Two-Stage Hybrid Data Classifiers Based on SVM and kNN Algorithms

The paper considers a solution to the problem of developing two-stage hybrid SVM-kNN classifiers with the aim to increase the data classification quality by refining the classification decisions near the class boundary defined by the SVM classifier. In the first stage, the SVM classifier with defaul...

Full description

Saved in:
Bibliographic Details
Published inSymmetry (Basel) Vol. 13; no. 4; p. 615
Main Author Demidova, Liliya A.
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 2021
Subjects
Online AccessGet full text
ISSN2073-8994
2073-8994
DOI10.3390/sym13040615

Cover

Abstract The paper considers a solution to the problem of developing two-stage hybrid SVM-kNN classifiers with the aim to increase the data classification quality by refining the classification decisions near the class boundary defined by the SVM classifier. In the first stage, the SVM classifier with default parameters values is developed. Here, the training dataset is designed on the basis of the initial dataset. When developing the SVM classifier, a binary SVM algorithm or one-class SVM algorithm is used. Based on the results of the training of the SVM classifier, two variants of the training dataset are formed for the development of the kNN classifier: a variant that uses all objects from the original training dataset located inside the strip dividing the classes, and a variant that uses only those objects from the initial training dataset that are located inside the area containing all misclassified objects from the class dividing strip. In the second stage, the kNN classifier is developed using the new training dataset above-mentioned. The values of the parameters of the kNN classifier are determined during training to maximize the data classification quality. The data classification quality using the two-stage hybrid SVM-kNN classifier was assessed using various indicators on the test dataset. In the case of the improvement of the quality of classification near the class boundary defined by the SVM classifier using the kNN classifier, the two-stage hybrid SVM-kNN classifier is recommended for further use. The experimental results approve the feasibility of using two-stage hybrid SVM-kNN classifiers in the data classification problem. The experimental results obtained with the application of various datasets confirm the feasibility of using two-stage hybrid SVM-kNN classifiers in the data classification problem.
AbstractList The paper considers a solution to the problem of developing two-stage hybrid SVM-kNN classifiers with the aim to increase the data classification quality by refining the classification decisions near the class boundary defined by the SVM classifier. In the first stage, the SVM classifier with default parameters values is developed. Here, the training dataset is designed on the basis of the initial dataset. When developing the SVM classifier, a binary SVM algorithm or one-class SVM algorithm is used. Based on the results of the training of the SVM classifier, two variants of the training dataset are formed for the development of the kNN classifier: a variant that uses all objects from the original training dataset located inside the strip dividing the classes, and a variant that uses only those objects from the initial training dataset that are located inside the area containing all misclassified objects from the class dividing strip. In the second stage, the kNN classifier is developed using the new training dataset above-mentioned. The values of the parameters of the kNN classifier are determined during training to maximize the data classification quality. The data classification quality using the two-stage hybrid SVM-kNN classifier was assessed using various indicators on the test dataset. In the case of the improvement of the quality of classification near the class boundary defined by the SVM classifier using the kNN classifier, the two-stage hybrid SVM-kNN classifier is recommended for further use. The experimental results approve the feasibility of using two-stage hybrid SVM-kNN classifiers in the data classification problem. The experimental results obtained with the application of various datasets confirm the feasibility of using two-stage hybrid SVM-kNN classifiers in the data classification problem.
Author Demidova, Liliya A.
Author_xml – sequence: 1
  givenname: Liliya A.
  orcidid: 0000-0003-4516-3746
  surname: Demidova
  fullname: Demidova, Liliya A.
BookMark eNp9kM1OwzAQhC1UJErpiRewxBECdpzY8bGUnyKVcmjhGm1iu6SkcbFdVXl7gsqhQoLVSjuHb0ejOUW9xjYaoXNKrhmT5Ma3a8pIQjhNj1A_JoJFmZRJ70CfoKH3K9JNStKEkz4aLXY2mgdYajxpC1cpfAcB8LgG7ytTaefxLXitsG3w_O0ZQ6Pwx2yGR_XSuiq8r_0ZOjZQez38uQP0-nC_GE-i6cvj03g0jcpYZiEqs9KIMi0UAZUJTaUgVBSilFnKeMwNIQXXoAppFO9WCyOBQsGZEpmRTLEButr7bpsNtDuo63zjqjW4Nqck_24gP2igwy_2-MbZz632IV_ZrWu6hHmcMkJTmvC4o-ieKp313mmTl1WAUNkmOKjqP5wvf_38l-MLJdx57w
CitedBy_id crossref_primary_10_1002_cpe_7433
crossref_primary_10_1002_we_2859
crossref_primary_10_1016_j_rineng_2024_102857
crossref_primary_10_1371_journal_pone_0290086
crossref_primary_10_1002_cjce_25594
crossref_primary_10_32362_2500_316X_2022_10_2_59_74
crossref_primary_10_3389_fmicb_2023_1141227
crossref_primary_10_1007_s00521_021_06662_8
crossref_primary_10_3390_info14010011
crossref_primary_10_1016_j_entcom_2024_100659
crossref_primary_10_3390_a15090329
crossref_primary_10_3390_s22197649
crossref_primary_10_1016_j_bbe_2022_06_004
crossref_primary_10_3390_diagnostics13172852
crossref_primary_10_3390_cryst13111581
crossref_primary_10_47164_ijngc_v13i5_960
crossref_primary_10_3390_foods13233956
crossref_primary_10_3390_jimaging8040113
crossref_primary_10_3390_math11040792
crossref_primary_10_1142_S0219649222500617
crossref_primary_10_1016_j_ijcce_2025_02_002
crossref_primary_10_3390_sym15122127
crossref_primary_10_3390_math12040538
Cites_doi 10.1002/wics.1421
10.1023/A:1010933404324
10.4018/IJSIR.2018100102
10.1103/PhysRevLett.113.130503
10.1007/978-1-4614-7138-7
10.3390/sym12050784
10.1109/TCC.2017.2732344
10.14257/ijdta.2015.8.5.07
10.1007/BFb0026683
10.1021/ci060149f
10.3390/sym10100485
10.32362/2500-316X-2019-7-6-134-150
10.1007/978-3-319-01595-8_10
10.7551/mitpress/7496.003.0003
10.3390/a13040085
10.1109/72.870050
10.1088/1742-6596/1727/1/012007
10.1162/NECO_a_00052
10.1007/s13042-014-0292-7
10.14257/ijbsbt.2015.7.1.05
10.1023/A:1008202821328
10.1023/A:1012450327387
10.1109/ICDM.2008.17
10.1051/itmconf/20160602003
10.1007/978-3-540-77803-5
10.1214/07-AOS537
10.1145/342009.335388
10.1088/1757-899X/1027/1/012001
10.1007/978-3-642-17080-5_21
10.1007/978-3-642-18041-5
10.1007/11559887_19
10.1109/LGRS.2011.2160150
10.1023/A:1009715923555
10.1109/JSTARS.2015.2458855
10.1016/j.agsy.2004.05.002
10.17485/ijst/2015/v8i14/65745
10.1109/MECO.2018.8406039
10.1007/s13748-016-0094-0
10.1109/SCP.2015.7342242
10.1088/1009-9271/7/3/15
10.1016/j.patcog.2016.03.028
10.1109/MECO.2017.7977132
10.1007/978-3-540-30116-5_32
10.1162/089976601750264965
10.1007/978-0-387-84858-7
ContentType Journal Article
Copyright 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
7SC
7SR
7U5
8BQ
8FD
8FE
8FG
ABJCF
ABUWG
AFKRA
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
H8D
HCIFZ
JG9
JQ2
L6V
L7M
L~C
L~D
M7S
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
ADTOC
UNPAY
DOI 10.3390/sym13040615
DatabaseName CrossRef
Computer and Information Systems Abstracts
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials - QC
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Central Korea
Aerospace Database
SciTech Premium Collection
Materials Research Database
ProQuest Computer Science Collection
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Engineering Database
Proquest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
Publicly Available Content Database
Materials Research Database
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
Aerospace Database
Engineered Materials Abstracts
ProQuest Engineering Collection
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies Database with Aerospace
Engineering Collection
Engineering Database
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
METADEX
Computer and Information Systems Abstracts Professional
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
Solid State and Superconductivity Abstracts
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList Publicly Available Content Database
CrossRef
Database_xml – sequence: 1
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
EISSN 2073-8994
ExternalDocumentID 10.3390/sym13040615
10_3390_sym13040615
GroupedDBID 5VS
8FE
8FG
AADQD
AAYXX
ABDBF
ABJCF
ACUHS
ADBBV
ADMLS
AFKRA
AFZYC
ALMA_UNASSIGNED_HOLDINGS
AMVHM
BCNDV
BENPR
BGLVJ
CCPQU
CITATION
E3Z
ESX
GX1
HCIFZ
IAO
ITC
J9A
KQ8
L6V
M7S
MODMG
M~E
OK1
PHGZM
PHGZT
PIMPY
PQGLB
PROAC
PTHSS
TR2
TUS
7SC
7SR
7U5
8BQ
8FD
ABUWG
AZQEC
DWQXO
H8D
JG9
JQ2
L7M
L~C
L~D
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
ADTOC
C1A
IPNFZ
RIG
UNPAY
ID FETCH-LOGICAL-c298t-c8cf7c5bd0ad87e197017b7c9853626f00b6eadb9fd6fd6e7f9a1ab63d78f93d3
IEDL.DBID BENPR
ISSN 2073-8994
IngestDate Sun Oct 26 04:16:50 EDT 2025
Fri Jul 25 12:10:08 EDT 2025
Thu Oct 16 04:31:56 EDT 2025
Thu Apr 24 22:52:31 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
License cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c298t-c8cf7c5bd0ad87e197017b7c9853626f00b6eadb9fd6fd6e7f9a1ab63d78f93d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-4516-3746
OpenAccessLink https://www.proquest.com/docview/2530151462?pq-origsite=%requestingapplication%&accountid=15518
PQID 2530151462
PQPubID 2032326
ParticipantIDs unpaywall_primary_10_3390_sym13040615
proquest_journals_2530151462
crossref_citationtrail_10_3390_sym13040615
crossref_primary_10_3390_sym13040615
PublicationCentury 2000
PublicationDate 2021-00-00
PublicationDateYYYYMMDD 2021-01-01
PublicationDate_xml – year: 2021
  text: 2021-00-00
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Symmetry (Basel)
PublicationYear 2021
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References ref_50
Li (ref_51) 2007; 7
Demidova (ref_69) 2021; 1727
Wang (ref_16) 2004; 47
Manevitz (ref_66) 2001; 2
ref_58
ref_57
ref_11
ref_10
ref_54
ref_52
Pham (ref_62) 2020; 8
ref_17
ref_59
Duggal (ref_41) 2015; 7
Anfyorov (ref_36) 2020; 7
Demidova (ref_22) 2016; 7
ref_61
Strehl (ref_46) 2003; 3
ref_25
ref_68
ref_23
ref_67
Alashwal (ref_65) 2006; 1
ref_20
Singer (ref_33) 2010; 127
ref_63
Rebentrost (ref_29) 2014; 113
Demidova (ref_21) 2016; 7
Burges (ref_19) 1998; 2
Platt (ref_56) 2001; 13
Priyadarshini (ref_26) 2015; 8
Liu (ref_60) 2014; 7
ref_28
Goldberg (ref_35) 1989; 5
Monteiro (ref_42) 2018; 9
Krawczyk (ref_55) 2016; 5
Xun (ref_39) 2015; 46
Cavallaro (ref_27) 2015; 8
Raikwal (ref_2) 2012; 50
Demidova (ref_48) 2016; 6
Storn (ref_37) 1997; 11
ref_34
ref_32
ref_31
Mayer (ref_38) 2005; 83
Shevade (ref_30) 2000; 11
Graf (ref_24) 2005; 17
Demidova (ref_49) 2015; 8
Erfani (ref_64) 2016; 58
Nigsch (ref_15) 2006; 46
ref_47
Breiman (ref_12) 2001; 45
ref_44
ref_43
Chapelle (ref_18) 2002; 46
Li (ref_5) 2005; Volume 3635
ref_40
ref_1
Saha (ref_45) 2012; 9
ref_3
ref_9
ref_8
ref_4
Hall (ref_14) 2008; 36
Demidova (ref_53) 2021; 1027
ref_7
ref_6
Meier (ref_13) 2010; 22
References_xml – ident: ref_58
  doi: 10.1002/wics.1421
– volume: 5
  start-page: 493
  year: 1989
  ident: ref_35
  article-title: Messy genetic algorithms. motivation analysis, and first results
  publication-title: Complex Syst.
– volume: 45
  start-page: 5
  year: 2001
  ident: ref_12
  article-title: Random Forests
  publication-title: Mach. Learn.
  doi: 10.1023/A:1010933404324
– ident: ref_32
– volume: 9
  start-page: 21
  year: 2018
  ident: ref_42
  article-title: Improving the performance of the fish school search algorithm
  publication-title: Int. J. Swarm Intell. Res.
  doi: 10.4018/IJSIR.2018100102
– volume: 2
  start-page: 139
  year: 2001
  ident: ref_66
  article-title: One-class SVMs for document classification
  publication-title: J. Mach. Learn. Res.
– volume: 1
  start-page: 120
  year: 2006
  ident: ref_65
  article-title: One-class support vector machines for protein-protein interactions prediction
  publication-title: Int. J. Biomed. Sci.
– volume: 113
  start-page: 130503
  year: 2014
  ident: ref_29
  article-title: Quantum support vector machine for big data classification
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.113.130503
– volume: 8
  start-page: 446
  year: 2015
  ident: ref_49
  article-title: Use of fuzzy clustering algorithms ensemble for SVM classifier development
  publication-title: Int. Rev. Model. Simul.
– volume: 17
  start-page: 521
  year: 2005
  ident: ref_24
  article-title: Parallel support vector machines: The cascade SVM
  publication-title: Adv. Neural Inform. Process. Syst.
– ident: ref_34
  doi: 10.1007/978-1-4614-7138-7
– ident: ref_43
  doi: 10.3390/sym12050784
– volume: 7
  start-page: 294
  year: 2016
  ident: ref_22
  article-title: Big data classification using the SVM classifiers with the modified particle swarm optimization and the SVM ensembles
  publication-title: Int. J. Adv. Comput. Sci. Appl.
– volume: 7
  start-page: 16
  year: 2016
  ident: ref_21
  article-title: The SVM classifier based on the modified particle swarm optimization
  publication-title: Int. J. Adv. Comput. Sci. Appl.
– volume: 8
  start-page: 256
  year: 2020
  ident: ref_62
  article-title: Predicting workflow task execution time in the cloud using a two-stage machine learning approach
  publication-title: IEEE Trans. Cloud Comput.
  doi: 10.1109/TCC.2017.2732344
– volume: 8
  start-page: 77
  year: 2015
  ident: ref_26
  article-title: A map reduce based support vector machine for big data classification
  publication-title: Int. J. Database Theory Appl.
  doi: 10.14257/ijdta.2015.8.5.07
– ident: ref_4
  doi: 10.1007/BFb0026683
– volume: 46
  start-page: 2412
  year: 2006
  ident: ref_15
  article-title: Melting point prediction employing k-nearest neighbor algorithms and genetic parameter optimization
  publication-title: J. Chem. Inf. Model.
  doi: 10.1021/ci060149f
– ident: ref_61
  doi: 10.3390/sym10100485
– volume: 7
  start-page: 134
  year: 2020
  ident: ref_36
  article-title: Genetic clustering algorithm
  publication-title: Russ. Technol. J.
  doi: 10.32362/2500-316X-2019-7-6-134-150
– ident: ref_25
  doi: 10.1007/978-3-319-01595-8_10
– ident: ref_20
  doi: 10.7551/mitpress/7496.003.0003
– volume: 46
  start-page: 367
  year: 2015
  ident: ref_39
  article-title: Application of parallel particle swarm optimize support vector machine model based on hadoop framework in the analysis of railway passenger flow data in China
  publication-title: Chem. Eng. Trans.
– volume: 3
  start-page: 583
  year: 2003
  ident: ref_46
  article-title: Cluster ensembles—A knowledge reuse framework for combining multiple partitions
  publication-title: J. Mach. Learn. Res.
– volume: 50
  start-page: 35
  year: 2012
  ident: ref_2
  article-title: Performance evaluation of SVM and K-nearest neighbor algorithm over medical data set
  publication-title: Int. J. Comput. Appl.
– ident: ref_44
  doi: 10.3390/a13040085
– ident: ref_31
– volume: 11
  start-page: 1188
  year: 2000
  ident: ref_30
  article-title: Improvements to the SMO algorithm for SVM regression
  publication-title: IEEE Trans. Neural Netw.
  doi: 10.1109/72.870050
– volume: 1727
  start-page: 012007
  year: 2021
  ident: ref_69
  article-title: The two-stage classification based on 1-SVM and RF classifiers
  publication-title: J. Phys. Conf. Ser.
  doi: 10.1088/1742-6596/1727/1/012007
– volume: 22
  start-page: 3207
  year: 2010
  ident: ref_13
  article-title: Deep, big, simple neural nets for handwritten digit recognition
  publication-title: Neural Comput.
  doi: 10.1162/NECO_a_00052
– volume: 7
  start-page: 765
  year: 2014
  ident: ref_60
  article-title: Two-stage extreme learning machine for high-dimensional data
  publication-title: Int. J. Mach. Learn. Cybern.
  doi: 10.1007/s13042-014-0292-7
– volume: 7
  start-page: 39
  year: 2015
  ident: ref_41
  article-title: Analytics for the quality of fertility data using particle swarm optimization
  publication-title: Int. J. Bio-Sci. Bio-Technol.
  doi: 10.14257/ijbsbt.2015.7.1.05
– ident: ref_10
– volume: 11
  start-page: 341
  year: 1997
  ident: ref_37
  article-title: Differential evolution—A simple and efficient heuristic for global optimization over continuous spaces
  publication-title: J. Glob. Optim.
  doi: 10.1023/A:1008202821328
– volume: 46
  start-page: 131
  year: 2002
  ident: ref_18
  article-title: Choosing multiple parameters for support vector machines
  publication-title: Mach. Learn.
  doi: 10.1023/A:1012450327387
– ident: ref_57
  doi: 10.1109/ICDM.2008.17
– volume: 6
  start-page: 2003
  year: 2016
  ident: ref_48
  article-title: Development of the SVM classifier ensemble for the classification accuracy increase
  publication-title: ITM Web Conf.
  doi: 10.1051/itmconf/20160602003
– ident: ref_1
  doi: 10.1007/978-3-540-77803-5
– volume: 36
  start-page: 2135
  year: 2008
  ident: ref_14
  article-title: Choice of neighbor order in nearest-neighbor classification
  publication-title: Ann. Stat.
  doi: 10.1214/07-AOS537
– ident: ref_17
– ident: ref_59
  doi: 10.1145/342009.335388
– volume: 1027
  start-page: 012001
  year: 2021
  ident: ref_53
  article-title: Approbation of the data classification method based on the SVM algorithm and the k nearest neighbors algorithm
  publication-title: IOP Conf. Ser. Mater. Sci. Eng.
  doi: 10.1088/1757-899X/1027/1/012001
– ident: ref_63
  doi: 10.1007/978-3-642-17080-5_21
– volume: 47
  start-page: 662
  year: 2004
  ident: ref_16
  article-title: Extended k-nearest neighbours based on evidence theory
  publication-title: Computer
– ident: ref_40
  doi: 10.1007/978-3-642-18041-5
– ident: ref_7
– ident: ref_3
– volume: Volume 3635
  start-page: 319
  year: 2005
  ident: ref_5
  article-title: SVM based learning system for information extraction
  publication-title: Lecture Notes in Computer Science
  doi: 10.1007/11559887_19
– ident: ref_47
– ident: ref_11
– volume: 9
  start-page: 52
  year: 2012
  ident: ref_45
  article-title: SVMeFC: SVM ensemble fuzzy clustering for satellite image segmentation
  publication-title: IEEE Geosci. Remote Sens. Lett.
  doi: 10.1109/LGRS.2011.2160150
– volume: 2
  start-page: 121
  year: 1998
  ident: ref_19
  article-title: A Tutorial on Support Vector Machines for Pattern Recognition
  publication-title: Data Min. Knowl. Discov.
  doi: 10.1023/A:1009715923555
– ident: ref_67
– volume: 8
  start-page: 4634
  year: 2015
  ident: ref_27
  article-title: On understanding big data impacts in remotely sensed image classification using support vector machine methods
  publication-title: IEEE Sel. Top. Appl. Earth Obs. Remote. Sens.
  doi: 10.1109/JSTARS.2015.2458855
– volume: 83
  start-page: 315
  year: 2005
  ident: ref_38
  article-title: Differential evolution—An easy and efficient evolutionary algorithm for model optimisation
  publication-title: Agric. Syst.
  doi: 10.1016/j.agsy.2004.05.002
– ident: ref_28
  doi: 10.17485/ijst/2015/v8i14/65745
– ident: ref_6
– ident: ref_68
  doi: 10.1109/MECO.2018.8406039
– ident: ref_50
– volume: 5
  start-page: 221
  year: 2016
  ident: ref_55
  article-title: Learning from imbalanced data: Open challenges and future directions
  publication-title: Prog. Artif. Intell.
  doi: 10.1007/s13748-016-0094-0
– ident: ref_54
– ident: ref_23
  doi: 10.1109/SCP.2015.7342242
– volume: 7
  start-page: 441
  year: 2007
  ident: ref_51
  article-title: Support vector machine combined with k-nearest neighbors for solar flare forecasting
  publication-title: Chin. J. Astron. Astrophys.
  doi: 10.1088/1009-9271/7/3/15
– volume: 58
  start-page: 121
  year: 2016
  ident: ref_64
  article-title: High-dimensional and large-scale anomaly detection using a linear one-class SVM with deep learning
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2016.03.028
– ident: ref_52
  doi: 10.1109/MECO.2017.7977132
– ident: ref_9
  doi: 10.1007/978-3-540-30116-5_32
– volume: 13
  start-page: 1443
  year: 2001
  ident: ref_56
  article-title: Estimating the support of a high-dimensional distribution
  publication-title: Neural Comput.
  doi: 10.1162/089976601750264965
– volume: 127
  start-page: 3
  year: 2010
  ident: ref_33
  article-title: Pegasos: Primal estimated sub-gradient solver for SVM
  publication-title: Math. Program.
– ident: ref_8
  doi: 10.1007/978-0-387-84858-7
SSID ssj0000505460
Score 2.366636
Snippet The paper considers a solution to the problem of developing two-stage hybrid SVM-kNN classifiers with the aim to increase the data classification quality by...
SourceID unpaywall
proquest
crossref
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
StartPage 615
SubjectTerms Algorithms
Classification
Classifiers
Datasets
Feasibility
Optimization algorithms
Parameters
Strip
Support vector machines
Training
SummonAdditionalLinks – databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dT9swED-x8rC9MGCb6AbID0yCSSGJnTjOEypfqiZRIUEn9hTZsVMqSlqRdKj89Zxbly9NCCHl8WIlus_fyfc7gK1Y8SSIjPF0KKQl1eae0px5WlCWx5btRNh555MOb3ej3xfxhWu4Ve5aJULx_jRIU7Q_DwFB5IfMj3xMvv5IF3v_XCfJcr3bOVDGPsAij7EWb8Bit3Pa-ms3ys3fnQ3lMcT2fjW5xpBtU1j8PA091pYfx-VITm7lYPAkzRx_hmz-gbPbJVe741rt5ncvuBvf_wfLsOQqUNKamcwKLJhyFVacj1dk2xFR73yB1vnt0MNqtGdIe2Inu8ihrCWZ7tHsF3aHNtnHJKjJsCRnf06ILDW56nRIa9Ab3vTry-vqK3SPj84P2p5bueDlNBW1l4u8SPJY6UBqkZgwTdBjVZKnmNUR-hRBoDjankoLzfExSZHKUCrOdCKKlGn2DRrlsDRrQAIdCIn2QcMIQZyhKkXkmdJYhCwqVMSb8GuugSx3fOR2LcYgQ1xi1ZU9UVcTth6ERzMajv-Lrc9VmTlfrDIaYxDDupDTJvx8UO9rx3x_o9wP-ETtFZdpR2YdGvXN2GxgjVKrTWeI91_i3to
  priority: 102
  providerName: Unpaywall
Title Two-Stage Hybrid Data Classifiers Based on SVM and kNN Algorithms
URI https://www.proquest.com/docview/2530151462
https://www.mdpi.com/2073-8994/13/4/615/pdf?version=1618226433
UnpaywallVersion publishedVersion
Volume 13
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 2073-8994
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000505460
  issn: 2073-8994
  databaseCode: KQ8
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVEBS
  databaseName: EBSCOhost Academic Search Ultimate
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 2073-8994
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000505460
  issn: 2073-8994
  databaseCode: ABDBF
  dateStart: 20100301
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 2073-8994
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000505460
  issn: 2073-8994
  databaseCode: ADMLS
  dateStart: 20100301
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
– providerCode: PRVEBS
  databaseName: Mathematics Source
  customDbUrl:
  eissn: 2073-8994
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000505460
  issn: 2073-8994
  databaseCode: AMVHM
  dateStart: 20100301
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/mathematics-source
  providerName: EBSCOhost
– providerCode: PRVFQY
  databaseName: GFMER Free Medical Journals
  customDbUrl:
  eissn: 2073-8994
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000505460
  issn: 2073-8994
  databaseCode: GX1
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php
  providerName: Geneva Foundation for Medical Education and Research
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2073-8994
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000505460
  issn: 2073-8994
  databaseCode: M~E
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 2073-8994
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000505460
  issn: 2073-8994
  databaseCode: BENPR
  dateStart: 20090301
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 2073-8994
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000505460
  issn: 2073-8994
  databaseCode: 8FG
  dateStart: 20090301
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1bS8MwFD7o9qAv4rzgvJEHBRWKbdqm6YPIpptDsIg6mU8laVIVZzddRfbvPdnaqSBCXwIhkJNzTXO-D2DPlyywPa0t5XBhQLWZJRVzLcWpm_gG7YSbfueriHW63mXP781BVPbCmGeVpU-cOGo1SMwd-TH1URUxujN6OnyzDGuU-btaUmiIglpBnUwgxuahSg0yVgWqzVZ0fTO7dTG8bR6zp416Ltb7x6PxK7pxE9b836HpO99c-MiGYvwp-v0foae9DEtFzkga00OuwZzOVqBWWOWIHBTQ0Yer0Lj7HFiYPz5q0hmbXixyLnJBJsyXz6lhvSZNDFuKDDJye39FRKbISxSRRv8R95o_vY7WoNtu3Z11rIIkwUpoyHMr4UkaJL5UtlA80E4YoI3JIAkxDmOxktq2ZKgtMkwVw08HaSgcIZmrAp6GrnLXoZINMr0BxFY2R0EK6nhYdmkqQ6wVQ-pzx_VS6bE6HJXyiZMCQdwQWfRjrCSMMOMfwqzD3mzycAqc8fe07VLQcWE9o_j7rOuwPxP-f8ts_r_MFixS8xZlcnWyDZX8_UPvYDKRy12Y5-2L3UJPcHTRc3DUja4bD194IMsO
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1NT9wwEB1RONALKv1Qt6WtDyC1lSISO3HsA6qWLy2Fjap2qbilduwAYslum6DV_rn-Nsa7zkKlihtSjpYPz5N5M2PPPIDNRPM0jK0NTCSUG6rNA204C4ygrEjctBPh-p37Ge-dxl_PkrMl-Nv2wrhnla1PnDlqMypcjXybJmiKyO6cfhn_DpxqlLtdbSU0lJdWMDuzEWO-sePYTieYwtU7R_t43luUHh4M9nqBVxkICipFExSiKNMi0SZURqQ2kikaqU4LiUSG0X4Zhpoj3FqWhuNn01KqSGnOTCpKyQzDfZ_ASsxiicnfyu5B9u37osrjdOJiHs4bAxmT4XY9vUbacDSa_EuFd_Ht6k01VtOJGg7vUd3hM1jzMSrpzo1qHZZs9RzWvReoyUc_qvrTC-gOJqMA49VzS3pT1_tF9lWjyExp87J0KttkF2nSkFFFfvzsE1UZcpVlpDs8R2ybi-v6JZw-ClyvYLkaVfY1kNCEAg9O0SjGNM9SLTE3lTQREYtLHfMOfG7xyQs_sdwJZwxzzFwcmPk9MDuwuVg8ng_q-P-yjRbo3P-tdX5nWx3YWoD_0DZvHt7mA6z2Bv2T_OQoO34LT6l7BzMr22zAcvPnxr7DQKbR7721EPj12AZ6C9i3Bn4
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1dT9swFL1iRdp4mfiaKCvMDyAxpKiJkzj2wzSVlVK-qkmDibdgxw4gStotQVX_Gr-O6zYpICHekPJo-eH42Odex_cegK1QscgNjHG0x6Vtqs0cpZnvaE79JLTdTritdz7tse55cHQRXszBQ1ULY59VVmfi5KDWg8TekTdpiFREdWe0mZbPIn63Oz-H_xzrIGX_tFZ2GlOKHJvxCNO3_MdhG9d6m9LO_tmvrlM6DDgJFbxwEp6kURIq7UrNI-OJCAmqokSgiGGkn7quYgi1Eqlm-JkoFdKTivk64qnwtY_zfoD5yHZxt1XqnYPZ_Y51iAuYOy0J9H3hNvPxHQqGFdDwpQg-Rbaf7rOhHI9kv_9M5DqL8LmMTklrSqclmDPZMiyV-z8nO2WT6u8r0DobDRyMVK8M6Y5t1Rdpy0KSicfmTWr9tckeCqQmg4z8-XtKZKbJba9HWv0rRLK4vstX4fxdwPoCtWyQmTUgrna5RO5QL8AEz1AlMCsVNOSeH6QqYHXYrfCJk7JXubXM6MeYs1gw42dg1mFrNng4bdHx-rBGBXRc7tM8fmJVHbZn4L81zfrb03yDj0jL-OSwd_wVFqh9ADO5r2lArfh_bzYwginU5oQqBC7fm5uPso4EGA
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dT9swED-x8rC9MGCb6AbID0yCSSGJnTjOEypfqiZRIUEn9hTZsVMqSlqRdKj89Zxbly9NCCHl8WIlus_fyfc7gK1Y8SSIjPF0KKQl1eae0px5WlCWx5btRNh555MOb3ej3xfxhWu4Ve5aJULx_jRIU7Q_DwFB5IfMj3xMvv5IF3v_XCfJcr3bOVDGPsAij7EWb8Bit3Pa-ms3ys3fnQ3lMcT2fjW5xpBtU1j8PA091pYfx-VITm7lYPAkzRx_hmz-gbPbJVe741rt5ncvuBvf_wfLsOQqUNKamcwKLJhyFVacj1dk2xFR73yB1vnt0MNqtGdIe2Inu8ihrCWZ7tHsF3aHNtnHJKjJsCRnf06ILDW56nRIa9Ab3vTry-vqK3SPj84P2p5bueDlNBW1l4u8SPJY6UBqkZgwTdBjVZKnmNUR-hRBoDjankoLzfExSZHKUCrOdCKKlGn2DRrlsDRrQAIdCIn2QcMIQZyhKkXkmdJYhCwqVMSb8GuugSx3fOR2LcYgQ1xi1ZU9UVcTth6ERzMajv-Lrc9VmTlfrDIaYxDDupDTJvx8UO9rx3x_o9wP-ETtFZdpR2YdGvXN2GxgjVKrTWeI91_i3to
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Two-Stage+Hybrid+Data+Classifiers+Based+on+SVM+and+kNN+Algorithms&rft.jtitle=Symmetry+%28Basel%29&rft.au=Demidova%2C+Liliya+A&rft.date=2021&rft.pub=MDPI+AG&rft.eissn=2073-8994&rft.volume=13&rft.issue=4&rft.spage=615&rft_id=info:doi/10.3390%2Fsym13040615&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2073-8994&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2073-8994&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2073-8994&client=summon