An intelligent Hybrid‐Q Learning clustering approach and resource management within heterogeneous cluster networks based on reinforcement learning
Recently, heterogeneous cluster networks (HCNs) have been the subject of significant research. The nature of the next‐generation HCN environment is decentralized and highly dynamic; optimization techniques cannot quite express the dynamic characteristics of node resource utilization and communicatio...
Saved in:
| Published in | Transactions on emerging telecommunications technologies Vol. 35; no. 4 |
|---|---|
| Main Authors | , , , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
01.04.2024
|
| Online Access | Get full text |
| ISSN | 2161-3915 2161-5748 2161-3915 |
| DOI | 10.1002/ett.4852 |
Cover
| Abstract | Recently, heterogeneous cluster networks (HCNs) have been the subject of significant research. The nature of the next‐generation HCN environment is decentralized and highly dynamic; optimization techniques cannot quite express the dynamic characteristics of node resource utilization and communication of HCN networks. In this article, we present an intelligent Hybrid‐Q Learning approach (Hybrid QL)‐based clustering approach for IoT and WSN. Using the self‐learning abilities of (HCNs), we propose a model for dynamic accessing systems on nodes and agents that identify the best possible paths and communication over heterogeneous cluster networks using reinforcement learning. In addition to reducing energy consumption, it creates efficient and effective resource utilization and node communication performance. Through increased throughput and link management, the HCN aims to reduce energy consumption. The proposed model is compared to existing approaches based on various scenarios. Finally, the results of the evaluation tasks demonstrate high accuracy, low‐level complexity, fast dynamic response times, and scalability for heterogeneous cluster networks. Our model showed exceptional node allocation efficiency for dynamic IOT environments and WSNs.
We propose a Hybrid‐Q Learning (Hybrid QL)‐based clustering for IoT and WSN. Self‐learning solution to solve the problem of decentralized and dynamic self‐access for heterogeneous nodes. Our proposed model dynamic accessing system on node/agents identifies the best possible paths and communication over heterogeneous cluster networks using self‐learning abilities (HCNs). |
|---|---|
| AbstractList | Recently, heterogeneous cluster networks (HCNs) have been the subject of significant research. The nature of the next‐generation HCN environment is decentralized and highly dynamic; optimization techniques cannot quite express the dynamic characteristics of node resource utilization and communication of HCN networks. In this article, we present an intelligent Hybrid‐Q Learning approach (Hybrid QL)‐based clustering approach for IoT and WSN. Using the self‐learning abilities of (HCNs), we propose a model for dynamic accessing systems on nodes and agents that identify the best possible paths and communication over heterogeneous cluster networks using reinforcement learning. In addition to reducing energy consumption, it creates efficient and effective resource utilization and node communication performance. Through increased throughput and link management, the HCN aims to reduce energy consumption. The proposed model is compared to existing approaches based on various scenarios. Finally, the results of the evaluation tasks demonstrate high accuracy, low‐level complexity, fast dynamic response times, and scalability for heterogeneous cluster networks. Our model showed exceptional node allocation efficiency for dynamic IOT environments and WSNs.
We propose a Hybrid‐Q Learning (Hybrid QL)‐based clustering for IoT and WSN. Self‐learning solution to solve the problem of decentralized and dynamic self‐access for heterogeneous nodes. Our proposed model dynamic accessing system on node/agents identifies the best possible paths and communication over heterogeneous cluster networks using self‐learning abilities (HCNs). Recently, heterogeneous cluster networks (HCNs) have been the subject of significant research. The nature of the next‐generation HCN environment is decentralized and highly dynamic; optimization techniques cannot quite express the dynamic characteristics of node resource utilization and communication of HCN networks. In this article, we present an intelligent Hybrid‐Q Learning approach (Hybrid QL)‐based clustering approach for IoT and WSN. Using the self‐learning abilities of (HCNs), we propose a model for dynamic accessing systems on nodes and agents that identify the best possible paths and communication over heterogeneous cluster networks using reinforcement learning. In addition to reducing energy consumption, it creates efficient and effective resource utilization and node communication performance. Through increased throughput and link management, the HCN aims to reduce energy consumption. The proposed model is compared to existing approaches based on various scenarios. Finally, the results of the evaluation tasks demonstrate high accuracy, low‐level complexity, fast dynamic response times, and scalability for heterogeneous cluster networks. Our model showed exceptional node allocation efficiency for dynamic IOT environments and WSNs. |
| Author | Hussain, Saqib Zhu, Nafei Dharejo, Fayaz Ali Mughal, Fahad Razaque Almutiq, Mutiq Zardari, Zulfiqar Ali Jain, Deepak Kumar He, Jingsha |
| Author_xml | – sequence: 1 givenname: Fahad Razaque surname: Mughal fullname: Mughal, Fahad Razaque organization: Beijing University of Technology – sequence: 2 givenname: Jingsha surname: He fullname: He, Jingsha organization: Beijing University of Technology – sequence: 3 givenname: Nafei surname: Zhu fullname: Zhu, Nafei email: znf@bjut.edu.cn organization: Beijing University of Technology – sequence: 4 givenname: Mutiq orcidid: 0000-0002-4611-6493 surname: Almutiq fullname: Almutiq, Mutiq organization: Qassim University – sequence: 5 givenname: Fayaz Ali surname: Dharejo fullname: Dharejo, Fayaz Ali organization: Khalifa University of Science of Technology – sequence: 6 givenname: Deepak Kumar surname: Jain fullname: Jain, Deepak Kumar organization: Symbiosis International University – sequence: 7 givenname: Saqib surname: Hussain fullname: Hussain, Saqib organization: Beijing University of Technology – sequence: 8 givenname: Zulfiqar Ali surname: Zardari fullname: Zardari, Zulfiqar Ali organization: Begum Nusrat Bhutto Women University |
| BookMark | eNp9kMtKAzEUhoNUsNaCj5ClLqbOpHNdllKtUBChroeTzJk2miZDklK68xFc-IQ-idOLIKKeTc7i-79D_nPS0UYjIZdROIjCkN2g94M4T9gJ6bIojYJhESWdb_sZ6Tv3HLaTJSyJ8y55H2kqtUel5AK1p9Mtt7L6eH17pDMEq6VeUKHWzqPdrdA01oBYUtAVtejM2gqkK9CwwNUuv5F-KTVdYhswrRHN2n0JqEa_MfbFUQ4OK2p0q5C6Nq1jH1bHixfktAblsH98e-TpdjIfT4PZw939eDQLBCsKFtRZDSCKWMSJwCoJOcsrjIsaof0azzlUmFU8zDMIOaZpkvKs5iKrMxazYVLgsEeuD961bmC7AaXKxsoV2G0ZheWu0bJttNw12rKDAyuscc5iXQrpwUujvQWpfgtc_Qj84w4O6EYq3P7JlZP5fM9_Arminao |
| CitedBy_id | crossref_primary_10_1007_s13369_024_09769_x crossref_primary_10_1038_s41598_024_78239_z crossref_primary_10_1109_ACCESS_2024_3502458 crossref_primary_10_1016_j_comcom_2023_10_026 |
| Cites_doi | 10.1007/s11276-022-02926-w 10.1109/ACCESS.2018.2844882 10.1109/ACCESS.2019.2930628 10.1109/ACCESS.2020.3026938 10.1109/GLOBECOM48099.2022.10000839 10.1109/JIOT.2020.2989924 10.1007/s10994-021-06047-x 10.1109/TGCN.2022.3143991 10.1109/MNET.011.2000303 10.1016/j.aiopen.2021.01.001 10.1007/s11276-018-1696-1 10.1109/TFUZZ.2022.3152106 10.1016/j.micpro.2022.104617 10.1109/JIOT.2022.3146239 10.1109/TGCN.2018.2801725 10.1016/j.jestch.2018.09.003 10.1109/TWC.2019.2933417 10.1089/big.2020.0284 10.1016/j.jnca.2020.102539 10.1016/j.aeue.2019.02.006 10.1109/TII.2021.3064351 |
| ContentType | Journal Article |
| Copyright | 2023 John Wiley & Sons, Ltd. |
| Copyright_xml | – notice: 2023 John Wiley & Sons, Ltd. |
| DBID | AAYXX CITATION ADTOC UNPAY |
| DOI | 10.1002/ett.4852 |
| DatabaseName | CrossRef Unpaywall for CDI: Periodical Content Unpaywall |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | CrossRef |
| Database_xml | – sequence: 1 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 2161-3915 |
| EndPage | n/a |
| ExternalDocumentID | 10.1002/ett.4852 10_1002_ett_4852 ETT4852 |
| Genre | researchArticle |
| GroupedDBID | .GA .Y3 05W 1OC 31~ 50Z 8-0 8-1 8-3 8-4 8-5 930 A03 AAEVG AAHHS AAHQN AAMNL AANHP AANLZ AAXRX AAYCA AAZKR ABCUV ACAHQ ACBWZ ACCFJ ACCZN ACPOU ACRPL ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN AEEZP AEGXH AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZFZN BDRZF BFHJK BHBCM BMNLL BMXJE BRXPI D-E D-F DCZOG DPXWK DRFUL DRSTM EBS EJD F00 F01 F04 F21 G-S GODZA HGLYW IN- LATKE LEEKS LH4 LITHE LOXES LUTES LW6 LYRES MEWTI MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM RX1 SUPJJ V2E WIH WIK WXSBR AAMMB AAYXX ADMLS AEFGJ AGHNM AGQPQ AGXDD AGYGG AIDQK AIDYY CITATION ADTOC UNPAY |
| ID | FETCH-LOGICAL-c2992-f7faac94c45ced50b28de49fea548b8bade7db087a0be6656b7fbc7f7242359e3 |
| IEDL.DBID | UNPAY |
| ISSN | 2161-3915 2161-5748 |
| IngestDate | Wed Oct 01 16:49:46 EDT 2025 Wed Oct 01 04:28:14 EDT 2025 Thu Apr 24 23:02:26 EDT 2025 Wed Jan 22 17:19:36 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 4 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c2992-f7faac94c45ced50b28de49fea548b8bade7db087a0be6656b7fbc7f7242359e3 |
| ORCID | 0000-0002-4611-6493 |
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/ett.4852 |
| PageCount | 20 |
| ParticipantIDs | unpaywall_primary_10_1002_ett_4852 crossref_citationtrail_10_1002_ett_4852 crossref_primary_10_1002_ett_4852 wiley_primary_10_1002_ett_4852_ETT4852 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | April 2024 2024-04-00 |
| PublicationDateYYYYMMDD | 2024-04-01 |
| PublicationDate_xml | – month: 04 year: 2024 text: April 2024 |
| PublicationDecade | 2020 |
| PublicationTitle | Transactions on emerging telecommunications technologies |
| PublicationYear | 2024 |
| References | 2021; 9 2019; 7 2020; 20 2022; 93 2019; 2 2019; 102 2019; 18 2022; 28 2020; 8 2018; 6 2020; 7 2021; 35 2018; 2 2022; 2022 2020; 1 2022 2019; 22 2021 2020 2022; 6 2020; 154 2021; 17 2022; 9 2019; 25 2022; 34 2019 2022; 35 2018 2017 2022; 30 2021; 110 e_1_2_7_6_1 e_1_2_7_5_1 Rakshit T (e_1_2_7_31_1) 2019 Beni PS (e_1_2_7_7_1) 2021; 9 Sadia M (e_1_2_7_20_1) 2019 e_1_2_7_9_1 e_1_2_7_8_1 Xiaofang Z (e_1_2_7_36_1) 2022; 34 e_1_2_7_19_1 e_1_2_7_17_1 e_1_2_7_16_1 Xinyu F (e_1_2_7_40_1) 2020 e_1_2_7_14_1 Yujia G (e_1_2_7_44_1) 2020 e_1_2_7_12_1 Wang X (e_1_2_7_41_1) 2020 e_1_2_7_11_1 e_1_2_7_45_1 e_1_2_7_10_1 e_1_2_7_46_1 e_1_2_7_47_1 e_1_2_7_48_1 e_1_2_7_27_1 Gupta Brij B (e_1_2_7_4_1) 2020 e_1_2_7_28_1 e_1_2_7_29_1 Xuan‐Son V (e_1_2_7_43_1) 2019 Qiang F (e_1_2_7_26_1) 2021; 9 Arbaaz K (e_1_2_7_32_1) 2020 Kapal D (e_1_2_7_13_1) 2021; 9 Ziniu H (e_1_2_7_39_1) 2020 Veena A (e_1_2_7_15_1) 2020 Mubashir I (e_1_2_7_37_1) 2022; 35 e_1_2_7_30_1 e_1_2_7_25_1 Zhixue W (e_1_2_7_2_1) 2022; 2022 Yujia G (e_1_2_7_18_1) 2021 e_1_2_7_23_1 e_1_2_7_33_1 e_1_2_7_22_1 e_1_2_7_34_1 e_1_2_7_21_1 e_1_2_7_35_1 Sadia M (e_1_2_7_3_1) 2019 Jiarui J (e_1_2_7_42_1) 2020 Wan Guojia (e_1_2_7_38_1) 2020 Annica K (e_1_2_7_24_1) 2020; 20 |
| References_xml | – volume: 9 start-page: 5189 issue: 7 year: 2021 end-page: 5199 article-title: Delay‐aware resource allocation in fog‐assisted IoT networks through reinforcement learning publication-title: Internet Things J – volume: 1 start-page: 57 year: 2020 end-page: 81 article-title: Graph neural networks: a review of methods and applications publication-title: AI Open Elsevier – start-page: 3595 year: 2019 end-page: 3599 – volume: 6 start-page: 685 year: 2022 end-page: 694 article-title: Energy optimization for green communication in IoT using Harris Hawks optimization publication-title: IEEE Trans Green Commun Network – start-page: 823 year: 2020 end-page: 834 – volume: 7 start-page: 9805 year: 2020 end-page: 9818 article-title: Routing protocol design for underwater optical wireless sensor networks: a multiagent reinforcement learning approach publication-title: IEEE Internet Things J – start-page: 14 year: 2020 article-title: Maximizing information transmission for energy harvesting sensor networks by an uneven clustering protocol and energy management publication-title: KSII Trans Internet Inform Syst – volume: 20 start-page: 1502 year: 2020 article-title: A systematic review on the use of wearable body sensors for health monitoring: a qualitative synthesis publication-title: Sens Multidiscipl Digital Publis Instit – volume: 154 start-page: 102539 year: 2020 article-title: Survey and taxonomy of clustering algorithms in 5G publication-title: J Netw Comput Appl – start-page: 75 year: 2020 end-page: 84 – volume: 9 start-page: 2906 year: 2021 end-page: 2917 article-title: DDI: a novel architecture for joint active user detection and IoT device identification in grant‐free NOMA systems for 6G and beyond networks publication-title: IEEE Int Things J – volume: 93 start-page: 104617 year: 2022 article-title: A new asymmetric link quality routing protocol (ALQR) for heterogeneous WSNs publication-title: Microprocess Microsyst – volume: 6 start-page: 33275 year: 2018 end-page: 33284 article-title: Context‐aware indoor VLC/RF heterogeneous network selection: reinforcement learning with knowledge transfer publication-title: IEEE Access – volume: 25 start-page: 1159 year: 2019 end-page: 1183 article-title: Comprehensive review for energy efficient hierarchical routing protocols on wireless sensor networks publication-title: Wirel Netw – start-page: 33(16) year: 2020 article-title: New approach of GA–PSO‐based clustering and routing in wireless sensor networks publication-title: Int J Commun Syst – volume: 2 start-page: 408 issue: 2 year: 2018 end-page: 417 article-title: RLMan: an energy manager based on reinforcement learning for energy harvesting wireless sensor networks publication-title: IEEE Trans Green Commun Netw – volume: 2 start-page: 149 year: 2019 end-page: 163 – volume: 28 start-page: 2169 year: 2022 end-page: 2184 article-title: Reinforcement learning based on routing with infrastructure nodes for data dissemination in vehicular networks (RRIN) publication-title: Wirel Netw – year: 2018 – start-page: 32(21) year: 2020 article-title: An overview of Internet of Things (IoT): architectural aspects, challenges, and protocols publication-title: Concurr Comput Pract Exp – volume: 9 start-page: 3234 year: 2021 end-page: 3243 article-title: Federated learning empowered computation offloading and resource management in 6G‐V2X publication-title: IEEE Trans Netw Sci Eng – volume: 35 start-page: 112 year: 2021 end-page: 119 article-title: Deep reinforcement learning for communication flow control in wireless mesh networks publication-title: IEEE Netw – volume: 34 start-page: 1 year: 2022 end-page: 17 article-title: Heterogeneous information network embedding for user behavior analysis on social media publication-title: Neural Comput Appl – volume: 22 start-page: 1 year: 2019 end-page: 21 article-title: Network optimizations in the Internet of things: a review publication-title: Eng Sci Technol, Int J – start-page: 2704 year: 2020 end-page: 2710 – volume: 18 start-page: 5141 year: 2019 end-page: 5152 article-title: Deep reinforcement learning for user association and resource allocation in heterogeneous cellular networks publication-title: IEEE Trans Wirel Commun – start-page: 17(4) year: 2021 article-title: Maximizing network throughput by cooperative reinforcement learning in clustered solar‐powered wireless sensor networks publication-title: Int J Distrib Sensor Netw – volume: 30 start-page: 4578 year: 2022 end-page: 4592 article-title: Fuzzyact: a fuzzy‐based framework for temporal activity recognition in IoT applications using rnn and 3d‐dwt publication-title: IEEE Trans Fuzzy Syst – start-page: 34 year: 2020 – year: 2022 – volume: 35 start-page: 3645 issue: 4 year: 2022 end-page: 3657 article-title: DeHIN: a decentralized framework for embedding large‐scale heterogeneous information networks publication-title: IEEE Trans Knowl Data Eng – volume: 2022 start-page: 1 year: 2022 end-page: 10 article-title: Reliability analysis of social network data transmission in wireless sensor network topology publication-title: J Sens – year: 2020 – volume: 8 start-page: 189129 year: 2020 end-page: 189162 article-title: Towards mobile edge computing: Taxonomy, challenges, applications and future realms publication-title: IEEE Access – volume: 102 start-page: 41 year: 2019 end-page: 53 article-title: Energy aware cluster based multi‐hop energy efficient routing protocol using multiple mobile nodes (MEACBM) in wireless sensor networks publication-title: AEU–Int J Electron Commun – volume: 110 start-page: 2835 year: 2021 end-page: 2866 article-title: Rade: resource‐efficient supervised anomaly detection using decision tree‐based ensemble methods publication-title: Mach Learn – volume: 17 start-page: 8475 year: 2021 end-page: 8484 article-title: Deep reinforcement learning assisted federated learning algorithm for data management of IIoT publication-title: IEEE Trans Indus Inform – volume: 9 start-page: 265 year: 2021 end-page: 278 article-title: Advanced deep learning for resource allocation and security aware data offloading in industrial mobile edge computing publication-title: Big Data – start-page: 5649 year: 2022 end-page: 5655 – start-page: 1 year: 2019 end-page: 10 – volume: 9 start-page: 16874 issue: 18 year: 2022 end-page: 16883 article-title: Deep reinforcement learning based resource allocation for content distribution in fog radio access networks publication-title: IEEE Internet Things J – year: 2017 – year: 2019 – volume: 7 start-page: 100747 year: 2019 end-page: 100762 article-title: 5G‐based smart healthcare network: architecture, taxonomy, challenges and future research directions publication-title: IEEE Access – start-page: 2331 year: 2020 end-page: 2341 – start-page: 1 volume-title: International Conference on Information Science and Communication Technology (ICISCT) year: 2019 ident: e_1_2_7_20_1 – start-page: 75 volume-title: Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining year: 2020 ident: e_1_2_7_42_1 – ident: e_1_2_7_8_1 doi: 10.1007/s11276-022-02926-w – ident: e_1_2_7_9_1 doi: 10.1109/ACCESS.2018.2844882 – start-page: 2704 volume-title: Proceedings of The Web Conference 2020 year: 2020 ident: e_1_2_7_39_1 – volume: 20 start-page: 1502 year: 2020 ident: e_1_2_7_24_1 article-title: A systematic review on the use of wearable body sensors for health monitoring: a qualitative synthesis publication-title: Sens Multidiscipl Digital Publis Instit – start-page: 33(16) year: 2020 ident: e_1_2_7_15_1 article-title: New approach of GA–PSO‐based clustering and routing in wireless sensor networks publication-title: Int J Commun Syst – volume-title: International Conference on Learning Representations year: 2019 ident: e_1_2_7_31_1 – ident: e_1_2_7_22_1 doi: 10.1109/ACCESS.2019.2930628 – ident: e_1_2_7_19_1 doi: 10.1109/ACCESS.2020.3026938 – ident: e_1_2_7_48_1 – volume: 9 start-page: 5189 issue: 7 year: 2021 ident: e_1_2_7_26_1 article-title: Delay‐aware resource allocation in fog‐assisted IoT networks through reinforcement learning IEEE publication-title: Internet Things J – ident: e_1_2_7_11_1 – ident: e_1_2_7_21_1 doi: 10.1109/GLOBECOM48099.2022.10000839 – start-page: 34 volume-title: Proceedings of the AAAI Conference on Artificial Intelligence year: 2020 ident: e_1_2_7_41_1 – start-page: 149 volume-title: Emerging Technologies in Computing: Second International Conference, iCETiC 2019, London, UK, August 19–20, 2019, Proceedings year: 2019 ident: e_1_2_7_3_1 – start-page: 32(21) year: 2020 ident: e_1_2_7_4_1 article-title: An overview of Internet of Things (IoT): architectural aspects, challenges, and protocols publication-title: Concurr Comput Pract Exp – volume: 35 start-page: 3645 issue: 4 year: 2022 ident: e_1_2_7_37_1 article-title: DeHIN: a decentralized framework for embedding large‐scale heterogeneous information networks publication-title: IEEE Trans Knowl Data Eng – ident: e_1_2_7_17_1 doi: 10.1109/JIOT.2020.2989924 – start-page: 14 year: 2020 ident: e_1_2_7_44_1 article-title: Maximizing information transmission for energy harvesting sensor networks by an uneven clustering protocol and energy management publication-title: KSII Trans Internet Inform Syst – ident: e_1_2_7_28_1 doi: 10.1007/s10994-021-06047-x – start-page: 17(4) year: 2021 ident: e_1_2_7_18_1 article-title: Maximizing network throughput by cooperative reinforcement learning in clustered solar‐powered wireless sensor networks publication-title: Int J Distrib Sensor Netw – volume: 2022 start-page: 1 year: 2022 ident: e_1_2_7_2_1 article-title: Reliability analysis of social network data transmission in wireless sensor network topology publication-title: J Sens – start-page: 3595 volume-title: The World Wide Web Conference year: 2019 ident: e_1_2_7_43_1 – ident: e_1_2_7_5_1 doi: 10.1109/TGCN.2022.3143991 – ident: e_1_2_7_35_1 doi: 10.1109/MNET.011.2000303 – ident: e_1_2_7_10_1 doi: 10.1016/j.aiopen.2021.01.001 – ident: e_1_2_7_12_1 doi: 10.1007/s11276-018-1696-1 – ident: e_1_2_7_27_1 doi: 10.1109/TFUZZ.2022.3152106 – start-page: 2331 volume-title: Proceedings of The Web Conference 2020 year: 2020 ident: e_1_2_7_40_1 – ident: e_1_2_7_45_1 doi: 10.1016/j.micpro.2022.104617 – ident: e_1_2_7_30_1 – ident: e_1_2_7_33_1 doi: 10.1109/JIOT.2022.3146239 – volume: 9 start-page: 2906 year: 2021 ident: e_1_2_7_13_1 article-title: DDI: a novel architecture for joint active user detection and IoT device identification in grant‐free NOMA systems for 6G and beyond networks publication-title: IEEE Int Things J – ident: e_1_2_7_46_1 – ident: e_1_2_7_47_1 doi: 10.1109/TGCN.2018.2801725 – volume: 9 start-page: 3234 year: 2021 ident: e_1_2_7_7_1 article-title: Federated learning empowered computation offloading and resource management in 6G‐V2X publication-title: IEEE Trans Netw Sci Eng – ident: e_1_2_7_14_1 doi: 10.1016/j.jestch.2018.09.003 – start-page: 34 volume-title: Proceedings of the AAAI Conference on Artificial Intelligence year: 2020 ident: e_1_2_7_38_1 – ident: e_1_2_7_16_1 doi: 10.1109/TWC.2019.2933417 – ident: e_1_2_7_34_1 doi: 10.1089/big.2020.0284 – ident: e_1_2_7_25_1 doi: 10.1016/j.jnca.2020.102539 – start-page: 823 volume-title: Conference on Robot Learning year: 2020 ident: e_1_2_7_32_1 – volume: 34 start-page: 1 year: 2022 ident: e_1_2_7_36_1 article-title: Heterogeneous information network embedding for user behavior analysis on social media publication-title: Neural Comput Appl – ident: e_1_2_7_23_1 – ident: e_1_2_7_6_1 doi: 10.1016/j.aeue.2019.02.006 – ident: e_1_2_7_29_1 doi: 10.1109/TII.2021.3064351 |
| SSID | ssj0000752548 |
| Score | 2.323294 |
| Snippet | Recently, heterogeneous cluster networks (HCNs) have been the subject of significant research. The nature of the next‐generation HCN environment is... |
| SourceID | unpaywall crossref wiley |
| SourceType | Open Access Repository Enrichment Source Index Database Publisher |
| Title | An intelligent Hybrid‐Q Learning clustering approach and resource management within heterogeneous cluster networks based on reinforcement learning |
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fett.4852 https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/ett.4852 |
| UnpaywallVersion | publishedVersion |
| Volume | 35 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVEBS databaseName: Inspec with Full Text customDbUrl: eissn: 2161-3915 dateEnd: 20241105 omitProxy: false ssIdentifier: ssj0000752548 issn: 2161-5748 databaseCode: ADMLS dateStart: 20120801 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text providerName: EBSCOhost |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9QwELXQ7gFxgBaKKKKVQRWcsmxTJ46Pq35ohWjVil2pnCKPMy4Vi3fVJkLl1J_QA7-QX1JP4kRtBajqKT6MR4k_X8bj9xjbAFIzQRSRRLUVCaltpAFVFCvQQoFILVC8Y_8gHU_Fp-PkOATc6C5Mww_RBdxoZtTrNU3wRWGbdT6c7scfsSwHIkv8EtxPE4_Fe6w_PTgcfSVFuU0KrKhawqAuJ1JkLfvsjaq39qPHlVvoi596NruNVevNZu8Zy9vXbHJMvg-qEgbm1x0Gx4d_xxJ7GnAoHzUDZ5k9QvecPbnBTviC_R45ftoxdpZ8fEG3u_5cXh3xwMp6ws2sIqYFKrbs5Fy7gp-FUwH-o0uv4RTyPXX8GyXgzL1HnFfnrQPumnT0c07basHnzruoSV1NUzmoW5yssOne7mR7HAURh8jElNlqpdXaKGFEYrBIhhBnBQplUft_JchAFygLGGZSDwFTjy5BWjDSSgJ6icKtl6zn5g5fMS4yo0yKHkHKlITTlEIAyNDGHmZ5oLLKPrRdmZvAcE5CG7O84WaOc9_OObXzKnvbWS4aVo-_2LzrRsN_jN7XfftPg3x3MqHn6_t4e8N65VmFax7mlLDO-qOd_c9f1sOYvga-ZQeE |
| linkProvider | Unpaywall |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NT9wwELWq5VD1QKEfgooiU1XtKdsl68TxcYVAKyRQK-1K9BR5nDEgtt4VJKrgxE_g0F_IL8GTOBFULUKc4sN4lPjzZTx-j7HPQGomiCKSqIaRkNpGGlBFsQItFIjUAsU7Dg7T8VTsHyVHIeBGd2Eafogu4EYzo16vaYIvCtus8-F0P_6GZdkXWeKX4KU08Vi8x5amh99HP0lRbpsCK6qWMKjLiRRZyz57r-qD_ehl5Rb68reezR5i1Xqz2XvN8vY1mxyTs35VQt9c_cXg-PzvWGHLAYfyUTNwVtkLdG_Yq3vshG_Zn5Hjpx1jZ8nHl3S76_b65gcPrKzH3MwqYlqgYstOzrUr-Hk4FeC_uvQaTiHfU8dPKAFn7j3ivLpoHXDXpKNfcNpWCz533kVN6mqaykHd4vgdm-7tTnbGURBxiExMma1WWq2NEkYkBotkAHFWoFAWtf9Xggx0gbKAQSb1ADD16BKkBSOtJKCXKBy-Zz03d7jGuMiMMil6BClTEk5TCgEgQxt7mOWByjr72nZlbgLDOQltzPKGmznOfTvn1M7rbKuzXDSsHv-w-dSNhkeMvtR9-1-DfHcyoeeHp3jbYL3yvMKPHuaUsBnG8h2KkAXw |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+intelligent+Hybrid%E2%80%90Q+Learning+clustering+approach+and+resource+management+within+heterogeneous+cluster+networks+based+on+reinforcement+learning&rft.jtitle=Transactions+on+emerging+telecommunications+technologies&rft.au=Mughal%2C+Fahad+Razaque&rft.au=He%2C+Jingsha&rft.au=Zhu%2C+Nafei&rft.au=Almutiq%2C+Mutiq&rft.date=2024-04-01&rft.issn=2161-3915&rft.eissn=2161-3915&rft.volume=35&rft.issue=4&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fett.4852&rft.externalDBID=10.1002%252Fett.4852&rft.externalDocID=ETT4852 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2161-3915&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2161-3915&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2161-3915&client=summon |