A Comparative Study of Machine Learning Models with Hyperparameter Optimization Algorithm for Mapping Mineral Prospectivity
Selecting internal hyperparameters, which can be set by the automatic search algorithm, is important to improve the generalization performance of machine learning models. In this study, the geological, remote sensing and geochemical data of the Lalingzaohuo area in Qinghai province were researched....
        Saved in:
      
    
          | Published in | Minerals (Basel) Vol. 11; no. 2; p. 159 | 
|---|---|
| Main Authors | , , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        Basel
          MDPI AG
    
        01.02.2021
     | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 2075-163X 2075-163X  | 
| DOI | 10.3390/min11020159 | 
Cover
| Abstract | Selecting internal hyperparameters, which can be set by the automatic search algorithm, is important to improve the generalization performance of machine learning models. In this study, the geological, remote sensing and geochemical data of the Lalingzaohuo area in Qinghai province were researched. A multi-source metallogenic information spatial data set was constructed by calculating the Youden index for selecting potential evidence layers. The model for mapping mineral prospectivity of the study area was established by combining two swarm intelligence optimization algorithms, namely the bat algorithm (BA) and the firefly algorithm (FA), with different machine learning models. The receiver operating characteristic (ROC) and prediction-area (P-A) curves were used for performance evaluation and showed that the two algorithms had an obvious optimization effect. The BA and FA differentiated in improving multilayer perceptron (MLP), AdaBoost and one-class support vector machine (OCSVM) models; thus, there was no optimization algorithm that was consistently superior to the other. However, the accuracy of the machine learning models was significantly enhanced after optimizing the hyperparameters. The area under curve (AUC) values of the ROC curve of the optimized machine learning models were all higher than 0.8, indicating that the hyperparameter optimization calculation was effective. In terms of individual model improvement, the accuracy of the FA-AdaBoost model was improved the most significantly, with the AUC value increasing from 0.8173 to 0.9597 and the prediction/area (P/A) value increasing from 3.156 to 10.765, where the mineral targets predicted by the model occupied 8.63% of the study area and contained 92.86% of the known mineral deposits. The targets predicted by the improved machine learning models are consistent with the metallogenic geological characteristics, indicating that the swarm intelligence optimization algorithm combined with the machine learning model is an efficient method for mineral prospectivity mapping. | 
    
|---|---|
| AbstractList | Selecting internal hyperparameters, which can be set by the automatic search algorithm, is important to improve the generalization performance of machine learning models. In this study, the geological, remote sensing and geochemical data of the Lalingzaohuo area in Qinghai province were researched. A multi-source metallogenic information spatial data set was constructed by calculating the Youden index for selecting potential evidence layers. The model for mapping mineral prospectivity of the study area was established by combining two swarm intelligence optimization algorithms, namely the bat algorithm (BA) and the firefly algorithm (FA), with different machine learning models. The receiver operating characteristic (ROC) and prediction-area (P-A) curves were used for performance evaluation and showed that the two algorithms had an obvious optimization effect. The BA and FA differentiated in improving multilayer perceptron (MLP), AdaBoost and one-class support vector machine (OCSVM) models; thus, there was no optimization algorithm that was consistently superior to the other. However, the accuracy of the machine learning models was significantly enhanced after optimizing the hyperparameters. The area under curve (AUC) values of the ROC curve of the optimized machine learning models were all higher than 0.8, indicating that the hyperparameter optimization calculation was effective. In terms of individual model improvement, the accuracy of the FA-AdaBoost model was improved the most significantly, with the AUC value increasing from 0.8173 to 0.9597 and the prediction/area (P/A) value increasing from 3.156 to 10.765, where the mineral targets predicted by the model occupied 8.63% of the study area and contained 92.86% of the known mineral deposits. The targets predicted by the improved machine learning models are consistent with the metallogenic geological characteristics, indicating that the swarm intelligence optimization algorithm combined with the machine learning model is an efficient method for mineral prospectivity mapping. | 
    
| Author | Liu, Hanlin Chen, Yongliang Liu, Haiqi Lin, Nan  | 
    
| Author_xml | – sequence: 1 givenname: Nan surname: Lin fullname: Lin, Nan – sequence: 2 givenname: Yongliang surname: Chen fullname: Chen, Yongliang – sequence: 3 givenname: Haiqi surname: Liu fullname: Liu, Haiqi – sequence: 4 givenname: Hanlin surname: Liu fullname: Liu, Hanlin  | 
    
| BookMark | eNqFkEFLwzAYhoMoOKcn_0DAo06TtFnT4xjqhMkEFbyVLP26ZbRJTDNH9c8bnYchgrkkh-d98n3vEdo31gBCp5RcJklOrhptKCWMUJ7voR4jGR_QYfKyv_M-RCdtuyLx5DQRnPXQxwiPbeOkl0G_AX4M67LDtsL3Ui21ATwF6Y02C3xvS6hbvNFhiSedA_-VaSCAxzMXdKPfo8EaPKoX1keowZX1UePcdzq6vKzxg7etAxX_0qE7RgeVrFs4-bn76Pnm-mk8GUxnt3fj0XSgWC7CoORUkhJgniVQcijTNI0LVfOhShM6T1UmpJgLkamsrGjKJSd5NVRcMsY4kEQmfXSx9a6Nk91G1nXhvG6k7wpKiq_uip3uIn62xZ23r2toQ7Gya2_ihAVLRca4GKYiUudbSsWVWg_VP076i1Y6fBcWvNT1n5lPdSuQ1g | 
    
| CitedBy_id | crossref_primary_10_1016_j_chemer_2021_125800 crossref_primary_10_3390_rs15123133 crossref_primary_10_1007_s11053_023_10249_6 crossref_primary_10_1016_j_oregeorev_2025_106458 crossref_primary_10_1016_j_rsase_2024_101218 crossref_primary_10_1016_j_apgeochem_2023_105807 crossref_primary_10_1109_ACCESS_2023_3307495 crossref_primary_10_3390_min13030313 crossref_primary_10_3390_min13070902 crossref_primary_10_1007_s11053_022_10146_4 crossref_primary_10_3390_min15010071 crossref_primary_10_1016_j_eswa_2023_121668 crossref_primary_10_1016_j_gexplo_2024_107543 crossref_primary_10_1007_s12145_024_01565_3 crossref_primary_10_1007_s11053_021_09933_2 crossref_primary_10_1016_j_apgeochem_2022_105273 crossref_primary_10_1007_s12145_024_01224_7 crossref_primary_10_1016_j_jafrearsci_2023_105020  | 
    
| Cites_doi | 10.1109/TIP.2017.2772836 10.1109/5254.708428 10.1016/j.solener.2017.09.063 10.1109/3477.484436 10.1007/s11053-019-09510-8 10.1038/scientificamerican0792-66 10.1080/08120099.2017.1328705 10.1016/S0893-6080(99)00032-5 10.1016/j.cmpb.2017.09.015 10.3390/min10020102 10.1109/21.97458 10.1016/j.cageo.2017.10.005 10.1016/j.compeleceng.2018.07.049 10.1162/neco.1989.1.3.295 10.1007/s11053-019-09589-z 10.1145/1961189.1961199 10.1007/s11053-017-9355-2 10.1016/j.eswa.2017.07.050 10.1016/j.measurement.2018.08.029 10.1109/TEVC.2004.826067 10.1080/01969722.2020.1798641 10.1007/s11053-014-9261-9 10.1007/s10100-011-0224-5 10.1016/j.energy.2018.04.175 10.1016/j.oregeorev.2016.06.033 10.1007/s11053-019-09509-1 10.1081/SAC-200068366 10.1109/34.990138 10.1088/1361-6560/aab4b1 10.1049/iet-gtd.2018.6841 10.1016/j.asoc.2017.08.023 10.1613/jair.301 10.3390/min9050317 10.1016/j.oregeorev.2015.11.011 10.1016/j.jkss.2013.05.003 10.1080/13504850701719793 10.1016/j.gexplo.2013.08.006 10.1186/1471-2288-14-26 10.1016/S0167-7012(00)00201-3 10.1109/TCYB.2013.2262935 10.1109/4235.996017 10.1108/02644401211235834 10.1016/j.asoc.2016.06.025 10.1016/j.cageo.2015.03.007 10.1016/S0893-6080(05)80056-5 10.1016/j.istruc.2020.07.029 10.1016/j.oregeorev.2015.01.001 10.1016/j.eij.2017.02.003 10.1016/j.ins.2016.04.019 10.1007/s00542-018-4034-8 10.1016/j.biosystemseng.2020.03.021 10.1016/S0031-3203(96)00142-2 10.1021/acs.analchem.0c01863 10.1016/j.robot.2005.09.006 10.1016/0167-8191(93)90046-N 10.1002/nag.2709 10.1016/S0169-2070(97)00044-7 10.1016/j.eswa.2017.07.029 10.1109/72.991432 10.1109/TPAMI.2008.235 10.1007/978-3-642-12538-6 10.1023/A:1010933404324 10.1016/j.future.2020.06.031 10.1016/j.cageo.2014.10.014 10.1080/00295450.2019.1693215  | 
    
| ContentType | Journal Article | 
    
| Copyright | 2021. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. | 
    
| Copyright_xml | – notice: 2021. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. | 
    
| DBID | AAYXX CITATION 3V. 7TN 7UA 7WY 7WZ 7XB 87Z 8BQ 8FD 8FE 8FG 8FK 8FL ABJCF ABUWG AFKRA AZQEC BENPR BEZIV BGLVJ BHPHI BKSAR C1K CCPQU D1I DWQXO F1W FR3 FRNLG F~G H96 HCIFZ JG9 K60 K6~ KB. KR7 L.- L.G M0C PCBAR PDBOC PHGZM PHGZT PIMPY PKEHL PQBIZ PQBZA PQEST PQGLB PQQKQ PQUKI PRINS Q9U ADTOC UNPAY  | 
    
| DOI | 10.3390/min11020159 | 
    
| DatabaseName | CrossRef ProQuest Central (Corporate) Oceanic Abstracts Water Resources Abstracts ABI/INFORM Collection ABI/INFORM Global (PDF only) ProQuest Central (purchase pre-March 2016) ABI/INFORM Collection METADEX Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ABI/INFORM Collection (Alumni Edition) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central Business Premium Collection Technology Collection (via ProQuest SciTech Premium Collection) Natural Science Collection Earth, Atmospheric & Aquatic Science Collection Environmental Sciences and Pollution Management ProQuest One ProQuest Materials Science Collection ProQuest Central ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Business Premium Collection (Alumni) ABI/INFORM Global (Corporate) Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources SciTech Premium Collection Materials Research Database ProQuest Business Collection (Alumni Edition) ProQuest Business Collection Materials Science Database Civil Engineering Abstracts ABI/INFORM Professional Advanced Aquatic Science & Fisheries Abstracts (ASFA) Professional ABI/INFORM Global (OCUL) Earth, Atmospheric & Aquatic Science Database Materials Science Collection ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Business ProQuest One Business (Alumni) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic Unpaywall for CDI: Periodical Content Unpaywall  | 
    
| DatabaseTitle | CrossRef Publicly Available Content Database Materials Research Database ProQuest Business Collection (Alumni Edition) ProQuest Central Essentials SciTech Premium Collection ProQuest Central China ABI/INFORM Complete Water Resources Abstracts Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences Natural Science Collection ProQuest Central (New) Business Premium Collection ABI/INFORM Global ProQuest One Academic Eastern Edition Earth, Atmospheric & Aquatic Science Database ProQuest Technology Collection ProQuest Business Collection ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic ProQuest One Academic (New) ABI/INFORM Global (Corporate) ProQuest One Business Aquatic Science & Fisheries Abstracts (ASFA) Professional Technology Collection Technology Research Database ProQuest One Academic Middle East (New) Materials Science Collection ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest Central Earth, Atmospheric & Aquatic Science Collection ABI/INFORM Professional Advanced Oceanic Abstracts ProQuest Central Korea Materials Science Database ABI/INFORM Complete (Alumni Edition) ProQuest Materials Science Collection Civil Engineering Abstracts ABI/INFORM Global (Alumni Edition) ProQuest Central Basic ProQuest SciTech Collection METADEX Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources ASFA: Aquatic Sciences and Fisheries Abstracts Materials Science & Engineering Collection ProQuest One Business (Alumni) ProQuest Central (Alumni) Business Premium Collection (Alumni)  | 
    
| DatabaseTitleList | Publicly Available Content Database CrossRef  | 
    
| Database_xml | – sequence: 1 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Geology | 
    
| EISSN | 2075-163X | 
    
| ExternalDocumentID | 10.3390/min11020159 10_3390_min11020159  | 
    
| GroupedDBID | 5VS 7WY 8FE 8FG 8FH 8FL AADQD AAFWJ AAHBH AAYXX ABDBF ABJCF ABUWG ACUHS ADBBV AENEX AFKRA AFZYC ALMA_UNASSIGNED_HOLDINGS BCNDV BENPR BEZIV BGLVJ BHPHI BKSAR BPHCQ CCPQU CITATION D1I DWQXO ESX FRNLG HCIFZ K60 K6~ KB. KQ8 LK5 M0C M7R MODMG M~E OK1 PCBAR PDBOC PHGZM PHGZT PIMPY PQBIZ PQBZA PQGLB PQQKQ PROAC 3V. 7TN 7UA 7XB 8BQ 8FD 8FK AZQEC C1K F1W FR3 H96 JG9 KR7 L.- L.G PKEHL PQEST PQUKI PRINS Q9U 2XV ADTOC IAO IPNFZ ITC RIG UNPAY  | 
    
| ID | FETCH-LOGICAL-c298t-d51a0deeb73ed5ed444207fb6c431b4c78a8b887c7df145a509f6c5a2225e03a3 | 
    
| IEDL.DBID | UNPAY | 
    
| ISSN | 2075-163X | 
    
| IngestDate | Tue Aug 19 23:21:55 EDT 2025 Fri Jul 25 12:00:23 EDT 2025 Thu Oct 16 04:35:51 EDT 2025 Thu Apr 24 23:05:20 EDT 2025  | 
    
| IsDoiOpenAccess | true | 
    
| IsOpenAccess | true | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Issue | 2 | 
    
| Language | English | 
    
| License | cc-by | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c298t-d51a0deeb73ed5ed444207fb6c431b4c78a8b887c7df145a509f6c5a2225e03a3 | 
    
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14  | 
    
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://www.mdpi.com/2075-163X/11/2/159/pdf?version=1612439981 | 
    
| PQID | 2487258648 | 
    
| PQPubID | 2032357 | 
    
| ParticipantIDs | unpaywall_primary_10_3390_min11020159 proquest_journals_2487258648 crossref_primary_10_3390_min11020159 crossref_citationtrail_10_3390_min11020159  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2021-02-01 | 
    
| PublicationDateYYYYMMDD | 2021-02-01 | 
    
| PublicationDate_xml | – month: 02 year: 2021 text: 2021-02-01 day: 01  | 
    
| PublicationDecade | 2020 | 
    
| PublicationPlace | Basel | 
    
| PublicationPlace_xml | – name: Basel | 
    
| PublicationTitle | Minerals (Basel) | 
    
| PublicationYear | 2021 | 
    
| Publisher | MDPI AG | 
    
| Publisher_xml | – name: MDPI AG | 
    
| References | Kaelbling (ref_11) 1996; 4 Hu (ref_43) 2020; 194 Du (ref_63) 2012; 45 Dragos (ref_74) 2010; 17 Mallapragada (ref_9) 2009; 31 Barlow (ref_7) 1989; 1 Kumar (ref_59) 2018; 26 Chen (ref_66) 2013; 33 Chen (ref_51) 2020; 29 ref_52 Zhang (ref_12) 1998; 14 Ashfaq (ref_8) 2017; 378 Dai (ref_65) 2011; 18 Chen (ref_76) 2016; 74 Pinsky (ref_71) 2005; 34 Kora (ref_61) 2017; 152 Wu (ref_10) 2018; 27 Liu (ref_4) 2013; 134 Kurum (ref_72) 2012; 20 Yousefi (ref_80) 2016; 25 Chen (ref_15) 2014; 44 Degloria (ref_16) 1993; 19 Raghu (ref_41) 2017; 89 Kaced (ref_55) 2017; 158 Bergmann (ref_70) 2000; 54 Li (ref_44) 2018; 130 Zheng (ref_64) 1992; 1 Safavian (ref_14) 1991; 21 Kang (ref_40) 2017; 41 ref_29 Angulo (ref_50) 2017; 61 Kottas (ref_77) 2014; 14 Zhao (ref_62) 2008; 54 Obuchowski (ref_75) 2018; 63 Araujo (ref_39) 2017; 90 Bradley (ref_69) 1997; 30 Riffi (ref_56) 2017; 18 Basheer (ref_13) 2000; 43 Moller (ref_5) 1993; 6 Chang (ref_17) 2011; 2 Holland (ref_28) 1992; 267 Xiong (ref_2) 2018; 111 Yousefi (ref_78) 2015; 79 ref_32 ref_31 Du (ref_67) 2014; 33 Yang (ref_33) 2012; 29 Chen (ref_47) 2017; 64 Coello (ref_30) 2004; 8 Ke (ref_42) 2020; 14 Lin (ref_68) 2020; 29 Krishnanand (ref_57) 2005; 53 Faris (ref_49) 2019; 11 Dorigo (ref_34) 1996; 26 Dekhici (ref_60) 2017; 8 Yousefi (ref_79) 2015; 74 Tharwat (ref_45) 2018; 71 Gu (ref_53) 2020; 113 Hearst (ref_18) 1998; 13 (ref_22) 2015; 71 Liu (ref_24) 2018; 27 Lakshminarayana (ref_35) 2020; 30 Delgoshaei (ref_37) 2016; 49 Tawhid (ref_54) 2017; 54 Chen (ref_23) 2017; 80 ref_1 Wang (ref_3) 2020; 29 Kaveh (ref_58) 2020; 27 Bae (ref_36) 2020; 206 Chiappini (ref_38) 2020; 92 Figueiredo (ref_6) 2002; 24 Tan (ref_25) 2017; 60 Yao (ref_26) 2010; 53 Lin (ref_19) 2002; 13 Deh (ref_27) 2002; 6 Jove (ref_48) 2020; 51 Yu (ref_73) 2014; 43 Amari (ref_20) 1999; 12 Breiman (ref_21) 2001; 45 Wang (ref_46) 2018; 155  | 
    
| References_xml | – volume: 27 start-page: 1259 year: 2018 ident: ref_10 article-title: Semi-supervised deep learning using pseudo labels for hyperspectral image classification publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2017.2772836 – volume: 13 start-page: 18 year: 1998 ident: ref_18 article-title: Support vector machines publication-title: IEEE Intell. Syst. Their Appl. doi: 10.1109/5254.708428 – volume: 158 start-page: 490 year: 2017 ident: ref_55 article-title: Bat algorithm based maximum power point tracking for photovoltaic system under partial shading conditions publication-title: Sol. Energy doi: 10.1016/j.solener.2017.09.063 – volume: 26 start-page: 29 year: 1996 ident: ref_34 article-title: Ant system: Optimization by a colony of cooperating agents publication-title: IEEE Trans. Syst. Man Cybern. Part B-Cybern. doi: 10.1109/3477.484436 – volume: 1 start-page: 15 year: 1992 ident: ref_64 article-title: Regional tectonic evolution of east Kunlun publication-title: Qinghai Geol. – volume: 29 start-page: 189 year: 2020 ident: ref_3 article-title: Mapping mineral prospectivity via semi-supervised random forest publication-title: Nat. Resour. Res. doi: 10.1007/s11053-019-09510-8 – volume: 267 start-page: 66 year: 1992 ident: ref_28 article-title: Genetic algorithms publication-title: Sci. Am. doi: 10.1038/scientificamerican0792-66 – volume: 64 start-page: 639 year: 2017 ident: ref_47 article-title: Mapping mineral prospectivity by using one-class support vector machine to identify multivariate geological anomalies from digital geological survey data publication-title: Aust. J. Earth Sci. doi: 10.1080/08120099.2017.1328705 – volume: 12 start-page: 783 year: 1999 ident: ref_20 article-title: Improving support vector machine classifiers by modifying kernel functions publication-title: Neural Netw. doi: 10.1016/S0893-6080(99)00032-5 – volume: 152 start-page: 141 year: 2017 ident: ref_61 article-title: ECG based Myocardial Infarction detection using Hybrid Firefly Algorithm publication-title: Comput. Methods Progr. Biomed. doi: 10.1016/j.cmpb.2017.09.015 – ident: ref_1 doi: 10.3390/min10020102 – volume: 21 start-page: 660 year: 1991 ident: ref_14 article-title: A survey of decision tree classifier methodology publication-title: IEEE Trans. Syst. Man Cybern. doi: 10.1109/21.97458 – volume: 111 start-page: 18 year: 2018 ident: ref_2 article-title: GIS-based rare events logistic regression for mineral prospectivity mapping publication-title: Comput. Geosci. doi: 10.1016/j.cageo.2017.10.005 – volume: 71 start-page: 346 year: 2018 ident: ref_45 article-title: Automated toxicity test model based on a bio-inspired technique and AdaBoost classifier publication-title: Comput. Electr. Eng. doi: 10.1016/j.compeleceng.2018.07.049 – volume: 1 start-page: 295 year: 1989 ident: ref_7 article-title: Unsupervised learning publication-title: Neural Comput. doi: 10.1162/neco.1989.1.3.295 – volume: 29 start-page: 247 year: 2020 ident: ref_51 article-title: A Bat Algorithm-Based Data-Driven Model for Mineral Prospectivity Mapping publication-title: Nat. Resour. Res. doi: 10.1007/s11053-019-09589-z – volume: 33 start-page: 713 year: 2014 ident: ref_67 article-title: Geological characteristics and genesis of Xiarihamu nickel deposit in east Kunlun publication-title: Miner. Depos. – volume: 53 start-page: 1167 year: 2010 ident: ref_26 article-title: Ascertaining the structure parameters of Kunlun fault zone using the grid searching method based on trapped wave correlation publication-title: Chin. J. Geophys. – volume: 2 start-page: 1 year: 2011 ident: ref_17 article-title: LIBSVM: A library for support vector machines publication-title: ACM Trans. Intell. Syst. Technol. doi: 10.1145/1961189.1961199 – volume: 27 start-page: 299 year: 2018 ident: ref_24 article-title: A MaxEnt Model for Mineral Prospectivity Mapping publication-title: Nat. Resour. Res. doi: 10.1007/s11053-017-9355-2 – volume: 90 start-page: 1 year: 2017 ident: ref_39 article-title: A class of hybrid multilayer perceptrons for software development effort estimation problems publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2017.07.050 – volume: 130 start-page: 279 year: 2018 ident: ref_44 article-title: Featured temporal segmentation method and AdaBoost-BP detector for internal leakage evaluation of a hydraulic cylinder publication-title: Measurement doi: 10.1016/j.measurement.2018.08.029 – volume: 8 start-page: 256 year: 2004 ident: ref_30 article-title: Handling multiple objectives with particle swarm optimization publication-title: IEEE Trans. Evolut. Comput. doi: 10.1109/TEVC.2004.826067 – volume: 51 start-page: 649 year: 2020 ident: ref_48 article-title: Comparative Study of One-Class Based Anomaly Detection Techniques for a Bicomponent Mixing Machine Monitoring publication-title: Cybern. Syst. doi: 10.1080/01969722.2020.1798641 – volume: 25 start-page: 3 year: 2016 ident: ref_80 article-title: Data-driven index overlay and boolean logic mineral prospectivity modeling in greenfields exploration publication-title: Nat. Resour. Res. doi: 10.1007/s11053-014-9261-9 – volume: 20 start-page: 529 year: 2012 ident: ref_72 article-title: A classification problem of credit risk rating investigated and solved by optimisation of the ROC curve publication-title: Cent. Eur. J. Oper. Res. doi: 10.1007/s10100-011-0224-5 – ident: ref_31 – volume: 54 start-page: 72 year: 2000 ident: ref_70 article-title: Different outcomes of the wilcoxon-mann-whitney test from different statistics packages publication-title: Am. Stat. – volume: 155 start-page: 1013 year: 2018 ident: ref_46 article-title: Effective sparse adaboost method with ESN and FOA for industrial electricity consumption forecasting in China publication-title: Energy doi: 10.1016/j.energy.2018.04.175 – volume: 54 start-page: 47 year: 2008 ident: ref_62 article-title: The evidence of intrusive rocks about collision-orogeny during early Devonian in eastern Kunlun area publication-title: Geol. Rev. – volume: 80 start-page: 200 year: 2017 ident: ref_23 article-title: Mapping mineral prospectivity using an extreme learning machine regression publication-title: Ore Geol. Rev. doi: 10.1016/j.oregeorev.2016.06.033 – volume: 29 start-page: 173 year: 2020 ident: ref_68 article-title: Mineral potential mapping using a conjugate gradient logistic regression model publication-title: Nat. Res. Res. doi: 10.1007/s11053-019-09509-1 – volume: 8 start-page: 424 year: 2017 ident: ref_60 article-title: A Firefly Algorithm for the Mono-Processors Hybrid Flow Shop Problem publication-title: Int. J. Adv. Comput. Sci. Appl. – volume: 34 start-page: 771 year: 2005 ident: ref_71 article-title: Scaling of true and apparent ROC AUC with number of observations and number of variables publication-title: Commun. Stat.-Simul. Comput. doi: 10.1081/SAC-200068366 – volume: 24 start-page: 361 year: 2002 ident: ref_6 article-title: Unsupervised learning of finite mixture models publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/34.990138 – volume: 11 start-page: 1 year: 2019 ident: ref_49 article-title: Unsupervised intelligent system based on one class support vector machine and Grey Wolf optimization for IoT botnet detection publication-title: J. Ambient Intell. Humaniz. Comput. – volume: 63 start-page: 07TR01 year: 2018 ident: ref_75 article-title: Receiver operating characteristic (ROC) curves: Review of methods with applications in diagnostic medicine publication-title: Phys. Med. Biol. doi: 10.1088/1361-6560/aab4b1 – volume: 14 start-page: 3630 year: 2020 ident: ref_42 article-title: Intelligent islanding detection method for photovoltaic power system based on Adaboost algorithm publication-title: IET Gener. Transm. Distrib. doi: 10.1049/iet-gtd.2018.6841 – volume: 61 start-page: 661 year: 2017 ident: ref_50 article-title: Handling binary classification problems with a priority class by using Support Vector Machines publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2017.08.023 – volume: 4 start-page: 237 year: 1996 ident: ref_11 article-title: Reinforcement learning: A survey publication-title: J. Artif. Intell. Res. doi: 10.1613/jair.301 – volume: 45 start-page: 69 year: 2012 ident: ref_63 article-title: Mesozoic tectono-magmatic-mineralization and copper-gold polymetallic ore prospecting research in east Kunlun metallogenic belt in Qinghai publication-title: Northwest. Geol. – ident: ref_52 doi: 10.3390/min9050317 – volume: 74 start-page: 26 year: 2016 ident: ref_76 article-title: A prospecting cost-benefit strategy for mineral potential mapping based on ROC curve analysis publication-title: Ore Geol. Rev. doi: 10.1016/j.oregeorev.2015.11.011 – volume: 43 start-page: 161 year: 2014 ident: ref_73 article-title: A modified area under the ROC curve and its application to marker selection and classification publication-title: J. Korean Stat. Soc. doi: 10.1016/j.jkss.2013.05.003 – volume: 17 start-page: 75 year: 2010 ident: ref_74 article-title: ROC curve for discrete choice models an application to the Romanian car market publication-title: Appl. Econ. Lett. doi: 10.1080/13504850701719793 – volume: 134 start-page: 61 year: 2013 ident: ref_4 article-title: Application of singularity analysis for mineral potential identification using geochemical data—A case study: Nanling W-Sn-Mo polymetallic metallogenic belt, South China publication-title: J. Geochem. Explor. doi: 10.1016/j.gexplo.2013.08.006 – volume: 14 start-page: 26 year: 2014 ident: ref_77 article-title: A modified Wald interval for the area under the ROC curve (AUC) in diagnostic case-control studies publication-title: BMC Med. Res. Methodol. doi: 10.1186/1471-2288-14-26 – volume: 43 start-page: 3 year: 2000 ident: ref_13 article-title: Artificial neural networks: Fundamentals, computing, design, and application publication-title: J. Microbiol. Methods doi: 10.1016/S0167-7012(00)00201-3 – volume: 44 start-page: 583 year: 2014 ident: ref_15 article-title: Fuzzy neural network-based adaptive control for a class of uncertain nonlinear stochastic systems publication-title: IEEE Trans. Cybern. doi: 10.1109/TCYB.2013.2262935 – volume: 6 start-page: 182 year: 2002 ident: ref_27 article-title: A fast and elitist multiobjective genetic algorithm: NSGA-II publication-title: IEEE Trans. Evolut. Comput. doi: 10.1109/4235.996017 – volume: 29 start-page: 464 year: 2012 ident: ref_33 article-title: Bat algorithm: A novel approach for global engineering optimization publication-title: Eng. Comput. doi: 10.1108/02644401211235834 – volume: 30 start-page: 59 year: 2020 ident: ref_35 article-title: Automatic Generation and Optimization of Test case using Hybrid Cuckoo Search and Bee Colony Algorithm publication-title: J. Intell. Syst. – volume: 49 start-page: 27 year: 2016 ident: ref_37 article-title: A multi-layer perceptron for scheduling cellular manufacturing systems in the presence of unreliable machines and uncertain cost publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2016.06.025 – volume: 79 start-page: 69 year: 2015 ident: ref_78 article-title: Prediction-area (P-A) plot and C-A fractal analysis to classify and evaluate evidential maps for mineral prospectivity modeling publication-title: Comput. Geosci. doi: 10.1016/j.cageo.2015.03.007 – volume: 6 start-page: 525 year: 1993 ident: ref_5 article-title: A scaled conjugate-gradient algorithm for fast supervised learning publication-title: Neural Netw. doi: 10.1016/S0893-6080(05)80056-5 – volume: 27 start-page: 2217 year: 2020 ident: ref_58 article-title: Simultaneously multi-material layout, and connectivity optimization of truss structures via an Enriched Firefly Algorithm publication-title: Structures doi: 10.1016/j.istruc.2020.07.029 – volume: 71 start-page: 804 year: 2015 ident: ref_22 article-title: Machine learning predictive models for mineral prospectivity: An evaluation of neural networks, random forest, regression trees and support vector machines publication-title: Ore Geol. Rev. doi: 10.1016/j.oregeorev.2015.01.001 – volume: 18 start-page: 221 year: 2017 ident: ref_56 article-title: Incorporating a modified uniform crossover and 2-exchange neighborhood mechanism in a discrete bat algorithm to solve the quadratic assignment problem publication-title: Egypt. Inform. J. doi: 10.1016/j.eij.2017.02.003 – volume: 378 start-page: 484 year: 2017 ident: ref_8 article-title: Fuzziness based semi-supervised learning approach for intrusion detection system publication-title: Inf. Sci. doi: 10.1016/j.ins.2016.04.019 – volume: 26 start-page: 3289 year: 2018 ident: ref_59 article-title: Parameter optimization of 5.5 GHz low noise amplifier using multi-objective Firefly Algorithm publication-title: Microsyst. Technol. doi: 10.1007/s00542-018-4034-8 – volume: 33 start-page: 26 year: 2013 ident: ref_66 article-title: Petrogenesis of Devonian intrusive rocks in theLalingzaohuo area, eastern Kunlun, and its geological significance publication-title: J. Mineral. Petrol. – volume: 194 start-page: 138 year: 2020 ident: ref_43 article-title: Recognition of diseased Pinus trees in UAV images using deep learning and AdaBoost classifier publication-title: Biosyst. Eng. doi: 10.1016/j.biosystemseng.2020.03.021 – volume: 30 start-page: 1145 year: 1997 ident: ref_69 article-title: The use of the area under the ROC curve in the evaluation of machine learning algorithms publication-title: Pattern Recognit. doi: 10.1016/S0031-3203(96)00142-2 – volume: 92 start-page: 12265 year: 2020 ident: ref_38 article-title: Sensitivity for Multivariate Calibration Based on Multilayer Perceptron Artificial Neural Networks publication-title: Anal. Chem. doi: 10.1021/acs.analchem.0c01863 – volume: 53 start-page: 194 year: 2005 ident: ref_57 article-title: Formations of minimalist mobile robots using local-templates and spatially distributed interactions publication-title: Robot. Auton. Syst. doi: 10.1016/j.robot.2005.09.006 – ident: ref_29 – volume: 19 start-page: 163 year: 1993 ident: ref_16 article-title: Clustered boltzmann machines: Massively parallel architectures for constrained optimization problems publication-title: Parallel Comput. doi: 10.1016/0167-8191(93)90046-N – volume: 41 start-page: 1962 year: 2017 ident: ref_40 article-title: System reliability analysis of slopes using multilayer perceptron and radial basis function networks publication-title: Int. J. Numer. Anal. Methods Geomech. doi: 10.1002/nag.2709 – volume: 14 start-page: 35 year: 1998 ident: ref_12 article-title: Forecasting with artificial neural networks: The state of the art publication-title: Int. J. Forecast. doi: 10.1016/S0169-2070(97)00044-7 – volume: 89 start-page: 205 year: 2017 ident: ref_41 article-title: Optimal configuration of multilayer perceptron neural network classifier for recognition of intracranial epileptic seizures publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2017.07.029 – volume: 13 start-page: 464 year: 2002 ident: ref_19 article-title: Fuzzy support vector machines publication-title: IEEE Trans. Neural Netw. doi: 10.1109/72.991432 – volume: 31 start-page: 2000 year: 2009 ident: ref_9 article-title: SemiBoost: Boosting for semi-supervised learning publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2008.235 – volume: 54 start-page: 684 year: 2017 ident: ref_54 article-title: Multi-directional bat algorithm for solving unconstrained optimization problems publication-title: Opsearch J. Oper. Res. Soc. India – ident: ref_32 doi: 10.1007/978-3-642-12538-6 – volume: 45 start-page: 5 year: 2001 ident: ref_21 article-title: Random forests publication-title: Mach. Learn. doi: 10.1023/A:1010933404324 – volume: 113 start-page: 106 year: 2020 ident: ref_53 article-title: Energy-aware workflow scheduling and optimization in clouds using bat algorithm publication-title: Fut. Gener. Comput. Syst. doi: 10.1016/j.future.2020.06.031 – volume: 74 start-page: 97 year: 2015 ident: ref_79 article-title: Fuzzification of continuousvalue spatial evidence for mineral prospectivity mapping publication-title: Comput. Geosci. doi: 10.1016/j.cageo.2014.10.014 – volume: 60 start-page: 293 year: 2017 ident: ref_25 article-title: An improved method for microseismic source location based on grid search publication-title: Chin. J. Geophys. – volume: 206 start-page: 951 year: 2020 ident: ref_36 article-title: Comparison of Multilayer Perceptron and Long Short-Term Memory for Plant Parameter Trend Prediction publication-title: Nucl. Technol. doi: 10.1080/00295450.2019.1693215 – volume: 18 start-page: 11 year: 2011 ident: ref_65 article-title: Metallogenic background and prospect analysis of Lalingzaohuo region in Qinghai Province publication-title: Qinghai Sci. Technol.  | 
    
| SSID | ssj0000913852 | 
    
| Score | 2.3136587 | 
    
| Snippet | Selecting internal hyperparameters, which can be set by the automatic search algorithm, is important to improve the generalization performance of machine... | 
    
| SourceID | unpaywall proquest crossref  | 
    
| SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database  | 
    
| StartPage | 159 | 
    
| SubjectTerms | Accuracy Algorithms Artificial intelligence Bias Comparative analysis Comparative studies Fault tolerance Geology Heuristic methods Intelligence Lagrange multiplier Learning algorithms Machine learning Mapping Mathematical models Metallogenesis Mineral deposits Mineral resources Model accuracy Multilayer perceptrons Neural networks Optimization Optimization algorithms Performance evaluation Probability distribution Remote sensing Search algorithms Spatial data Support vector machines Swarm intelligence  | 
    
| SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3fSyMxEB68ynG-iHrKVT3Jg74Ii9tssj8eRHqiFsEqouDbMrvJ1oPtD2tFiv-8M9ts2wfxPQnsJJn5JjvzfQCHSZFkeSaNp4sAPWV86yUYJZ6MkAJOFsZJRepz0w07j-r6ST-tQLfuheGyytonVo7aDHN-Iz-RhKyljkMVn41ePFaN4r-rtYQGOmkFc1pRjP2AVcnMWA1Y_XfRvbufv7owC2as5axRL6B8_6TPIr2EmVrMVrocmhZ489fbYITTdyzLpdBzuQHrDjOK9myTN2HFDrbg51WlyTv9DR9tcb7g8BZcGTgVw0LcVHWSVjgK1Z5g3bPyVfDTq-hQ_jnmOX2uhxG35Dn6riVTtMseffnkuS8I0dIyTOFAs_9XBNXibjx07ZkE4Lfh8fLi4bzjOU0FL5dJPPGMbqFvrM2iwBptjVJK-lGRhTkhiUzlUYxxRo4nj0zRUhoJTxRhrpHTQusHGOxAYzAc2D8gIuujjELUYYIKY5to8gUse2TRImWBTTiuzZnmjnCcdS_KlBIPtn26ZPsmHM4Hj2Y8G18P26_3JXWX7TVdHI0mHM336rtldr9fZg_WJJeuVMXZ-9CYjN_sX8Iek-zAHahPT2vbkw priority: 102 providerName: ProQuest  | 
    
| Title | A Comparative Study of Machine Learning Models with Hyperparameter Optimization Algorithm for Mapping Mineral Prospectivity | 
    
| URI | https://www.proquest.com/docview/2487258648 https://www.mdpi.com/2075-163X/11/2/159/pdf?version=1612439981  | 
    
| UnpaywallVersion | publishedVersion | 
    
| Volume | 11 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 2075-163X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000913852 issn: 2075-163X databaseCode: KQ8 dateStart: 20110101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVEBS databaseName: EBSCOhost Academic Search Ultimate customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 2075-163X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000913852 issn: 2075-163X databaseCode: ABDBF dateStart: 20120901 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2075-163X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000913852 issn: 2075-163X databaseCode: M~E dateStart: 20110101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 2075-163X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000913852 issn: 2075-163X databaseCode: BENPR dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 2075-163X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000913852 issn: 2075-163X databaseCode: 8FG dateStart: 20110101 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEB60RfTiW6yPkoNehHW72WQfJ6liLYK1iIV6WpLdrIjbB30o1T_vZJtqERHxPgkbJjvzfWHmG4CjMA1lLGli8dQVFksqygqFH1rUF5hwpBeEuajPTcOrt9h1m7fNg9vQlFUiFX_KgzTFfGYhYGjbjmNTGzOv3U_SsxfzkoRghWo4rTuvix5HLF6AYqvRrD7oiXKztdOmPBe5vd3RA3kRHzlamXQ-DX1hy-Vxty8mryLL5tJMbQ2i2QdOq0ueT8cjeRq_fdNu_P8J1mHVIFBSnV6ZDVhQ3U1Yuson_E624L1KLr4UwYmuM5yQXkpu8qpLRYwg6yPRU9SyIdEPuaSObHag13R0dQ25xTjUMQ2epJo99gZo1CGIj3EbLQiBq59yuWvSHPRMsyfSgW1o1S7vL-qWmdBgxTQMRlbCHVFJlJK-qxKuEsYYnjiVXoy4RLLYD0QgMYzFfpI6jAtEJ6kXc6FJpqq4wt2BQrfXVbtAfFUR1PcE90LBRKBCjpFFD1FSQgnklCU4mTksio18uZ6ikUVIY7R3oznvluDo07g_Ve342exg5vnI_LrDiCKFozzwWFCC48_b8Ns2e3-024cVqiti8prvAyiMBmN1iJBmJMuwGNSuylA8v2w078rmFn8AOLD1Zg | 
    
| linkProvider | Unpaywall | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxEB6VVqhcEE8RKOBDe0FadeO1d9eHCoXSktImVKiVeltm196CtHmQpKoi_hu_jZmNN8kB9da7PYfxeB72zPcB7JrS5EUubaDLCANlQxcYTEwgE6SAk8epqUF9ev24e6m-XumrDfjbzMJwW2XjE2tHbUcFv5HvS8qspU5jlX4c_w6YNYp_VxsKDfTUCvaghhjzgx2nbn5LJdz04OQznfeelMdHF4fdwLMMBIU06Sywuo2hdS5PIme1s0opGSZlHhcUW3NVJCmmOV3FIrFlW2mkCFvGhUYulFwYYURyH8CWipSh4m_r01H__PvylYdRN1MtF4OBUWTC_QGTAlOO1mZ01PVQuMpvt2-GY5zfYlWthbrjJ_DY56iiszCqp7Dhhs_g4ZeaA3j-HP50xOEKM1xwJ-JcjErRq_synfCQrdeCedaqqeCnXtGlenfCewbcfyO-kaca-BFQ0amuSdOznwNBGTSJYcgI2v2rBsQW55ORHwelguEFXN6Ldl_C5nA0dK9AJC5EmcSoY4MKU2c0-R6mWXLokKrOFnxo1JkVHuCceTaqjAod1n22pvsW7C4Xjxe4Hv9fttOcS-Yv9zRbmWIL9pZndZeY13eLeQ_b3YveWXZ20j99A48kt83UjeE7sDmb3Li3lPfM8nfeuAT8uG97_gdI0BkY | 
    
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9tAEB7xELQXBBTUtBT2EC5IVpz1rtd7qKoIGsIjkEORuJm1vQYk59EkCEX9Z_11zDh2kgPKjfvuHGZn57E7830AVZ3qKI544sjUM45IXOtoo7TDlcGAE_mBzkF92jd-605c3sv7FfhfzsJQW2XpE3NHnfRjeiOvccysuQx8EdTSoi2ic9b8NfjrEIMU_bSWdBpTE7myk1cs30Y_L87wrI85b_7-c9pyCoYBJ-Y6GDuJrBs3sTZSnk2kTYQQ3FVp5McYVyMRq8AEEV7DWCVpXUiD0TX1Y2moSLKuZzyUuwrrilDcaUq9eT573yG8zUDy6Uig52m31iU6YMzO6oSLuhgE55ntp5fewExeTZYtBLnmNmwV2SlrTM1pB1Zsbxc2znP238kX-Ndgp3O0cEY9iBPWT1k778i0rABrfWTEsJaNGD3yshZWukPa06XOG3aLPqpbDH-yRvaIeh0_dRnmziiGwCJw93MOhc06w34xCIqlwh7cfYhu92Gt1-_Zr8CUdQ1XvpG-NsIEVkv0OkSwZI01WG9W4KRUZxgX0ObEsJGFWOKQ7sMF3VegOls8mCJ6vL_soDyXsLjWo3BuhBU4np3VMjHflos5gk204vD64ubqO3zm1C-Td4QfwNp4-GJ_YMIzjg5zy2Lw8NGm_AaoWhay | 
    
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEA7SInrxLVar5FAvwna72WQfJynFWoTWHizU05LsZktx-6APpfrnnexmaxER8T4JGyY7831h5huEKn7si1CQyGCxzQ0a1aThc9c3iMsh4QjH81NRn3bHafXoQ5_19YPbXJdVAhUfpkGaQD4zADD0TcsyiQmZ15xG8e2rfkkCsEIUnFad10WHARYvoGKv060_q4ly-dqsKc8Gbm-O1EBewEeWUibdTENf2HJnOZ7y1RtPko0009xHQf6BWXXJS3W5ENXw_Zt24_9PcID2NALF9ezKHKItOT5C2_fphN_VMfqo48aXIjhWdYYrPIlxO626lFgLsg6wmqKWzLF6yMUtYLMztWakqmvwI8ShkW7wxPVkMJmB0QgDPoZtlCAErB6mcte4O5voZk-gAyeo17x7arQMPaHBCInvLYyIWbwWSSlcW0ZMRpRSOHEsnBBwiaCh63FPQBgL3Si2KOOATmInZFyRTFmzuX2KCuPJWJ4h7MoaJ67DmeNzyj3pM4gsaoiS5JIDpyyhm9xhQajly9UUjSQAGqO8G2x4t4Qqa-Npptrxs1k593ygf915QIDCEeY51Cuh6_Vt-G2b8z_aXaBdoipi0prvMiosZkt5CZBmIa70vf0E5Dfy5g | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Comparative+Study+of+Machine+Learning+Models+with+Hyperparameter+Optimization+Algorithm+for+Mapping+Mineral+Prospectivity&rft.jtitle=Minerals+%28Basel%29&rft.au=Lin%2C+Nan&rft.au=Chen%2C+Yongliang&rft.au=Liu%2C+Haiqi&rft.au=Liu%2C+Hanlin&rft.date=2021-02-01&rft.issn=2075-163X&rft.eissn=2075-163X&rft.volume=11&rft.issue=2&rft.spage=159&rft_id=info:doi/10.3390%2Fmin11020159&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_min11020159 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2075-163X&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2075-163X&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2075-163X&client=summon |