A Comparative Study of Machine Learning Models with Hyperparameter Optimization Algorithm for Mapping Mineral Prospectivity

Selecting internal hyperparameters, which can be set by the automatic search algorithm, is important to improve the generalization performance of machine learning models. In this study, the geological, remote sensing and geochemical data of the Lalingzaohuo area in Qinghai province were researched....

Full description

Saved in:
Bibliographic Details
Published inMinerals (Basel) Vol. 11; no. 2; p. 159
Main Authors Lin, Nan, Chen, Yongliang, Liu, Haiqi, Liu, Hanlin
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 01.02.2021
Subjects
Online AccessGet full text
ISSN2075-163X
2075-163X
DOI10.3390/min11020159

Cover

Abstract Selecting internal hyperparameters, which can be set by the automatic search algorithm, is important to improve the generalization performance of machine learning models. In this study, the geological, remote sensing and geochemical data of the Lalingzaohuo area in Qinghai province were researched. A multi-source metallogenic information spatial data set was constructed by calculating the Youden index for selecting potential evidence layers. The model for mapping mineral prospectivity of the study area was established by combining two swarm intelligence optimization algorithms, namely the bat algorithm (BA) and the firefly algorithm (FA), with different machine learning models. The receiver operating characteristic (ROC) and prediction-area (P-A) curves were used for performance evaluation and showed that the two algorithms had an obvious optimization effect. The BA and FA differentiated in improving multilayer perceptron (MLP), AdaBoost and one-class support vector machine (OCSVM) models; thus, there was no optimization algorithm that was consistently superior to the other. However, the accuracy of the machine learning models was significantly enhanced after optimizing the hyperparameters. The area under curve (AUC) values of the ROC curve of the optimized machine learning models were all higher than 0.8, indicating that the hyperparameter optimization calculation was effective. In terms of individual model improvement, the accuracy of the FA-AdaBoost model was improved the most significantly, with the AUC value increasing from 0.8173 to 0.9597 and the prediction/area (P/A) value increasing from 3.156 to 10.765, where the mineral targets predicted by the model occupied 8.63% of the study area and contained 92.86% of the known mineral deposits. The targets predicted by the improved machine learning models are consistent with the metallogenic geological characteristics, indicating that the swarm intelligence optimization algorithm combined with the machine learning model is an efficient method for mineral prospectivity mapping.
AbstractList Selecting internal hyperparameters, which can be set by the automatic search algorithm, is important to improve the generalization performance of machine learning models. In this study, the geological, remote sensing and geochemical data of the Lalingzaohuo area in Qinghai province were researched. A multi-source metallogenic information spatial data set was constructed by calculating the Youden index for selecting potential evidence layers. The model for mapping mineral prospectivity of the study area was established by combining two swarm intelligence optimization algorithms, namely the bat algorithm (BA) and the firefly algorithm (FA), with different machine learning models. The receiver operating characteristic (ROC) and prediction-area (P-A) curves were used for performance evaluation and showed that the two algorithms had an obvious optimization effect. The BA and FA differentiated in improving multilayer perceptron (MLP), AdaBoost and one-class support vector machine (OCSVM) models; thus, there was no optimization algorithm that was consistently superior to the other. However, the accuracy of the machine learning models was significantly enhanced after optimizing the hyperparameters. The area under curve (AUC) values of the ROC curve of the optimized machine learning models were all higher than 0.8, indicating that the hyperparameter optimization calculation was effective. In terms of individual model improvement, the accuracy of the FA-AdaBoost model was improved the most significantly, with the AUC value increasing from 0.8173 to 0.9597 and the prediction/area (P/A) value increasing from 3.156 to 10.765, where the mineral targets predicted by the model occupied 8.63% of the study area and contained 92.86% of the known mineral deposits. The targets predicted by the improved machine learning models are consistent with the metallogenic geological characteristics, indicating that the swarm intelligence optimization algorithm combined with the machine learning model is an efficient method for mineral prospectivity mapping.
Author Liu, Hanlin
Chen, Yongliang
Liu, Haiqi
Lin, Nan
Author_xml – sequence: 1
  givenname: Nan
  surname: Lin
  fullname: Lin, Nan
– sequence: 2
  givenname: Yongliang
  surname: Chen
  fullname: Chen, Yongliang
– sequence: 3
  givenname: Haiqi
  surname: Liu
  fullname: Liu, Haiqi
– sequence: 4
  givenname: Hanlin
  surname: Liu
  fullname: Liu, Hanlin
BookMark eNqFkEFLwzAYhoMoOKcn_0DAo06TtFnT4xjqhMkEFbyVLP26ZbRJTDNH9c8bnYchgrkkh-d98n3vEdo31gBCp5RcJklOrhptKCWMUJ7voR4jGR_QYfKyv_M-RCdtuyLx5DQRnPXQxwiPbeOkl0G_AX4M67LDtsL3Ui21ATwF6Y02C3xvS6hbvNFhiSedA_-VaSCAxzMXdKPfo8EaPKoX1keowZX1UePcdzq6vKzxg7etAxX_0qE7RgeVrFs4-bn76Pnm-mk8GUxnt3fj0XSgWC7CoORUkhJgniVQcijTNI0LVfOhShM6T1UmpJgLkamsrGjKJSd5NVRcMsY4kEQmfXSx9a6Nk91G1nXhvG6k7wpKiq_uip3uIn62xZ23r2toQ7Gya2_ihAVLRca4GKYiUudbSsWVWg_VP076i1Y6fBcWvNT1n5lPdSuQ1g
CitedBy_id crossref_primary_10_1016_j_chemer_2021_125800
crossref_primary_10_3390_rs15123133
crossref_primary_10_1007_s11053_023_10249_6
crossref_primary_10_1016_j_oregeorev_2025_106458
crossref_primary_10_1016_j_rsase_2024_101218
crossref_primary_10_1016_j_apgeochem_2023_105807
crossref_primary_10_1109_ACCESS_2023_3307495
crossref_primary_10_3390_min13030313
crossref_primary_10_3390_min13070902
crossref_primary_10_1007_s11053_022_10146_4
crossref_primary_10_3390_min15010071
crossref_primary_10_1016_j_eswa_2023_121668
crossref_primary_10_1016_j_gexplo_2024_107543
crossref_primary_10_1007_s12145_024_01565_3
crossref_primary_10_1007_s11053_021_09933_2
crossref_primary_10_1016_j_apgeochem_2022_105273
crossref_primary_10_1007_s12145_024_01224_7
crossref_primary_10_1016_j_jafrearsci_2023_105020
Cites_doi 10.1109/TIP.2017.2772836
10.1109/5254.708428
10.1016/j.solener.2017.09.063
10.1109/3477.484436
10.1007/s11053-019-09510-8
10.1038/scientificamerican0792-66
10.1080/08120099.2017.1328705
10.1016/S0893-6080(99)00032-5
10.1016/j.cmpb.2017.09.015
10.3390/min10020102
10.1109/21.97458
10.1016/j.cageo.2017.10.005
10.1016/j.compeleceng.2018.07.049
10.1162/neco.1989.1.3.295
10.1007/s11053-019-09589-z
10.1145/1961189.1961199
10.1007/s11053-017-9355-2
10.1016/j.eswa.2017.07.050
10.1016/j.measurement.2018.08.029
10.1109/TEVC.2004.826067
10.1080/01969722.2020.1798641
10.1007/s11053-014-9261-9
10.1007/s10100-011-0224-5
10.1016/j.energy.2018.04.175
10.1016/j.oregeorev.2016.06.033
10.1007/s11053-019-09509-1
10.1081/SAC-200068366
10.1109/34.990138
10.1088/1361-6560/aab4b1
10.1049/iet-gtd.2018.6841
10.1016/j.asoc.2017.08.023
10.1613/jair.301
10.3390/min9050317
10.1016/j.oregeorev.2015.11.011
10.1016/j.jkss.2013.05.003
10.1080/13504850701719793
10.1016/j.gexplo.2013.08.006
10.1186/1471-2288-14-26
10.1016/S0167-7012(00)00201-3
10.1109/TCYB.2013.2262935
10.1109/4235.996017
10.1108/02644401211235834
10.1016/j.asoc.2016.06.025
10.1016/j.cageo.2015.03.007
10.1016/S0893-6080(05)80056-5
10.1016/j.istruc.2020.07.029
10.1016/j.oregeorev.2015.01.001
10.1016/j.eij.2017.02.003
10.1016/j.ins.2016.04.019
10.1007/s00542-018-4034-8
10.1016/j.biosystemseng.2020.03.021
10.1016/S0031-3203(96)00142-2
10.1021/acs.analchem.0c01863
10.1016/j.robot.2005.09.006
10.1016/0167-8191(93)90046-N
10.1002/nag.2709
10.1016/S0169-2070(97)00044-7
10.1016/j.eswa.2017.07.029
10.1109/72.991432
10.1109/TPAMI.2008.235
10.1007/978-3-642-12538-6
10.1023/A:1010933404324
10.1016/j.future.2020.06.031
10.1016/j.cageo.2014.10.014
10.1080/00295450.2019.1693215
ContentType Journal Article
Copyright 2021. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2021. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
3V.
7TN
7UA
7WY
7WZ
7XB
87Z
8BQ
8FD
8FE
8FG
8FK
8FL
ABJCF
ABUWG
AFKRA
AZQEC
BENPR
BEZIV
BGLVJ
BHPHI
BKSAR
C1K
CCPQU
D1I
DWQXO
F1W
FR3
FRNLG
F~G
H96
HCIFZ
JG9
K60
K6~
KB.
KR7
L.-
L.G
M0C
PCBAR
PDBOC
PHGZM
PHGZT
PIMPY
PKEHL
PQBIZ
PQBZA
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
ADTOC
UNPAY
DOI 10.3390/min11020159
DatabaseName CrossRef
ProQuest Central (Corporate)
Oceanic Abstracts
Water Resources Abstracts
ABI/INFORM Collection
ABI/INFORM Global (PDF only)
ProQuest Central (purchase pre-March 2016)
ABI/INFORM Collection
METADEX
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ABI/INFORM Collection (Alumni Edition)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
Business Premium Collection
Technology Collection (via ProQuest SciTech Premium Collection)
Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
Environmental Sciences and Pollution Management
ProQuest One
ProQuest Materials Science Collection
ProQuest Central
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Business Premium Collection (Alumni)
ABI/INFORM Global (Corporate)
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
SciTech Premium Collection
Materials Research Database
ProQuest Business Collection (Alumni Edition)
ProQuest Business Collection
Materials Science Database
Civil Engineering Abstracts
ABI/INFORM Professional Advanced
Aquatic Science & Fisheries Abstracts (ASFA) Professional
ABI/INFORM Global (OCUL)
Earth, Atmospheric & Aquatic Science Database
Materials Science Collection
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Business
ProQuest One Business (Alumni)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
Publicly Available Content Database
Materials Research Database
ProQuest Business Collection (Alumni Edition)
ProQuest Central Essentials
SciTech Premium Collection
ProQuest Central China
ABI/INFORM Complete
Water Resources Abstracts
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
Natural Science Collection
ProQuest Central (New)
Business Premium Collection
ABI/INFORM Global
ProQuest One Academic Eastern Edition
Earth, Atmospheric & Aquatic Science Database
ProQuest Technology Collection
ProQuest Business Collection
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
ABI/INFORM Global (Corporate)
ProQuest One Business
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
Materials Science Collection
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest Central
Earth, Atmospheric & Aquatic Science Collection
ABI/INFORM Professional Advanced
Oceanic Abstracts
ProQuest Central Korea
Materials Science Database
ABI/INFORM Complete (Alumni Edition)
ProQuest Materials Science Collection
Civil Engineering Abstracts
ABI/INFORM Global (Alumni Edition)
ProQuest Central Basic
ProQuest SciTech Collection
METADEX
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
ASFA: Aquatic Sciences and Fisheries Abstracts
Materials Science & Engineering Collection
ProQuest One Business (Alumni)
ProQuest Central (Alumni)
Business Premium Collection (Alumni)
DatabaseTitleList Publicly Available Content Database
CrossRef
Database_xml – sequence: 1
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Geology
EISSN 2075-163X
ExternalDocumentID 10.3390/min11020159
10_3390_min11020159
GroupedDBID 5VS
7WY
8FE
8FG
8FH
8FL
AADQD
AAFWJ
AAHBH
AAYXX
ABDBF
ABJCF
ABUWG
ACUHS
ADBBV
AENEX
AFKRA
AFZYC
ALMA_UNASSIGNED_HOLDINGS
BCNDV
BENPR
BEZIV
BGLVJ
BHPHI
BKSAR
BPHCQ
CCPQU
CITATION
D1I
DWQXO
ESX
FRNLG
HCIFZ
K60
K6~
KB.
KQ8
LK5
M0C
M7R
MODMG
M~E
OK1
PCBAR
PDBOC
PHGZM
PHGZT
PIMPY
PQBIZ
PQBZA
PQGLB
PQQKQ
PROAC
3V.
7TN
7UA
7XB
8BQ
8FD
8FK
AZQEC
C1K
F1W
FR3
H96
JG9
KR7
L.-
L.G
PKEHL
PQEST
PQUKI
PRINS
Q9U
2XV
ADTOC
IAO
IPNFZ
ITC
RIG
UNPAY
ID FETCH-LOGICAL-c298t-d51a0deeb73ed5ed444207fb6c431b4c78a8b887c7df145a509f6c5a2225e03a3
IEDL.DBID UNPAY
ISSN 2075-163X
IngestDate Tue Aug 19 23:21:55 EDT 2025
Fri Jul 25 12:00:23 EDT 2025
Thu Oct 16 04:35:51 EDT 2025
Thu Apr 24 23:05:20 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
License cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c298t-d51a0deeb73ed5ed444207fb6c431b4c78a8b887c7df145a509f6c5a2225e03a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://proxy.k.utb.cz/login?url=https://www.mdpi.com/2075-163X/11/2/159/pdf?version=1612439981
PQID 2487258648
PQPubID 2032357
ParticipantIDs unpaywall_primary_10_3390_min11020159
proquest_journals_2487258648
crossref_primary_10_3390_min11020159
crossref_citationtrail_10_3390_min11020159
PublicationCentury 2000
PublicationDate 2021-02-01
PublicationDateYYYYMMDD 2021-02-01
PublicationDate_xml – month: 02
  year: 2021
  text: 2021-02-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Minerals (Basel)
PublicationYear 2021
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Kaelbling (ref_11) 1996; 4
Hu (ref_43) 2020; 194
Du (ref_63) 2012; 45
Dragos (ref_74) 2010; 17
Mallapragada (ref_9) 2009; 31
Barlow (ref_7) 1989; 1
Kumar (ref_59) 2018; 26
Chen (ref_66) 2013; 33
Chen (ref_51) 2020; 29
ref_52
Zhang (ref_12) 1998; 14
Ashfaq (ref_8) 2017; 378
Dai (ref_65) 2011; 18
Chen (ref_76) 2016; 74
Pinsky (ref_71) 2005; 34
Kora (ref_61) 2017; 152
Wu (ref_10) 2018; 27
Liu (ref_4) 2013; 134
Kurum (ref_72) 2012; 20
Yousefi (ref_80) 2016; 25
Chen (ref_15) 2014; 44
Degloria (ref_16) 1993; 19
Raghu (ref_41) 2017; 89
Kaced (ref_55) 2017; 158
Bergmann (ref_70) 2000; 54
Li (ref_44) 2018; 130
Zheng (ref_64) 1992; 1
Safavian (ref_14) 1991; 21
Kang (ref_40) 2017; 41
ref_29
Angulo (ref_50) 2017; 61
Kottas (ref_77) 2014; 14
Zhao (ref_62) 2008; 54
Obuchowski (ref_75) 2018; 63
Araujo (ref_39) 2017; 90
Bradley (ref_69) 1997; 30
Riffi (ref_56) 2017; 18
Basheer (ref_13) 2000; 43
Moller (ref_5) 1993; 6
Chang (ref_17) 2011; 2
Holland (ref_28) 1992; 267
Xiong (ref_2) 2018; 111
Yousefi (ref_78) 2015; 79
ref_32
ref_31
Du (ref_67) 2014; 33
Yang (ref_33) 2012; 29
Chen (ref_47) 2017; 64
Coello (ref_30) 2004; 8
Ke (ref_42) 2020; 14
Lin (ref_68) 2020; 29
Krishnanand (ref_57) 2005; 53
Faris (ref_49) 2019; 11
Dorigo (ref_34) 1996; 26
Dekhici (ref_60) 2017; 8
Yousefi (ref_79) 2015; 74
Tharwat (ref_45) 2018; 71
Gu (ref_53) 2020; 113
Hearst (ref_18) 1998; 13
(ref_22) 2015; 71
Liu (ref_24) 2018; 27
Lakshminarayana (ref_35) 2020; 30
Delgoshaei (ref_37) 2016; 49
Tawhid (ref_54) 2017; 54
Chen (ref_23) 2017; 80
ref_1
Wang (ref_3) 2020; 29
Kaveh (ref_58) 2020; 27
Bae (ref_36) 2020; 206
Chiappini (ref_38) 2020; 92
Figueiredo (ref_6) 2002; 24
Tan (ref_25) 2017; 60
Yao (ref_26) 2010; 53
Lin (ref_19) 2002; 13
Deh (ref_27) 2002; 6
Jove (ref_48) 2020; 51
Yu (ref_73) 2014; 43
Amari (ref_20) 1999; 12
Breiman (ref_21) 2001; 45
Wang (ref_46) 2018; 155
References_xml – volume: 27
  start-page: 1259
  year: 2018
  ident: ref_10
  article-title: Semi-supervised deep learning using pseudo labels for hyperspectral image classification
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2017.2772836
– volume: 13
  start-page: 18
  year: 1998
  ident: ref_18
  article-title: Support vector machines
  publication-title: IEEE Intell. Syst. Their Appl.
  doi: 10.1109/5254.708428
– volume: 158
  start-page: 490
  year: 2017
  ident: ref_55
  article-title: Bat algorithm based maximum power point tracking for photovoltaic system under partial shading conditions
  publication-title: Sol. Energy
  doi: 10.1016/j.solener.2017.09.063
– volume: 26
  start-page: 29
  year: 1996
  ident: ref_34
  article-title: Ant system: Optimization by a colony of cooperating agents
  publication-title: IEEE Trans. Syst. Man Cybern. Part B-Cybern.
  doi: 10.1109/3477.484436
– volume: 1
  start-page: 15
  year: 1992
  ident: ref_64
  article-title: Regional tectonic evolution of east Kunlun
  publication-title: Qinghai Geol.
– volume: 29
  start-page: 189
  year: 2020
  ident: ref_3
  article-title: Mapping mineral prospectivity via semi-supervised random forest
  publication-title: Nat. Resour. Res.
  doi: 10.1007/s11053-019-09510-8
– volume: 267
  start-page: 66
  year: 1992
  ident: ref_28
  article-title: Genetic algorithms
  publication-title: Sci. Am.
  doi: 10.1038/scientificamerican0792-66
– volume: 64
  start-page: 639
  year: 2017
  ident: ref_47
  article-title: Mapping mineral prospectivity by using one-class support vector machine to identify multivariate geological anomalies from digital geological survey data
  publication-title: Aust. J. Earth Sci.
  doi: 10.1080/08120099.2017.1328705
– volume: 12
  start-page: 783
  year: 1999
  ident: ref_20
  article-title: Improving support vector machine classifiers by modifying kernel functions
  publication-title: Neural Netw.
  doi: 10.1016/S0893-6080(99)00032-5
– volume: 152
  start-page: 141
  year: 2017
  ident: ref_61
  article-title: ECG based Myocardial Infarction detection using Hybrid Firefly Algorithm
  publication-title: Comput. Methods Progr. Biomed.
  doi: 10.1016/j.cmpb.2017.09.015
– ident: ref_1
  doi: 10.3390/min10020102
– volume: 21
  start-page: 660
  year: 1991
  ident: ref_14
  article-title: A survey of decision tree classifier methodology
  publication-title: IEEE Trans. Syst. Man Cybern.
  doi: 10.1109/21.97458
– volume: 111
  start-page: 18
  year: 2018
  ident: ref_2
  article-title: GIS-based rare events logistic regression for mineral prospectivity mapping
  publication-title: Comput. Geosci.
  doi: 10.1016/j.cageo.2017.10.005
– volume: 71
  start-page: 346
  year: 2018
  ident: ref_45
  article-title: Automated toxicity test model based on a bio-inspired technique and AdaBoost classifier
  publication-title: Comput. Electr. Eng.
  doi: 10.1016/j.compeleceng.2018.07.049
– volume: 1
  start-page: 295
  year: 1989
  ident: ref_7
  article-title: Unsupervised learning
  publication-title: Neural Comput.
  doi: 10.1162/neco.1989.1.3.295
– volume: 29
  start-page: 247
  year: 2020
  ident: ref_51
  article-title: A Bat Algorithm-Based Data-Driven Model for Mineral Prospectivity Mapping
  publication-title: Nat. Resour. Res.
  doi: 10.1007/s11053-019-09589-z
– volume: 33
  start-page: 713
  year: 2014
  ident: ref_67
  article-title: Geological characteristics and genesis of Xiarihamu nickel deposit in east Kunlun
  publication-title: Miner. Depos.
– volume: 53
  start-page: 1167
  year: 2010
  ident: ref_26
  article-title: Ascertaining the structure parameters of Kunlun fault zone using the grid searching method based on trapped wave correlation
  publication-title: Chin. J. Geophys.
– volume: 2
  start-page: 1
  year: 2011
  ident: ref_17
  article-title: LIBSVM: A library for support vector machines
  publication-title: ACM Trans. Intell. Syst. Technol.
  doi: 10.1145/1961189.1961199
– volume: 27
  start-page: 299
  year: 2018
  ident: ref_24
  article-title: A MaxEnt Model for Mineral Prospectivity Mapping
  publication-title: Nat. Resour. Res.
  doi: 10.1007/s11053-017-9355-2
– volume: 90
  start-page: 1
  year: 2017
  ident: ref_39
  article-title: A class of hybrid multilayer perceptrons for software development effort estimation problems
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2017.07.050
– volume: 130
  start-page: 279
  year: 2018
  ident: ref_44
  article-title: Featured temporal segmentation method and AdaBoost-BP detector for internal leakage evaluation of a hydraulic cylinder
  publication-title: Measurement
  doi: 10.1016/j.measurement.2018.08.029
– volume: 8
  start-page: 256
  year: 2004
  ident: ref_30
  article-title: Handling multiple objectives with particle swarm optimization
  publication-title: IEEE Trans. Evolut. Comput.
  doi: 10.1109/TEVC.2004.826067
– volume: 51
  start-page: 649
  year: 2020
  ident: ref_48
  article-title: Comparative Study of One-Class Based Anomaly Detection Techniques for a Bicomponent Mixing Machine Monitoring
  publication-title: Cybern. Syst.
  doi: 10.1080/01969722.2020.1798641
– volume: 25
  start-page: 3
  year: 2016
  ident: ref_80
  article-title: Data-driven index overlay and boolean logic mineral prospectivity modeling in greenfields exploration
  publication-title: Nat. Resour. Res.
  doi: 10.1007/s11053-014-9261-9
– volume: 20
  start-page: 529
  year: 2012
  ident: ref_72
  article-title: A classification problem of credit risk rating investigated and solved by optimisation of the ROC curve
  publication-title: Cent. Eur. J. Oper. Res.
  doi: 10.1007/s10100-011-0224-5
– ident: ref_31
– volume: 54
  start-page: 72
  year: 2000
  ident: ref_70
  article-title: Different outcomes of the wilcoxon-mann-whitney test from different statistics packages
  publication-title: Am. Stat.
– volume: 155
  start-page: 1013
  year: 2018
  ident: ref_46
  article-title: Effective sparse adaboost method with ESN and FOA for industrial electricity consumption forecasting in China
  publication-title: Energy
  doi: 10.1016/j.energy.2018.04.175
– volume: 54
  start-page: 47
  year: 2008
  ident: ref_62
  article-title: The evidence of intrusive rocks about collision-orogeny during early Devonian in eastern Kunlun area
  publication-title: Geol. Rev.
– volume: 80
  start-page: 200
  year: 2017
  ident: ref_23
  article-title: Mapping mineral prospectivity using an extreme learning machine regression
  publication-title: Ore Geol. Rev.
  doi: 10.1016/j.oregeorev.2016.06.033
– volume: 29
  start-page: 173
  year: 2020
  ident: ref_68
  article-title: Mineral potential mapping using a conjugate gradient logistic regression model
  publication-title: Nat. Res. Res.
  doi: 10.1007/s11053-019-09509-1
– volume: 8
  start-page: 424
  year: 2017
  ident: ref_60
  article-title: A Firefly Algorithm for the Mono-Processors Hybrid Flow Shop Problem
  publication-title: Int. J. Adv. Comput. Sci. Appl.
– volume: 34
  start-page: 771
  year: 2005
  ident: ref_71
  article-title: Scaling of true and apparent ROC AUC with number of observations and number of variables
  publication-title: Commun. Stat.-Simul. Comput.
  doi: 10.1081/SAC-200068366
– volume: 24
  start-page: 361
  year: 2002
  ident: ref_6
  article-title: Unsupervised learning of finite mixture models
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/34.990138
– volume: 11
  start-page: 1
  year: 2019
  ident: ref_49
  article-title: Unsupervised intelligent system based on one class support vector machine and Grey Wolf optimization for IoT botnet detection
  publication-title: J. Ambient Intell. Humaniz. Comput.
– volume: 63
  start-page: 07TR01
  year: 2018
  ident: ref_75
  article-title: Receiver operating characteristic (ROC) curves: Review of methods with applications in diagnostic medicine
  publication-title: Phys. Med. Biol.
  doi: 10.1088/1361-6560/aab4b1
– volume: 14
  start-page: 3630
  year: 2020
  ident: ref_42
  article-title: Intelligent islanding detection method for photovoltaic power system based on Adaboost algorithm
  publication-title: IET Gener. Transm. Distrib.
  doi: 10.1049/iet-gtd.2018.6841
– volume: 61
  start-page: 661
  year: 2017
  ident: ref_50
  article-title: Handling binary classification problems with a priority class by using Support Vector Machines
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2017.08.023
– volume: 4
  start-page: 237
  year: 1996
  ident: ref_11
  article-title: Reinforcement learning: A survey
  publication-title: J. Artif. Intell. Res.
  doi: 10.1613/jair.301
– volume: 45
  start-page: 69
  year: 2012
  ident: ref_63
  article-title: Mesozoic tectono-magmatic-mineralization and copper-gold polymetallic ore prospecting research in east Kunlun metallogenic belt in Qinghai
  publication-title: Northwest. Geol.
– ident: ref_52
  doi: 10.3390/min9050317
– volume: 74
  start-page: 26
  year: 2016
  ident: ref_76
  article-title: A prospecting cost-benefit strategy for mineral potential mapping based on ROC curve analysis
  publication-title: Ore Geol. Rev.
  doi: 10.1016/j.oregeorev.2015.11.011
– volume: 43
  start-page: 161
  year: 2014
  ident: ref_73
  article-title: A modified area under the ROC curve and its application to marker selection and classification
  publication-title: J. Korean Stat. Soc.
  doi: 10.1016/j.jkss.2013.05.003
– volume: 17
  start-page: 75
  year: 2010
  ident: ref_74
  article-title: ROC curve for discrete choice models an application to the Romanian car market
  publication-title: Appl. Econ. Lett.
  doi: 10.1080/13504850701719793
– volume: 134
  start-page: 61
  year: 2013
  ident: ref_4
  article-title: Application of singularity analysis for mineral potential identification using geochemical data—A case study: Nanling W-Sn-Mo polymetallic metallogenic belt, South China
  publication-title: J. Geochem. Explor.
  doi: 10.1016/j.gexplo.2013.08.006
– volume: 14
  start-page: 26
  year: 2014
  ident: ref_77
  article-title: A modified Wald interval for the area under the ROC curve (AUC) in diagnostic case-control studies
  publication-title: BMC Med. Res. Methodol.
  doi: 10.1186/1471-2288-14-26
– volume: 43
  start-page: 3
  year: 2000
  ident: ref_13
  article-title: Artificial neural networks: Fundamentals, computing, design, and application
  publication-title: J. Microbiol. Methods
  doi: 10.1016/S0167-7012(00)00201-3
– volume: 44
  start-page: 583
  year: 2014
  ident: ref_15
  article-title: Fuzzy neural network-based adaptive control for a class of uncertain nonlinear stochastic systems
  publication-title: IEEE Trans. Cybern.
  doi: 10.1109/TCYB.2013.2262935
– volume: 6
  start-page: 182
  year: 2002
  ident: ref_27
  article-title: A fast and elitist multiobjective genetic algorithm: NSGA-II
  publication-title: IEEE Trans. Evolut. Comput.
  doi: 10.1109/4235.996017
– volume: 29
  start-page: 464
  year: 2012
  ident: ref_33
  article-title: Bat algorithm: A novel approach for global engineering optimization
  publication-title: Eng. Comput.
  doi: 10.1108/02644401211235834
– volume: 30
  start-page: 59
  year: 2020
  ident: ref_35
  article-title: Automatic Generation and Optimization of Test case using Hybrid Cuckoo Search and Bee Colony Algorithm
  publication-title: J. Intell. Syst.
– volume: 49
  start-page: 27
  year: 2016
  ident: ref_37
  article-title: A multi-layer perceptron for scheduling cellular manufacturing systems in the presence of unreliable machines and uncertain cost
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2016.06.025
– volume: 79
  start-page: 69
  year: 2015
  ident: ref_78
  article-title: Prediction-area (P-A) plot and C-A fractal analysis to classify and evaluate evidential maps for mineral prospectivity modeling
  publication-title: Comput. Geosci.
  doi: 10.1016/j.cageo.2015.03.007
– volume: 6
  start-page: 525
  year: 1993
  ident: ref_5
  article-title: A scaled conjugate-gradient algorithm for fast supervised learning
  publication-title: Neural Netw.
  doi: 10.1016/S0893-6080(05)80056-5
– volume: 27
  start-page: 2217
  year: 2020
  ident: ref_58
  article-title: Simultaneously multi-material layout, and connectivity optimization of truss structures via an Enriched Firefly Algorithm
  publication-title: Structures
  doi: 10.1016/j.istruc.2020.07.029
– volume: 71
  start-page: 804
  year: 2015
  ident: ref_22
  article-title: Machine learning predictive models for mineral prospectivity: An evaluation of neural networks, random forest, regression trees and support vector machines
  publication-title: Ore Geol. Rev.
  doi: 10.1016/j.oregeorev.2015.01.001
– volume: 18
  start-page: 221
  year: 2017
  ident: ref_56
  article-title: Incorporating a modified uniform crossover and 2-exchange neighborhood mechanism in a discrete bat algorithm to solve the quadratic assignment problem
  publication-title: Egypt. Inform. J.
  doi: 10.1016/j.eij.2017.02.003
– volume: 378
  start-page: 484
  year: 2017
  ident: ref_8
  article-title: Fuzziness based semi-supervised learning approach for intrusion detection system
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2016.04.019
– volume: 26
  start-page: 3289
  year: 2018
  ident: ref_59
  article-title: Parameter optimization of 5.5 GHz low noise amplifier using multi-objective Firefly Algorithm
  publication-title: Microsyst. Technol.
  doi: 10.1007/s00542-018-4034-8
– volume: 33
  start-page: 26
  year: 2013
  ident: ref_66
  article-title: Petrogenesis of Devonian intrusive rocks in theLalingzaohuo area, eastern Kunlun, and its geological significance
  publication-title: J. Mineral. Petrol.
– volume: 194
  start-page: 138
  year: 2020
  ident: ref_43
  article-title: Recognition of diseased Pinus trees in UAV images using deep learning and AdaBoost classifier
  publication-title: Biosyst. Eng.
  doi: 10.1016/j.biosystemseng.2020.03.021
– volume: 30
  start-page: 1145
  year: 1997
  ident: ref_69
  article-title: The use of the area under the ROC curve in the evaluation of machine learning algorithms
  publication-title: Pattern Recognit.
  doi: 10.1016/S0031-3203(96)00142-2
– volume: 92
  start-page: 12265
  year: 2020
  ident: ref_38
  article-title: Sensitivity for Multivariate Calibration Based on Multilayer Perceptron Artificial Neural Networks
  publication-title: Anal. Chem.
  doi: 10.1021/acs.analchem.0c01863
– volume: 53
  start-page: 194
  year: 2005
  ident: ref_57
  article-title: Formations of minimalist mobile robots using local-templates and spatially distributed interactions
  publication-title: Robot. Auton. Syst.
  doi: 10.1016/j.robot.2005.09.006
– ident: ref_29
– volume: 19
  start-page: 163
  year: 1993
  ident: ref_16
  article-title: Clustered boltzmann machines: Massively parallel architectures for constrained optimization problems
  publication-title: Parallel Comput.
  doi: 10.1016/0167-8191(93)90046-N
– volume: 41
  start-page: 1962
  year: 2017
  ident: ref_40
  article-title: System reliability analysis of slopes using multilayer perceptron and radial basis function networks
  publication-title: Int. J. Numer. Anal. Methods Geomech.
  doi: 10.1002/nag.2709
– volume: 14
  start-page: 35
  year: 1998
  ident: ref_12
  article-title: Forecasting with artificial neural networks: The state of the art
  publication-title: Int. J. Forecast.
  doi: 10.1016/S0169-2070(97)00044-7
– volume: 89
  start-page: 205
  year: 2017
  ident: ref_41
  article-title: Optimal configuration of multilayer perceptron neural network classifier for recognition of intracranial epileptic seizures
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2017.07.029
– volume: 13
  start-page: 464
  year: 2002
  ident: ref_19
  article-title: Fuzzy support vector machines
  publication-title: IEEE Trans. Neural Netw.
  doi: 10.1109/72.991432
– volume: 31
  start-page: 2000
  year: 2009
  ident: ref_9
  article-title: SemiBoost: Boosting for semi-supervised learning
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2008.235
– volume: 54
  start-page: 684
  year: 2017
  ident: ref_54
  article-title: Multi-directional bat algorithm for solving unconstrained optimization problems
  publication-title: Opsearch J. Oper. Res. Soc. India
– ident: ref_32
  doi: 10.1007/978-3-642-12538-6
– volume: 45
  start-page: 5
  year: 2001
  ident: ref_21
  article-title: Random forests
  publication-title: Mach. Learn.
  doi: 10.1023/A:1010933404324
– volume: 113
  start-page: 106
  year: 2020
  ident: ref_53
  article-title: Energy-aware workflow scheduling and optimization in clouds using bat algorithm
  publication-title: Fut. Gener. Comput. Syst.
  doi: 10.1016/j.future.2020.06.031
– volume: 74
  start-page: 97
  year: 2015
  ident: ref_79
  article-title: Fuzzification of continuousvalue spatial evidence for mineral prospectivity mapping
  publication-title: Comput. Geosci.
  doi: 10.1016/j.cageo.2014.10.014
– volume: 60
  start-page: 293
  year: 2017
  ident: ref_25
  article-title: An improved method for microseismic source location based on grid search
  publication-title: Chin. J. Geophys.
– volume: 206
  start-page: 951
  year: 2020
  ident: ref_36
  article-title: Comparison of Multilayer Perceptron and Long Short-Term Memory for Plant Parameter Trend Prediction
  publication-title: Nucl. Technol.
  doi: 10.1080/00295450.2019.1693215
– volume: 18
  start-page: 11
  year: 2011
  ident: ref_65
  article-title: Metallogenic background and prospect analysis of Lalingzaohuo region in Qinghai Province
  publication-title: Qinghai Sci. Technol.
SSID ssj0000913852
Score 2.3136587
Snippet Selecting internal hyperparameters, which can be set by the automatic search algorithm, is important to improve the generalization performance of machine...
SourceID unpaywall
proquest
crossref
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
StartPage 159
SubjectTerms Accuracy
Algorithms
Artificial intelligence
Bias
Comparative analysis
Comparative studies
Fault tolerance
Geology
Heuristic methods
Intelligence
Lagrange multiplier
Learning algorithms
Machine learning
Mapping
Mathematical models
Metallogenesis
Mineral deposits
Mineral resources
Model accuracy
Multilayer perceptrons
Neural networks
Optimization
Optimization algorithms
Performance evaluation
Probability distribution
Remote sensing
Search algorithms
Spatial data
Support vector machines
Swarm intelligence
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3fSyMxEB68ynG-iHrKVT3Jg74Ii9tssj8eRHqiFsEqouDbMrvJ1oPtD2tFiv-8M9ts2wfxPQnsJJn5JjvzfQCHSZFkeSaNp4sAPWV86yUYJZ6MkAJOFsZJRepz0w07j-r6ST-tQLfuheGyytonVo7aDHN-Iz-RhKyljkMVn41ePFaN4r-rtYQGOmkFc1pRjP2AVcnMWA1Y_XfRvbufv7owC2as5axRL6B8_6TPIr2EmVrMVrocmhZ489fbYITTdyzLpdBzuQHrDjOK9myTN2HFDrbg51WlyTv9DR9tcb7g8BZcGTgVw0LcVHWSVjgK1Z5g3bPyVfDTq-hQ_jnmOX2uhxG35Dn6riVTtMseffnkuS8I0dIyTOFAs_9XBNXibjx07ZkE4Lfh8fLi4bzjOU0FL5dJPPGMbqFvrM2iwBptjVJK-lGRhTkhiUzlUYxxRo4nj0zRUhoJTxRhrpHTQusHGOxAYzAc2D8gIuujjELUYYIKY5to8gUse2TRImWBTTiuzZnmjnCcdS_KlBIPtn26ZPsmHM4Hj2Y8G18P26_3JXWX7TVdHI0mHM336rtldr9fZg_WJJeuVMXZ-9CYjN_sX8Iek-zAHahPT2vbkw
  priority: 102
  providerName: ProQuest
Title A Comparative Study of Machine Learning Models with Hyperparameter Optimization Algorithm for Mapping Mineral Prospectivity
URI https://www.proquest.com/docview/2487258648
https://www.mdpi.com/2075-163X/11/2/159/pdf?version=1612439981
UnpaywallVersion publishedVersion
Volume 11
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 2075-163X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000913852
  issn: 2075-163X
  databaseCode: KQ8
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVEBS
  databaseName: EBSCOhost Academic Search Ultimate
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 2075-163X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000913852
  issn: 2075-163X
  databaseCode: ABDBF
  dateStart: 20120901
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2075-163X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000913852
  issn: 2075-163X
  databaseCode: M~E
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 2075-163X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000913852
  issn: 2075-163X
  databaseCode: BENPR
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 2075-163X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000913852
  issn: 2075-163X
  databaseCode: 8FG
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEB60RfTiW6yPkoNehHW72WQfJ6liLYK1iIV6WpLdrIjbB30o1T_vZJtqERHxPgkbJjvzfWHmG4CjMA1lLGli8dQVFksqygqFH1rUF5hwpBeEuajPTcOrt9h1m7fNg9vQlFUiFX_KgzTFfGYhYGjbjmNTGzOv3U_SsxfzkoRghWo4rTuvix5HLF6AYqvRrD7oiXKztdOmPBe5vd3RA3kRHzlamXQ-DX1hy-Vxty8mryLL5tJMbQ2i2QdOq0ueT8cjeRq_fdNu_P8J1mHVIFBSnV6ZDVhQ3U1Yuson_E624L1KLr4UwYmuM5yQXkpu8qpLRYwg6yPRU9SyIdEPuaSObHag13R0dQ25xTjUMQ2epJo99gZo1CGIj3EbLQiBq59yuWvSHPRMsyfSgW1o1S7vL-qWmdBgxTQMRlbCHVFJlJK-qxKuEsYYnjiVXoy4RLLYD0QgMYzFfpI6jAtEJ6kXc6FJpqq4wt2BQrfXVbtAfFUR1PcE90LBRKBCjpFFD1FSQgnklCU4mTksio18uZ6ikUVIY7R3oznvluDo07g_Ve342exg5vnI_LrDiCKFozzwWFCC48_b8Ns2e3-024cVqiti8prvAyiMBmN1iJBmJMuwGNSuylA8v2w078rmFn8AOLD1Zg
linkProvider Unpaywall
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxEB6VVqhcEE8RKOBDe0FadeO1d9eHCoXSktImVKiVeltm196CtHmQpKoi_hu_jZmNN8kB9da7PYfxeB72zPcB7JrS5EUubaDLCANlQxcYTEwgE6SAk8epqUF9ev24e6m-XumrDfjbzMJwW2XjE2tHbUcFv5HvS8qspU5jlX4c_w6YNYp_VxsKDfTUCvaghhjzgx2nbn5LJdz04OQznfeelMdHF4fdwLMMBIU06Sywuo2hdS5PIme1s0opGSZlHhcUW3NVJCmmOV3FIrFlW2mkCFvGhUYulFwYYURyH8CWipSh4m_r01H__PvylYdRN1MtF4OBUWTC_QGTAlOO1mZ01PVQuMpvt2-GY5zfYlWthbrjJ_DY56iiszCqp7Dhhs_g4ZeaA3j-HP50xOEKM1xwJ-JcjErRq_synfCQrdeCedaqqeCnXtGlenfCewbcfyO-kaca-BFQ0amuSdOznwNBGTSJYcgI2v2rBsQW55ORHwelguEFXN6Ldl_C5nA0dK9AJC5EmcSoY4MKU2c0-R6mWXLokKrOFnxo1JkVHuCceTaqjAod1n22pvsW7C4Xjxe4Hv9fttOcS-Yv9zRbmWIL9pZndZeY13eLeQ_b3YveWXZ20j99A48kt83UjeE7sDmb3Li3lPfM8nfeuAT8uG97_gdI0BkY
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9tAEB7xELQXBBTUtBT2EC5IVpz1rtd7qKoIGsIjkEORuJm1vQYk59EkCEX9Z_11zDh2kgPKjfvuHGZn57E7830AVZ3qKI544sjUM45IXOtoo7TDlcGAE_mBzkF92jd-605c3sv7FfhfzsJQW2XpE3NHnfRjeiOvccysuQx8EdTSoi2ic9b8NfjrEIMU_bSWdBpTE7myk1cs30Y_L87wrI85b_7-c9pyCoYBJ-Y6GDuJrBs3sTZSnk2kTYQQ3FVp5McYVyMRq8AEEV7DWCVpXUiD0TX1Y2moSLKuZzyUuwrrilDcaUq9eT573yG8zUDy6Uig52m31iU6YMzO6oSLuhgE55ntp5fewExeTZYtBLnmNmwV2SlrTM1pB1Zsbxc2znP238kX-Ndgp3O0cEY9iBPWT1k778i0rABrfWTEsJaNGD3yshZWukPa06XOG3aLPqpbDH-yRvaIeh0_dRnmziiGwCJw93MOhc06w34xCIqlwh7cfYhu92Gt1-_Zr8CUdQ1XvpG-NsIEVkv0OkSwZI01WG9W4KRUZxgX0ObEsJGFWOKQ7sMF3VegOls8mCJ6vL_soDyXsLjWo3BuhBU4np3VMjHflos5gk204vD64ubqO3zm1C-Td4QfwNp4-GJ_YMIzjg5zy2Lw8NGm_AaoWhay
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEA7SInrxLVar5FAvwna72WQfJynFWoTWHizU05LsZktx-6APpfrnnexmaxER8T4JGyY7831h5huEKn7si1CQyGCxzQ0a1aThc9c3iMsh4QjH81NRn3bHafXoQ5_19YPbXJdVAhUfpkGaQD4zADD0TcsyiQmZ15xG8e2rfkkCsEIUnFad10WHARYvoGKv060_q4ly-dqsKc8Gbm-O1EBewEeWUibdTENf2HJnOZ7y1RtPko0009xHQf6BWXXJS3W5ENXw_Zt24_9PcID2NALF9ezKHKItOT5C2_fphN_VMfqo48aXIjhWdYYrPIlxO626lFgLsg6wmqKWzLF6yMUtYLMztWakqmvwI8ShkW7wxPVkMJmB0QgDPoZtlCAErB6mcte4O5voZk-gAyeo17x7arQMPaHBCInvLYyIWbwWSSlcW0ZMRpRSOHEsnBBwiaCh63FPQBgL3Si2KOOATmInZFyRTFmzuX2KCuPJWJ4h7MoaJ67DmeNzyj3pM4gsaoiS5JIDpyyhm9xhQajly9UUjSQAGqO8G2x4t4Qqa-Npptrxs1k593ygf915QIDCEeY51Cuh6_Vt-G2b8z_aXaBdoipi0prvMiosZkt5CZBmIa70vf0E5Dfy5g
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Comparative+Study+of+Machine+Learning+Models+with+Hyperparameter+Optimization+Algorithm+for+Mapping+Mineral+Prospectivity&rft.jtitle=Minerals+%28Basel%29&rft.au=Lin%2C+Nan&rft.au=Chen%2C+Yongliang&rft.au=Liu%2C+Haiqi&rft.au=Liu%2C+Hanlin&rft.date=2021-02-01&rft.issn=2075-163X&rft.eissn=2075-163X&rft.volume=11&rft.issue=2&rft.spage=159&rft_id=info:doi/10.3390%2Fmin11020159&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_min11020159
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2075-163X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2075-163X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2075-163X&client=summon