Insulator defect detection algorithm based on adaptive feature fusion and lightweight YOLOv5s

In power line inspections, detecting insulator defects is critical due to the potential breakdown and damage resulting from long-term exposure to the natural environment. However, challenges persist in practical detection processes, such as the limited availability of insulator defect images, diffic...

Full description

Saved in:
Bibliographic Details
Published inJournal of real-time image processing Vol. 22; no. 1; p. 12
Main Authors He, Zhendong, Wang, Yiming, Zheng, Anping, Liu, Jie, Lou, Taishan, Zhang, Jie, Jiang, Penghao, Xu, Jiong
Format Journal Article
LanguageEnglish
Published Berlin/Heidelberg Springer Berlin Heidelberg 01.02.2025
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN1861-8200
1861-8219
DOI10.1007/s11554-024-01589-4

Cover

Abstract In power line inspections, detecting insulator defects is critical due to the potential breakdown and damage resulting from long-term exposure to the natural environment. However, challenges persist in practical detection processes, such as the limited availability of insulator defect images, difficulty detecting minor defects, and high memory consumption of deep learning models. We propose an insulator defect detection algorithm based on adaptive feature fusion and the lightweight YOLOv5s model to address these issues. First, we enhance the existing dataset by employing techniques like flipping, random pixel manipulation, noise addition, and contrast/brightness adjustments to increase the diversity of training samples. Next, we integrate the adaptive feature fusion (ASFF) module to enable the network to learn relationships between different feature maps, enhancing semantic information and improving the network's ability to detect minor defects. Finally, we replace the backbone of YOLOv5s with the lightweight convolutional neural network EfficientNet, making the network more efficient and enabling it to focus more on target features. Experimental results demonstrate significant improvements in insulator defect detection. The model achieves an accuracy rate of 96.4%, a recall rate of 96.1%, and an mAP of 97.6%, effectively enhancing network performance.
AbstractList In power line inspections, detecting insulator defects is critical due to the potential breakdown and damage resulting from long-term exposure to the natural environment. However, challenges persist in practical detection processes, such as the limited availability of insulator defect images, difficulty detecting minor defects, and high memory consumption of deep learning models. We propose an insulator defect detection algorithm based on adaptive feature fusion and the lightweight YOLOv5s model to address these issues. First, we enhance the existing dataset by employing techniques like flipping, random pixel manipulation, noise addition, and contrast/brightness adjustments to increase the diversity of training samples. Next, we integrate the adaptive feature fusion (ASFF) module to enable the network to learn relationships between different feature maps, enhancing semantic information and improving the network's ability to detect minor defects. Finally, we replace the backbone of YOLOv5s with the lightweight convolutional neural network EfficientNet, making the network more efficient and enabling it to focus more on target features. Experimental results demonstrate significant improvements in insulator defect detection. The model achieves an accuracy rate of 96.4%, a recall rate of 96.1%, and an mAP of 97.6%, effectively enhancing network performance.
In power line inspections, detecting insulator defects is critical due to the potential breakdown and damage resulting from long-term exposure to the natural environment. However, challenges persist in practical detection processes, such as the limited availability of insulator defect images, difficulty detecting minor defects, and high memory consumption of deep learning models. We propose an insulator defect detection algorithm based on adaptive feature fusion and the lightweight YOLOv5s model to address these issues. First, we enhance the existing dataset by employing techniques like flipping, random pixel manipulation, noise addition, and contrast/brightness adjustments to increase the diversity of training samples. Next, we integrate the adaptive feature fusion (ASFF) module to enable the network to learn relationships between different feature maps, enhancing semantic information and improving the network's ability to detect minor defects. Finally, we replace the backbone of YOLOv5s with the lightweight convolutional neural network EfficientNet, making the network more efficient and enabling it to focus more on target features. Experimental results demonstrate significant improvements in insulator defect detection. The model achieves an accuracy rate of 96.4%, a recall rate of 96.1%, and an mAP of 97.6%, effectively enhancing network performance.
ArticleNumber 12
Author Liu, Jie
Zheng, Anping
Lou, Taishan
Jiang, Penghao
Xu, Jiong
He, Zhendong
Zhang, Jie
Wang, Yiming
Author_xml – sequence: 1
  givenname: Zhendong
  surname: He
  fullname: He, Zhendong
  organization: Zhengzhou University of Light Industry
– sequence: 2
  givenname: Yiming
  surname: Wang
  fullname: Wang, Yiming
  organization: Zhengzhou University of Light Industry
– sequence: 3
  givenname: Anping
  surname: Zheng
  fullname: Zheng, Anping
  organization: Zhengzhou University of Light Industry
– sequence: 4
  givenname: Jie
  surname: Liu
  fullname: Liu, Jie
  email: liujie_itl@163.com
  organization: Zhengzhou University of Light Industry
– sequence: 5
  givenname: Taishan
  surname: Lou
  fullname: Lou, Taishan
  organization: Zhengzhou University of Light Industry
– sequence: 6
  givenname: Jie
  surname: Zhang
  fullname: Zhang, Jie
  organization: Zhengzhou University of Light Industry
– sequence: 7
  givenname: Penghao
  surname: Jiang
  fullname: Jiang, Penghao
  organization: Zhengzhou University of Light Industry
– sequence: 8
  givenname: Jiong
  surname: Xu
  fullname: Xu, Jiong
  organization: Zhengzhou University of Light Industry
BookMark eNp9kE1Lw0AQhhepYK3-AU8Bz9HZr2T3KMWPQqEXPXiQZZPdtClpUnc3Ff-9m0b01sPMOwzPOwPvJZq0XWsRusFwhwHye48x5ywFEgtzIVN2hqZYZDgVBMvJ3wxwgS693wJkeUb5FH0sWt83OnQuMbayZYgSotRdm-hm3bk6bHZJob01ybAyeh_qg00qq0Pvovb-iLYmaer1JnzZoSfvq-XqwP0VOq904-31r87Q29Pj6_wlXa6eF_OHZVoSKUJqmNam4DkvQArQJRQMWyNzQjguZAmGFqzgDEwGXFNOK2lIJShYYrEpaUZn6Ha8u3fdZ299UNuud218qSjOKDBOM3GaolRwAYJFioxU6Trvna3U3tU77b4VBjWErcawVQxbHcNWg4mOJh_hdm3d_-kTrh83fIOD
Cites_doi 10.1007/s13369-022-07082-z
10.1016/j.ijepes.2022.108054
10.1109/TIM.2020.3044719
10.1016/j.aei.2024.102526
10.1109/TIM.2018.2868490
10.1109/TIM.2020.3031194
10.1109/CVPR.2018.00474
10.1109/TIM.2021.3127641
10.1109/TPWRD.2021.3116600
10.1109/JSEN.2021.3073422
10.1016/j.ins.2021.02.064
10.1109/TITS.2020.3020287
10.1109/TCSVT.2024.3433415
10.1016/j.measurement.2019.01.072
10.3390/en14051426
10.1016/j.ins.2020.05.090
10.1109/TVT.2020.2969427
10.1109/TVLSI.2019.2905242
10.1109/TSMC.2018.2871750
10.1109/ICCV.2019.00010
10.1109/TIM.2021.3106112
10.1109/CVPR46437.2021.01283
10.3390/rs14205176
10.3390/en12071204
10.1109/CVPR.2018.00745
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2024 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
Copyright Springer Nature B.V. Feb 2025
Copyright_xml – notice: The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2024 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
– notice: The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
– notice: Copyright Springer Nature B.V. Feb 2025
DBID AAYXX
CITATION
JQ2
DOI 10.1007/s11554-024-01589-4
DatabaseName CrossRef
ProQuest Computer Science Collection
DatabaseTitle CrossRef
ProQuest Computer Science Collection
DatabaseTitleList
ProQuest Computer Science Collection
ProQuest Computer Science Collection
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1861-8219
ExternalDocumentID 10_1007_s11554_024_01589_4
GroupedDBID -59
-5G
-BR
-EM
-Y2
-~C
.VR
06D
0R~
0VY
1N0
203
29L
2J2
2JN
2JY
2KG
2KM
2LR
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5VS
67Z
6NX
8TC
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BDATZ
BENPR
BGLVJ
BGNMA
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DNIVK
DPUIP
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HLICF
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K7-
KDC
KOV
LLZTM
M4Y
MA-
N2Q
N9A
NPVJJ
NQJWS
NU0
O9-
O93
O9J
OAM
P9O
PF0
PT4
QOS
R89
R9I
ROL
RPX
RSV
S16
S1Z
S27
S3B
SAP
SCO
SDH
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z7R
Z7X
Z83
Z88
ZMTXR
~A9
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PQGLB
PUEGO
JQ2
ID FETCH-LOGICAL-c298t-d4aadb575b0980ac0b41ed972251b9c0d3b4b540d605a353f9d2f830e2e1dc363
IEDL.DBID AGYKE
ISSN 1861-8200
IngestDate Fri Jul 25 21:51:10 EDT 2025
Fri Jul 25 21:52:55 EDT 2025
Wed Oct 01 02:48:32 EDT 2025
Fri Feb 21 02:38:06 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords EfficientNet
Insulator recognition
ASFF
YOLOv5s
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c298t-d4aadb575b0980ac0b41ed972251b9c0d3b4b540d605a353f9d2f830e2e1dc363
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 3133858084
PQPubID 2044148
ParticipantIDs proquest_journals_3163045368
proquest_journals_3133858084
crossref_primary_10_1007_s11554_024_01589_4
springer_journals_10_1007_s11554_024_01589_4
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20250200
PublicationDateYYYYMMDD 2025-02-01
PublicationDate_xml – month: 2
  year: 2025
  text: 20250200
PublicationDecade 2020
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Heidelberg
PublicationTitle Journal of real-time image processing
PublicationTitleAbbrev J Real-Time Image Proc
PublicationYear 2025
Publisher Springer Berlin Heidelberg
Springer Nature B.V
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer Nature B.V
References Z Gao (1589_CR23) 2021; 21
1589_CR19
J Yang (1589_CR29) 2021; 566
1589_CR18
B Wang (1589_CR25) 2020; 70
L Yang (1589_CR1) 2020; 69
R Liu (1589_CR24) 2021; 14
F Deng (1589_CR27) 2022; 139
X Zhang (1589_CR7) 2021; 70
G Kang (1589_CR8) 2018; 68
1589_CR30
SD Khan (1589_CR28) 2023; 48
W Zhao (1589_CR3) 2021; 70
1589_CR12
1589_CR11
X Tao (1589_CR9) 2018; 50
1589_CR10
1589_CR32
X Lei (1589_CR2) 2019; 138
1589_CR17
1589_CR16
K Hao (1589_CR21) 2022; 71
L Zhou (1589_CR13) 2020; 69
W Liu (1589_CR14) 2020; 69
L She (1589_CR15) 2021; 70
1589_CR6
L She (1589_CR20) 2021; 37
D Zhang (1589_CR4) 2020; 70
1589_CR22
1589_CR26
J Zhong (1589_CR5) 2020; 23
L Xie (1589_CR31) 2024; 61
References_xml – volume: 48
  start-page: 1907
  year: 2023
  ident: 1589_CR28
  publication-title: Arab. J. Sci. Eng.
  doi: 10.1007/s13369-022-07082-z
– volume: 139
  year: 2022
  ident: 1589_CR27
  publication-title: Int. J. Electr. Power Energy Syst.
  doi: 10.1016/j.ijepes.2022.108054
– volume: 70
  start-page: 1
  year: 2020
  ident: 1589_CR25
  publication-title: IEEE Trans. Instrum. Meas.
  doi: 10.1109/TIM.2020.3044719
– volume: 61
  year: 2024
  ident: 1589_CR31
  publication-title: Adv. Eng. Inform.
  doi: 10.1016/j.aei.2024.102526
– volume: 68
  start-page: 2679
  issue: 8
  year: 2018
  ident: 1589_CR8
  publication-title: IEEE Trans. Instrum. Meas.
  doi: 10.1109/TIM.2018.2868490
– volume: 69
  start-page: 8411
  issue: 10
  year: 2020
  ident: 1589_CR14
  publication-title: IEEE Trans. Instrum. Meas.
– ident: 1589_CR17
– volume: 69
  start-page: 9350
  issue: 12
  year: 2020
  ident: 1589_CR1
  publication-title: IEEE Trans. Instrum. Meas.
  doi: 10.1109/TIM.2020.3031194
– ident: 1589_CR18
  doi: 10.1109/CVPR.2018.00474
– volume: 70
  start-page: 1
  year: 2021
  ident: 1589_CR7
  publication-title: IEEE Trans. Instrum. Meas.
  doi: 10.1109/TIM.2021.3127641
– volume: 37
  start-page: 2787
  issue: 4
  year: 2021
  ident: 1589_CR20
  publication-title: IEEE Trans. Power Delivery
  doi: 10.1109/TPWRD.2021.3116600
– volume: 21
  start-page: 16807
  issue: 15
  year: 2021
  ident: 1589_CR23
  publication-title: IEEE Sens. J.
  doi: 10.1109/JSEN.2021.3073422
– volume: 566
  start-page: 103
  year: 2021
  ident: 1589_CR29
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2021.02.064
– volume: 23
  start-page: 1109
  issue: 2
  year: 2020
  ident: 1589_CR5
  publication-title: IEEE Trans. Intell. Transp. Syst.
  doi: 10.1109/TITS.2020.3020287
– ident: 1589_CR32
  doi: 10.1109/TCSVT.2024.3433415
– volume: 138
  start-page: 379
  year: 2019
  ident: 1589_CR2
  publication-title: Measurement
  doi: 10.1016/j.measurement.2019.01.072
– ident: 1589_CR26
  doi: 10.3390/en14051426
– ident: 1589_CR30
  doi: 10.1016/j.ins.2020.05.090
– volume: 69
  start-page: 3604
  issue: 4
  year: 2020
  ident: 1589_CR13
  publication-title: IEEE Trans. Veh. Technol.
  doi: 10.1109/TVT.2020.2969427
– ident: 1589_CR11
  doi: 10.1109/TVLSI.2019.2905242
– volume: 70
  start-page: 1
  year: 2020
  ident: 1589_CR4
  publication-title: IEEE Trans. Instrum. Meas.
– ident: 1589_CR16
– volume: 50
  start-page: 1486
  issue: 4
  year: 2018
  ident: 1589_CR9
  publication-title: IEEE Trans. Syst. Man Cybernet.
  doi: 10.1109/TSMC.2018.2871750
– volume: 71
  start-page: 1
  year: 2022
  ident: 1589_CR21
  publication-title: IEEE Trans. Instrum. Meas.
– ident: 1589_CR12
  doi: 10.1109/ICCV.2019.00010
– volume: 70
  start-page: 1
  year: 2021
  ident: 1589_CR15
  publication-title: IEEE Trans. Instrum. Meas.
  doi: 10.1109/TIM.2021.3106112
– volume: 14
  start-page: 812
  issue: 8
  year: 2021
  ident: 1589_CR24
  publication-title: Recent Adv. Electr. Electron. Eng. (Formerly Recent Patents on Electrical & Electronic Engineering)
– ident: 1589_CR6
  doi: 10.1109/CVPR46437.2021.01283
– volume: 70
  start-page: 1
  year: 2021
  ident: 1589_CR3
  publication-title: IEEE Trans. Instrum. Meas.
– ident: 1589_CR22
  doi: 10.3390/rs14205176
– ident: 1589_CR10
  doi: 10.3390/en12071204
– ident: 1589_CR19
  doi: 10.1109/CVPR.2018.00745
SSID ssj0067635
Score 2.3486927
Snippet In power line inspections, detecting insulator defects is critical due to the potential breakdown and damage resulting from long-term exposure to the natural...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Index Database
Publisher
StartPage 12
SubjectTerms Accuracy
Adaptive algorithms
Adaptive sampling
Algorithms
Artificial neural networks
Blackouts
Computer Graphics
Computer Science
Damage detection
Deep learning
Defects
Efficiency
Feature maps
Image contrast
Image enhancement
Image manipulation
Image Processing and Computer Vision
Machine learning
Multimedia Information Systems
Neural networks
Object recognition
Pattern Recognition
Power lines
Signal,Image and Speech Processing
Target detection
Title Insulator defect detection algorithm based on adaptive feature fusion and lightweight YOLOv5s
URI https://link.springer.com/article/10.1007/s11554-024-01589-4
https://www.proquest.com/docview/3133858084
https://www.proquest.com/docview/3163045368
Volume 22
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVLSH
  databaseName: SpringerLink Journals
  customDbUrl:
  mediaType: online
  eissn: 1861-8219
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0067635
  issn: 1861-8200
  databaseCode: AFBBN
  dateStart: 20060301
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVAVX
  databaseName: SpringerLINK - Czech Republic Consortium
  customDbUrl:
  eissn: 1861-8219
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0067635
  issn: 1861-8200
  databaseCode: AGYKE
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: http://link.springer.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: SpringerLink Journals (ICM)
  customDbUrl:
  eissn: 1861-8219
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0067635
  issn: 1861-8200
  databaseCode: U2A
  dateStart: 20061001
  isFulltext: true
  titleUrlDefault: http://www.springerlink.com/journals/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV05T8MwFH6CsrBwIwoFeWADoyQ-4owV4r4WKrUDinwFEBBQm4LEr8d2E1UgGJgi2VYSX-97z_78GWCXEe1AWifYckOwJzBimVKDM5WKghPCZFC8ubrmpz163mf9-lDYqGG7N1uSwVJPD7t56MMOU1z4y0SG6SzMBb2tFsx1TwYXR40F5l5kzQdagsfYIVxUH5b5_S3fAWnqZf7YGA14c7wIveZPJzSTp4NxpQ705w8Rx_9WZQkWagcUdScjZhlmbLkCi83lDqie66twd-ZZ6j4kR8Z6zod7VIG3VSL5fP86fKweXpAHQYN8kpFv3nKiwgapUFSMR6FoadCzXwD4CGuwaHBzefPORmvQOz66PTzF9V0MWCeZqLChUhrlfDsVZSKSOlI0tiZLnTmIVaYjQxRVzvszLjyShJEiM0khSGQTGxtNOFmHVvla2g1AsWQ0VT5Zu7g8IYowrXhcaCqjVJuiDXtNh-RvE8mNfCqu7Fsudy2Xh5bLaRs6TZ_l9fQb5cRH3kxE4q9s7jeICRdt2G96aJr998c2_1d8C-YTf11wIHl3oFUNx3bb-TCV2qmH7A7M9pLuF5h7570
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELagDLDwRhQKeGADS0n8iDNWiKqFFhYqwYAivwJDSSvawt_H5yaqQDAwRbKtRDr77rsvPn9G6JxT40HaJMQJSwkUMBKVMksyncpCUMpVULwZ3InukN088sfqUNi0rnavtyRDpF4edgPoIx5TPP3lMiNsFa2BgBUo5g-Tdh1_BUisAc2SIiYe36LqqMzv7_gOR8sc88e2aECbzjbarNJE3F7M6w5aceUu2qqvYMCVR-6h5x7UkgNxxtZBZYZ_zEJ1VYnV6GXsqf_rGwaoshiarJpAfMOFC4KeuJhPw9DS4hHQ9M_wpxQ_3ffvP_h0Hw071w9XXVLdmEBMkskZsUwpq30GpqNMRspEmsXOZql32lhnJrJUM-1zNOtJjKKcFplNCkkjl7jYGiroAWqU49IdIhwrzlINzcaz54Rqyo0WcWGYilJjiya6qA2XTxbCGPlSAhnMnHsz58HMOWuiVm3bvHKSaU6BH3MZyb-6BWzjUiGb6LKejmX33x87-t_wM7TefRj0837v7vYYbSRwwW8oy26hxux97k581jHTp2GRfQEOJcy6
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1JS8QwFA4uIF7cxdFRc_CmwbZZmh5FHdz14IAepGSrCmMdnI7-ffMyLaOiB0-FJLTwsnzv63vvC0I7nBoP0iYhTlhKIIGRqJRZkulUFoJSroLizeWVOOmyszt-96WKP2S7NyHJUU0DqDSV1X7fFvvjwjeAQeLxxVNhLjPCJtE0A6EEv6K7yUFzFguQWwPKJUVMPNZFddnM7-_4Dk1jf_NHiDQgT2cBzdUuIz4YzfEimnDlEppvrmPA9e5cRg-nkFcOJBpbB1ka_lGFTKsSq97j69tz9fSCAbYshiar-nDW4cIFcU9cDAdhaGlxDyj7R_hriu-vL67f-WAFdTvHt4cnpL49gZgkkxWxTCmrvTemo0xGykSaxc5mqd_Asc5MZKlm2vtr1hMaRTktMpsUkkYucbE1VNBVNFW-lm4N4VhxlmpoNp5JJ1RTbrSIC8NUlBpbtNBuY7i8PxLJyMdyyGDm3Js5D2bOWQu1G9vm9YYZ5BS4MpeR_KtbQEiXCtlCe810jLv__tj6_4Zvo5mbo05-cXp1voFmE7jrN2Rot9FU9TZ0m94BqfRWWGOfF5rQ9g
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Insulator+defect+detection+algorithm+based+on+adaptive+feature+fusion+and+lightweight+YOLOv5s&rft.jtitle=Journal+of+real-time+image+processing&rft.au=He%2C+Zhendong&rft.au=Wang%2C+Yiming&rft.au=Zheng%2C+Anping&rft.au=Liu%2C+Jie&rft.date=2025-02-01&rft.pub=Springer+Berlin+Heidelberg&rft.issn=1861-8200&rft.eissn=1861-8219&rft.volume=22&rft.issue=1&rft_id=info:doi/10.1007%2Fs11554-024-01589-4&rft.externalDocID=10_1007_s11554_024_01589_4
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1861-8200&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1861-8200&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1861-8200&client=summon