Insulator defect detection algorithm based on adaptive feature fusion and lightweight YOLOv5s
In power line inspections, detecting insulator defects is critical due to the potential breakdown and damage resulting from long-term exposure to the natural environment. However, challenges persist in practical detection processes, such as the limited availability of insulator defect images, diffic...
Saved in:
| Published in | Journal of real-time image processing Vol. 22; no. 1; p. 12 |
|---|---|
| Main Authors | , , , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.02.2025
Springer Nature B.V |
| Subjects | |
| Online Access | Get full text |
| ISSN | 1861-8200 1861-8219 |
| DOI | 10.1007/s11554-024-01589-4 |
Cover
| Abstract | In power line inspections, detecting insulator defects is critical due to the potential breakdown and damage resulting from long-term exposure to the natural environment. However, challenges persist in practical detection processes, such as the limited availability of insulator defect images, difficulty detecting minor defects, and high memory consumption of deep learning models. We propose an insulator defect detection algorithm based on adaptive feature fusion and the lightweight YOLOv5s model to address these issues. First, we enhance the existing dataset by employing techniques like flipping, random pixel manipulation, noise addition, and contrast/brightness adjustments to increase the diversity of training samples. Next, we integrate the adaptive feature fusion (ASFF) module to enable the network to learn relationships between different feature maps, enhancing semantic information and improving the network's ability to detect minor defects. Finally, we replace the backbone of YOLOv5s with the lightweight convolutional neural network EfficientNet, making the network more efficient and enabling it to focus more on target features. Experimental results demonstrate significant improvements in insulator defect detection. The model achieves an accuracy rate of 96.4%, a recall rate of 96.1%, and an mAP of 97.6%, effectively enhancing network performance. |
|---|---|
| AbstractList | In power line inspections, detecting insulator defects is critical due to the potential breakdown and damage resulting from long-term exposure to the natural environment. However, challenges persist in practical detection processes, such as the limited availability of insulator defect images, difficulty detecting minor defects, and high memory consumption of deep learning models. We propose an insulator defect detection algorithm based on adaptive feature fusion and the lightweight YOLOv5s model to address these issues. First, we enhance the existing dataset by employing techniques like flipping, random pixel manipulation, noise addition, and contrast/brightness adjustments to increase the diversity of training samples. Next, we integrate the adaptive feature fusion (ASFF) module to enable the network to learn relationships between different feature maps, enhancing semantic information and improving the network's ability to detect minor defects. Finally, we replace the backbone of YOLOv5s with the lightweight convolutional neural network EfficientNet, making the network more efficient and enabling it to focus more on target features. Experimental results demonstrate significant improvements in insulator defect detection. The model achieves an accuracy rate of 96.4%, a recall rate of 96.1%, and an mAP of 97.6%, effectively enhancing network performance. In power line inspections, detecting insulator defects is critical due to the potential breakdown and damage resulting from long-term exposure to the natural environment. However, challenges persist in practical detection processes, such as the limited availability of insulator defect images, difficulty detecting minor defects, and high memory consumption of deep learning models. We propose an insulator defect detection algorithm based on adaptive feature fusion and the lightweight YOLOv5s model to address these issues. First, we enhance the existing dataset by employing techniques like flipping, random pixel manipulation, noise addition, and contrast/brightness adjustments to increase the diversity of training samples. Next, we integrate the adaptive feature fusion (ASFF) module to enable the network to learn relationships between different feature maps, enhancing semantic information and improving the network's ability to detect minor defects. Finally, we replace the backbone of YOLOv5s with the lightweight convolutional neural network EfficientNet, making the network more efficient and enabling it to focus more on target features. Experimental results demonstrate significant improvements in insulator defect detection. The model achieves an accuracy rate of 96.4%, a recall rate of 96.1%, and an mAP of 97.6%, effectively enhancing network performance. |
| ArticleNumber | 12 |
| Author | Liu, Jie Zheng, Anping Lou, Taishan Jiang, Penghao Xu, Jiong He, Zhendong Zhang, Jie Wang, Yiming |
| Author_xml | – sequence: 1 givenname: Zhendong surname: He fullname: He, Zhendong organization: Zhengzhou University of Light Industry – sequence: 2 givenname: Yiming surname: Wang fullname: Wang, Yiming organization: Zhengzhou University of Light Industry – sequence: 3 givenname: Anping surname: Zheng fullname: Zheng, Anping organization: Zhengzhou University of Light Industry – sequence: 4 givenname: Jie surname: Liu fullname: Liu, Jie email: liujie_itl@163.com organization: Zhengzhou University of Light Industry – sequence: 5 givenname: Taishan surname: Lou fullname: Lou, Taishan organization: Zhengzhou University of Light Industry – sequence: 6 givenname: Jie surname: Zhang fullname: Zhang, Jie organization: Zhengzhou University of Light Industry – sequence: 7 givenname: Penghao surname: Jiang fullname: Jiang, Penghao organization: Zhengzhou University of Light Industry – sequence: 8 givenname: Jiong surname: Xu fullname: Xu, Jiong organization: Zhengzhou University of Light Industry |
| BookMark | eNp9kE1Lw0AQhhepYK3-AU8Bz9HZr2T3KMWPQqEXPXiQZZPdtClpUnc3Ff-9m0b01sPMOwzPOwPvJZq0XWsRusFwhwHye48x5ywFEgtzIVN2hqZYZDgVBMvJ3wxwgS693wJkeUb5FH0sWt83OnQuMbayZYgSotRdm-hm3bk6bHZJob01ybAyeh_qg00qq0Pvovb-iLYmaer1JnzZoSfvq-XqwP0VOq904-31r87Q29Pj6_wlXa6eF_OHZVoSKUJqmNam4DkvQArQJRQMWyNzQjguZAmGFqzgDEwGXFNOK2lIJShYYrEpaUZn6Ha8u3fdZ299UNuud218qSjOKDBOM3GaolRwAYJFioxU6Trvna3U3tU77b4VBjWErcawVQxbHcNWg4mOJh_hdm3d_-kTrh83fIOD |
| Cites_doi | 10.1007/s13369-022-07082-z 10.1016/j.ijepes.2022.108054 10.1109/TIM.2020.3044719 10.1016/j.aei.2024.102526 10.1109/TIM.2018.2868490 10.1109/TIM.2020.3031194 10.1109/CVPR.2018.00474 10.1109/TIM.2021.3127641 10.1109/TPWRD.2021.3116600 10.1109/JSEN.2021.3073422 10.1016/j.ins.2021.02.064 10.1109/TITS.2020.3020287 10.1109/TCSVT.2024.3433415 10.1016/j.measurement.2019.01.072 10.3390/en14051426 10.1016/j.ins.2020.05.090 10.1109/TVT.2020.2969427 10.1109/TVLSI.2019.2905242 10.1109/TSMC.2018.2871750 10.1109/ICCV.2019.00010 10.1109/TIM.2021.3106112 10.1109/CVPR46437.2021.01283 10.3390/rs14205176 10.3390/en12071204 10.1109/CVPR.2018.00745 |
| ContentType | Journal Article |
| Copyright | The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2024 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. Copyright Springer Nature B.V. Feb 2025 |
| Copyright_xml | – notice: The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2024 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. – notice: The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. – notice: Copyright Springer Nature B.V. Feb 2025 |
| DBID | AAYXX CITATION JQ2 |
| DOI | 10.1007/s11554-024-01589-4 |
| DatabaseName | CrossRef ProQuest Computer Science Collection |
| DatabaseTitle | CrossRef ProQuest Computer Science Collection |
| DatabaseTitleList | ProQuest Computer Science Collection ProQuest Computer Science Collection |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 1861-8219 |
| ExternalDocumentID | 10_1007_s11554_024_01589_4 |
| GroupedDBID | -59 -5G -BR -EM -Y2 -~C .VR 06D 0R~ 0VY 1N0 203 29L 2J2 2JN 2JY 2KG 2KM 2LR 2VQ 2~H 30V 4.4 406 408 409 40D 40E 5VS 67Z 6NX 8TC 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACZOJ ADHHG ADHIR ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFGCZ AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARAPS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. BA0 BDATZ BENPR BGLVJ BGNMA BSONS CAG CCPQU COF CS3 CSCUP DDRTE DNIVK DPUIP EBLON EBS EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HCIFZ HF~ HG5 HG6 HLICF HMJXF HQYDN HRMNR HVGLF HZ~ IHE IJ- IKXTQ ITM IWAJR IXC IXE IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K7- KDC KOV LLZTM M4Y MA- N2Q N9A NPVJJ NQJWS NU0 O9- O93 O9J OAM P9O PF0 PT4 QOS R89 R9I ROL RPX RSV S16 S1Z S27 S3B SAP SCO SDH SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 TSG TSK TSV TUC U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 Z7R Z7X Z83 Z88 ZMTXR ~A9 AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC ADHKG AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT PQGLB PUEGO JQ2 |
| ID | FETCH-LOGICAL-c298t-d4aadb575b0980ac0b41ed972251b9c0d3b4b540d605a353f9d2f830e2e1dc363 |
| IEDL.DBID | AGYKE |
| ISSN | 1861-8200 |
| IngestDate | Fri Jul 25 21:51:10 EDT 2025 Fri Jul 25 21:52:55 EDT 2025 Wed Oct 01 02:48:32 EDT 2025 Fri Feb 21 02:38:06 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Keywords | EfficientNet Insulator recognition ASFF YOLOv5s |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c298t-d4aadb575b0980ac0b41ed972251b9c0d3b4b540d605a353f9d2f830e2e1dc363 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| PQID | 3133858084 |
| PQPubID | 2044148 |
| ParticipantIDs | proquest_journals_3163045368 proquest_journals_3133858084 crossref_primary_10_1007_s11554_024_01589_4 springer_journals_10_1007_s11554_024_01589_4 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 20250200 |
| PublicationDateYYYYMMDD | 2025-02-01 |
| PublicationDate_xml | – month: 2 year: 2025 text: 20250200 |
| PublicationDecade | 2020 |
| PublicationPlace | Berlin/Heidelberg |
| PublicationPlace_xml | – name: Berlin/Heidelberg – name: Heidelberg |
| PublicationTitle | Journal of real-time image processing |
| PublicationTitleAbbrev | J Real-Time Image Proc |
| PublicationYear | 2025 |
| Publisher | Springer Berlin Heidelberg Springer Nature B.V |
| Publisher_xml | – name: Springer Berlin Heidelberg – name: Springer Nature B.V |
| References | Z Gao (1589_CR23) 2021; 21 1589_CR19 J Yang (1589_CR29) 2021; 566 1589_CR18 B Wang (1589_CR25) 2020; 70 L Yang (1589_CR1) 2020; 69 R Liu (1589_CR24) 2021; 14 F Deng (1589_CR27) 2022; 139 X Zhang (1589_CR7) 2021; 70 G Kang (1589_CR8) 2018; 68 1589_CR30 SD Khan (1589_CR28) 2023; 48 W Zhao (1589_CR3) 2021; 70 1589_CR12 1589_CR11 X Tao (1589_CR9) 2018; 50 1589_CR10 1589_CR32 X Lei (1589_CR2) 2019; 138 1589_CR17 1589_CR16 K Hao (1589_CR21) 2022; 71 L Zhou (1589_CR13) 2020; 69 W Liu (1589_CR14) 2020; 69 L She (1589_CR15) 2021; 70 1589_CR6 L She (1589_CR20) 2021; 37 D Zhang (1589_CR4) 2020; 70 1589_CR22 1589_CR26 J Zhong (1589_CR5) 2020; 23 L Xie (1589_CR31) 2024; 61 |
| References_xml | – volume: 48 start-page: 1907 year: 2023 ident: 1589_CR28 publication-title: Arab. J. Sci. Eng. doi: 10.1007/s13369-022-07082-z – volume: 139 year: 2022 ident: 1589_CR27 publication-title: Int. J. Electr. Power Energy Syst. doi: 10.1016/j.ijepes.2022.108054 – volume: 70 start-page: 1 year: 2020 ident: 1589_CR25 publication-title: IEEE Trans. Instrum. Meas. doi: 10.1109/TIM.2020.3044719 – volume: 61 year: 2024 ident: 1589_CR31 publication-title: Adv. Eng. Inform. doi: 10.1016/j.aei.2024.102526 – volume: 68 start-page: 2679 issue: 8 year: 2018 ident: 1589_CR8 publication-title: IEEE Trans. Instrum. Meas. doi: 10.1109/TIM.2018.2868490 – volume: 69 start-page: 8411 issue: 10 year: 2020 ident: 1589_CR14 publication-title: IEEE Trans. Instrum. Meas. – ident: 1589_CR17 – volume: 69 start-page: 9350 issue: 12 year: 2020 ident: 1589_CR1 publication-title: IEEE Trans. Instrum. Meas. doi: 10.1109/TIM.2020.3031194 – ident: 1589_CR18 doi: 10.1109/CVPR.2018.00474 – volume: 70 start-page: 1 year: 2021 ident: 1589_CR7 publication-title: IEEE Trans. Instrum. Meas. doi: 10.1109/TIM.2021.3127641 – volume: 37 start-page: 2787 issue: 4 year: 2021 ident: 1589_CR20 publication-title: IEEE Trans. Power Delivery doi: 10.1109/TPWRD.2021.3116600 – volume: 21 start-page: 16807 issue: 15 year: 2021 ident: 1589_CR23 publication-title: IEEE Sens. J. doi: 10.1109/JSEN.2021.3073422 – volume: 566 start-page: 103 year: 2021 ident: 1589_CR29 publication-title: Inf. Sci. doi: 10.1016/j.ins.2021.02.064 – volume: 23 start-page: 1109 issue: 2 year: 2020 ident: 1589_CR5 publication-title: IEEE Trans. Intell. Transp. Syst. doi: 10.1109/TITS.2020.3020287 – ident: 1589_CR32 doi: 10.1109/TCSVT.2024.3433415 – volume: 138 start-page: 379 year: 2019 ident: 1589_CR2 publication-title: Measurement doi: 10.1016/j.measurement.2019.01.072 – ident: 1589_CR26 doi: 10.3390/en14051426 – ident: 1589_CR30 doi: 10.1016/j.ins.2020.05.090 – volume: 69 start-page: 3604 issue: 4 year: 2020 ident: 1589_CR13 publication-title: IEEE Trans. Veh. Technol. doi: 10.1109/TVT.2020.2969427 – ident: 1589_CR11 doi: 10.1109/TVLSI.2019.2905242 – volume: 70 start-page: 1 year: 2020 ident: 1589_CR4 publication-title: IEEE Trans. Instrum. Meas. – ident: 1589_CR16 – volume: 50 start-page: 1486 issue: 4 year: 2018 ident: 1589_CR9 publication-title: IEEE Trans. Syst. Man Cybernet. doi: 10.1109/TSMC.2018.2871750 – volume: 71 start-page: 1 year: 2022 ident: 1589_CR21 publication-title: IEEE Trans. Instrum. Meas. – ident: 1589_CR12 doi: 10.1109/ICCV.2019.00010 – volume: 70 start-page: 1 year: 2021 ident: 1589_CR15 publication-title: IEEE Trans. Instrum. Meas. doi: 10.1109/TIM.2021.3106112 – volume: 14 start-page: 812 issue: 8 year: 2021 ident: 1589_CR24 publication-title: Recent Adv. Electr. Electron. Eng. (Formerly Recent Patents on Electrical & Electronic Engineering) – ident: 1589_CR6 doi: 10.1109/CVPR46437.2021.01283 – volume: 70 start-page: 1 year: 2021 ident: 1589_CR3 publication-title: IEEE Trans. Instrum. Meas. – ident: 1589_CR22 doi: 10.3390/rs14205176 – ident: 1589_CR10 doi: 10.3390/en12071204 – ident: 1589_CR19 doi: 10.1109/CVPR.2018.00745 |
| SSID | ssj0067635 |
| Score | 2.3486927 |
| Snippet | In power line inspections, detecting insulator defects is critical due to the potential breakdown and damage resulting from long-term exposure to the natural... |
| SourceID | proquest crossref springer |
| SourceType | Aggregation Database Index Database Publisher |
| StartPage | 12 |
| SubjectTerms | Accuracy Adaptive algorithms Adaptive sampling Algorithms Artificial neural networks Blackouts Computer Graphics Computer Science Damage detection Deep learning Defects Efficiency Feature maps Image contrast Image enhancement Image manipulation Image Processing and Computer Vision Machine learning Multimedia Information Systems Neural networks Object recognition Pattern Recognition Power lines Signal,Image and Speech Processing Target detection |
| Title | Insulator defect detection algorithm based on adaptive feature fusion and lightweight YOLOv5s |
| URI | https://link.springer.com/article/10.1007/s11554-024-01589-4 https://www.proquest.com/docview/3133858084 https://www.proquest.com/docview/3163045368 |
| Volume | 22 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVLSH databaseName: SpringerLink Journals customDbUrl: mediaType: online eissn: 1861-8219 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0067635 issn: 1861-8200 databaseCode: AFBBN dateStart: 20060301 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVAVX databaseName: SpringerLINK - Czech Republic Consortium customDbUrl: eissn: 1861-8219 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0067635 issn: 1861-8200 databaseCode: AGYKE dateStart: 20060101 isFulltext: true titleUrlDefault: http://link.springer.com providerName: Springer Nature – providerCode: PRVAVX databaseName: SpringerLink Journals (ICM) customDbUrl: eissn: 1861-8219 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0067635 issn: 1861-8200 databaseCode: U2A dateStart: 20061001 isFulltext: true titleUrlDefault: http://www.springerlink.com/journals/ providerName: Springer Nature |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV05T8MwFH6CsrBwIwoFeWADoyQ-4owV4r4WKrUDinwFEBBQm4LEr8d2E1UgGJgi2VYSX-97z_78GWCXEe1AWifYckOwJzBimVKDM5WKghPCZFC8ubrmpz163mf9-lDYqGG7N1uSwVJPD7t56MMOU1z4y0SG6SzMBb2tFsx1TwYXR40F5l5kzQdagsfYIVxUH5b5_S3fAWnqZf7YGA14c7wIveZPJzSTp4NxpQ705w8Rx_9WZQkWagcUdScjZhlmbLkCi83lDqie66twd-ZZ6j4kR8Z6zod7VIG3VSL5fP86fKweXpAHQYN8kpFv3nKiwgapUFSMR6FoadCzXwD4CGuwaHBzefPORmvQOz66PTzF9V0MWCeZqLChUhrlfDsVZSKSOlI0tiZLnTmIVaYjQxRVzvszLjyShJEiM0khSGQTGxtNOFmHVvla2g1AsWQ0VT5Zu7g8IYowrXhcaCqjVJuiDXtNh-RvE8mNfCqu7Fsudy2Xh5bLaRs6TZ_l9fQb5cRH3kxE4q9s7jeICRdt2G96aJr998c2_1d8C-YTf11wIHl3oFUNx3bb-TCV2qmH7A7M9pLuF5h7570 |
| linkProvider | Springer Nature |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELagDLDwRhQKeGADS0n8iDNWiKqFFhYqwYAivwJDSSvawt_H5yaqQDAwRbKtRDr77rsvPn9G6JxT40HaJMQJSwkUMBKVMksyncpCUMpVULwZ3InukN088sfqUNi0rnavtyRDpF4edgPoIx5TPP3lMiNsFa2BgBUo5g-Tdh1_BUisAc2SIiYe36LqqMzv7_gOR8sc88e2aECbzjbarNJE3F7M6w5aceUu2qqvYMCVR-6h5x7UkgNxxtZBZYZ_zEJ1VYnV6GXsqf_rGwaoshiarJpAfMOFC4KeuJhPw9DS4hHQ9M_wpxQ_3ffvP_h0Hw071w9XXVLdmEBMkskZsUwpq30GpqNMRspEmsXOZql32lhnJrJUM-1zNOtJjKKcFplNCkkjl7jYGiroAWqU49IdIhwrzlINzcaz54Rqyo0WcWGYilJjiya6qA2XTxbCGPlSAhnMnHsz58HMOWuiVm3bvHKSaU6BH3MZyb-6BWzjUiGb6LKejmX33x87-t_wM7TefRj0837v7vYYbSRwwW8oy26hxux97k581jHTp2GRfQEOJcy6 |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1JS8QwFA4uIF7cxdFRc_CmwbZZmh5FHdz14IAepGSrCmMdnI7-ffMyLaOiB0-FJLTwsnzv63vvC0I7nBoP0iYhTlhKIIGRqJRZkulUFoJSroLizeWVOOmyszt-96WKP2S7NyHJUU0DqDSV1X7fFvvjwjeAQeLxxVNhLjPCJtE0A6EEv6K7yUFzFguQWwPKJUVMPNZFddnM7-_4Dk1jf_NHiDQgT2cBzdUuIz4YzfEimnDlEppvrmPA9e5cRg-nkFcOJBpbB1ka_lGFTKsSq97j69tz9fSCAbYshiar-nDW4cIFcU9cDAdhaGlxDyj7R_hriu-vL67f-WAFdTvHt4cnpL49gZgkkxWxTCmrvTemo0xGykSaxc5mqd_Asc5MZKlm2vtr1hMaRTktMpsUkkYucbE1VNBVNFW-lm4N4VhxlmpoNp5JJ1RTbrSIC8NUlBpbtNBuY7i8PxLJyMdyyGDm3Js5D2bOWQu1G9vm9YYZ5BS4MpeR_KtbQEiXCtlCe810jLv__tj6_4Zvo5mbo05-cXp1voFmE7jrN2Rot9FU9TZ0m94BqfRWWGOfF5rQ9g |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Insulator+defect+detection+algorithm+based+on+adaptive+feature+fusion+and+lightweight+YOLOv5s&rft.jtitle=Journal+of+real-time+image+processing&rft.au=He%2C+Zhendong&rft.au=Wang%2C+Yiming&rft.au=Zheng%2C+Anping&rft.au=Liu%2C+Jie&rft.date=2025-02-01&rft.pub=Springer+Berlin+Heidelberg&rft.issn=1861-8200&rft.eissn=1861-8219&rft.volume=22&rft.issue=1&rft_id=info:doi/10.1007%2Fs11554-024-01589-4&rft.externalDocID=10_1007_s11554_024_01589_4 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1861-8200&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1861-8200&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1861-8200&client=summon |