A 20k-Spin Ising Chip to Solve Combinatorial Optimization Problems With CMOS Annealing

In the near future, the ability to solve combinatorial optimization problems will be a key technique to enable the IoT era. A new computing architecture called Ising computing and implemented using CMOS circuits is proposed. This computing maps the problems to an Ising model, a model to express the...

Full description

Saved in:
Bibliographic Details
Published inIEEE journal of solid-state circuits Vol. 51; no. 1; pp. 303 - 309
Main Authors Yamaoka, Masanao, Yoshimura, Chihiro, Hayashi, Masato, Okuyama, Takuya, Aoki, Hidetaka, Mizuno, Hiroyuki
Format Journal Article
LanguageEnglish
Published IEEE 01.01.2016
Subjects
Online AccessGet full text
ISSN0018-9200
1558-173X
DOI10.1109/JSSC.2015.2498601

Cover

Abstract In the near future, the ability to solve combinatorial optimization problems will be a key technique to enable the IoT era. A new computing architecture called Ising computing and implemented using CMOS circuits is proposed. This computing maps the problems to an Ising model, a model to express the behavior of magnetic spins, and solves combinatorial optimization problems efficiently exploiting its intrinsic convergence properties. In the computing, "CMOS annealing" is used to find a better solution for the problems. A 20k-spin prototype Ising chip is fabricated in 65 nm process. The Ising chip achieves 100 MHz operation and its capability of solving combinatorial optimization problems using an Ising model is confirmed. The power efficiency of the chip can be estimated to be 1800 times higher than that of a general purpose CPU when running an approximation algorithm.
AbstractList In the near future, the ability to solve combinatorial optimization problems will be a key technique to enable the IoT era. A new computing architecture called Ising computing and implemented using CMOS circuits is proposed. This computing maps the problems to an Ising model, a model to express the behavior of magnetic spins, and solves combinatorial optimization problems efficiently exploiting its intrinsic convergence properties. In the computing, "CMOS annealing" is used to find a better solution for the problems. A 20k-spin prototype Ising chip is fabricated in 65 nm process. The Ising chip achieves 100 MHz operation and its capability of solving combinatorial optimization problems using an Ising model is confirmed. The power efficiency of the chip can be estimated to be 1800 times higher than that of a general purpose CPU when running an approximation algorithm.
Author Okuyama, Takuya
Yoshimura, Chihiro
Hayashi, Masato
Yamaoka, Masanao
Aoki, Hidetaka
Mizuno, Hiroyuki
Author_xml – sequence: 1
  givenname: Masanao
  surname: Yamaoka
  fullname: Yamaoka, Masanao
  email: masanao.yamaoka.ns@hitachi.com
  organization: R&D Group, Hitachi, Ltd., Kokubunji, Japan
– sequence: 2
  givenname: Chihiro
  surname: Yoshimura
  fullname: Yoshimura, Chihiro
  organization: R&D Group, Hitachi, Ltd., Kokubunji, Japan
– sequence: 3
  givenname: Masato
  surname: Hayashi
  fullname: Hayashi, Masato
  organization: R&D Group, Hitachi, Ltd., Kokubunji, Japan
– sequence: 4
  givenname: Takuya
  surname: Okuyama
  fullname: Okuyama, Takuya
  organization: R&D Group, Hitachi, Ltd., Yokohama, Japan
– sequence: 5
  givenname: Hidetaka
  surname: Aoki
  fullname: Aoki, Hidetaka
  organization: R&D Group, Hitachi, Ltd., Yokohama, Japan
– sequence: 6
  givenname: Hiroyuki
  surname: Mizuno
  fullname: Mizuno, Hiroyuki
  organization: Hitachi Ltd., Tokyo, Japan
BookMark eNp9kDtPwzAUhS1UJErhByAWjywpfiW2xyriUVRUpPDaIidxqCGxQ-wiwa8npRUDA9PVlc53pPMdgpF1VgNwgtEUYyTPb7IsnRKE4ylhUiQI74ExjmMRYU6fR2CMEBaRJAgdgEPvX4eXMYHH4HEGCXqLss5YOPfGvsB0ZToYHMxc86Fh6trCWBVcb1QDl10wrflSwTgL73pXNLr18MmEFUxvlxmcWatVM7Qcgf1aNV4f7-4EPFxe3KfX0WJ5NU9ni6gkUoSoIlyKkqgKFYrVkpOCccFEEvOaKSlpUStVx7SghMe0ZEnFSy0KSlkVE4JkQSfgbNvb9e59rX3IW-NL3TTKarf2OeYiwZJihoco30bL3nnf6zovTfhZEnplmhyjfGMy35jMNybzncmBxH_Irjet6j__ZU63jNFa_-Y5jREadn0Du3F_ow
CODEN IJSCBC
CitedBy_id crossref_primary_10_1002_qute_201900065
crossref_primary_10_1038_s41598_021_04057_2
crossref_primary_10_1088_2058_9565_ac6f19
crossref_primary_10_1038_s41598_024_60316_y
crossref_primary_10_1063_5_0176248
crossref_primary_10_1109_ACCESS_2024_3384980
crossref_primary_10_7566_JPSJ_90_025004
crossref_primary_10_7566_JPSJ_89_085001
crossref_primary_10_53829_ntr201707fa2
crossref_primary_10_1103_PhysRevE_109_044304
crossref_primary_10_1109_ACCESS_2023_3289720
crossref_primary_10_1007_s11047_021_09845_3
crossref_primary_10_1109_ACCESS_2023_3323847
crossref_primary_10_1063_1_5020168
crossref_primary_10_1109_TED_2022_3184651
crossref_primary_10_1109_ACCESS_2024_3431540
crossref_primary_10_1038_srep44370
crossref_primary_10_1109_TNANO_2024_3457533
crossref_primary_10_1109_ACCESS_2023_3310875
crossref_primary_10_1002_adfm_202417552
crossref_primary_10_1002_advs_202406433
crossref_primary_10_1109_TETC_2019_2957177
crossref_primary_10_1038_s41598_020_60022_5
crossref_primary_10_1038_s41534_020_00355_1
crossref_primary_10_1103_PhysRevA_98_053839
crossref_primary_10_1063_1_4983636
crossref_primary_10_1103_PhysRevApplied_20_014057
crossref_primary_10_1038_s41598_017_11732_w
crossref_primary_10_1038_s42005_021_00655_8
crossref_primary_10_1109_JSSC_2020_3027702
crossref_primary_10_1109_TCSI_2023_3263923
crossref_primary_10_1109_TCSI_2023_3337529
crossref_primary_10_1541_ieejeiss_143_475
crossref_primary_10_1109_JPROC_2020_2966925
crossref_primary_10_1103_PhysRevB_105_054403
crossref_primary_10_1109_JSSC_2022_3142896
crossref_primary_10_1587_transinf_2020EDP7026
crossref_primary_10_1109_TNNLS_2022_3159713
crossref_primary_10_15803_ijnc_7_2_154
crossref_primary_10_3788_CJL230475
crossref_primary_10_1109_TC_2022_3178325
crossref_primary_10_1007_s11227_021_03859_5
crossref_primary_10_1063_1_5055860
crossref_primary_10_1109_ACCESS_2024_3425711
crossref_primary_10_1587_essfr_11_3_164
crossref_primary_10_1587_transele_2021SEP0006
crossref_primary_10_1038_s41598_020_77617_7
crossref_primary_10_1038_s42005_024_01658_x
crossref_primary_10_1103_PhysRevResearch_4_023062
crossref_primary_10_1587_transinf_2020EDP7264
crossref_primary_10_1103_PhysRevB_109_014511
crossref_primary_10_7566_JPSJ_90_094602
crossref_primary_10_1007_s11227_021_04242_0
crossref_primary_10_1103_PhysRevApplied_17_064064
crossref_primary_10_1109_JETCAS_2023_3244485
crossref_primary_10_1109_JXCDC_2022_3177588
crossref_primary_10_1109_JSSC_2021_3062821
crossref_primary_10_1109_TCAD_2024_3395977
crossref_primary_10_1109_ACCESS_2020_3036882
crossref_primary_10_1587_nolta_15_824
crossref_primary_10_1587_transcom_2020EBP3030
crossref_primary_10_1038_s42005_022_00929_9
crossref_primary_10_1038_s41467_024_47818_z
crossref_primary_10_1103_PhysRevLett_131_063801
crossref_primary_10_1007_s11227_019_02778_w
crossref_primary_10_1587_transfun_2023KEP0004
crossref_primary_10_1063_1_5007231
crossref_primary_10_1109_TC_2021_3063618
crossref_primary_10_1587_transfun_2023KEP0003
crossref_primary_10_7566_JPSJ_90_064001
crossref_primary_10_1109_TVLSI_2020_2991679
crossref_primary_10_1038_s41598_018_25492_8
crossref_primary_10_1109_ACCESS_2024_3514162
crossref_primary_10_1063_5_0041575
crossref_primary_10_1186_s43074_021_00042_0
crossref_primary_10_1038_s41467_019_13103_7
crossref_primary_10_1109_TQE_2023_3319599
crossref_primary_10_7566_JPSJ_92_044002
crossref_primary_10_1109_ACCESS_2020_3018682
crossref_primary_10_1109_JSSC_2022_3176610
crossref_primary_10_1109_TNNLS_2018_2874565
crossref_primary_10_3902_jnns_29_164
crossref_primary_10_1109_JXCDC_2020_3025994
crossref_primary_10_1088_2399_6528_aa9b6b
crossref_primary_10_1109_TETC_2024_3403871
crossref_primary_10_1109_TWC_2024_3450190
crossref_primary_10_1364_OPTICA_398000
crossref_primary_10_15807_jorsj_65_121
crossref_primary_10_1631_FITEE_2200463
crossref_primary_10_1038_s41467_019_11484_3
crossref_primary_10_1109_ACCESS_2021_3124808
crossref_primary_10_1109_TC_2023_3239539
crossref_primary_10_1109_JPROC_2018_2878854
crossref_primary_10_1515_nanoph_2022_0441
crossref_primary_10_1103_PhysRevResearch_6_033321
crossref_primary_10_1587_transinf_2018EDP7411
crossref_primary_10_1109_JETCAS_2023_3243260
crossref_primary_10_1038_s41598_023_31155_0
crossref_primary_10_1038_s41928_022_00749_3
crossref_primary_10_1038_s41598_022_06559_z
crossref_primary_10_35848_1882_0786_abbfe1
crossref_primary_10_1109_TCSI_2021_3069682
crossref_primary_10_1587_transfun_2024VLP0008
crossref_primary_10_3902_jnns_29_174
crossref_primary_10_1103_PhysRevApplied_18_034016
crossref_primary_10_1109_ACCESS_2021_3081685
crossref_primary_10_1109_TC_2020_3045112
crossref_primary_10_1021_acs_jpca_2c06453
crossref_primary_10_1038_s41598_019_49699_5
crossref_primary_10_1088_1361_6528_aad65d
crossref_primary_10_1364_OL_499385
crossref_primary_10_7566_JPSJ_88_061015
crossref_primary_10_1038_s41598_019_52438_5
crossref_primary_10_1109_JSSC_2021_3139901
crossref_primary_10_1109_JSSC_2024_3352907
crossref_primary_10_1038_s42005_022_00874_7
crossref_primary_10_1109_MNANO_2024_3378483
crossref_primary_10_7566_JPSJ_88_061010
crossref_primary_10_35848_1347_4065_acbebf
crossref_primary_10_35848_1347_4065_ac356f
crossref_primary_10_1049_el_2016_2218
crossref_primary_10_1109_TC_2017_2775618
crossref_primary_10_1038_s41928_022_00714_0
crossref_primary_10_1109_TCSI_2024_3449693
crossref_primary_10_3156_jsoft_30_1_42
crossref_primary_10_1109_MDAT_2019_2902359
crossref_primary_10_1364_OE_508069
crossref_primary_10_1103_PhysRevE_100_012111
crossref_primary_10_1109_LED_2021_3138765
crossref_primary_10_1109_JSSC_2019_2949230
crossref_primary_10_1038_s41467_018_07328_1
crossref_primary_10_1109_JSSC_2024_3352585
crossref_primary_10_1103_PhysRevApplied_11_044069
crossref_primary_10_1109_JSSC_2024_3376410
crossref_primary_10_1587_transinf_2022EDP7017
crossref_primary_10_1038_s41467_024_46879_4
crossref_primary_10_35848_1882_0786_ac6b84
crossref_primary_10_1017_S1471068418000066
crossref_primary_10_1016_j_cpc_2021_108102
crossref_primary_10_1016_j_vlsi_2019_07_003
crossref_primary_10_35848_1882_0786_acaba9
crossref_primary_10_1103_PhysRevApplied_13_054059
crossref_primary_10_7566_JPSJ_92_124002
crossref_primary_10_1103_PhysRevResearch_2_013319
crossref_primary_10_15803_ijnc_6_2_195
crossref_primary_10_1587_transinf_2019EDP7254
crossref_primary_10_1007_s00500_020_05502_6
crossref_primary_10_1587_transinf_2022PAP0006
crossref_primary_10_1109_ACCESS_2024_3380479
crossref_primary_10_1109_TCSII_2024_3380609
crossref_primary_10_1109_MNANO_2021_3126094
Cites_doi 10.1126/science.345.6197.614
10.1109/ECCTD.2013.6662276
10.1287/opre.36.3.493
10.1504/IJCSE.2007.017827
10.3389/fphy.2014.00005
10.1038/nature10012
10.1109/JSSC.1989.572629
10.1109/JSSC.1987.1052809
10.1088/0305-4470/15/10/028
ContentType Journal Article
DBID 97E
RIA
RIE
AAYXX
CITATION
7SP
8FD
F28
FR3
L7M
DOI 10.1109/JSSC.2015.2498601
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Electronics & Communications Abstracts
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Engineering Research Database
Technology Research Database
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Electronics & Communications Abstracts
DatabaseTitleList Engineering Research Database

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1558-173X
EndPage 309
ExternalDocumentID 10_1109_JSSC_2015_2498601
7350099
Genre orig-research
GroupedDBID -~X
.DC
0R~
29I
3EH
4.4
41~
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFS
ACIWK
ACNCT
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
F5P
HZ~
H~9
IAAWW
IBMZZ
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
PZZ
RIA
RIE
RNS
TAE
TN5
UKR
VH1
AAYXX
CITATION
7SP
8FD
F28
FR3
L7M
ID FETCH-LOGICAL-c298t-d2798c2ad0ba4f972b47848657f4a993bfaaf53b32753c46d7ce8b334d52209b3
IEDL.DBID RIE
ISSN 0018-9200
IngestDate Wed Oct 01 14:24:47 EDT 2025
Wed Oct 01 02:17:13 EDT 2025
Thu Apr 24 22:54:48 EDT 2025
Tue Aug 26 16:42:46 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Ising computing
combinatorial optimization problem
Ising model
natural computing
CMOS annealing
SRAM
variation
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c298t-d2798c2ad0ba4f972b47848657f4a993bfaaf53b32753c46d7ce8b334d52209b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 1786193141
PQPubID 23500
PageCount 7
ParticipantIDs proquest_miscellaneous_1786193141
crossref_citationtrail_10_1109_JSSC_2015_2498601
ieee_primary_7350099
crossref_primary_10_1109_JSSC_2015_2498601
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2016-Jan.
2016-1-00
20160101
PublicationDateYYYYMMDD 2016-01-01
PublicationDate_xml – month: 01
  year: 2016
  text: 2016-Jan.
PublicationDecade 2010
PublicationTitle IEEE journal of solid-state circuits
PublicationTitleAbbrev JSSC
PublicationYear 2016
Publisher IEEE
Publisher_xml – name: IEEE
References ref7
garey (ref2) 1979
ref9
ref4
ref3
ref6
ref11
ref10
ref5
ref1
yamaoka (ref8) 0
References_xml – ident: ref6
  doi: 10.1126/science.345.6197.614
– ident: ref7
  doi: 10.1109/ECCTD.2013.6662276
– year: 1979
  ident: ref2
  publication-title: Computers and Intractability A Guide to the Theory of NP-Completeness
– start-page: 432
  year: 0
  ident: ref8
  article-title: 20k-spin Ising chip for combinational optimization problem with CMOS annealing
  publication-title: IEEE Int Solid-State Circuits Conf Dig Tech Papers
– ident: ref1
  doi: 10.1287/opre.36.3.493
– ident: ref11
  doi: 10.1504/IJCSE.2007.017827
– ident: ref4
  doi: 10.3389/fphy.2014.00005
– ident: ref5
  doi: 10.1038/nature10012
– ident: ref9
  doi: 10.1109/JSSC.1989.572629
– ident: ref10
  doi: 10.1109/JSSC.1987.1052809
– ident: ref3
  doi: 10.1088/0305-4470/15/10/028
SSID ssj0014481
Score 2.6032534
Snippet In the near future, the ability to solve combinatorial optimization problems will be a key technique to enable the IoT era. A new computing architecture called...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 303
SubjectTerms Annealing
Chips
Circuits
CMOS
CMOS annealing
CMOS integrated circuits
Combinatorial analysis
combinatorial optimization problem
Computation
Computational modeling
Computer architecture
Integrated circuit modeling
Ising computing
Ising model
natural computing
Optimization
Semiconductor device modeling
SRAM
variation
Title A 20k-Spin Ising Chip to Solve Combinatorial Optimization Problems With CMOS Annealing
URI https://ieeexplore.ieee.org/document/7350099
https://www.proquest.com/docview/1786193141
Volume 51
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1558-173X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014481
  issn: 0018-9200
  databaseCode: RIE
  dateStart: 19660101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwEB4Bp_bQQmnVbQEZqaeqWZzEie3jagUCpC2VUlpukZ9iBSSrku2hv55x4l1VFFXccrAdy2OPv_E8PoBP1BpE7ZwlXheBwkz7RBo87toqaqnDS6KPdp99LU8v2flVcbUBX9a5MM65PvjMjcNn78u3rVmGp7IjnhcB0WzCJudyyNVaewzQzBjY8VI8wCj66MFMqTw6r6ppCOIqxmhriDLyv6zuoJ5U5R9N3F8vJ69htprYEFVyM152emz-PKrZ-NyZb8OriDPJZNgYO7Dhmjfw8q_qg7vwY0IyepNUi3lDzsKTAZlezxeka0nV3v52BFUFms3BKMc9Si5Qt9zFpE3ybaChuSc_5901mc4uKjJBha1CbvtbuDw5_j49TSLNQmIyKbrEZlwKkylLtWJe8kwzLpgoC-6ZQviivVK-yHWeoWljWGm5cULnObOI3ajU-TvYatrGvQdSCG8L72mqZYkjKM25UsoiRBESkYcaAV0tfG1iDfJAhXFb97YIlXWQVR1kVUdZjeDzustiKMDxv8a7Ye3XDeOyj-BwJd0aT09wiajGtcv7OuUCLcg8ZemHp7t-hBf4g_josgdb3a-l20cY0umDfv89AL3k11A
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Jb9QwFH4q5QAc2ErFsBqJEyJTZ3FsH0cjqmnptEhpobfIqzpqm4zaDAd-Pc-JZ4QAIW5RZCeWn_38fX4bwHtqDaJ2XiRes1DCTPtEGtzu2ipqqcNDovd2nx-Xs7Pi8Jydb8HHTSyMc653PnPj8Njb8m1rVuGqbI_nLCCaO3CXIavgQ7TWxmaAr4b6eCluYRR-tGGmVO4dVtU0uHGxMbINUcYKMOtTqC-r8ocu7g-Y_UcwXw9t8Cu5HK86PTY_fsva-L9jfwwPI9Ikk2FpPIEt1zyFB7_kH9yBrxOS0cukWi4achAuDcj0YrEkXUuq9uq7I6gskDgHWo6rlJygdrmOYZvky1CI5pZ8W3QXZDo_qcgEVbYK0e3P4Gz_0-l0lsRCC4nJpOgSm3EpTKYs1arwkme64KIQJeO-UAhgtFfKs1znGZIbU5SWGyd0nhcW0RuVOt-F7aZt3HMgTHjLvKepliV-QWnOlVIWQYqQiD3UCOh64msTs5CHYhhXdc9GqKyDrOogqzrKagQfNl2WQwqOfzXeCXO_aRinfQTv1tKtcf8Eo4hqXLu6rVMukEPmaZG--HvXt3Bvdjo_qo8Ojj-_hPv4s3gF8wq2u5uVe42gpNNv-rX4Ezni2qE
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+20k-Spin+Ising+Chip+to+Solve+Combinatorial+Optimization+Problems+With+CMOS+Annealing&rft.jtitle=IEEE+journal+of+solid-state+circuits&rft.au=Yamaoka%2C+Masanao&rft.au=Yoshimura%2C+Chihiro&rft.au=Hayashi%2C+Masato&rft.au=Okuyama%2C+Takuya&rft.date=2016-01-01&rft.issn=0018-9200&rft.eissn=1558-173X&rft.volume=51&rft.issue=1&rft.spage=303&rft.epage=309&rft_id=info:doi/10.1109%2FJSSC.2015.2498601&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9200&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9200&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9200&client=summon