was mediated through a reduction in inflammation or some other biological process is not fully understood.RATIONALETight glycemic control with insulin (TGC) has not consistently shown benefit in critically ill patients. We previously reported that the subset of children with a hyperinflammatory subphenotype benefitted from TGC in the HALF-PINT study of hyperglycemic children with heart and lung failure and the IIT-SBPP study in severely burned pediatric patients. However, whether this effect was mediated through a reduction in inflammation or some other biological process is not fully understood.To deepen the understanding of inflammatory subphenotypes and explore the biological mechanisms underlying heterogeneous response to TGC.OBJECTIVESTo deepen the understanding of inflammatory subphenotypes and explore the biological mechanisms underlying heterogeneous response to TGC.Plasma cytokine measurements and whole blood transcriptomics from 740 blood samples collected on pre- and post- treatment study days 0, 2, and 4 from 293 HALF-PINT participants (n=250 hypoinflammatory and n=43 hyperinflammatory) were used to identify cytokine and gene expression signatures of differential responses to TGC.METHODSPlasma cytokine measurements and whole blood transcriptomics from 740 blood samples collected on pre- and post- treatment study days 0, 2, and 4 from 293 HALF-PINT participants (n=250 hypoinflammatory and n=43 hyperinflammatory) were used to identify cytokine and gene expression signatures of differential responses to TGC.Patients with hyperinflammatory subphenotype had greater baseline expression of genes relating to inflammation, cell cycle activity, and immunometabolism. Hyperinflammatory patients treated to a target glucose range of 80-110 mg/dL experienced greater reduction in inflammatory cytokines, innate immune gene expression, and heme metabolism gene expression, as well as an increase in lymphocyte gene expression, compared to those treated to a target range of 150-180 mg/dL. Causal mediation testing indicated that these changes partly explained the observed mortality benefit of TGC in the hyperinflammatory subgroup of patients.MEASUREMENTS AND RESULTSPatients with hyperinflammatory subphenotype had greater baseline expression of genes relating to inflammation, cell cycle activity, and immunometabolism. Hyperinflammatory patients treated to a target glucose range of 80-110 mg/dL experienced greater reduction in inflammatory cytokines, innate immune gene expression, and heme metabolism gene expression, as well as an increase in lymphocyte gene expression, compared to those treated to a target range of 150-180 mg/dL. Causal mediation testing indicated that these changes partly explained the observed mortality benefit of TGC in the hyperinflammatory subgroup of patients.These findings expand our understanding of the biology underlying inflammatory subphenotypes, and provide biological insight into the mortality benefit of TGC in hyperinflammatory children.CONCLUSIONSThese findings expand our understanding of the biology underlying inflammatory subphenotypes, and provide biological insight into the mortality benefit of TGC in hyperinflammatory children.
Tight glycemic control (TGC) with insulin has not consistently shown benefit in critically ill patients. We previously reported that the subset of children with a hyperinflammatory subphenotype benefited from TGC in the HALF-PINT (Heart and Lung Failure - Pediatric Insulin Titration) study of hyperglycemic children with heart and lung failure and the IIT-SBPP (Intensive Insulin Treatment - Severely Burned Pediatric Patients) study in severely burned pediatric patients. However, whether this effect was mediated through a reduction in inflammation or some other biologic process is not fully understood. To deepen the understanding of inflammatory subphenotypes and explore the biologic mechanisms underlying heterogeneous response to TGC. Plasma cytokine measurements and whole-blood transcriptomics from 740 blood samples collected on Pre- and Post-treatment Study Days 0, 2, and 4 from 293 HALF-PINT participants (  = 250 hypoinflammatory and  = 43 hyperinflammatory) were used to identify cytokine and gene expression signatures of differential responses to TGC. Patients with the hyperinflammatory subphenotype had greater baseline expression of genes relating to inflammation, cell-cycle activity, and immunometabolism. Hyperinflammatory patients treated to a target glucose range of 80-110 mg/dl experienced greater reductions in inflammatory cytokines, innate immune gene expression, and heme metabolism gene expression, as well as an increase in lymphocyte gene expression, compared with those treated to a target range of 150-180 mg/dl. Causal mediation testing indicated that these changes partly explained the observed mortality benefit of TGC in the hyperinflammatory subgroup of patients. These findings expand our understanding of the biology underlying inflammatory subphenotypes and provide biologic insight into the mortality benefit of TGC in hyperinflammatory children.
Author Nadkarni, Vinay M.
Markovic, Daniela
Wong, Kayley
McQuillen, Patrick S.
Vangala, Sitaram S.
Balliu, Brunilda
Sapru, Anil
Zinter, Matt S.
Sinha, Pratik
Taylor, Clove S.
Asaro, Lisa A.
Matthay, Michael A.
Gala, Kinisha P.
Agus, Michael S. D.
Pellegrini, Matteo
AuthorAffiliation 5 Department of Computational Medicine; University of California, Los Angeles; Los Angeles, CA, USA
7 Department of Anesthesiology and Critical Care Medicine, Children’s Hospital of Philadelphia, and Perelman School of Medicine, University of Pennsylvania; Philadelphia, PA, USA
1 Department of Pediatrics, Divisions of Critical Care Medicine and Allergy, Immunology, and Bone Marrow Transplant; University of California, San Francisco; San Francisco, CA, USA
9 Department of Anesthesia, Division of Clinical and Translational Research; Washington University, Saint Louis, MO, USA
6 Department of Cardiology, Boston Children’s Hospital, Boston, MA, USA
8 Departments of Pediatrics, Division of Critical Care Medicine and Department of Neurology; University of California, San Francisco; San Francisco, CA, USA
3 Department of Medicine, Division of General Internal Medicine and Health Sciences Research; University of California, Los Angeles; Los Angeles, CA, USA
11 Department of Pediatrics, Division of Me
AuthorAffiliation_xml – name: 1 Department of Pediatrics, Divisions of Critical Care Medicine and Allergy, Immunology, and Bone Marrow Transplant; University of California, San Francisco; San Francisco, CA, USA
– name: 4 Department of Molecular, Cell, and Developmental Biology; University of California, Los Angeles; Los Angeles, CA, USA
– name: 11 Department of Pediatrics, Division of Medical Critical Care, Boston Children’s Hospital; Department of Pediatrics, Harvard Medical School, Boston, MA, USA
– name: 10 Departments of Medicine and Anesthesia, Cardiovascular Research Institute; University of California, San Francisco; San Francisco, CA, USA
– name: 9 Department of Anesthesia, Division of Clinical and Translational Research; Washington University, Saint Louis, MO, USA
– name: 6 Department of Cardiology, Boston Children’s Hospital, Boston, MA, USA
– name: 2 Department of Pediatrics, Division of Critical Care Medicine; University of California, Los Angeles; Los Angeles, CA, USA
– name: 3 Department of Medicine, Division of General Internal Medicine and Health Sciences Research; University of California, Los Angeles; Los Angeles, CA, USA
– name: 7 Department of Anesthesiology and Critical Care Medicine, Children’s Hospital of Philadelphia, and Perelman School of Medicine, University of Pennsylvania; Philadelphia, PA, USA
– name: 5 Department of Computational Medicine; University of California, Los Angeles; Los Angeles, CA, USA
– name: 8 Departments of Pediatrics, Division of Critical Care Medicine and Department of Neurology; University of California, San Francisco; San Francisco, CA, USA
Author_xml – sequence: 1
  givenname: Matt S.
  orcidid: 0000-0003-3351-3278
  surname: Zinter
  fullname: Zinter, Matt S.
– sequence: 2
  givenname: Clove S.
  orcidid: 0009-0001-7434-0951
  surname: Taylor
  fullname: Taylor, Clove S.
– sequence: 3
  givenname: Daniela
  surname: Markovic
  fullname: Markovic, Daniela
– sequence: 4
  givenname: Matteo
  surname: Pellegrini
  fullname: Pellegrini, Matteo
– sequence: 5
  givenname: Kayley
  surname: Wong
  fullname: Wong, Kayley
– sequence: 6
  givenname: Brunilda
  surname: Balliu
  fullname: Balliu, Brunilda
– sequence: 7
  givenname: Kinisha P.
  surname: Gala
  fullname: Gala, Kinisha P.
– sequence: 8
  givenname: Lisa A.
  surname: Asaro
  fullname: Asaro, Lisa A.
– sequence: 9
  givenname: Vinay M.
  surname: Nadkarni
  fullname: Nadkarni, Vinay M.
– sequence: 10
  givenname: Patrick S.
  surname: McQuillen
  fullname: McQuillen, Patrick S.
– sequence: 11
  givenname: Sitaram S.
  surname: Vangala
  fullname: Vangala, Sitaram S.
– sequence: 12
  givenname: Pratik
  surname: Sinha
  fullname: Sinha, Pratik
– sequence: 13
  givenname: Michael A.
  surname: Matthay
  fullname: Matthay, Michael A.
– sequence: 14
  givenname: Michael S. D.
  surname: Agus
  fullname: Agus, Michael S. D.
– sequence: 15
  givenname: Anil
  orcidid: 0000-0003-1528-8249
  surname: Sapru
  fullname: Sapru, Anil
BackLink https://www.ncbi.nlm.nih.gov/pubmed/40493436$$D View this record in MEDLINE/PubMed
BookMark eNpdks1uEzEUhS1URNvAC7BAltiwmeK_yYxXqIT-RAq0QqnEznI814krj53aE6Q8Rt8YhykVsPKV_d2jc6_PKToKMQBCbyk5o3QqPiZj-jNGmCCyog2VN7MX6ITWvK6EbMhRqUnDKyHkj2N0mvM9IZS1lLxCx4IIyQWfnqDHzy76uHYGfwWz0cHlPuO70EHyexfWeNgAvoYBUlxDgLjL-DvkbQwZ8BDx0q03A77yewN9kZjFMKTose5jaf3irIUEYXDa-z2eB-t1Dx2-1YMrtxm7MMqfLy6r2_m3JV6mgr5GL632Gd48nRN0d3mxnF1Xi5ur-ex8URkmpamAMakJIRJka3SrDTdAZNOSlrZTsKKzhNeSge3abrqyprGNJWBrbVarrjOET9CnUXe7WxVbplhK2qttcr1OexW1U_--BLdR6_hTUcZpK2RdFD48KaT4sIM8qN5lA97r35tSnNGm4bItm56g9_-h93GXQpmvUIJyLnlzsPTub0vPXv58VwHYCJgUc05gnxFK1CET6pAJNWZCjZngvwCdka3B
Cites_doi 10.1186/s13054-018-1976-2
10.4239/wjd.v5.i2.89
10.2337/dc08-0561
10.1016/j.cell.2017.11.025
10.1016/j.yjmcc.2009.07.010
10.1056/NEJMoa011300
10.1093/gigascience/giab002
10.1097/CCM.0000000000002370
10.1074/jbc.M807036200
10.1093/bioinformatics/btp616
10.1016/j.cels.2015.12.004
10.18637/jss.v059.i05
10.1080/01621459.2020.1765785
10.1111/j.1742-4658.2006.05224.x
10.2337/diabetes.55.04.06.db05-1434
10.1097/CCM.0000000000006174
10.1016/S2213-2600(20)30366-0
10.1186/s13059-017-1279-y
10.1038/ni.2704
10.1152/ajplung.00336.2015
10.1164/rccm.202311-2086SO
10.1016/S2213-2600(18)30177-2
10.1056/EVIDra2200118
10.1186/s13054-015-1145-9
10.1038/s41422-020-0291-z
10.1164/rccm.201603-0645OC
10.1016/j.cels.2015.09.007
10.1016/S0140-6736(09)60044-1
10.1016/j.cmi.2016.12.033
10.3389/fphar.2017.00146
10.1164/rccm.201002-0190OC
10.1016/j.jss.2007.01.030
10.1056/NEJMoa1612348
10.1164/rccm.202210-1988LE
10.1056/NEJMoa2304855
10.1177/1740774518760300
10.1097/00000542-200404000-00016
10.1126/scitranslmed.aaa0835
10.1126/scitranslmed.3001118
10.1186/s13054-019-2597-0
10.1126/science.1250684
10.1016/S2213-2600(14)70097-9
10.4049/jimmunol.1403045
10.1056/NEJMoa052521
10.1164/rccm.202309-1696SO
10.7554/eLife.27041
10.1530/JME-11-0022
10.1016/j.bios.2020.112726
10.1016/j.cell.2017.12.013
10.1016/j.immuni.2018.09.008
10.1152/ajplung.00018.2021
10.1007/s00134-017-4801-5
10.1152/ajpheart.00092.2021
10.3389/fcimb.2020.607650
10.1038/s41540-019-0105-4
10.1152/ajplung.00278.2022
10.1161/hq0302.105272
10.1182/blood.2019003986
10.1002/JLB.MR0318-104R
10.1172/JCI117433
10.1007/s00134-016-4558-2
ContentType Journal Article
Copyright Copyright American Thoracic Society 2025
Copyright_xml – notice: Copyright American Thoracic Society 2025
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
K9.
NAPCQ
7X8
5PM
DOI 10.1164/rccm.202409-1719OC
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Health & Medical Complete (Alumni)
ProQuest Nursing and Allied Health Premium
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest Health & Medical Complete (Alumni)
Nursing & Allied Health Premium
MEDLINE - Academic
DatabaseTitleList ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1535-4970
EndPage 1473
ExternalDocumentID PMC12318495
40493436
10_1164_rccm_202409_1719OC
Genre Randomized Controlled Trial
Journal Article
GrantInformation_xml – fundername: NIGMS NIH HHS
  grantid: R01GM087285
– fundername: NHLBI NIH HHS
  grantid: K23HL146936
– fundername: NHLBI NIH HHS
  grantid: R01 HL114484
– fundername: NIGMS NIH HHS
  grantid: R35 GM142992
– fundername: NHLBI NIH HHS
  grantid: R01 HL173531
– fundername: NHLBI NIH HHS
  grantid: U01 HL107681
GroupedDBID ---
-~X
.55
.GJ
0R~
1CY
1KJ
23M
2WC
34G
39C
3O-
53G
5GY
5RE
7RV
7X7
88E
8AO
8C1
8FI
8FJ
8FW
8R4
8R5
AAEJM
AAQQT
AAWTL
AAYXX
ABJNI
ABOCM
ABPMR
ABUWG
ACBNA
ACGFO
ACGFS
ADBBV
AENEX
AFCHL
AFFNX
AFKRA
AFUWQ
AHMBA
AI.
AJJEV
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AN0
BAWUL
BENPR
BKEYQ
BNQBC
BPHCQ
BVXVI
C45
CCPQU
CITATION
CS3
DIK
E3Z
EBS
EJD
EMOBN
EX3
F5P
FRP
FYUFA
GX1
H13
HMCUK
HZ~
IH2
J5H
KQ8
L7B
M1P
M5~
N4W
NAPCQ
O9-
OBH
OFXIZ
OGEVE
OHT
OK1
OVD
OVIDX
P2P
PCD
PHGZM
PHGZT
PJZUB
PPXIY
PQQKQ
PROAC
PSQYO
Q2X
RWL
SJN
TAE
TEORI
THO
TR2
UKHRP
VH1
W8F
WH7
WOQ
WOW
X7M
YJK
ZE2
ZGI
ZXP
~02
CGR
CUY
CVF
ECM
EIF
NPM
K9.
7X8
5PM
ID FETCH-LOGICAL-c299c-e229a0009e98ca8ac3ce097808186ef4df03592efd8d6bfc7f7f0ef5acbbddc03
ISSN 1073-449X
1535-4970
IngestDate Thu Aug 21 18:32:41 EDT 2025
Fri Sep 05 15:55:23 EDT 2025
Thu Aug 21 00:41:40 EDT 2025
Wed Aug 06 16:36:27 EDT 2025
Wed Aug 06 20:10:06 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 8
Keywords transcriptomics
critical care outcomes
tight glycemic control
inflammation
causal mediation
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c299c-e229a0009e98ca8ac3ce097808186ef4df03592efd8d6bfc7f7f0ef5acbbddc03
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
MSZ and CST are co-first authors.
Author Contributions: MSZ, CST, DM, and AS made substantial contributions to the conception or design of the work. MSZ, CST, DM, KW, BB, KPG, and AS contributed to the acquisition of data. All authors contributed to the analysis and interpretation of data. MSZ, CST, DM, and AS contributed to drafting the work. All authors contributed to critically reviewing the work for important intellectual content and give final approval of the version to be published. MSZ and AS agree to be accountable for all aspects of the work in ensuring that questions related to the accuracy or integrity of any part of the work are appropriately investigated and resolved.
ORCID 0000-0003-3351-3278
0009-0001-7434-0951
0000-0003-1528-8249
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/12318495
PMID 40493436
PQID 3241339370
PQPubID 40575
PageCount 11
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_12318495
proquest_miscellaneous_3217739834
proquest_journals_3241339370
pubmed_primary_40493436
crossref_primary_10_1164_rccm_202409_1719OC
PublicationCentury 2000
PublicationDate 2025-08-01
PublicationDateYYYYMMDD 2025-08-01
PublicationDate_xml – month: 08
  year: 2025
  text: 2025-08-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: New York
PublicationTitle American journal of respiratory and critical care medicine
PublicationTitleAlternate Am J Respir Crit Care Med
PublicationYear 2025
Publisher American Thoracic Society
Publisher_xml – name: American Thoracic Society
References Aljada A (bib35) 2000; 85
bib37
bib34
bib32
bib33
bib30
bib29
bib27
bib28
bib40
bib47
bib48
bib45
Langouche L (bib4) 2010; 72
bib46
bib43
bib44
bib41
bib42
bib9
bib7
Aljada A (bib36) 2001; 86
bib8
bib5
bib6
bib3
bib38
bib39
bib1
bib2
bib50
bib51
bib14
bib58
bib15
bib59
bib12
bib56
bib13
bib57
bib10
bib54
bib11
bib55
bib52
bib53
Dandona P (bib31) 2001; 86
bib49
bib61
bib62
bib60
bib25
bib26
bib67
bib21
bib65
bib22
bib66
bib63
bib20
bib64
bib18
bib19
bib16
bib17
40569071 - Am J Respir Crit Care Med. 2025 Aug;211(8):1335-1336. doi: 10.1164/rccm.202505-1299ED.
References_xml – ident: bib5
  doi: 10.1186/s13054-018-1976-2
– ident: bib1
  doi: 10.4239/wjd.v5.i2.89
– ident: bib33
  doi: 10.2337/dc08-0561
– ident: bib54
  doi: 10.1016/j.cell.2017.11.025
– ident: bib37
  doi: 10.1016/j.yjmcc.2009.07.010
– ident: bib8
  doi: 10.1056/NEJMoa011300
– ident: bib26
  doi: 10.1093/gigascience/giab002
– ident: bib19
  doi: 10.1097/CCM.0000000000002370
– ident: bib61
  doi: 10.1074/jbc.M807036200
– ident: bib22
  doi: 10.1093/bioinformatics/btp616
– ident: bib25
  doi: 10.1016/j.cels.2015.12.004
– ident: bib29
  doi: 10.18637/jss.v059.i05
– ident: bib28
  doi: 10.1080/01621459.2020.1765785
– ident: bib62
  doi: 10.1111/j.1742-4658.2006.05224.x
– ident: bib3
  doi: 10.2337/diabetes.55.04.06.db05-1434
– ident: bib63
  doi: 10.1097/CCM.0000000000006174
– ident: bib65
  doi: 10.1016/S2213-2600(20)30366-0
– ident: bib41
  doi: 10.1186/s13059-017-1279-y
– ident: bib53
  doi: 10.1038/ni.2704
– ident: bib20
  doi: 10.1152/ajplung.00336.2015
– volume: 72
  start-page: 149
  year: 2010
  ident: bib4
  publication-title: Verh K Acad Geneeskd Belg
– ident: bib67
  doi: 10.1164/rccm.202311-2086SO
– ident: bib15
  doi: 10.1016/S2213-2600(18)30177-2
– ident: bib64
  doi: 10.1056/EVIDra2200118
– ident: bib21
  doi: 10.1186/s13054-015-1145-9
– ident: bib44
  doi: 10.1038/s41422-020-0291-z
– ident: bib14
  doi: 10.1164/rccm.201603-0645OC
– ident: bib40
  doi: 10.1016/j.cels.2015.09.007
– ident: bib10
  doi: 10.1016/S0140-6736(09)60044-1
– ident: bib2
  doi: 10.1016/j.cmi.2016.12.033
– ident: bib56
  doi: 10.3389/fphar.2017.00146
– ident: bib17
  doi: 10.1164/rccm.201002-0190OC
– ident: bib39
  doi: 10.1016/j.jss.2007.01.030
– ident: bib16
  doi: 10.1056/NEJMoa1612348
– ident: bib18
  doi: 10.1164/rccm.202210-1988LE
– ident: bib12
  doi: 10.1056/NEJMoa2304855
– ident: bib30
  doi: 10.1177/1740774518760300
– ident: bib32
  doi: 10.1097/00000542-200404000-00016
– ident: bib49
  doi: 10.1126/scitranslmed.aaa0835
– ident: bib58
  doi: 10.1126/scitranslmed.3001118
– ident: bib46
  doi: 10.1186/s13054-019-2597-0
– ident: bib47
  doi: 10.1126/science.1250684
– ident: bib13
  doi: 10.1016/S2213-2600(14)70097-9
– ident: bib50
  doi: 10.4049/jimmunol.1403045
– volume: 85
  start-page: 2572
  year: 2000
  ident: bib35
  publication-title: J Clin Endocrinol Metab
– ident: bib9
  doi: 10.1056/NEJMoa052521
– volume: 86
  start-page: 450
  year: 2001
  ident: bib36
  publication-title: J Clin Endocrinol Metab
– ident: bib11
  doi: 10.1164/rccm.202309-1696SO
– ident: bib27
  doi: 10.7554/eLife.27041
– ident: bib43
  doi: 10.1530/JME-11-0022
– ident: bib66
  doi: 10.1016/j.bios.2020.112726
– ident: bib52
  doi: 10.1016/j.cell.2017.12.013
– ident: bib51
  doi: 10.1016/j.immuni.2018.09.008
– ident: bib60
  doi: 10.1152/ajplung.00018.2021
– ident: bib7
  doi: 10.1007/s00134-017-4801-5
– ident: bib55
  doi: 10.1152/ajpheart.00092.2021
– ident: bib45
  doi: 10.3389/fcimb.2020.607650
– volume: 86
  start-page: 3257
  year: 2001
  ident: bib31
  publication-title: J Clin Endocrinol Metab
– ident: bib59
  doi: 10.1038/s41540-019-0105-4
– ident: bib42
  doi: 10.1152/ajplung.00278.2022
– ident: bib38
  doi: 10.1161/hq0302.105272
– ident: bib57
  doi: 10.1182/blood.2019003986
– ident: bib48
  doi: 10.1002/JLB.MR0318-104R
– ident: bib34
  doi: 10.1172/JCI117433
– ident: bib6
  doi: 10.1007/s00134-016-4558-2
– reference: 40569071 - Am J Respir Crit Care Med. 2025 Aug;211(8):1335-1336. doi: 10.1164/rccm.202505-1299ED.
SSID ssj0012810
Score 2.4940236
Snippet Tight glycemic control (TGC) with insulin has not consistently shown benefit in critically ill patients. We previously reported that the subset of children...
Tight glycemic control (TGC) with insulin has not consistently improved outcomes in critically ill children, though prior studies suggested benefit in those...
Tight glycemic control with insulin (TGC) has not consistently shown benefit in critically ill patients. We previously reported that the subset of children...
SourceID pubmedcentral
proquest
pubmed
crossref
SourceType Open Access Repository
Aggregation Database
Index Database
StartPage 1463
SubjectTerms Adolescent
Blood Glucose
Burns - complications
Child
Child, Preschool
Critical care
Critical Illness - therapy
Cytokines
Cytokines - blood
Female
Gene expression
Glucose
Glycemic Control - methods
Humans
Hypoglycemic Agents - therapeutic use
Inflammation
Inflammation - blood
Inflammation - drug therapy
Insulin - administration & dosage
Insulin - therapeutic use
Male
Title Biologic Mechanisms Underlying the Heterogeneous Response to Tight Glycemic Control among Differentially Inflamed Patients in the HALF-PINT Trial
URI https://www.ncbi.nlm.nih.gov/pubmed/40493436
https://www.proquest.com/docview/3241339370
https://www.proquest.com/docview/3217739834
https://pubmed.ncbi.nlm.nih.gov/PMC12318495
Volume 211
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEF6FIiEuiDcpBS0St8jFj7W9PlaBEhCpCqRSxcXyrtdqpJCgxD20_4Ify52ZXa-9TkCiXKzItia25_PsjOebGUJeVyLAlGHhKTAEEKCkzONC-l6VJcLHifAJx0Lh6UkyOWMfz-PzweCXw1q6rMWhvP5jXcn_aBX2gV6xSvYGmm2Fwg74DfqFLWgYtv-kYzNIci5HU4UFvPPNd6S7lMjRtFVQE6S7rECCQq7rF8OI1eMyZhiWj94vrqTmx48bzrqZPvS2mZsC7_9icQVWpALkgG96atqwbiw9cnL06dg7_XAyG83wfl1Xt80FOc0p1k5iXxfU2UELmoC2nef_hr0s1qaiqK5HXw93PzOMkYLqHMHSoxUYv656vuiMP34iwYSVlahW7jePMG4Zd9ZMg2HyGNNDeGEVs6Y7xnl5vmvbwyBwQMwdSw0rROSs-gEzE1V2V5SEAQzWUmLbAnB_Mi9Ig6xpuNlr3721rLZkRx1mJSxHGbmRkRsZt8jtMAWXD7kEn7vkV8ibJhrNTdpar4S92b2Ovj-1EyRtc30d52l2n9xroh56ZCD8gAzU8iG5M230_Yj8tEimHZJph2QKUKM9JFOLZFqvqEYytUimDZKpRjLtI5laJFOLZDpfGvEWyVQj-TE5O343G0-8ZliIJ8Gjkp4Kw6zAiEFlXBa8kJFUWKOkWzaqipUVNqsMVVXyMhGVTKu08lUVF1KIspR-9ITsLVdL9YzQEnPrCVg3cNdZloUikrEQvChlKVmqkiEZ2Uee_zA9YfK_K3lIDqxW8uaF2-QRprOxF6U_JK_aw2DZMV1X6AcJ5wRpGmU8YkPy1Cix_TsGgX3EIrgU3lNvewJ2je8fWc4vdPd4cFUDzrJ4_0Z38Zzc7V7EA7JXry_VC3DHa_FSg_c39K_njg
linkProvider Colorado Alliance of Research Libraries
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Biologic+Mechanisms+Underlying+the+Heterogeneous+Response+to+Tight+Glycemic+Control+among+Differentially+Inflamed+Patients+in+the+HALF-PINT+Trial&rft.jtitle=American+journal+of+respiratory+and+critical+care+medicine&rft.au=Zinter%2C+Matt+S.&rft.au=Taylor%2C+Clove+S.&rft.au=Markovic%2C+Daniela&rft.au=Pellegrini%2C+Matteo&rft.date=2025-08-01&rft.issn=1073-449X&rft.eissn=1535-4970&rft.volume=211&rft.issue=8&rft.spage=1463&rft.epage=1473&rft_id=info:doi/10.1164%2Frccm.202409-1719OC&rft.externalDBID=n%2Fa&rft.externalDocID=10_1164_rccm_202409_1719OC
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1073-449X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1073-449X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1073-449X&client=summon