Semantic sensor data integration for talent development via hybrid multi‐objective evolutionary algorithm
In this work, we propose a new hybrid Multi‐Objective Evolutionary Algorithm (hMOEA) specifically designed for semantic sensor data integration, targeting talent development within the burgeoning field of the Semantic Internet of Things (SIoT). Our approach synergizes the capabilities of Multi‐Objec...
Saved in:
| Published in | Internet technology letters Vol. 8; no. 2 |
|---|---|
| Main Authors | , , |
| Format | Journal Article |
| Language | English |
| Published |
Chichester, UK
John Wiley & Sons, Ltd
01.03.2025
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 2476-1508 2476-1508 |
| DOI | 10.1002/itl2.557 |
Cover
| Abstract | In this work, we propose a new hybrid Multi‐Objective Evolutionary Algorithm (hMOEA) specifically designed for semantic sensor data integration, targeting talent development within the burgeoning field of the Semantic Internet of Things (SIoT). Our approach synergizes the capabilities of Multi‐Objective Particle Swarm Optimization and Genetic Algorithms to tackle the sophisticated challenges inherent in Sensor Ontology Matching (SOM). This innovative hMOEA framework is adapt at discerning precise semantic correlations among diverse ontologies, thereby facilitating seamless interoperability and enhancing the functionality of IoT applications. Central to our contributions are the development of an advanced multi‐objective optimization model that underpins the SOM process, the implementation of the hMOEA framework which sets a new benchmark for accurate semantic sensor data integration, and the rigorous validation of hMOEA's superiority through extensive testing in varied real‐world SOM scenarios. This research not only marks a significant advancement in SOM but also highlights the critical role of cutting‐edge SOM methodologies in educational curricula, for example, the new business subject education proposed by China in recent years, aimed at equipping future professionals with the necessary skills to innovate and lead in the SIoT and SW domains. |
|---|---|
| AbstractList | In this work, we propose a new hybrid Multi‐Objective Evolutionary Algorithm (hMOEA) specifically designed for semantic sensor data integration, targeting talent development within the burgeoning field of the Semantic Internet of Things (SIoT). Our approach synergizes the capabilities of Multi‐Objective Particle Swarm Optimization and Genetic Algorithms to tackle the sophisticated challenges inherent in Sensor Ontology Matching (SOM). This innovative hMOEA framework is adapt at discerning precise semantic correlations among diverse ontologies, thereby facilitating seamless interoperability and enhancing the functionality of IoT applications. Central to our contributions are the development of an advanced multi‐objective optimization model that underpins the SOM process, the implementation of the hMOEA framework which sets a new benchmark for accurate semantic sensor data integration, and the rigorous validation of hMOEA's superiority through extensive testing in varied real‐world SOM scenarios. This research not only marks a significant advancement in SOM but also highlights the critical role of cutting‐edge SOM methodologies in educational curricula, for example, the new business subject education proposed by China in recent years, aimed at equipping future professionals with the necessary skills to innovate and lead in the SIoT and SW domains. |
| Author | Luo, Fang Geng, Yu‐Cheng Yang, Ya‐Juan |
| Author_xml | – sequence: 1 givenname: Fang orcidid: 0009-0001-4386-9609 surname: Luo fullname: Luo, Fang organization: Dongguan City University – sequence: 2 givenname: Ya‐Juan orcidid: 0000-0003-3651-0881 surname: Yang fullname: Yang, Ya‐Juan email: 1909853gbm30002@student.must.edu.mo organization: Dongguan City University – sequence: 3 givenname: Yu‐Cheng orcidid: 0009-0001-8362-0197 surname: Geng fullname: Geng, Yu‐Cheng organization: Dongguan City University |
| BookMark | eNp1kMtOwzAQRS1UJEqpxCd4yyLFduI8lqjiUakSC8o6mtiT1sVxqsRNlR2fwDfyJSQqCzas5mp07mh0rsnE1Q4JueVswRkT98ZbsZAyuSBTESVxwCVLJ3_yFZm37Z4xxrMwSjM5JR9vWIHzRtEWXVs3VIMHapzHbQPe1I6Ww9KDReepxg5tfajG3Bmgu75ojKbV0Xrz_flVF3tU3nRIsavtcWxD01Ow27oxflfdkMsSbIvz3zkj70-Pm-VLsH59Xi0f1oESWZYEaYwcpCokRIUIVaIxRlYKpoVWUiCA1DoLUSDquEQM0ziJVIk8lgxVGEI4I3fnu0d3gP4E1uaHxlTDLzln-SgqH0Xlg6iBDc7syVjs_-Xy1WYtRv4HCbFw7g |
| CitedBy_id | crossref_primary_10_1002_itl2_618 |
| ContentType | Journal Article |
| Copyright | 2024 The Author(s). published by John Wiley & Sons Ltd. |
| Copyright_xml | – notice: 2024 The Author(s). published by John Wiley & Sons Ltd. |
| DBID | 24P ADTOC UNPAY |
| DOI | 10.1002/itl2.557 |
| DatabaseName | Wiley Online Library Open Access Unpaywall for CDI: Periodical Content Unpaywall |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher – sequence: 2 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 2476-1508 |
| EndPage | n/a |
| ExternalDocumentID | 10.1002/itl2.557 ITL2557 |
| Genre | researchArticle |
| GrantInformation_xml | – fundername: Education Department of Guangdong Province funderid: 2022GXJK433; YJGH[2021]29‐700; DLC[2021]96‐yjjg007; 2021ZLGC203 & 205 |
| GroupedDBID | 0R~ 1OC 24P 33P AAHHS AAHQN AAMNL AANLZ AAYCA AAZKR ABCUV ABJNI ACCFJ ACCZN ACGFS ACPOU ACXQS ADBBV ADKYN ADMLS ADXAS ADZMN ADZOD AEEZP AEIGN AEQDE AEUYR AFFPM AFWVQ AHBTC AITYG AIURR AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMYDB BFHJK DCZOG EBS EJD HGLYW LATKE LEEKS LUTES LYRES MEWTI O9- P2W ROL SUPJJ WXSBR ZZTAW AAMMB ADTOC AEFGJ AEYWJ AGHNM AGXDD AGYGG AIDQK AIDYY UNPAY |
| ID | FETCH-LOGICAL-c2997-86e1a5cb5a4b23c7de6e0f20d2dc52eaa5dd93e2eed6fee38674cfe1650ec33a3 |
| IEDL.DBID | UNPAY |
| ISSN | 2476-1508 |
| IngestDate | Sun Sep 07 10:49:44 EDT 2025 Wed Mar 12 09:40:35 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 2 |
| Language | English |
| License | Attribution cc-by |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c2997-86e1a5cb5a4b23c7de6e0f20d2dc52eaa5dd93e2eed6fee38674cfe1650ec33a3 |
| ORCID | 0009-0001-8362-0197 0009-0001-4386-9609 0000-0003-3651-0881 |
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://doi.org/10.1002/itl2.557 |
| PageCount | 6 |
| ParticipantIDs | unpaywall_primary_10_1002_itl2_557 wiley_primary_10_1002_itl2_557_ITL2557 |
| PublicationCentury | 2000 |
| PublicationDate | March/April 2025 |
| PublicationDateYYYYMMDD | 2025-03-01 |
| PublicationDate_xml | – month: 03 year: 2025 text: March/April 2025 |
| PublicationDecade | 2020 |
| PublicationPlace | Chichester, UK |
| PublicationPlace_xml | – name: Chichester, UK |
| PublicationTitle | Internet technology letters |
| PublicationYear | 2025 |
| Publisher | John Wiley & Sons, Ltd |
| Publisher_xml | – name: John Wiley & Sons, Ltd |
| References | 1989; 40 2023; 40 2017; 8 2021; 21 2020; 20 2013; 13 2002; 6 2019; 56 2023; 9 2019; 48 2023; 132 2017 2016 2012; 17 2024 2021; 2021 |
| References_xml | – volume: 20 start-page: 2056 issue: 7 year: 2020 article-title: Optimizing sensor ontology alignment through compact co‐firefly algorithm publication-title: Sensors – volume: 9 start-page: 435 issue: 1 year: 2023 end-page: 462 article-title: A multi‐objective particle swarm optimization with density and distribution‐based competitive mechanism for sensor ontology meta‐matching publication-title: Complex Intell Syst – volume: 21 start-page: 24570 issue: 21 year: 2021 end-page: 24578 article-title: Matching sensor ontologies with multi‐context similarity measure and parallel compact differential evolution algorithm publication-title: IEEE Sens J – volume: 6 start-page: 182 issue: 2 year: 2002 end-page: 197 article-title: A fast and elitist multiobjective genetic algorithm: NSGA‐II publication-title: IEEE Trans Evol Comput – volume: 132 start-page: 190 year: 2023 end-page: 198 article-title: Complex ontology alignment for autonomous systems via the compact co‐evolutionary brain storm optimization algorithm publication-title: ISA Trans – start-page: 1 year: 2024 end-page: 13 article-title: Similarity feature construction for semantic sensor ontology integration via light genetic programming publication-title: IEEE Internet Things J – start-page: 91 year: 2016 end-page: 95 – volume: 13 start-page: 12581 issue: 9 year: 2013 end-page: 12604 article-title: Ontology alignment architecture for semantic sensor web integration publication-title: Sensors – volume: 17 start-page: 25 year: 2012 end-page: 32 article-title: The SSN ontology of the W3C semantic sensor network incubator group publication-title: J Web Semant – volume: 56 start-page: 1 year: 2019 end-page: 10 article-title: SOSA: a lightweight ontology for sensors, observations, samples, and actuators publication-title: J Web Semant – volume: 40 issue: 4 year: 2023 article-title: Generative adversarial learning for optimizing ontology alignment publication-title: Expert Syst – volume: 8 start-page: 766 issue: 4 year: 2017 end-page: 773 article-title: Using artificial bee colony algorithm for optimizing ontology alignment publication-title: J Inf Hiding Multim Signal Process – volume: 40 start-page: 145 issue: 3 year: 1989 end-page: 151 article-title: Recall‐precision trade‐off: a derivation publication-title: J Am Soc Inf Sci – volume: 2021 start-page: 1 year: 2021 end-page: 11 article-title: Matching sensor ontologies with simulated annealing particle swarm optimization publication-title: Mob Inf Syst – start-page: 3 year: 2017 end-page: 36 – volume: 48 start-page: 25 year: 2019 end-page: 30 article-title: Using compact evolutionary tabu search algorithm for matching sensor ontologies publication-title: Swarm Evol Comput – start-page: 90 year: 2016 end-page: 97 |
| SSID | ssj0001934895 |
| Score | 2.3263264 |
| Snippet | In this work, we propose a new hybrid Multi‐Objective Evolutionary Algorithm (hMOEA) specifically designed for semantic sensor data integration, targeting... |
| SourceID | unpaywall wiley |
| SourceType | Open Access Repository Publisher |
| SubjectTerms | evolutionary multi‐objective ontology semantic talent |
| SummonAdditionalLinks | – databaseName: Wiley Online Library Open Access dbid: 24P link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3JTsMwELWgHKAHxCrKJgshbqGN4yU5IkRVECAkWqm3yLEdWmiTqhvqjU_gG_kSxknawgGJu315tmfeWG_eIHQuhKddzn1HuEw4VAYQB5kbO0IBvXaZdLlve4cfHnmjRe_arF2oKm0vTO4Psfhwsy8ji9f2gctoVF2ahgKW5JIxsYrWXKAx9nYT-rT8Xwk86mdDVwgV3LG253Pv2RqpzjeX0fokGcjZu-z1ftPTLL_Ut9BmQQzxVX6S22jFJDuo_MMucBe9PZs-ANFVeATFZzrEVt6J54YPADAGBoqBTUMiwXqpBsLTrsSdme3NwpmA8OvjM41e81CHzbS4fQAFlr2XdNgdd_p7qFW_aV43nGJYgqOIdVT1uXElUxGTNCKeEtpwU4tJTROtGDFSMq0DzxDIiTw2xvO5oCo2LjA0ozxPevuolKSJOUAYqpxAUmF9dAIaxzqIuPI5szY_mggTV9DZArRwkJtihLn9MQktsiEgW0EXGZp_Lghvm_dQz4jD_y48QhvEDt_NBGDHqDQeTswJMIJxdJod_TdsNrXk priority: 102 providerName: Wiley-Blackwell |
| Title | Semantic sensor data integration for talent development via hybrid multi‐objective evolutionary algorithm |
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fitl2.557 https://doi.org/10.1002/itl2.557 |
| UnpaywallVersion | publishedVersion |
| Volume | 8 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjZ3LSgMxFIYPtV1IF97FipYg4m5qJzNJZpZFLFW0FGyhroZMkrG1lym9SV35CD6jT2LSabUVFPchhD8h5z_knC8A54w50qbUs5hNmOVyX9-DxI4sJrS9tgm3qWd6h--rtNJwb5ukmQK07IVZf7_Hl1oxXCCEbUCGEu2205BpVGulR_NnnMuoZXDmS6bsyvAsbE76Az574d3uuu2cx43ydlK_OJrjBk25SKcwGYcF8foDxvjXknZga2EaUSnZ5V1Iqf4eZFdQgvvQeVA9LVJboJFOTOMhMqWfaAmD0OIj7U6Rdto6yCD5XSmEpm2OWjPTt4XmxYUfb-9x-Jxcg0hNFyeTD2eId5_iYXvc6h1Ao3xdv6pYi48ULIENbdWjyuZEhIS7IXYEk4qqYoSLEktBsOKcSOk7Cut4SSOlHI8yV0TK1u5NCcfhziGk-3FfHQHSGZDPXWYYO74bRdIPqfAoMQggiZmKcnD2JXwwSIAZQYJGxoFRLtDK5eBiviO_Dghu6nc612HH_5ntBNLj4USdanMwDvOwgd1afnFKPgErJr62 |
| linkProvider | Unpaywall |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjZ3JTsMwEIZHLAfggFjFjoUQt0C9J-KEEFWBgpAoErfIsR1aKCkqpag3HoFn5Emwk6aFAxJ35_LH9vwzGn8DsC8lNViIMJCYy4CpyN2DHKeB1M5eY66wCP3b4atrUbtjF_f8fgKOy7cwBR9iVHDzJyO_r_0B9wXpozE11IlJDjmXkzDNBBY-8yLsZlxgiSgL86krhEkReO55CZ-tkKPy4zmYecte1OBdtdu__WkeYKoLMD90huik-JWLMGGzJZj7wQtchqdb--yUaGn06rLPThf5_k5UEh-cwshZUOTstIskyIzbgVC_pVBz4B9nobyD8Ovjs5M8Fncdsv3h9nNaINV-6HRbvebzCtxVzxqntWA4LSHQxCNVQ2Gx4jrhiiWEammssJWUVAwxmhOrFDcmopa4oChSa2koJNOpxc6iWU2poqswlXUyuwbIpTmRYtKDdCKWpiZKhA4F95wfQ6RN12FvJFr8UlAx4oJ_TGKvbOyUXYeDXM0_F8TnjbpLaOTGfxfuwkytcVWP6-fXl5swS_wk3rwbbAumet03u-3sQS_ZybfBN0mTuVA |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjZ3JTsMwEIZHUCSWA2IVOxZC3EIbx0siTgioyqpKFIlb5NgOFEpblbaoNx6BZ-RJGCcthQMSd-fyx_b8Y818A7AvZWB8IUJP-lx6TEV4D3I_9aRGe-1z5YvQ9Q5f34jKHbu45_cTcDTqhcn5EN8Pbu5kZPe1O-C2bdLimBqKYtJDzuUkTDGOgdBhnVl1_MASBSzMpq5QJoXnuOcj-GyJFkcfz8FMr9lWgzfVaPz2p1mAKS_A_NAZkuP8Vy7ChG0uwdwPXuAyPN_aF1SirskrZp-tDnH1nWREfECFCVpQgnYaIwkx43Ig0q8r8jhwzVkkqyD8fP9oJU_5XUdsf7j9UAuiGg-tTr37-LICd-Wz2knFG05L8DR1SNVQWF9xnXDFEhpoaaywpZSWDDWaU6sUNyYKLMWgKFJrg1BIplPro0WzOghUsAqFZqtp14BgmhMpJh1IJ2JpaqJE6FBwx_kxVNp0Hfa-RYvbORUjzvnHNHbKxqjsOhxkav65ID6vXWFCIzf-u3AXpqun5fjq_OZyE2apG8SbFYNtQaHb6dltdAfdZCfbBV9dVbjf |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjZ3fSsMwFMbD3C5kF_4XJypBxLvONW2S9nKIY4oOwQ3mVUmT1M1t7ei6ybzyEXxGn8Sk7XQTFO9DCF9CznfIOb8AcEapJUxCHIOamBo2c9U9iM3AoFzZaxMzkzi6d_iuRZod-6aLuwUAF70wq-_36EIphqoY0zVQIli57SIodVr39Uf9Z5xNiaFx5gum7NLwMlifhmM2f2HD4artTONGYzOrX5ykuEFdLjKoThO_yl9_wBj_WtIW2MhNI6xnu7wNCjLcAeUllOAuGDzIkRKpz-FEJaZRDHXpJ1zAIJT4ULlTqJy2CjJQfFcKwVmfwd5c923BtLjw4-098p-zaxDKWX4yWTyHbPgUxf2kN9oDncZV-7Jp5B8pGBxp2qpDpMkw9zGzfWRxKiSRtQDVBBIcI8kYFsK1JFLxkgRSWg6hNg-kqdyb5JbFrH1QDKNQHgCoMiCX2VQzdlw7CITrE-4QrBFAAlEZVMDpl_DeOANmeBkaGXlaOU8pVwHn6Y78OsC7bt-qXIce_me2I1BM4qk8VuYg8U_y8_EJuPu93w |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Semantic+sensor+data+integration+for+talent+development+via+hybrid+multi%E2%80%90objective+evolutionary+algorithm&rft.jtitle=Internet+technology+letters&rft.au=Luo%2C+Fang&rft.au=Yang%2C+Ya%E2%80%90Juan&rft.au=Geng%2C+Yu%E2%80%90Cheng&rft.date=2025-03-01&rft.pub=John+Wiley+%26+Sons%2C+Ltd&rft.issn=2476-1508&rft.eissn=2476-1508&rft.volume=8&rft.issue=2&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fitl2.557&rft.externalDBID=10.1002%252Fitl2.557&rft.externalDocID=ITL2557 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2476-1508&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2476-1508&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2476-1508&client=summon |