Flood routing by linear Muskingum method using two basic floods data using particle swarm optimization (PSO) algorithm

The Muskingum method is one of hydrological approaches that has been used for flood routing for many years thanks to its simplicity and reasonable accuracy over other methods. In engineering works, the calculation of the Peak section of a flood hydrograph is crucially important. In the present study...

Full description

Saved in:
Bibliographic Details
Published inWater science & technology. Water supply Vol. 20; no. 5; pp. 1897 - 1908
Main Authors Norouzi, Hadi, Bazargan, Jalal
Format Journal Article
LanguageEnglish
Published London IWA Publishing 01.08.2020
Subjects
Online AccessGet full text
ISSN1606-9749
1607-0798
1607-0798
DOI10.2166/ws.2020.099

Cover

Abstract The Muskingum method is one of hydrological approaches that has been used for flood routing for many years thanks to its simplicity and reasonable accuracy over other methods. In engineering works, the calculation of the Peak section of a flood hydrograph is crucially important. In the present study, using the particle swarm optimization (PSO) algorithm, instead of using a single basic flood, the parameters of the linear Muskingum method (X, K, Δt) are calculated by computed arithmetic and geometric means relevant to two basic floods in the form of eight different models for calculating the downstream hydrograph. The results indicate that if the numerical values of the calculated flood inflow are placed in the interval of the inflow and the basic flood which the parameters X, K, Δt are from, the computation accuracy in approximating the outflow flood related to the peak section of the inflow hydrograph increases for all the mentioned models. In other words, if the arithmetic mean of X, K and the geometric mean of Δt, relevant to the two basic floods, are used instead of using values of X, K, Δt of a single basic flood, the computational accuracy in estimating the flood peak section of the hydrograph in downstream has the highest increase among all the eight models. Thus, the Mean Relative Error (MRE) relevant to the peak section of the inflow hydrograph of the third flood (observational flood) obtained by the first and second basic floods was equal to 4.89% and 2.91%, respectively, while in case of using the arithmetic mean of X and K and the geometric mean of Δt, related to the first and second basic floods (the best models presented in this study), this value is equal to 1.66%.
AbstractList The Muskingum method is one of hydrological approaches that has been used for flood routing for many years thanks to its simplicity and reasonable accuracy over other methods. In engineering works, the calculation of the Peak section of a flood hydrograph is crucially important. In the present study, using the particle swarm optimization (PSO) algorithm, instead of using a single basic flood, the parameters of the linear Muskingum method (X, K, Δt) are calculated by computed arithmetic and geometric means relevant to two basic floods in the form of eight different models for calculating the downstream hydrograph. The results indicate that if the numerical values of the calculated flood inflow are placed in the interval of the inflow and the basic flood which the parameters X, K, Δt are from, the computation accuracy in approximating the outflow flood related to the peak section of the inflow hydrograph increases for all the mentioned models. In other words, if the arithmetic mean of X, K and the geometric mean of Δt, relevant to the two basic floods, are used instead of using values of X, K, Δt of a single basic flood, the computational accuracy in estimating the flood peak section of the hydrograph in downstream has the highest increase among all the eight models. Thus, the Mean Relative Error (MRE) relevant to the peak section of the inflow hydrograph of the third flood (observational flood) obtained by the first and second basic floods was equal to 4.89% and 2.91%, respectively, while in case of using the arithmetic mean of X and K and the geometric mean of Δt, related to the first and second basic floods (the best models presented in this study), this value is equal to 1.66%.
Author Bazargan, Jalal
Norouzi, Hadi
Author_xml – sequence: 1
  givenname: Hadi
  surname: Norouzi
  fullname: Norouzi, Hadi
  organization: Department of Civil Engineering, University of Zanjan, Zanjan, Iran
– sequence: 2
  givenname: Jalal
  surname: Bazargan
  fullname: Bazargan, Jalal
  organization: Department of Civil Engineering, University of Zanjan, Zanjan, Iran
BookMark eNqFkFFLwzAUhYNMcJs--QcCvijamWRt0zzKcCpMJqjPJU3TLTNtapJa5q-33fYkgk_3cu93DveeERhUppIAnGM0ITiOb1s3IYigCWLsCAxxjGiAKEsGuz4OGA3ZCRg5t0GIUIrJEHzNtTE5tKbxqlrBbAu1qiS38LlxH92kKWEp_bpDGtcDvjUw404JWPRCB3Pu-WFXc-uV0BK6ltsSmtqrUn1zr0wFL19el1eQ65Wxyq_LU3BccO3k2aGOwfv8_m32GCyWD0-zu0UgCEt8IEXEo3waZ1EkicRRJHBIwyyTBCMRxxkJ8zxnMsolI1OBE0qRTHBBCtK9RwoxHYObvW9T1Xzbcq3T2qqS222KUdpnlrYu7TNLu8w6_GKP19Z8NtL5dGMaW3UXpiRMMMEkpKijrveUsMY5K4t_PPEvWii_C8VbrvSfmh8qDo4F
CitedBy_id crossref_primary_10_1080_15715124_2021_1879096
crossref_primary_10_1007_s11269_024_04063_9
crossref_primary_10_2166_ws_2023_288
crossref_primary_10_3390_su13137152
crossref_primary_10_2166_wcc_2021_227
crossref_primary_10_1007_s11069_023_06113_8
crossref_primary_10_1007_s13201_024_02127_0
crossref_primary_10_33333_rp_vol53n1_09
crossref_primary_10_1038_s41598_021_95721_0
crossref_primary_10_2166_ws_2022_375
crossref_primary_10_1016_j_asej_2022_101904
crossref_primary_10_1080_10106049_2021_1975832
crossref_primary_10_3390_rs16244802
crossref_primary_10_3390_w13091224
crossref_primary_10_2166_ws_2022_124
crossref_primary_10_1080_02626667_2024_2324132
crossref_primary_10_1007_s11356_023_25496_6
crossref_primary_10_2166_wpt_2021_085
crossref_primary_10_1007_s13201_022_01844_8
crossref_primary_10_2166_ws_2021_317
crossref_primary_10_3390_w13213133
Cites_doi 10.1016/j.jhydrol.2015.09.028
10.1061/(ASCE)0733-9429(1997)123:2(137)
10.2166/nh.2016.089
10.1007/s11269-018-2082-6
10.1061/(ASCE)1084-0699(2002)7:6(413)
10.1061/(ASCE)0733-9437(2004)130:2(140)
10.1007/s11269-011-9829-7
10.1016/j.jhydrol.2004.10.027
10.1061/(ASCE)HE.1943-5584.0000379
10.1016/j.jhydrol.2011.01.017
10.2166/nh.2016.185
10.1016/j.jhydrol.2017.05.024
10.1023/A:1020274409612
10.1007/s12205-013-0037-2
10.1016/j.jhydrol.2015.01.068
10.1061/(ASCE)HE.1943-5584.0000070
10.1007/s11269-016-1278-x
10.1080/19942060.2018.1448896
10.1061/(ASCE)HE.1943-5584.0001122
10.3390/w10091130
10.2166/nh.2017.251
10.1007/s11269-007-9229-1
10.1016/j.jhydrol.2016.10.030
10.1061/(ASCE)0733-9496(2007)133:3(192)
10.1061/(ASCE)HE.1943-5584.0001603
ContentType Journal Article
Copyright Copyright IWA Publishing Aug 2020
Copyright_xml – notice: Copyright IWA Publishing Aug 2020
DBID AAYXX
CITATION
7QH
7UA
8FE
8FG
ABJCF
AEUYN
AFKRA
BENPR
BGLVJ
BHPHI
BKSAR
C1K
CCPQU
DWQXO
F1W
H96
H97
HCIFZ
L.G
L6V
M7S
PCBAR
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
ADTOC
UNPAY
DOI 10.2166/ws.2020.099
DatabaseName CrossRef
Aqualine
Water Resources Abstracts
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest One Sustainability
ProQuest Central UK/Ireland
ProQuest Central
Technology Collection
Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
Environmental Sciences and Pollution Management
ProQuest One
ProQuest Central
ASFA: Aquatic Sciences and Fisheries Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality
SciTech Premium Collection
Aquatic Science & Fisheries Abstracts (ASFA) Professional
ProQuest Engineering Collection
Engineering Database
Earth, Atmospheric & Aquatic Science Database
Proquest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Technology Collection
ProQuest One Academic Middle East (New)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality
Water Resources Abstracts
Environmental Sciences and Pollution Management
Earth, Atmospheric & Aquatic Science Collection
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
ProQuest Engineering Collection
Natural Science Collection
ProQuest Central Korea
ProQuest Central (New)
Engineering Collection
Engineering Database
ProQuest One Academic Eastern Edition
Earth, Atmospheric & Aquatic Science Database
ProQuest Technology Collection
ProQuest SciTech Collection
Aqualine
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
ProQuest One Academic UKI Edition
ASFA: Aquatic Sciences and Fisheries Abstracts
Materials Science & Engineering Collection
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList Aquatic Science & Fisheries Abstracts (ASFA) Professional
CrossRef
Database_xml – sequence: 1
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1607-0798
EndPage 1908
ExternalDocumentID 10.2166/ws.2020.099
10_2166_ws_2020_099
GroupedDBID ---
0R~
123
4.4
8CJ
8FE
8FG
8FH
AAFWJ
AAJVE
AAYXX
ABFYC
ABJCF
ABLGR
ACIWK
AECGI
AEUYN
AFKRA
AFPKN
AFRAH
AJXRC
ALMA_UNASSIGNED_HOLDINGS
BENPR
BGLVJ
BHPHI
BKSAR
CCPQU
CITATION
D1J
DU5
GROUPED_DOAJ
H13
HCIFZ
HFPTO
HZ~
L6V
M7S
O9-
OK1
PCBAR
PHGZM
PHGZT
PQGLB
PTHSS
PUEGO
RHI
~02
7QH
7UA
C1K
DWQXO
F1W
H96
H97
L.G
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
ADTOC
AGVJA
EJD
UNPAY
ID FETCH-LOGICAL-c298t-ec5a5d36b55e2e155c1474bbe210c66b24ddd9e5de923c18770e81f2f22772fc3
IEDL.DBID UNPAY
ISSN 1606-9749
1607-0798
IngestDate Tue Aug 19 19:26:50 EDT 2025
Fri Jul 25 10:12:52 EDT 2025
Wed Oct 01 04:12:10 EDT 2025
Thu Apr 24 22:55:58 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c298t-ec5a5d36b55e2e155c1474bbe210c66b24ddd9e5de923c18770e81f2f22772fc3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://proxy.k.utb.cz/login?url=https://iwaponline.com/ws/article-pdf/20/5/1897/728488/ws020051897.pdf
PQID 2481212470
PQPubID 2044521
PageCount 12
ParticipantIDs unpaywall_primary_10_2166_ws_2020_099
proquest_journals_2481212470
crossref_primary_10_2166_ws_2020_099
crossref_citationtrail_10_2166_ws_2020_099
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-08-01
20200801
PublicationDateYYYYMMDD 2020-08-01
PublicationDate_xml – month: 08
  year: 2020
  text: 2020-08-01
  day: 01
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
PublicationTitle Water science & technology. Water supply
PublicationYear 2020
Publisher IWA Publishing
Publisher_xml – name: IWA Publishing
References key-10.2166/ws.2020.099-27
key-10.2166/ws.2020.099-29
Niazkar (key-10.2166/ws.2020.099-24) 2016; 48
key-10.2166/ws.2020.099-23
key-10.2166/ws.2020.099-22
key-10.2166/ws.2020.099-25
key-10.2166/ws.2020.099-21
key-10.2166/ws.2020.099-20
key-10.2166/ws.2020.099-19
Subramanya (key-10.2166/ws.2020.099-28) 1994
Vafaei (key-10.2166/ws.2020.099-30) 2010; 4
key-10.2166/ws.2020.099-16
key-10.2166/ws.2020.099-3
key-10.2166/ws.2020.099-15
key-10.2166/ws.2020.099-18
key-10.2166/ws.2020.099-1
key-10.2166/ws.2020.099-17
key-10.2166/ws.2020.099-7
key-10.2166/ws.2020.099-4
key-10.2166/ws.2020.099-5
Farahani (key-10.2166/ws.2020.099-11) 2018; 2018
key-10.2166/ws.2020.099-9
Asiaban (key-10.2166/ws.2020.099-2) 2015; 9
Chow (key-10.2166/ws.2020.099-8) 1959
key-10.2166/ws.2020.099-12
key-10.2166/ws.2020.099-34
key-10.2166/ws.2020.099-33
key-10.2166/ws.2020.099-14
key-10.2166/ws.2020.099-13
Rowshan (key-10.2166/ws.2020.099-26) 2007; 1
key-10.2166/ws.2020.099-10
key-10.2166/ws.2020.099-32
Chau (key-10.2166/ws.2020.099-6) 2005
key-10.2166/ws.2020.099-31
References_xml – volume-title: Engineering Hydrology
  year: 1994
  ident: key-10.2166/ws.2020.099-28
– ident: key-10.2166/ws.2020.099-15
  doi: 10.1016/j.jhydrol.2015.09.028
– ident: key-10.2166/ws.2020.099-22
  doi: 10.1061/(ASCE)0733-9429(1997)123:2(137)
– volume: 48
  start-page: 1253
  issue: 5
  year: 2016
  ident: key-10.2166/ws.2020.099-24
  article-title: Parameter estimation of an improved nonlinear Muskingum model using a new hybrid method
  publication-title: Hydrology Research
  doi: 10.2166/nh.2016.089
– ident: key-10.2166/ws.2020.099-5
  doi: 10.1007/s11269-018-2082-6
– ident: key-10.2166/ws.2020.099-7
  doi: 10.1061/(ASCE)1084-0699(2002)7:6(413)
– volume: 9
  start-page: 1193
  issue: 4
  year: 2015
  ident: key-10.2166/ws.2020.099-2
  article-title: Simulation of water surface profile in vertically stratified rockfill dams
  publication-title: International Journal of Environmental Research
– ident: key-10.2166/ws.2020.099-18
– ident: key-10.2166/ws.2020.099-10
  doi: 10.1061/(ASCE)0733-9437(2004)130:2(140)
– ident: key-10.2166/ws.2020.099-1
  doi: 10.1007/s11269-011-9829-7
– volume: 2018
  start-page: 1
  year: 2018
  ident: key-10.2166/ws.2020.099-11
  article-title: Flood routing by Kidney algorithm and Muskingum model
  publication-title: Natural Hazards
– ident: key-10.2166/ws.2020.099-29
  doi: 10.1016/j.jhydrol.2004.10.027
– ident: key-10.2166/ws.2020.099-3
  doi: 10.1061/(ASCE)HE.1943-5584.0000379
– ident: key-10.2166/ws.2020.099-32
  doi: 10.1016/j.jhydrol.2011.01.017
– ident: key-10.2166/ws.2020.099-34
  doi: 10.2166/nh.2016.185
– ident: key-10.2166/ws.2020.099-19
  doi: 10.1016/j.jhydrol.2017.05.024
– start-page: 1034
  volume-title: International Symposium on Neural Networks
  year: 2005
  ident: key-10.2166/ws.2020.099-6
  article-title: A split-step PSO algorithm in prediction of water quality pollution
– ident: key-10.2166/ws.2020.099-17
  doi: 10.1023/A:1020274409612
– ident: key-10.2166/ws.2020.099-4
  doi: 10.1007/s12205-013-0037-2
– ident: key-10.2166/ws.2020.099-33
  doi: 10.1016/j.jhydrol.2015.01.068
– ident: key-10.2166/ws.2020.099-9
  doi: 10.1061/(ASCE)HE.1943-5584.0000070
– ident: key-10.2166/ws.2020.099-21
  doi: 10.1007/s11269-016-1278-x
– ident: key-10.2166/ws.2020.099-14
  doi: 10.1080/19942060.2018.1448896
– ident: key-10.2166/ws.2020.099-16
  doi: 10.1061/(ASCE)HE.1943-5584.0001122
– ident: key-10.2166/ws.2020.099-12
  doi: 10.3390/w10091130
– ident: key-10.2166/ws.2020.099-13
  doi: 10.2166/nh.2017.251
– ident: key-10.2166/ws.2020.099-27
  doi: 10.1007/s11269-007-9229-1
– ident: key-10.2166/ws.2020.099-25
  doi: 10.1016/j.jhydrol.2016.10.030
– volume-title: Open Channel Hydraulics
  year: 1959
  ident: key-10.2166/ws.2020.099-8
– volume: 1
  start-page: 231
  issue: 3
  year: 2007
  ident: key-10.2166/ws.2020.099-26
  article-title: The role of climate study in analyzing flood forming potential of water basins
  publication-title: International Journal of Environmental Research
– ident: key-10.2166/ws.2020.099-20
– ident: key-10.2166/ws.2020.099-23
  doi: 10.1061/(ASCE)0733-9496(2007)133:3(192)
– ident: key-10.2166/ws.2020.099-31
  doi: 10.1061/(ASCE)HE.1943-5584.0001603
– volume: 4
  start-page: 169
  issue: 1
  year: 2010
  ident: key-10.2166/ws.2020.099-30
  article-title: Strategic management in decision support system for coastal flood management
  publication-title: International Journal of Environmental Research
SSID ssj0027712
Score 2.3533206
Snippet The Muskingum method is one of hydrological approaches that has been used for flood routing for many years thanks to its simplicity and reasonable accuracy...
SourceID unpaywall
proquest
crossref
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
StartPage 1897
SubjectTerms Accuracy
Algorithms
Arithmetic
Computation
Computer applications
Downstream effects
Flood hydrographs
Flood peak
Flood routing
Floods
Genetic algorithms
Hydraulics
Hydrology
Inflow
Mathematical models
Methods
Optimization
Outflow
Parameters
Particle swarm optimization
River networks
Routing
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3Pb9MwFH4a3WHsgAYD0bFNPhQJkMISz3HSA0KAVlVIlImtUm-Rf2VMapuuTYj23_Ne43Q9TDv7xYfPjt9n-_n7AHrrvGVVFCglSFSbLgnDNA-UTTi3TpItJFVbjORwLH5O4skOjNq3MFRW2a6J64XaFobOyM-4wFSEySgJvy7uAnKNotvV1kJDeWsF-2UtMfYMdjkpY3Vg9_vF6PLPwxYsae4_kbYHyKT7zYs9Hkl5VpN4Nw8_h2sZ2K0c9UA896r5Qt3XajrdykGDA3jhySP71oz2S9hx81ewvyUpeAj_BlSJzpZFRfXMTN8z4pFqyX5VKzoVr2asMY1mVPF-w8q6YJjJbg3L6cMVo5JR37bw04qtarWcsQJXl5l_tsk-XF79_sjU9AYxKv_OXsN4cHH9Yxh4b4XA8H5aBs7EKrbnUsex4w5BM5FIhNYOUTNSai6stX0XW4cM0ERpkoQujXKec8SQ5-b8DXTmxdy9BWYxzcYCg1XqhBZJXwuZk8ZOLhPkO7oLn1o0M-OFx8n_YprhBoSgz-pVRtBnCH0XepvgRaO38XjYcTssmf_psHEzRbrwfjNUT3Vz9HQ37-A5RTb1fsfQKZeVO0EOUupTP7H-A9FJ3Ds
  priority: 102
  providerName: ProQuest
Title Flood routing by linear Muskingum method using two basic floods data using particle swarm optimization (PSO) algorithm
URI https://www.proquest.com/docview/2481212470
https://iwaponline.com/ws/article-pdf/20/5/1897/728488/ws020051897.pdf
UnpaywallVersion publishedVersion
Volume 20
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: Proquest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1607-0798
  dateEnd: 20241102
  omitProxy: true
  ssIdentifier: ssj0027712
  issn: 1607-0798
  databaseCode: BENPR
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 1607-0798
  dateEnd: 20241102
  omitProxy: true
  ssIdentifier: ssj0027712
  issn: 1607-0798
  databaseCode: 8FG
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwED9t7QPigW9Ep1H5YUiAlDbxHCd5HGhhQqJUQKXxFNmxUybaJsrHovHXc7ekpUIIIfEWxWfHyTm-39nn3wGc3NotozxHKUGk2rRJ6IaZo0zAubGS0kJStMVMXizE-0v_8gDi3VmYVhUdR0SXlaya9l_QKUyGnvrUn3phFEwDnFbRd2srl5ZF6NYEBQ5hKH3E5AMYLmbzs6_kbSFCdxA0R901rctFYXdQj3tSYgvoJHJ34t6yv-6Zpl94806zKdRNq1arPdMT34flttNdxMn3SVPrSfrjNz7H_3-rB3CvR6fsrKv2EA7s5hHc3eMsfAzXMYW6szJvKGCa6RtGD1Ql-9BUtOzerFmXlZpRSP2S1W3O0FRepSyjihWjmNS-rOj7x6pWlWuW4_S17s-Fspfzzx9fMbVa5uVV_W39BBbx-Ze3F06fvMFJeRTWjk195ZtTqX3fcouoJfVEILS26GOmUmoujDGR9Y1FiJl6YRC4NvQynnGOgD9LT5_CYJNv7DNgBu24L1BYhVZoEURayIxIfDIZIKDSI3i91VuS9szmlGBjlaCHQ0pO2iohJSeo5BGc7ISLjtDjz2LH2wGQ9H81FgqEQwiIAncEL3aD4m_NHP2j3DEM6rKxzxHg1HoMh2H8bgzDN-ez-adxP5Z_AsB2--8
linkProvider Unpaywall
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9tAEF5RONAeqj7VtNDuAaS2kou9Wa_tA0J9EIUCKWpB4mb2ZUBK4jS2sfLn-tuYidchh4ob530cZmZ3vtmd-YaQrbnfMjLwpORIqo2fhH6cedJEjBkrsC0kZlsMRP-M_zwPz1fIv7YWBtMq2ztxflGbXOMb-Q7j4IrAGUX-3uSvh12j8He1baEhXWsFszunGHOFHYd2VkMIV-we_AB9bzPW2z_93vdclwFPsyQuPatDGZquUGFomYXlOuARV8pCMKSFUIwbYxIbGgtYSAdxFPk2DjKWMQbINNNd2PcRWeNdnkDwt_Ztf3Dy-y7ki5r_VggTPEDuSVMhyAIhdmokC2f-F39OO7vkE--A7no1nshZLYfDJZ_Xe0aeOrBKvzbW9Zys2PEL8mSJwvAluelh5jud5hXmT1M1o4hb5ZQeVwW-wlcj2jSppphhf0nLOqfgOa81zXBhQTFF1Y1NnBnTopbTEc3hNhu5MlH68eTPr09UDi9BJ-XV6BU5exApvyar43xs3xBqwK2HHCbL2HLFo0RxkSGnTyYiwFeqQz630ky1IzrHfhvDFAIeFH1aFymKPgXRd8jWYvKk4ff4_7SNVi2pO-QwuDDJDtleqOq-bd7ev80Hst4_PT5Kjw4Gh-_IY1zV5BpukNVyWtlNwD-leu-MjJKLh7brWzLbGXA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIvE4IJ5ioYAPrQRI6SauY2cPCCFKaCmUSlCpt-BXCtLuZtkkRPvX-HXMbJLtHlBvPdvxYTzxN2N_8w3A9hK3nI4CrQWJatMjYZjkgXaKc-cltYUktsWxPDgVn87isw3429fCEK2yPxOXB7UrLN2RD7lAKEIwUuEw72gRJ_vp29nvgDpI0Utr306jdZEjv2gwfSvfHO7jXu9wnn74_v4g6DoMBJaPkirwNtax25Mmjj33CK02EkoY4zERslIaLpxzIx87j3GQjRKlQp9EOc85x6g0t3u47jW4rkjFnarU048XyZ5qX1oxQQgwZh-1tYE8knLYkEw4D3fDpeDsGhpehLg36-lMLxo9Hq-hXXoX7nRhKnvX-tU92PDT-3B7TbzwAfxJifPO5kVNzGlmFowiVj1nX-qS7t_rCWvbUzPi1p-zqikYYuYvy3L6sGRETu3GZp0Ds7LR8wkr8BybdAWi7OXJt6-vmB6f4w5UPycP4fRKbPwINqfF1D8G5hDQY4GTdeKFEWpkhMxJzSeXCiMrM4DXvTUz20mcU6eNcYapDpk-a8qMTJ-h6QewvZo8a5U9_j9tq9-WrPu9cXDljAPYWW3VZcs8uXyZF3ADvTn7fHh89BRu0UctyXALNqt57Z9h4FOZ50sPY_Djql36H4scFwo
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3da9RAEF_q9UF80PqFJ7XsQwUVcpds9yN5LOJRBGtBD-pT2K-cxbtLyIeh_vXONHvXo4gIvoXs7GaT2ez8Znf2N4Qc39gtp5NIa46k2rhJGKdFpJ1izHmJaSEx2uJcns35x0txuUdm27Mwva4GjoghK1kzDV8wqlwBnvpUTJM0U1MF0yr4bn0T47II3pqAwD2yLwVg8hHZn59fnH5DbwsQegSgORuucV0uS4eDeiyREloAJ5HFk_iG_XXHNN3izfvdutLXvV4ud0zP7BFZbDo9RJz8mHStmdhfd_gc__-tDsjDgE7p6VDtMdnz6yfkwQ5n4VPyc4ah7rQuOwyYpuaa4gN1TT91DS67dys6ZKWmGFK_oG1fUjCVV5YWWLGhGJMayqrQP9r0ul7REqavVTgXSt9cfPn8lurloqyv2u-rZ2Q--_D1_VkUkjdElmVpG3krtHAn0gjhmQfUYhOuuDEefEwrpWHcOZd54TxATJukSsU-TQpWMAaAv7Anz8loXa79C0Id2HHBQVinnhuuMsNlgSQ-hVQAqMyYvNvoLbeB2RwTbCxz8HBQyXnf5KjkHJQ8Jsdb4Wog9Piz2OFmAOThr4ZCDnAIAJGKx-T1dlD8rZmX_yh3SEZt3flXAHBacxRG728Qjvlv
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Flood+routing+by+linear+Muskingum+method+using+two+basic+floods+data+using+particle+swarm+optimization+%28PSO%29+algorithm&rft.jtitle=Water+science+%26+technology.+Water+supply&rft.au=Norouzi%2C+Hadi&rft.au=Bazargan%2C+Jalal&rft.date=2020-08-01&rft.pub=IWA+Publishing&rft.issn=1606-9749&rft.eissn=1607-0798&rft.volume=20&rft.issue=5&rft.spage=1897&rft_id=info:doi/10.2166%2Fws.2020.099&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1606-9749&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1606-9749&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1606-9749&client=summon