An asymmetric and theoretical approach to the Morita-Baylis-Hillman reaction using vinyl-1,2,4-oxadiazoles as nucleophiles

In this work, we present the first enantioselective Morita-Baylis-Hillman reaction using a vinyl heterocycle as the nucleophilic partner. The reaction between vinyl-1,2,4-oxadiazoles and N -substituted isatins is catalyzed by β-isocupreidine (β-ICD), yielding compounds in up to 95% yield and up to 9...

Full description

Saved in:
Bibliographic Details
Published inOrganic & biomolecular chemistry Vol. 23; no. 24; pp. 5872 - 5881
Main Authors Chagas, Thaynan A. B, Piscelli, Bruno A, Santos, Hugo, Lima, Sâmia R, Cormanich, Rodrigo A, Fernandes, Fábio S, Coelho, Fernando
Format Journal Article
LanguageEnglish
Published England Royal Society of Chemistry 18.06.2025
Subjects
Online AccessGet full text
ISSN1477-0520
1477-0539
1477-0539
DOI10.1039/d5ob00540j

Cover

Abstract In this work, we present the first enantioselective Morita-Baylis-Hillman reaction using a vinyl heterocycle as the nucleophilic partner. The reaction between vinyl-1,2,4-oxadiazoles and N -substituted isatins is catalyzed by β-isocupreidine (β-ICD), yielding compounds in up to 95% yield and up to 98 : 2 er. The enantioselectivity of the reaction was investigated through theoretical calculations, which allowed us to identify the factors influencing the enantioselectivity, explain the preference for the formation of the R enantiomer, and understand the low or absent enantioselectivity when an isatin containing a nitro group is employed. Moreover, the methodology developed enabled the synthesis of chiral analogues of the natural products phidianidine A and phidianidine B, offering unique opportunities to obtain structurally diverse chiral 1,2,4-oxadiazoles. We report an enantioselective Morita-Baylis-Hillman reaction using vinyl-1,2,4-oxadiazoles as nucleophiles. Computational studies provided insights into the observed enantioselectivity and helped to identify the factors controlling it.
AbstractList In this work, we present the first enantioselective Morita-Baylis-Hillman reaction using a vinyl heterocycle as the nucleophilic partner. The reaction between vinyl-1,2,4-oxadiazoles and N-substituted isatins is catalyzed by β-isocupreidine (β-ICD), yielding compounds in up to 95% yield and up to 98 : 2 er. The enantioselectivity of the reaction was investigated through theoretical calculations, which allowed us to identify the factors influencing the enantioselectivity, explain the preference for the formation of the R enantiomer, and understand the low or absent enantioselectivity when an isatin containing a nitro group is employed. Moreover, the methodology developed enabled the synthesis of chiral analogues of the natural products phidianidine A and phidianidine B, offering unique opportunities to obtain structurally diverse chiral 1,2,4-oxadiazoles.In this work, we present the first enantioselective Morita-Baylis-Hillman reaction using a vinyl heterocycle as the nucleophilic partner. The reaction between vinyl-1,2,4-oxadiazoles and N-substituted isatins is catalyzed by β-isocupreidine (β-ICD), yielding compounds in up to 95% yield and up to 98 : 2 er. The enantioselectivity of the reaction was investigated through theoretical calculations, which allowed us to identify the factors influencing the enantioselectivity, explain the preference for the formation of the R enantiomer, and understand the low or absent enantioselectivity when an isatin containing a nitro group is employed. Moreover, the methodology developed enabled the synthesis of chiral analogues of the natural products phidianidine A and phidianidine B, offering unique opportunities to obtain structurally diverse chiral 1,2,4-oxadiazoles.
In this work, we present the first enantioselective Morita–Baylis–Hillman reaction using a vinyl heterocycle as the nucleophilic partner. The reaction between vinyl-1,2,4-oxadiazoles and N-substituted isatins is catalyzed by β-isocupreidine (β-ICD), yielding compounds in up to 95% yield and up to 98 : 2 er. The enantioselectivity of the reaction was investigated through theoretical calculations, which allowed us to identify the factors influencing the enantioselectivity, explain the preference for the formation of the R enantiomer, and understand the low or absent enantioselectivity when an isatin containing a nitro group is employed. Moreover, the methodology developed enabled the synthesis of chiral analogues of the natural products phidianidine A and phidianidine B, offering unique opportunities to obtain structurally diverse chiral 1,2,4-oxadiazoles.
In this work, we present the first enantioselective Morita-Baylis-Hillman reaction using a vinyl heterocycle as the nucleophilic partner. The reaction between vinyl-1,2,4-oxadiazoles and N -substituted isatins is catalyzed by β-isocupreidine (β-ICD), yielding compounds in up to 95% yield and up to 98 : 2 er. The enantioselectivity of the reaction was investigated through theoretical calculations, which allowed us to identify the factors influencing the enantioselectivity, explain the preference for the formation of the R enantiomer, and understand the low or absent enantioselectivity when an isatin containing a nitro group is employed. Moreover, the methodology developed enabled the synthesis of chiral analogues of the natural products phidianidine A and phidianidine B, offering unique opportunities to obtain structurally diverse chiral 1,2,4-oxadiazoles. We report an enantioselective Morita-Baylis-Hillman reaction using vinyl-1,2,4-oxadiazoles as nucleophiles. Computational studies provided insights into the observed enantioselectivity and helped to identify the factors controlling it.
In this work, we present the first enantioselective Morita-Baylis-Hillman reaction using a vinyl heterocycle as the nucleophilic partner. The reaction between vinyl-1,2,4-oxadiazoles and -substituted isatins is catalyzed by β-isocupreidine (β-ICD), yielding compounds in up to 95% yield and up to 98 : 2 er. The enantioselectivity of the reaction was investigated through theoretical calculations, which allowed us to identify the factors influencing the enantioselectivity, explain the preference for the formation of the enantiomer, and understand the low or absent enantioselectivity when an isatin containing a nitro group is employed. Moreover, the methodology developed enabled the synthesis of chiral analogues of the natural products phidianidine A and phidianidine B, offering unique opportunities to obtain structurally diverse chiral 1,2,4-oxadiazoles.
Author Cormanich, Rodrigo A
Coelho, Fernando
Piscelli, Bruno A
Chagas, Thaynan A. B
Santos, Hugo
Lima, Sâmia R
Fernandes, Fábio S
AuthorAffiliation University of Campinas
Institute of Chemistry
Laboratório de Síntese de Produtos Naturais e Fármacos
Laboratory of Experimental and Theoretical Organic Chemistry
Department of Organic Chemistry
AuthorAffiliation_xml – name: Laboratório de Síntese de Produtos Naturais e Fármacos
– name: University of Campinas
– name: Department of Organic Chemistry
– name: Laboratory of Experimental and Theoretical Organic Chemistry
– name: Institute of Chemistry
Author_xml – sequence: 1
  givenname: Thaynan A. B
  surname: Chagas
  fullname: Chagas, Thaynan A. B
– sequence: 2
  givenname: Bruno A
  surname: Piscelli
  fullname: Piscelli, Bruno A
– sequence: 3
  givenname: Hugo
  surname: Santos
  fullname: Santos, Hugo
– sequence: 4
  givenname: Sâmia R
  surname: Lima
  fullname: Lima, Sâmia R
– sequence: 5
  givenname: Rodrigo A
  surname: Cormanich
  fullname: Cormanich, Rodrigo A
– sequence: 6
  givenname: Fábio S
  surname: Fernandes
  fullname: Fernandes, Fábio S
– sequence: 7
  givenname: Fernando
  surname: Coelho
  fullname: Coelho, Fernando
BackLink https://www.ncbi.nlm.nih.gov/pubmed/40454433$$D View this record in MEDLINE/PubMed
BookMark eNpd0ctPGzEQB2CrAhUIvfQOssSlqtjWzzU-8iq0AnFpz6uJ19s48trB3kVN_nqcBoLEyePRJz_md4B2QgwWoc-UfKOE6--tjFNCpCDzD2ifCqUqIrne2daM7KGDnOeEUK1q8RHtCSKkEJzvo9V5wJCXfW-H5AyG0OJhZmOygzPgMSwWKYKZ4SGu-_g-JjdAdQFL73J167zvIeBkwQwuBjxmF_7iJxeWvqKn7FRU8R-0DlbR21zuwWE03sbFzJX9IdrtwGf76WWdoD8_rn9f3lZ3Dzc_L8_vKsP02VC1tSTKtNS0QmiqzFRxKi2XCsBOmQYFrTjrpCKs45LR2mognWa1qGuulJB8gr5szi1feRxtHpreZWO9h2DjmBvOypw4qRkv9OQdnccxhfK6tdI1F1yzoo5f1DjtbdsskushLZvXqRbwdQNMijkn220JJc06suZKPlz8j-xXwUcbnLLZurdI-TMlX5E6
Cites_doi 10.1002/jcph.887
10.1002/anie.200462462
10.2174/157019306776819253
10.1039/C5OB00874C
10.2217/nmt-2016-0022
10.1002/chem.200400872
10.1080/00304948.2011.549065
10.1021/ja107858z
10.1002/ajoc.201300093
10.1016/j.ejmech.2020.112418
10.1016/j.dt.2021.12.002
10.1002/anie.201707531
10.1021/acscatal.5b01579
10.1007/s11426-009-0180-2
10.1016/j.tetlet.2018.06.023
10.1021/acs.jmedchem.3c01249
10.1016/S1474-4422(15)00336-1
10.1002/adsc.202001231
10.1016/j.tetlet.2012.11.057
10.1002/anie.200460059
10.1002/ejoc.201200405
10.1021/ol102597s
10.1039/D4RA02369B
10.1039/D3QO01523H
10.1021/acs.joc.2c02765
10.1002/chem.201302665
10.1021/acs.jmedchem.2c01516
10.1021/acscatal.2c06420
10.1016/j.ejmech.2023.115272
10.1039/D3OB00853C
10.1021/ol701547r
10.1039/c3ra41115j
10.3390/molecules15020709
10.1039/c2ra20521a
10.1039/C4OB01358A
10.1021/acs.jmedchem.4c00080
10.1007/s40265-020-01319-7
10.2174/1389557523666230202103719
10.1021/acs.joc.8b02402
10.1016/0040-4039(91)80098-Q
10.1021/acs.joc.2c03073
10.1039/D4MD00113C
10.1021/ja0717865
10.1039/C4RA01492H
10.1021/ol702211d
10.1039/C5OB00182J
10.1002/chem.202202464
10.1016/j.tet.2024.134435
10.1016/j.tet.2017.04.008
10.1039/D4OB01299B
10.1021/ja5111392
10.1021/jo050202j
10.1039/D3QO01047C
10.1021/acs.jmedchem.8b01430
10.1039/C6OB00298F
10.1016/j.tet.2008.02.087
10.1021/jo102094h
10.1039/C1CS15174F
10.1039/C7CP06508F
10.1039/b613741p
10.1021/jo900622x
10.3762/bjoc.12.33
10.1039/c001772h
10.1021/ol3020418
10.1055/s-0037-1612215
10.1021/ja805122j
10.1002/ardp.202200123
10.1021/jm2013248
10.1002/cjoc.201200937
10.1016/j.theochem.2006.04.044
10.1039/c3cc40717a
10.1021/ol047739o
10.1021/acs.orglett.9b01901
10.1021/cr300192h
10.1080/14756366.2022.2115036
10.1039/D3OB00934C
10.1021/acs.orglett.8b02655
10.1021/acs.orglett.3c01082
ContentType Journal Article
Copyright Copyright Royal Society of Chemistry 2025
Copyright_xml – notice: Copyright Royal Society of Chemistry 2025
DBID AAYXX
CITATION
NPM
7QO
7T7
7TM
8FD
C1K
FR3
P64
7X8
DOI 10.1039/d5ob00540j
DatabaseName CrossRef
PubMed
Biotechnology Research Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Nucleic Acids Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Biotechnology Research Abstracts
Technology Research Database
Nucleic Acids Abstracts
Engineering Research Database
Industrial and Applied Microbiology Abstracts (Microbiology A)
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
Biotechnology Research Abstracts
CrossRef

PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1477-0539
EndPage 5881
ExternalDocumentID 40454433
10_1039_D5OB00540J
d5ob00540j
Genre Journal Article
GroupedDBID ---
-DZ
-~X
0-7
0R~
123
29N
4.4
705
70~
7~J
AAEMU
AAIWI
AAJAE
AAMEH
AANOJ
AAWGC
AAXHV
AAXPP
ABASK
ABDVN
ABEMK
ABJNI
ABPDG
ABRYZ
ABXOH
ACGFS
ACIWK
ACLDK
ACNCT
ACPRK
ADMRA
ADSRN
AEFDR
AENEX
AENGV
AESAV
AETIL
AFLYV
AFOGI
AFRAH
AFRDS
AFRZK
AFVBQ
AGEGJ
AGKEF
AGRSR
AHGCF
AKMSF
ALMA_UNASSIGNED_HOLDINGS
ALUYA
ANUXI
APEMP
ASKNT
AUDPV
BLAPV
BSQNT
C6K
CS3
D0L
DU5
EBS
ECGLT
EE0
EF-
F5P
GGIMP
GNO
H13
HZ~
H~N
IDZ
J3I
N9A
O9-
P2P
R56
R7B
R7C
RAOCF
RCNCU
RNS
RPMJG
RRA
RRC
RSCEA
SKA
SKF
SLH
TN5
TWZ
VH6
WH7
XSW
YNT
YZZ
AAYXX
CITATION
M4U
NPM
7QO
7T7
7TM
8FD
C1K
FR3
P64
7X8
ID FETCH-LOGICAL-c298t-d6507cd1cd44917cb7315e357aaeb29a7ad48f5702f35216e9a0f926466377453
ISSN 1477-0520
1477-0539
IngestDate Sun Jun 29 02:50:51 EDT 2025
Mon Jun 30 07:24:55 EDT 2025
Fri Jun 20 01:35:25 EDT 2025
Thu Jul 03 08:21:36 EDT 2025
Wed Jun 18 15:20:18 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 24
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c298t-d6507cd1cd44917cb7315e357aaeb29a7ad48f5702f35216e9a0f926466377453
Notes Electronic supplementary information (ESI) available. CCDC
For ESI and crystallographic data in CIF or other electronic format see DOI
2391961
https://doi.org/10.1039/d5ob00540j
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-0967-2842
0000-0001-8885-8762
0000-0002-7411-5180
0000-0001-7659-1749
0000-0003-1800-1549
0000-0001-8476-8604
PMID 40454433
PQID 3219634392
PQPubID 2047497
PageCount 1
ParticipantIDs crossref_primary_10_1039_D5OB00540J
pubmed_primary_40454433
proquest_miscellaneous_3214730623
proquest_journals_3219634392
rsc_primary_d5ob00540j
PublicationCentury 2000
PublicationDate 2025-06-18
PublicationDateYYYYMMDD 2025-06-18
PublicationDate_xml – month: 06
  year: 2025
  text: 2025-06-18
  day: 18
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
– name: Cambridge
PublicationTitle Organic & biomolecular chemistry
PublicationTitleAlternate Org Biomol Chem
PublicationYear 2025
Publisher Royal Society of Chemistry
Publisher_xml – name: Royal Society of Chemistry
References Sivanandan (D5OB00540J/cit7d/1) 2023; 21
Liang (D5OB00540J/cit9a/1) 2007; 9
Basavaiah (D5OB00540J/cit6b/1) 2012; 41
Reddy (D5OB00540J/cit9c/1) 2018; 59
Nair (D5OB00540J/cit9b/1) 2012; 14
Qian (D5OB00540J/cit18c/1) 2012; 2
Yoshida (D5OB00540J/cit17d/1) 2015; 13
Zhong (D5OB00540J/cit2/1) 2023; 21
Gao (D5OB00540J/cit18e/1) 2015; 5
Wei (D5OB00540J/cit15b/1) 2013; 113
Mansilla (D5OB00540J/cit16/1) 2010; 15
Nakamoto (D5OB00540J/cit24/1) 2013; 19
Nizalapur (D5OB00540J/cit27e/1) 2016; 14
Zhang (D5OB00540J/cit19b/1) 2013; 49
Fabbri (D5OB00540J/cit4a/1) 2016; 6
Hoff (D5OB00540J/cit8c/1) 2022; 28
Wang (D5OB00540J/cit9d/1) 2019
Shi (D5OB00540J/cit17a/1) 2005; 11
Plata (D5OB00540J/cit11e/1) 2015; 137
Zhong (D5OB00540J/cit7b/1) 2011; 43
Bode (D5OB00540J/cit11a/1) 1991; 32
He (D5OB00540J/cit21/1) 2023; 88
Desai (D5OB00540J/cit1b/1) 2022; 355
Tran (D5OB00540J/cit4c/1) 2017; 57
Zhao (D5OB00540J/cit7e/1) 2025; 23
Ayoup (D5OB00540J/cit5c/1) 2023; 252
Xu (D5OB00540J/cit12a/1) 2006; 767
Santos (D5OB00540J/cit10/1) 2023; 13
Pace (D5OB00540J/cit3a/1) 2015
Price (D5OB00540J/cit14a/1) 2005; 70
Pellissier (D5OB00540J/cit15d/1) 2025; 172
Banerjee (D5OB00540J/cit27a/1) 2014; 4
Duan (D5OB00540J/cit19a/1) 2013; 3
Martelli (D5OB00540J/cit25/1) 2012
He (D5OB00540J/cit27d/1) 2018; 20
Fernandes (D5OB00540J/cit22a/1) 2018; 83
Liu (D5OB00540J/cit5e/1) 2024; 67
Basavaiah (D5OB00540J/cit6a/1) 2007; 36
Price (D5OB00540J/cit14b/1) 2005; 7
Abermil (D5OB00540J/cit18a/1) 2008; 130
Fernandes (D5OB00540J/cit23/1) 2020; 201
Zhao (D5OB00540J/cit8e/1) 2023; 25
Robiette (D5OB00540J/cit13b/1) 2007; 129
Kumar (D5OB00540J/cit20b/1) 2015; 13
Mambwe (D5OB00540J/cit5a/1) 2022; 65
Roy (D5OB00540J/cit12c/1) 2009; 74
Uchida (D5OB00540J/cit8a/1) 2019; 21
Lu (D5OB00540J/cit17e/1) 2023; 10
Zhong (D5OB00540J/cit18b/1) 2011; 13
Boström (D5OB00540J/cit1a/1) 2012; 55
Liu (D5OB00540J/cit12d/1) 2017; 19
Ferreira (D5OB00540J/cit4b/1) 2016; 15
Chauhan (D5OB00540J/cit20a/1) 2013; 2
He (D5OB00540J/cit20c/1) 2016; 12
Lamb (D5OB00540J/cit4d/1) 2020; 80
Rambabu (D5OB00540J/cit27b/1) 2013; 54
Liu (D5OB00540J/cit17b/1) 2010; 132
Singh (D5OB00540J/cit7a/1) 2008; 64
Maneesha (D5OB00540J/cit6c/1) 2024; 14
Qian (D5OB00540J/cit5b/1) 2023; 66
Santos (D5OB00540J/cit11b/1) 2004; 43
Wu (D5OB00540J/cit19c/1) 2023; 88
Aggarwal (D5OB00540J/cit13a/1) 2005; 44
Liu (D5OB00540J/cit8b/1) 2021; 363
Zhao (D5OB00540J/cit18d/1) 2014; 12
Buxton (D5OB00540J/cit27c/1) 2017; 56
Pellissier (D5OB00540J/cit15c/1) 2017; 73
Kaye (D5OB00540J/cit7c/1) 2019
Krishna (D5OB00540J/cit15a/1) 2006; 3
Ayoup (D5OB00540J/cit5d/1) 2024; 15
Capretz-Agy (D5OB00540J/cit22b/1) 2020
Zhang (D5OB00540J/cit11c/1) 2009; 52
Burns (D5OB00540J/cit28/1) 2010; 8
Cantillo (D5OB00540J/cit11d/1) 2010; 75
Roy (D5OB00540J/cit12b/1) 2007; 9
Cao (D5OB00540J/cit3b/1) 2022; 18
Liu (D5OB00540J/cit26/1) 2018; 61
Paiva Ferreira (D5OB00540J/cit9e/1) 2023; 23
Wang (D5OB00540J/cit1c/1) 2022; 37
Nam (D5OB00540J/cit8d/1) 2023; 10
Zeng (D5OB00540J/cit17c/1) 2012; 30
References_xml – issn: 2019
  end-page: 101-152
  publication-title: Advances in Heterocyclic Chemistry
  doi: Kaye
– issn: 2015
  end-page: 85-136
  publication-title: Advances in Heterocyclic Chemistry
  doi: Pace Buscemi Piccionello Pibiri
– volume: 57
  start-page: 988
  issue: 8
  year: 2017
  ident: D5OB00540J/cit4c/1
  publication-title: J. Clin. Pharmacol.
  doi: 10.1002/jcph.887
– volume: 44
  start-page: 1706
  issue: 11
  year: 2005
  ident: D5OB00540J/cit13a/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.200462462
– volume: 3
  start-page: 137
  issue: 2
  year: 2006
  ident: D5OB00540J/cit15a/1
  publication-title: Mini-Rev. Org. Chem.
  doi: 10.2174/157019306776819253
– volume: 13
  start-page: 9022
  issue: 34
  year: 2015
  ident: D5OB00540J/cit17d/1
  publication-title: Org. Biomol. Chem.
  doi: 10.1039/C5OB00874C
– volume: 6
  start-page: 349
  issue: 5
  year: 2016
  ident: D5OB00540J/cit4a/1
  publication-title: Neurodegener. Dis. Manage.
  doi: 10.2217/nmt-2016-0022
– volume: 11
  start-page: 1794
  issue: 6
  year: 2005
  ident: D5OB00540J/cit17a/1
  publication-title: Chem. – Eur. J.
  doi: 10.1002/chem.200400872
– volume: 43
  start-page: 1
  issue: 1
  year: 2011
  ident: D5OB00540J/cit7b/1
  publication-title: Org. Prep. Proced. Int.
  doi: 10.1080/00304948.2011.549065
– volume: 132
  start-page: 15176
  issue: 43
  year: 2010
  ident: D5OB00540J/cit17b/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja107858z
– volume: 2
  start-page: 586
  issue: 7
  year: 2013
  ident: D5OB00540J/cit20a/1
  publication-title: Asian J. Org. Chem.
  doi: 10.1002/ajoc.201300093
– volume: 201
  start-page: 112418
  year: 2020
  ident: D5OB00540J/cit23/1
  publication-title: Eur. J. Med. Chem.
  doi: 10.1016/j.ejmech.2020.112418
– volume: 18
  start-page: 344
  issue: 3
  year: 2022
  ident: D5OB00540J/cit3b/1
  publication-title: Def. Technol.
  doi: 10.1016/j.dt.2021.12.002
– volume: 56
  start-page: 13824
  issue: 44
  year: 2017
  ident: D5OB00540J/cit27c/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201707531
– volume: 5
  start-page: 6608
  issue: 11
  year: 2015
  ident: D5OB00540J/cit18e/1
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.5b01579
– volume: 52
  start-page: 1300
  year: 2009
  ident: D5OB00540J/cit11c/1
  publication-title: Sci. China, Ser. B: Chem.
  doi: 10.1007/s11426-009-0180-2
– volume: 59
  start-page: 2859
  issue: 30
  year: 2018
  ident: D5OB00540J/cit9c/1
  publication-title: Tetrahedron Lett.
  doi: 10.1016/j.tetlet.2018.06.023
– volume: 66
  start-page: 13891
  issue: 20
  year: 2023
  ident: D5OB00540J/cit5b/1
  publication-title: J. Med. Chem.
  doi: 10.1021/acs.jmedchem.3c01249
– volume: 15
  start-page: 154
  issue: 2
  year: 2016
  ident: D5OB00540J/cit4b/1
  publication-title: Lancet Neurol.
  doi: 10.1016/S1474-4422(15)00336-1
– volume: 363
  start-page: 737
  issue: 3
  year: 2021
  ident: D5OB00540J/cit8b/1
  publication-title: Adv. Synth. Catal.
  doi: 10.1002/adsc.202001231
– volume: 54
  start-page: 495
  issue: 6
  year: 2013
  ident: D5OB00540J/cit27b/1
  publication-title: Tetrahedron Lett.
  doi: 10.1016/j.tetlet.2012.11.057
– volume: 43
  start-page: 4330
  issue: 33
  year: 2004
  ident: D5OB00540J/cit11b/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.200460059
– start-page: 4140
  year: 2012
  ident: D5OB00540J/cit25/1
  publication-title: Eur. J. Org. Chem.
  doi: 10.1002/ejoc.201200405
– volume: 13
  start-page: 82
  issue: 1
  year: 2011
  ident: D5OB00540J/cit18b/1
  publication-title: Org. Lett.
  doi: 10.1021/ol102597s
– volume: 14
  start-page: 14949
  issue: 21
  year: 2024
  ident: D5OB00540J/cit6c/1
  publication-title: RSC Adv.
  doi: 10.1039/D4RA02369B
– volume: 10
  start-page: 6153
  issue: 24
  year: 2023
  ident: D5OB00540J/cit8d/1
  publication-title: Org. Chem. Front.
  doi: 10.1039/D3QO01523H
– volume: 88
  start-page: 6599
  issue: 11
  year: 2023
  ident: D5OB00540J/cit19c/1
  publication-title: J. Org. Chem.
  doi: 10.1021/acs.joc.2c02765
– volume: 19
  start-page: 12653
  issue: 38
  year: 2013
  ident: D5OB00540J/cit24/1
  publication-title: Chem. – Eur. J.
  doi: 10.1002/chem.201302665
– volume: 65
  start-page: 16695
  issue: 24
  year: 2022
  ident: D5OB00540J/cit5a/1
  publication-title: J. Med. Chem.
  doi: 10.1021/acs.jmedchem.2c01516
– volume: 13
  start-page: 3864
  issue: 6
  year: 2023
  ident: D5OB00540J/cit10/1
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.2c06420
– volume: 252
  start-page: 115272
  year: 2023
  ident: D5OB00540J/cit5c/1
  publication-title: Eur. J. Med. Chem.
  doi: 10.1016/j.ejmech.2023.115272
– volume: 21
  start-page: 6243
  year: 2023
  ident: D5OB00540J/cit7d/1
  publication-title: Org. Biomol. Chem.
  doi: 10.1039/D3OB00853C
– volume: 9
  start-page: 4119
  issue: 21
  year: 2007
  ident: D5OB00540J/cit9a/1
  publication-title: Org. Lett.
  doi: 10.1021/ol701547r
– volume: 3
  start-page: 10127
  issue: 26
  year: 2013
  ident: D5OB00540J/cit19a/1
  publication-title: RSC Adv.
  doi: 10.1039/c3ra41115j
– volume: 15
  start-page: 709
  issue: 2
  year: 2010
  ident: D5OB00540J/cit16/1
  publication-title: Molecules
  doi: 10.3390/molecules15020709
– volume: 2
  start-page: 6042
  issue: 14
  year: 2012
  ident: D5OB00540J/cit18c/1
  publication-title: RSC Adv.
  doi: 10.1039/c2ra20521a
– volume: 12
  start-page: 8072
  issue: 40
  year: 2014
  ident: D5OB00540J/cit18d/1
  publication-title: Org. Biomol. Chem.
  doi: 10.1039/C4OB01358A
– volume: 67
  start-page: 10622
  issue: 13
  year: 2024
  ident: D5OB00540J/cit5e/1
  publication-title: J. Med. Chem.
  doi: 10.1021/acs.jmedchem.4c00080
– volume: 80
  start-page: 841
  year: 2020
  ident: D5OB00540J/cit4d/1
  publication-title: Drugs
  doi: 10.1007/s40265-020-01319-7
– volume: 23
  start-page: 1691
  issue: 17
  year: 2023
  ident: D5OB00540J/cit9e/1
  publication-title: Mini-Rev. Med. Chem.
  doi: 10.2174/1389557523666230202103719
– volume: 83
  start-page: 15118
  issue: 24
  year: 2018
  ident: D5OB00540J/cit22a/1
  publication-title: J. Org. Chem.
  doi: 10.1021/acs.joc.8b02402
– volume: 32
  start-page: 5611
  issue: 40
  year: 1991
  ident: D5OB00540J/cit11a/1
  publication-title: Tetrahedron Lett.
  doi: 10.1016/0040-4039(91)80098-Q
– volume: 88
  start-page: 3802
  issue: 6
  year: 2023
  ident: D5OB00540J/cit21/1
  publication-title: J. Org. Chem.
  doi: 10.1021/acs.joc.2c03073
– volume: 15
  start-page: 2080
  issue: 6
  year: 2024
  ident: D5OB00540J/cit5d/1
  publication-title: RSC Med. Chem.
  doi: 10.1039/D4MD00113C
– volume: 129
  start-page: 15513
  issue: 50
  year: 2007
  ident: D5OB00540J/cit13b/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja0717865
– volume: 4
  start-page: 33236
  year: 2014
  ident: D5OB00540J/cit27a/1
  publication-title: RSC Adv.
  doi: 10.1039/C4RA01492H
– volume: 9
  start-page: 4873
  issue: 23
  year: 2007
  ident: D5OB00540J/cit12b/1
  publication-title: Org. Lett.
  doi: 10.1021/ol702211d
– volume: 13
  start-page: 5629
  issue: 20
  year: 2015
  ident: D5OB00540J/cit20b/1
  publication-title: Org. Biomol. Chem.
  doi: 10.1039/C5OB00182J
– volume: 28
  start-page: e202202464
  issue: 63
  year: 2022
  ident: D5OB00540J/cit8c/1
  publication-title: Chem. – Eur. J.
  doi: 10.1002/chem.202202464
– volume: 172
  start-page: 134435
  year: 2025
  ident: D5OB00540J/cit15d/1
  publication-title: Tetrahedron
  doi: 10.1016/j.tet.2024.134435
– volume: 73
  start-page: 2831
  issue: 20
  year: 2017
  ident: D5OB00540J/cit15c/1
  publication-title: Tetrahedron
  doi: 10.1016/j.tet.2017.04.008
– volume: 23
  start-page: 1292
  year: 2025
  ident: D5OB00540J/cit7e/1
  publication-title: Org. Biomol. Chem.
  doi: 10.1039/D4OB01299B
– volume: 137
  start-page: 3811
  issue: 11
  year: 2015
  ident: D5OB00540J/cit11e/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja5111392
– volume: 70
  start-page: 3980
  issue: 10
  year: 2005
  ident: D5OB00540J/cit14a/1
  publication-title: J. Org. Chem.
  doi: 10.1021/jo050202j
– volume: 10
  start-page: 5076
  issue: 20
  year: 2023
  ident: D5OB00540J/cit17e/1
  publication-title: Org. Chem. Front.
  doi: 10.1039/D3QO01047C
– volume: 61
  start-page: 11298
  issue: 24
  year: 2018
  ident: D5OB00540J/cit26/1
  publication-title: J. Med. Chem.
  doi: 10.1021/acs.jmedchem.8b01430
– volume: 14
  start-page: 3623
  issue: 14
  year: 2016
  ident: D5OB00540J/cit27e/1
  publication-title: Org. Biomol. Chem.
  doi: 10.1039/C6OB00298F
– volume: 64
  start-page: 4511
  issue: 20
  year: 2008
  ident: D5OB00540J/cit7a/1
  publication-title: Tetrahedron
  doi: 10.1016/j.tet.2008.02.087
– volume: 75
  start-page: 8615
  issue: 24
  year: 2010
  ident: D5OB00540J/cit11d/1
  publication-title: J. Org. Chem.
  doi: 10.1021/jo102094h
– volume: 41
  start-page: 68
  issue: 1
  year: 2012
  ident: D5OB00540J/cit6b/1
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C1CS15174F
– volume: 19
  start-page: 30647
  issue: 45
  year: 2017
  ident: D5OB00540J/cit12d/1
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/C7CP06508F
– start-page: 622
  year: 2020
  ident: D5OB00540J/cit22b/1
  publication-title: Synlett
– volume: 36
  start-page: 1581
  issue: 10
  year: 2007
  ident: D5OB00540J/cit6a/1
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/b613741p
– volume: 74
  start-page: 6936
  issue: 18
  year: 2009
  ident: D5OB00540J/cit12c/1
  publication-title: J. Org. Chem.
  doi: 10.1021/jo900622x
– volume: 12
  start-page: 309
  year: 2016
  ident: D5OB00540J/cit20c/1
  publication-title: Beilstein J. Org. Chem.
  doi: 10.3762/bjoc.12.33
– volume: 8
  start-page: 2777
  issue: 12
  year: 2010
  ident: D5OB00540J/cit28/1
  publication-title: Org. Biomol. Chem.
  doi: 10.1039/c001772h
– volume: 14
  start-page: 4580
  issue: 17
  year: 2012
  ident: D5OB00540J/cit9b/1
  publication-title: Org. Lett.
  doi: 10.1021/ol3020418
– start-page: 748
  year: 2019
  ident: D5OB00540J/cit9d/1
  publication-title: Synlett
  doi: 10.1055/s-0037-1612215
– volume: 130
  start-page: 12596
  issue: 38
  year: 2008
  ident: D5OB00540J/cit18a/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja805122j
– start-page: 85
  volume-title: Advances in Heterocyclic Chemistry
  year: 2015
  ident: D5OB00540J/cit3a/1
– volume: 355
  start-page: e2200123
  issue: 9
  year: 2022
  ident: D5OB00540J/cit1b/1
  publication-title: Arch. Pharm.
  doi: 10.1002/ardp.202200123
– volume: 55
  start-page: 1817
  issue: 5
  year: 2012
  ident: D5OB00540J/cit1a/1
  publication-title: J. Med. Chem.
  doi: 10.1021/jm2013248
– volume: 30
  start-page: 2631
  issue: 11
  year: 2012
  ident: D5OB00540J/cit17c/1
  publication-title: Chin. J. Chem.
  doi: 10.1002/cjoc.201200937
– volume: 767
  start-page: 61
  issue: 1–3
  year: 2006
  ident: D5OB00540J/cit12a/1
  publication-title: J. Mol. Struct.:THEOCHEM
  doi: 10.1016/j.theochem.2006.04.044
– volume: 49
  start-page: 3300
  issue: 32
  year: 2013
  ident: D5OB00540J/cit19b/1
  publication-title: Chem. Commun.
  doi: 10.1039/c3cc40717a
– volume: 7
  start-page: 147
  issue: 1
  year: 2005
  ident: D5OB00540J/cit14b/1
  publication-title: Org. Lett.
  doi: 10.1021/ol047739o
– volume: 21
  start-page: 6199
  issue: 16
  year: 2019
  ident: D5OB00540J/cit8a/1
  publication-title: Org. Lett.
  doi: 10.1021/acs.orglett.9b01901
– volume: 113
  start-page: 6659
  issue: 8
  year: 2013
  ident: D5OB00540J/cit15b/1
  publication-title: Chem. Rev.
  doi: 10.1021/cr300192h
– start-page: 101
  volume-title: Advances in Heterocyclic Chemistry
  year: 2019
  ident: D5OB00540J/cit7c/1
– volume: 37
  start-page: 2304
  issue: 1
  year: 2022
  ident: D5OB00540J/cit1c/1
  publication-title: J. Enzyme Inhib. Med. Chem.
  doi: 10.1080/14756366.2022.2115036
– volume: 21
  start-page: 7511
  issue: 37
  year: 2023
  ident: D5OB00540J/cit2/1
  publication-title: Org. Biomol. Chem.
  doi: 10.1039/D3OB00934C
– volume: 20
  start-page: 6183
  issue: 19
  year: 2018
  ident: D5OB00540J/cit27d/1
  publication-title: Org. Lett.
  doi: 10.1021/acs.orglett.8b02655
– volume: 25
  start-page: 3497
  issue: 19
  year: 2023
  ident: D5OB00540J/cit8e/1
  publication-title: Org. Lett.
  doi: 10.1021/acs.orglett.3c01082
SSID ssj0019764
Score 2.4632723
Snippet In this work, we present the first enantioselective Morita-Baylis-Hillman reaction using a vinyl heterocycle as the nucleophilic partner. The reaction between...
In this work, we present the first enantioselective Morita–Baylis–Hillman reaction using a vinyl heterocycle as the nucleophilic partner. The reaction between...
SourceID proquest
pubmed
crossref
rsc
SourceType Aggregation Database
Index Database
Publisher
StartPage 5872
SubjectTerms Enantiomers
Natural products
Nucleophiles
Oxadiazoles
Title An asymmetric and theoretical approach to the Morita-Baylis-Hillman reaction using vinyl-1,2,4-oxadiazoles as nucleophiles
URI https://www.ncbi.nlm.nih.gov/pubmed/40454433
https://www.proquest.com/docview/3219634392
https://www.proquest.com/docview/3214730623
Volume 23
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1db9MwFLVKJ8FeEF-DwEBG8LaZtY7TJI9dGSrTBkjrpL1VtpOMoCap1hbR_g_-L9dfScaGBDw0qpymqXJOb851rs9F6K2IWOInkSTKW4SwQGREgIgjLBmIMAWJzbQT0-mnwficHV8EF53Oz1bV0mop3snNretK_gdVGANc1SrZf0C2_lIYgPeAL2wBYdj-FcbDco8v1kWhumJJVwtZr0t0duFOXp5WaiKAHEKOni_IOJ_N1Pw9iEbTLXylZw2-5-V6RiC8jSi8GKl-KPOCjbJ9Ui1pSmV_XM2_QixZtHWtWdIpNZHUin7XdHdPuoZyrTqCS25rk_i6hF8wbDo_f8kX6klCbllXVs1U65nqdqyPG68uKzd6khda_Z7pB_60yLmtgLQTGTRQBVc29qYm-LIwBM4YcyMXnc1qZMtCylqxNohM058bN4GerzxUk6ASWpB-a38IAJwXmg5MmQ8y48Lxm-W223UHbdEQJFkXbQ2PJh9P6sdToOGY87r144PmVNvorjv4utC5kb2AlrlyPWa0lpk8QPdtEoKHhlEPUSctH6F7IwfVY7QZlrhhFgZm4RazsGMWXlZqHN_KLOyYhTWzsGXWPt2_xio4D26z6gk6_3A0GY2J7dJBJI2jJUlA44cy6cuEMcj9pQj9fpD6Qch5KmjMQ56wKAvCHs1A7PcHacx7WQw6HC4s5B6Bv4O6ZVWmzxBmWS9OpUgGqoG07IeC9wUTEDsiKSEvzjz0xl3S6dyYsUx1EYUfT98Hnw81Bsce2nVXe2r_rIupT9WtBtQ39dDrendhWM3LtFrpzzC44UFC4KGnBqX6NA5VD-0AbPVwg_zzPx7yAm03dN9F3eXVKn0JSnYpXlle_QJ0o566
linkProvider Royal Society of Chemistry
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+asymmetric+and+theoretical+approach+to+the+Morita-Baylis-Hillman+reaction+using+vinyl-1%2C2%2C4-oxadiazoles+as+nucleophiles&rft.jtitle=Organic+%26+biomolecular+chemistry&rft.au=Chagas%2C+Thaynan+A+B&rft.au=Piscelli%2C+Bruno+A&rft.au=Santos%2C+Hugo&rft.au=Lima%2C+S%C3%A2mia+R&rft.date=2025-06-18&rft.eissn=1477-0539&rft.volume=23&rft.issue=24&rft.spage=5872&rft_id=info:doi/10.1039%2Fd5ob00540j&rft_id=info%3Apmid%2F40454433&rft.externalDocID=40454433
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1477-0520&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1477-0520&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1477-0520&client=summon