An intelligent Hybrid‐Q Learning clustering approach and resource management within heterogeneous cluster networks based on reinforcement learning

Recently, heterogeneous cluster networks (HCNs) have been the subject of significant research. The nature of the next‐generation HCN environment is decentralized and highly dynamic; optimization techniques cannot quite express the dynamic characteristics of node resource utilization and communicatio...

Full description

Saved in:
Bibliographic Details
Published inTransactions on emerging telecommunications technologies Vol. 35; no. 4
Main Authors Mughal, Fahad Razaque, He, Jingsha, Zhu, Nafei, Almutiq, Mutiq, Dharejo, Fayaz Ali, Jain, Deepak Kumar, Hussain, Saqib, Zardari, Zulfiqar Ali
Format Journal Article
LanguageEnglish
Published 01.04.2024
Online AccessGet full text
ISSN2161-3915
2161-5748
2161-3915
DOI10.1002/ett.4852

Cover

Abstract Recently, heterogeneous cluster networks (HCNs) have been the subject of significant research. The nature of the next‐generation HCN environment is decentralized and highly dynamic; optimization techniques cannot quite express the dynamic characteristics of node resource utilization and communication of HCN networks. In this article, we present an intelligent Hybrid‐Q Learning approach (Hybrid QL)‐based clustering approach for IoT and WSN. Using the self‐learning abilities of (HCNs), we propose a model for dynamic accessing systems on nodes and agents that identify the best possible paths and communication over heterogeneous cluster networks using reinforcement learning. In addition to reducing energy consumption, it creates efficient and effective resource utilization and node communication performance. Through increased throughput and link management, the HCN aims to reduce energy consumption. The proposed model is compared to existing approaches based on various scenarios. Finally, the results of the evaluation tasks demonstrate high accuracy, low‐level complexity, fast dynamic response times, and scalability for heterogeneous cluster networks. Our model showed exceptional node allocation efficiency for dynamic IOT environments and WSNs. We propose a Hybrid‐Q Learning (Hybrid QL)‐based clustering for IoT and WSN. Self‐learning solution to solve the problem of decentralized and dynamic self‐access for heterogeneous nodes. Our proposed model dynamic accessing system on node/agents identifies the best possible paths and communication over heterogeneous cluster networks using self‐learning abilities (HCNs).
AbstractList Recently, heterogeneous cluster networks (HCNs) have been the subject of significant research. The nature of the next‐generation HCN environment is decentralized and highly dynamic; optimization techniques cannot quite express the dynamic characteristics of node resource utilization and communication of HCN networks. In this article, we present an intelligent Hybrid‐Q Learning approach (Hybrid QL)‐based clustering approach for IoT and WSN. Using the self‐learning abilities of (HCNs), we propose a model for dynamic accessing systems on nodes and agents that identify the best possible paths and communication over heterogeneous cluster networks using reinforcement learning. In addition to reducing energy consumption, it creates efficient and effective resource utilization and node communication performance. Through increased throughput and link management, the HCN aims to reduce energy consumption. The proposed model is compared to existing approaches based on various scenarios. Finally, the results of the evaluation tasks demonstrate high accuracy, low‐level complexity, fast dynamic response times, and scalability for heterogeneous cluster networks. Our model showed exceptional node allocation efficiency for dynamic IOT environments and WSNs. We propose a Hybrid‐Q Learning (Hybrid QL)‐based clustering for IoT and WSN. Self‐learning solution to solve the problem of decentralized and dynamic self‐access for heterogeneous nodes. Our proposed model dynamic accessing system on node/agents identifies the best possible paths and communication over heterogeneous cluster networks using self‐learning abilities (HCNs).
Recently, heterogeneous cluster networks (HCNs) have been the subject of significant research. The nature of the next‐generation HCN environment is decentralized and highly dynamic; optimization techniques cannot quite express the dynamic characteristics of node resource utilization and communication of HCN networks. In this article, we present an intelligent Hybrid‐Q Learning approach (Hybrid QL)‐based clustering approach for IoT and WSN. Using the self‐learning abilities of (HCNs), we propose a model for dynamic accessing systems on nodes and agents that identify the best possible paths and communication over heterogeneous cluster networks using reinforcement learning. In addition to reducing energy consumption, it creates efficient and effective resource utilization and node communication performance. Through increased throughput and link management, the HCN aims to reduce energy consumption. The proposed model is compared to existing approaches based on various scenarios. Finally, the results of the evaluation tasks demonstrate high accuracy, low‐level complexity, fast dynamic response times, and scalability for heterogeneous cluster networks. Our model showed exceptional node allocation efficiency for dynamic IOT environments and WSNs.
Author Hussain, Saqib
Zhu, Nafei
Dharejo, Fayaz Ali
Mughal, Fahad Razaque
Almutiq, Mutiq
Zardari, Zulfiqar Ali
Jain, Deepak Kumar
He, Jingsha
Author_xml – sequence: 1
  givenname: Fahad Razaque
  surname: Mughal
  fullname: Mughal, Fahad Razaque
  organization: Beijing University of Technology
– sequence: 2
  givenname: Jingsha
  surname: He
  fullname: He, Jingsha
  organization: Beijing University of Technology
– sequence: 3
  givenname: Nafei
  surname: Zhu
  fullname: Zhu, Nafei
  email: znf@bjut.edu.cn
  organization: Beijing University of Technology
– sequence: 4
  givenname: Mutiq
  orcidid: 0000-0002-4611-6493
  surname: Almutiq
  fullname: Almutiq, Mutiq
  organization: Qassim University
– sequence: 5
  givenname: Fayaz Ali
  surname: Dharejo
  fullname: Dharejo, Fayaz Ali
  organization: Khalifa University of Science of Technology
– sequence: 6
  givenname: Deepak Kumar
  surname: Jain
  fullname: Jain, Deepak Kumar
  organization: Symbiosis International University
– sequence: 7
  givenname: Saqib
  surname: Hussain
  fullname: Hussain, Saqib
  organization: Beijing University of Technology
– sequence: 8
  givenname: Zulfiqar Ali
  surname: Zardari
  fullname: Zardari, Zulfiqar Ali
  organization: Begum Nusrat Bhutto Women University
BookMark eNp9kMtKAzEUhoNUsNaCj5ClLqbOpHNdllKtUBChroeTzJk2miZDklK68xFc-IQ-idOLIKKeTc7i-79D_nPS0UYjIZdROIjCkN2g94M4T9gJ6bIojYJhESWdb_sZ6Tv3HLaTJSyJ8y55H2kqtUel5AK1p9Mtt7L6eH17pDMEq6VeUKHWzqPdrdA01oBYUtAVtejM2gqkK9CwwNUuv5F-KTVdYhswrRHN2n0JqEa_MfbFUQ4OK2p0q5C6Nq1jH1bHixfktAblsH98e-TpdjIfT4PZw939eDQLBCsKFtRZDSCKWMSJwCoJOcsrjIsaof0azzlUmFU8zDMIOaZpkvKs5iKrMxazYVLgsEeuD961bmC7AaXKxsoV2G0ZheWu0bJttNw12rKDAyuscc5iXQrpwUujvQWpfgtc_Qj84w4O6EYq3P7JlZP5fM9_Arminao
CitedBy_id crossref_primary_10_1007_s13369_024_09769_x
crossref_primary_10_1038_s41598_024_78239_z
crossref_primary_10_1109_ACCESS_2024_3502458
crossref_primary_10_1016_j_comcom_2023_10_026
Cites_doi 10.1007/s11276-022-02926-w
10.1109/ACCESS.2018.2844882
10.1109/ACCESS.2019.2930628
10.1109/ACCESS.2020.3026938
10.1109/GLOBECOM48099.2022.10000839
10.1109/JIOT.2020.2989924
10.1007/s10994-021-06047-x
10.1109/TGCN.2022.3143991
10.1109/MNET.011.2000303
10.1016/j.aiopen.2021.01.001
10.1007/s11276-018-1696-1
10.1109/TFUZZ.2022.3152106
10.1016/j.micpro.2022.104617
10.1109/JIOT.2022.3146239
10.1109/TGCN.2018.2801725
10.1016/j.jestch.2018.09.003
10.1109/TWC.2019.2933417
10.1089/big.2020.0284
10.1016/j.jnca.2020.102539
10.1016/j.aeue.2019.02.006
10.1109/TII.2021.3064351
ContentType Journal Article
Copyright 2023 John Wiley & Sons, Ltd.
Copyright_xml – notice: 2023 John Wiley & Sons, Ltd.
DBID AAYXX
CITATION
ADTOC
UNPAY
DOI 10.1002/ett.4852
DatabaseName CrossRef
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
DatabaseTitleList
CrossRef
Database_xml – sequence: 1
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2161-3915
EndPage n/a
ExternalDocumentID 10.1002/ett.4852
10_1002_ett_4852
ETT4852
Genre researchArticle
GroupedDBID .GA
.Y3
05W
1OC
31~
50Z
8-0
8-1
8-3
8-4
8-5
930
A03
AAEVG
AAHHS
AAHQN
AAMNL
AANHP
AANLZ
AAXRX
AAYCA
AAZKR
ABCUV
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACPOU
ACRPL
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
AEEZP
AEGXH
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZFZN
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BRXPI
D-E
D-F
DCZOG
DPXWK
DRFUL
DRSTM
EBS
EJD
F00
F01
F04
F21
G-S
GODZA
HGLYW
IN-
LATKE
LEEKS
LH4
LITHE
LOXES
LUTES
LW6
LYRES
MEWTI
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
RX1
SUPJJ
V2E
WIH
WIK
WXSBR
AAMMB
AAYXX
ADMLS
AEFGJ
AGHNM
AGQPQ
AGXDD
AGYGG
AIDQK
AIDYY
CITATION
ADTOC
UNPAY
ID FETCH-LOGICAL-c2992-f7faac94c45ced50b28de49fea548b8bade7db087a0be6656b7fbc7f7242359e3
IEDL.DBID UNPAY
ISSN 2161-3915
2161-5748
IngestDate Wed Oct 01 16:49:46 EDT 2025
Wed Oct 01 04:28:14 EDT 2025
Thu Apr 24 23:02:26 EDT 2025
Wed Jan 22 17:19:36 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2992-f7faac94c45ced50b28de49fea548b8bade7db087a0be6656b7fbc7f7242359e3
ORCID 0000-0002-4611-6493
OpenAccessLink https://proxy.k.utb.cz/login?url=https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/ett.4852
PageCount 20
ParticipantIDs unpaywall_primary_10_1002_ett_4852
crossref_citationtrail_10_1002_ett_4852
crossref_primary_10_1002_ett_4852
wiley_primary_10_1002_ett_4852_ETT4852
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate April 2024
2024-04-00
PublicationDateYYYYMMDD 2024-04-01
PublicationDate_xml – month: 04
  year: 2024
  text: April 2024
PublicationDecade 2020
PublicationTitle Transactions on emerging telecommunications technologies
PublicationYear 2024
References 2021; 9
2019; 7
2020; 20
2022; 93
2019; 2
2019; 102
2019; 18
2022; 28
2020; 8
2018; 6
2020; 7
2021; 35
2018; 2
2022; 2022
2020; 1
2022
2019; 22
2021
2020
2022; 6
2020; 154
2021; 17
2022; 9
2019; 25
2022; 34
2019
2022; 35
2018
2017
2022; 30
2021; 110
e_1_2_7_6_1
e_1_2_7_5_1
Rakshit T (e_1_2_7_31_1) 2019
Beni PS (e_1_2_7_7_1) 2021; 9
Sadia M (e_1_2_7_20_1) 2019
e_1_2_7_9_1
e_1_2_7_8_1
Xiaofang Z (e_1_2_7_36_1) 2022; 34
e_1_2_7_19_1
e_1_2_7_17_1
e_1_2_7_16_1
Xinyu F (e_1_2_7_40_1) 2020
e_1_2_7_14_1
Yujia G (e_1_2_7_44_1) 2020
e_1_2_7_12_1
Wang X (e_1_2_7_41_1) 2020
e_1_2_7_11_1
e_1_2_7_45_1
e_1_2_7_10_1
e_1_2_7_46_1
e_1_2_7_47_1
e_1_2_7_48_1
e_1_2_7_27_1
Gupta Brij B (e_1_2_7_4_1) 2020
e_1_2_7_28_1
e_1_2_7_29_1
Xuan‐Son V (e_1_2_7_43_1) 2019
Qiang F (e_1_2_7_26_1) 2021; 9
Arbaaz K (e_1_2_7_32_1) 2020
Kapal D (e_1_2_7_13_1) 2021; 9
Ziniu H (e_1_2_7_39_1) 2020
Veena A (e_1_2_7_15_1) 2020
Mubashir I (e_1_2_7_37_1) 2022; 35
e_1_2_7_30_1
e_1_2_7_25_1
Zhixue W (e_1_2_7_2_1) 2022; 2022
Yujia G (e_1_2_7_18_1) 2021
e_1_2_7_23_1
e_1_2_7_33_1
e_1_2_7_22_1
e_1_2_7_34_1
e_1_2_7_21_1
e_1_2_7_35_1
Sadia M (e_1_2_7_3_1) 2019
Jiarui J (e_1_2_7_42_1) 2020
Wan Guojia (e_1_2_7_38_1) 2020
Annica K (e_1_2_7_24_1) 2020; 20
References_xml – volume: 9
  start-page: 5189
  issue: 7
  year: 2021
  end-page: 5199
  article-title: Delay‐aware resource allocation in fog‐assisted IoT networks through reinforcement learning
  publication-title: Internet Things J
– volume: 1
  start-page: 57
  year: 2020
  end-page: 81
  article-title: Graph neural networks: a review of methods and applications
  publication-title: AI Open Elsevier
– start-page: 3595
  year: 2019
  end-page: 3599
– volume: 6
  start-page: 685
  year: 2022
  end-page: 694
  article-title: Energy optimization for green communication in IoT using Harris Hawks optimization
  publication-title: IEEE Trans Green Commun Network
– start-page: 823
  year: 2020
  end-page: 834
– volume: 7
  start-page: 9805
  year: 2020
  end-page: 9818
  article-title: Routing protocol design for underwater optical wireless sensor networks: a multiagent reinforcement learning approach
  publication-title: IEEE Internet Things J
– start-page: 14
  year: 2020
  article-title: Maximizing information transmission for energy harvesting sensor networks by an uneven clustering protocol and energy management
  publication-title: KSII Trans Internet Inform Syst
– volume: 20
  start-page: 1502
  year: 2020
  article-title: A systematic review on the use of wearable body sensors for health monitoring: a qualitative synthesis
  publication-title: Sens Multidiscipl Digital Publis Instit
– volume: 154
  start-page: 102539
  year: 2020
  article-title: Survey and taxonomy of clustering algorithms in 5G
  publication-title: J Netw Comput Appl
– start-page: 75
  year: 2020
  end-page: 84
– volume: 9
  start-page: 2906
  year: 2021
  end-page: 2917
  article-title: DDI: a novel architecture for joint active user detection and IoT device identification in grant‐free NOMA systems for 6G and beyond networks
  publication-title: IEEE Int Things J
– volume: 93
  start-page: 104617
  year: 2022
  article-title: A new asymmetric link quality routing protocol (ALQR) for heterogeneous WSNs
  publication-title: Microprocess Microsyst
– volume: 6
  start-page: 33275
  year: 2018
  end-page: 33284
  article-title: Context‐aware indoor VLC/RF heterogeneous network selection: reinforcement learning with knowledge transfer
  publication-title: IEEE Access
– volume: 25
  start-page: 1159
  year: 2019
  end-page: 1183
  article-title: Comprehensive review for energy efficient hierarchical routing protocols on wireless sensor networks
  publication-title: Wirel Netw
– start-page: 33(16)
  year: 2020
  article-title: New approach of GA–PSO‐based clustering and routing in wireless sensor networks
  publication-title: Int J Commun Syst
– volume: 2
  start-page: 408
  issue: 2
  year: 2018
  end-page: 417
  article-title: RLMan: an energy manager based on reinforcement learning for energy harvesting wireless sensor networks
  publication-title: IEEE Trans Green Commun Netw
– volume: 2
  start-page: 149
  year: 2019
  end-page: 163
– volume: 28
  start-page: 2169
  year: 2022
  end-page: 2184
  article-title: Reinforcement learning based on routing with infrastructure nodes for data dissemination in vehicular networks (RRIN)
  publication-title: Wirel Netw
– year: 2018
– start-page: 32(21)
  year: 2020
  article-title: An overview of Internet of Things (IoT): architectural aspects, challenges, and protocols
  publication-title: Concurr Comput Pract Exp
– volume: 9
  start-page: 3234
  year: 2021
  end-page: 3243
  article-title: Federated learning empowered computation offloading and resource management in 6G‐V2X
  publication-title: IEEE Trans Netw Sci Eng
– volume: 35
  start-page: 112
  year: 2021
  end-page: 119
  article-title: Deep reinforcement learning for communication flow control in wireless mesh networks
  publication-title: IEEE Netw
– volume: 34
  start-page: 1
  year: 2022
  end-page: 17
  article-title: Heterogeneous information network embedding for user behavior analysis on social media
  publication-title: Neural Comput Appl
– volume: 22
  start-page: 1
  year: 2019
  end-page: 21
  article-title: Network optimizations in the Internet of things: a review
  publication-title: Eng Sci Technol, Int J
– start-page: 2704
  year: 2020
  end-page: 2710
– volume: 18
  start-page: 5141
  year: 2019
  end-page: 5152
  article-title: Deep reinforcement learning for user association and resource allocation in heterogeneous cellular networks
  publication-title: IEEE Trans Wirel Commun
– start-page: 17(4)
  year: 2021
  article-title: Maximizing network throughput by cooperative reinforcement learning in clustered solar‐powered wireless sensor networks
  publication-title: Int J Distrib Sensor Netw
– volume: 30
  start-page: 4578
  year: 2022
  end-page: 4592
  article-title: Fuzzyact: a fuzzy‐based framework for temporal activity recognition in IoT applications using rnn and 3d‐dwt
  publication-title: IEEE Trans Fuzzy Syst
– start-page: 34
  year: 2020
– year: 2022
– volume: 35
  start-page: 3645
  issue: 4
  year: 2022
  end-page: 3657
  article-title: DeHIN: a decentralized framework for embedding large‐scale heterogeneous information networks
  publication-title: IEEE Trans Knowl Data Eng
– volume: 2022
  start-page: 1
  year: 2022
  end-page: 10
  article-title: Reliability analysis of social network data transmission in wireless sensor network topology
  publication-title: J Sens
– year: 2020
– volume: 8
  start-page: 189129
  year: 2020
  end-page: 189162
  article-title: Towards mobile edge computing: Taxonomy, challenges, applications and future realms
  publication-title: IEEE Access
– volume: 102
  start-page: 41
  year: 2019
  end-page: 53
  article-title: Energy aware cluster based multi‐hop energy efficient routing protocol using multiple mobile nodes (MEACBM) in wireless sensor networks
  publication-title: AEU–Int J Electron Commun
– volume: 110
  start-page: 2835
  year: 2021
  end-page: 2866
  article-title: Rade: resource‐efficient supervised anomaly detection using decision tree‐based ensemble methods
  publication-title: Mach Learn
– volume: 17
  start-page: 8475
  year: 2021
  end-page: 8484
  article-title: Deep reinforcement learning assisted federated learning algorithm for data management of IIoT
  publication-title: IEEE Trans Indus Inform
– volume: 9
  start-page: 265
  year: 2021
  end-page: 278
  article-title: Advanced deep learning for resource allocation and security aware data offloading in industrial mobile edge computing
  publication-title: Big Data
– start-page: 5649
  year: 2022
  end-page: 5655
– start-page: 1
  year: 2019
  end-page: 10
– volume: 9
  start-page: 16874
  issue: 18
  year: 2022
  end-page: 16883
  article-title: Deep reinforcement learning based resource allocation for content distribution in fog radio access networks
  publication-title: IEEE Internet Things J
– year: 2017
– year: 2019
– volume: 7
  start-page: 100747
  year: 2019
  end-page: 100762
  article-title: 5G‐based smart healthcare network: architecture, taxonomy, challenges and future research directions
  publication-title: IEEE Access
– start-page: 2331
  year: 2020
  end-page: 2341
– start-page: 1
  volume-title: International Conference on Information Science and Communication Technology (ICISCT)
  year: 2019
  ident: e_1_2_7_20_1
– start-page: 75
  volume-title: Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining
  year: 2020
  ident: e_1_2_7_42_1
– ident: e_1_2_7_8_1
  doi: 10.1007/s11276-022-02926-w
– ident: e_1_2_7_9_1
  doi: 10.1109/ACCESS.2018.2844882
– start-page: 2704
  volume-title: Proceedings of The Web Conference 2020
  year: 2020
  ident: e_1_2_7_39_1
– volume: 20
  start-page: 1502
  year: 2020
  ident: e_1_2_7_24_1
  article-title: A systematic review on the use of wearable body sensors for health monitoring: a qualitative synthesis
  publication-title: Sens Multidiscipl Digital Publis Instit
– start-page: 33(16)
  year: 2020
  ident: e_1_2_7_15_1
  article-title: New approach of GA–PSO‐based clustering and routing in wireless sensor networks
  publication-title: Int J Commun Syst
– volume-title: International Conference on Learning Representations
  year: 2019
  ident: e_1_2_7_31_1
– ident: e_1_2_7_22_1
  doi: 10.1109/ACCESS.2019.2930628
– ident: e_1_2_7_19_1
  doi: 10.1109/ACCESS.2020.3026938
– ident: e_1_2_7_48_1
– volume: 9
  start-page: 5189
  issue: 7
  year: 2021
  ident: e_1_2_7_26_1
  article-title: Delay‐aware resource allocation in fog‐assisted IoT networks through reinforcement learning IEEE
  publication-title: Internet Things J
– ident: e_1_2_7_11_1
– ident: e_1_2_7_21_1
  doi: 10.1109/GLOBECOM48099.2022.10000839
– start-page: 34
  volume-title: Proceedings of the AAAI Conference on Artificial Intelligence
  year: 2020
  ident: e_1_2_7_41_1
– start-page: 149
  volume-title: Emerging Technologies in Computing: Second International Conference, iCETiC 2019, London, UK, August 19–20, 2019, Proceedings
  year: 2019
  ident: e_1_2_7_3_1
– start-page: 32(21)
  year: 2020
  ident: e_1_2_7_4_1
  article-title: An overview of Internet of Things (IoT): architectural aspects, challenges, and protocols
  publication-title: Concurr Comput Pract Exp
– volume: 35
  start-page: 3645
  issue: 4
  year: 2022
  ident: e_1_2_7_37_1
  article-title: DeHIN: a decentralized framework for embedding large‐scale heterogeneous information networks
  publication-title: IEEE Trans Knowl Data Eng
– ident: e_1_2_7_17_1
  doi: 10.1109/JIOT.2020.2989924
– start-page: 14
  year: 2020
  ident: e_1_2_7_44_1
  article-title: Maximizing information transmission for energy harvesting sensor networks by an uneven clustering protocol and energy management
  publication-title: KSII Trans Internet Inform Syst
– ident: e_1_2_7_28_1
  doi: 10.1007/s10994-021-06047-x
– start-page: 17(4)
  year: 2021
  ident: e_1_2_7_18_1
  article-title: Maximizing network throughput by cooperative reinforcement learning in clustered solar‐powered wireless sensor networks
  publication-title: Int J Distrib Sensor Netw
– volume: 2022
  start-page: 1
  year: 2022
  ident: e_1_2_7_2_1
  article-title: Reliability analysis of social network data transmission in wireless sensor network topology
  publication-title: J Sens
– start-page: 3595
  volume-title: The World Wide Web Conference
  year: 2019
  ident: e_1_2_7_43_1
– ident: e_1_2_7_5_1
  doi: 10.1109/TGCN.2022.3143991
– ident: e_1_2_7_35_1
  doi: 10.1109/MNET.011.2000303
– ident: e_1_2_7_10_1
  doi: 10.1016/j.aiopen.2021.01.001
– ident: e_1_2_7_12_1
  doi: 10.1007/s11276-018-1696-1
– ident: e_1_2_7_27_1
  doi: 10.1109/TFUZZ.2022.3152106
– start-page: 2331
  volume-title: Proceedings of The Web Conference 2020
  year: 2020
  ident: e_1_2_7_40_1
– ident: e_1_2_7_45_1
  doi: 10.1016/j.micpro.2022.104617
– ident: e_1_2_7_30_1
– ident: e_1_2_7_33_1
  doi: 10.1109/JIOT.2022.3146239
– volume: 9
  start-page: 2906
  year: 2021
  ident: e_1_2_7_13_1
  article-title: DDI: a novel architecture for joint active user detection and IoT device identification in grant‐free NOMA systems for 6G and beyond networks
  publication-title: IEEE Int Things J
– ident: e_1_2_7_46_1
– ident: e_1_2_7_47_1
  doi: 10.1109/TGCN.2018.2801725
– volume: 9
  start-page: 3234
  year: 2021
  ident: e_1_2_7_7_1
  article-title: Federated learning empowered computation offloading and resource management in 6G‐V2X
  publication-title: IEEE Trans Netw Sci Eng
– ident: e_1_2_7_14_1
  doi: 10.1016/j.jestch.2018.09.003
– start-page: 34
  volume-title: Proceedings of the AAAI Conference on Artificial Intelligence
  year: 2020
  ident: e_1_2_7_38_1
– ident: e_1_2_7_16_1
  doi: 10.1109/TWC.2019.2933417
– ident: e_1_2_7_34_1
  doi: 10.1089/big.2020.0284
– ident: e_1_2_7_25_1
  doi: 10.1016/j.jnca.2020.102539
– start-page: 823
  volume-title: Conference on Robot Learning
  year: 2020
  ident: e_1_2_7_32_1
– volume: 34
  start-page: 1
  year: 2022
  ident: e_1_2_7_36_1
  article-title: Heterogeneous information network embedding for user behavior analysis on social media
  publication-title: Neural Comput Appl
– ident: e_1_2_7_23_1
– ident: e_1_2_7_6_1
  doi: 10.1016/j.aeue.2019.02.006
– ident: e_1_2_7_29_1
  doi: 10.1109/TII.2021.3064351
SSID ssj0000752548
Score 2.323294
Snippet Recently, heterogeneous cluster networks (HCNs) have been the subject of significant research. The nature of the next‐generation HCN environment is...
SourceID unpaywall
crossref
wiley
SourceType Open Access Repository
Enrichment Source
Index Database
Publisher
Title An intelligent Hybrid‐Q Learning clustering approach and resource management within heterogeneous cluster networks based on reinforcement learning
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fett.4852
https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/ett.4852
UnpaywallVersion publishedVersion
Volume 35
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 2161-3915
  dateEnd: 20241105
  omitProxy: false
  ssIdentifier: ssj0000752548
  issn: 2161-5748
  databaseCode: ADMLS
  dateStart: 20120801
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9QwELXQ7gFxgBaKKKKVQRWcsmxTJ46Pq35ohWjVil2pnCKPMy4Vi3fVJkLl1J_QA7-QX1JP4kRtBajqKT6MR4k_X8bj9xjbAFIzQRSRRLUVCaltpAFVFCvQQoFILVC8Y_8gHU_Fp-PkOATc6C5Mww_RBdxoZtTrNU3wRWGbdT6c7scfsSwHIkv8EtxPE4_Fe6w_PTgcfSVFuU0KrKhawqAuJ1JkLfvsjaq39qPHlVvoi596NruNVevNZu8Zy9vXbHJMvg-qEgbm1x0Gx4d_xxJ7GnAoHzUDZ5k9QvecPbnBTviC_R45ftoxdpZ8fEG3u_5cXh3xwMp6ws2sIqYFKrbs5Fy7gp-FUwH-o0uv4RTyPXX8GyXgzL1HnFfnrQPumnT0c07basHnzruoSV1NUzmoW5yssOne7mR7HAURh8jElNlqpdXaKGFEYrBIhhBnBQplUft_JchAFygLGGZSDwFTjy5BWjDSSgJ6icKtl6zn5g5fMS4yo0yKHkHKlITTlEIAyNDGHmZ5oLLKPrRdmZvAcE5CG7O84WaOc9_OObXzKnvbWS4aVo-_2LzrRsN_jN7XfftPg3x3MqHn6_t4e8N65VmFax7mlLDO-qOd_c9f1sOYvga-ZQeE
linkProvider Unpaywall
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NT9wwELWq5VD1QKEfgooiU1XtKdsl68TxcYVAKyRQK-1K9BR5nDEgtt4VJKrgxE_g0F_IL8GTOBFULUKc4sN4lPjzZTx-j7HPQGomiCKSqIaRkNpGGlBFsQItFIjUAsU7Dg7T8VTsHyVHIeBGd2Eafogu4EYzo16vaYIvCtus8-F0P_6GZdkXWeKX4KU08Vi8x5amh99HP0lRbpsCK6qWMKjLiRRZyz57r-qD_ehl5Rb68reezR5i1Xqz2XvN8vY1mxyTs35VQt9c_cXg-PzvWGHLAYfyUTNwVtkLdG_Yq3vshG_Zn5Hjpx1jZ8nHl3S76_b65gcPrKzH3MwqYlqgYstOzrUr-Hk4FeC_uvQaTiHfU8dPKAFn7j3ivLpoHXDXpKNfcNpWCz533kVN6mqaykHd4vgdm-7tTnbGURBxiExMma1WWq2NEkYkBotkAHFWoFAWtf9Xggx0gbKAQSb1ADD16BKkBSOtJKCXKBy-Zz03d7jGuMiMMil6BClTEk5TCgEgQxt7mOWByjr72nZlbgLDOQltzPKGmznOfTvn1M7rbKuzXDSsHv-w-dSNhkeMvtR9-1-DfHcyoeeHp3jbYL3yvMKPHuaUsBnG8h2KkAXw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+intelligent+Hybrid%E2%80%90Q+Learning+clustering+approach+and+resource+management+within+heterogeneous+cluster+networks+based+on+reinforcement+learning&rft.jtitle=Transactions+on+emerging+telecommunications+technologies&rft.au=Mughal%2C+Fahad+Razaque&rft.au=He%2C+Jingsha&rft.au=Zhu%2C+Nafei&rft.au=Almutiq%2C+Mutiq&rft.date=2024-04-01&rft.issn=2161-3915&rft.eissn=2161-3915&rft.volume=35&rft.issue=4&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fett.4852&rft.externalDBID=10.1002%252Fett.4852&rft.externalDocID=ETT4852
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2161-3915&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2161-3915&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2161-3915&client=summon