Two-Stage Hybrid Data Classifiers Based on SVM and kNN Algorithms
The paper considers a solution to the problem of developing two-stage hybrid SVM-kNN classifiers with the aim to increase the data classification quality by refining the classification decisions near the class boundary defined by the SVM classifier. In the first stage, the SVM classifier with defaul...
Saved in:
| Published in | Symmetry (Basel) Vol. 13; no. 4; p. 615 |
|---|---|
| Main Author | |
| Format | Journal Article |
| Language | English |
| Published |
Basel
MDPI AG
2021
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 2073-8994 2073-8994 |
| DOI | 10.3390/sym13040615 |
Cover
| Abstract | The paper considers a solution to the problem of developing two-stage hybrid SVM-kNN classifiers with the aim to increase the data classification quality by refining the classification decisions near the class boundary defined by the SVM classifier. In the first stage, the SVM classifier with default parameters values is developed. Here, the training dataset is designed on the basis of the initial dataset. When developing the SVM classifier, a binary SVM algorithm or one-class SVM algorithm is used. Based on the results of the training of the SVM classifier, two variants of the training dataset are formed for the development of the kNN classifier: a variant that uses all objects from the original training dataset located inside the strip dividing the classes, and a variant that uses only those objects from the initial training dataset that are located inside the area containing all misclassified objects from the class dividing strip. In the second stage, the kNN classifier is developed using the new training dataset above-mentioned. The values of the parameters of the kNN classifier are determined during training to maximize the data classification quality. The data classification quality using the two-stage hybrid SVM-kNN classifier was assessed using various indicators on the test dataset. In the case of the improvement of the quality of classification near the class boundary defined by the SVM classifier using the kNN classifier, the two-stage hybrid SVM-kNN classifier is recommended for further use. The experimental results approve the feasibility of using two-stage hybrid SVM-kNN classifiers in the data classification problem. The experimental results obtained with the application of various datasets confirm the feasibility of using two-stage hybrid SVM-kNN classifiers in the data classification problem. |
|---|---|
| AbstractList | The paper considers a solution to the problem of developing two-stage hybrid SVM-kNN classifiers with the aim to increase the data classification quality by refining the classification decisions near the class boundary defined by the SVM classifier. In the first stage, the SVM classifier with default parameters values is developed. Here, the training dataset is designed on the basis of the initial dataset. When developing the SVM classifier, a binary SVM algorithm or one-class SVM algorithm is used. Based on the results of the training of the SVM classifier, two variants of the training dataset are formed for the development of the kNN classifier: a variant that uses all objects from the original training dataset located inside the strip dividing the classes, and a variant that uses only those objects from the initial training dataset that are located inside the area containing all misclassified objects from the class dividing strip. In the second stage, the kNN classifier is developed using the new training dataset above-mentioned. The values of the parameters of the kNN classifier are determined during training to maximize the data classification quality. The data classification quality using the two-stage hybrid SVM-kNN classifier was assessed using various indicators on the test dataset. In the case of the improvement of the quality of classification near the class boundary defined by the SVM classifier using the kNN classifier, the two-stage hybrid SVM-kNN classifier is recommended for further use. The experimental results approve the feasibility of using two-stage hybrid SVM-kNN classifiers in the data classification problem. The experimental results obtained with the application of various datasets confirm the feasibility of using two-stage hybrid SVM-kNN classifiers in the data classification problem. |
| Author | Demidova, Liliya A. |
| Author_xml | – sequence: 1 givenname: Liliya A. orcidid: 0000-0003-4516-3746 surname: Demidova fullname: Demidova, Liliya A. |
| BookMark | eNp9kM1OwzAQhC1UJErpiRewxBECdpzY8bGUnyKVcmjhGm1iu6SkcbFdVXl7gsqhQoLVSjuHb0ejOUW9xjYaoXNKrhmT5Ma3a8pIQjhNj1A_JoJFmZRJ70CfoKH3K9JNStKEkz4aLXY2mgdYajxpC1cpfAcB8LgG7ytTaefxLXitsG3w_O0ZQ6Pwx2yGR_XSuiq8r_0ZOjZQez38uQP0-nC_GE-i6cvj03g0jcpYZiEqs9KIMi0UAZUJTaUgVBSilFnKeMwNIQXXoAppFO9WCyOBQsGZEpmRTLEButr7bpsNtDuo63zjqjW4Nqck_24gP2igwy_2-MbZz632IV_ZrWu6hHmcMkJTmvC4o-ieKp313mmTl1WAUNkmOKjqP5wvf_38l-MLJdx57w |
| CitedBy_id | crossref_primary_10_1002_cpe_7433 crossref_primary_10_1002_we_2859 crossref_primary_10_1016_j_rineng_2024_102857 crossref_primary_10_1371_journal_pone_0290086 crossref_primary_10_1002_cjce_25594 crossref_primary_10_32362_2500_316X_2022_10_2_59_74 crossref_primary_10_3389_fmicb_2023_1141227 crossref_primary_10_1007_s00521_021_06662_8 crossref_primary_10_3390_info14010011 crossref_primary_10_1016_j_entcom_2024_100659 crossref_primary_10_3390_a15090329 crossref_primary_10_3390_s22197649 crossref_primary_10_1016_j_bbe_2022_06_004 crossref_primary_10_3390_diagnostics13172852 crossref_primary_10_3390_cryst13111581 crossref_primary_10_47164_ijngc_v13i5_960 crossref_primary_10_3390_foods13233956 crossref_primary_10_3390_jimaging8040113 crossref_primary_10_3390_math11040792 crossref_primary_10_1142_S0219649222500617 crossref_primary_10_1016_j_ijcce_2025_02_002 crossref_primary_10_3390_sym15122127 crossref_primary_10_3390_math12040538 |
| Cites_doi | 10.1002/wics.1421 10.1023/A:1010933404324 10.4018/IJSIR.2018100102 10.1103/PhysRevLett.113.130503 10.1007/978-1-4614-7138-7 10.3390/sym12050784 10.1109/TCC.2017.2732344 10.14257/ijdta.2015.8.5.07 10.1007/BFb0026683 10.1021/ci060149f 10.3390/sym10100485 10.32362/2500-316X-2019-7-6-134-150 10.1007/978-3-319-01595-8_10 10.7551/mitpress/7496.003.0003 10.3390/a13040085 10.1109/72.870050 10.1088/1742-6596/1727/1/012007 10.1162/NECO_a_00052 10.1007/s13042-014-0292-7 10.14257/ijbsbt.2015.7.1.05 10.1023/A:1008202821328 10.1023/A:1012450327387 10.1109/ICDM.2008.17 10.1051/itmconf/20160602003 10.1007/978-3-540-77803-5 10.1214/07-AOS537 10.1145/342009.335388 10.1088/1757-899X/1027/1/012001 10.1007/978-3-642-17080-5_21 10.1007/978-3-642-18041-5 10.1007/11559887_19 10.1109/LGRS.2011.2160150 10.1023/A:1009715923555 10.1109/JSTARS.2015.2458855 10.1016/j.agsy.2004.05.002 10.17485/ijst/2015/v8i14/65745 10.1109/MECO.2018.8406039 10.1007/s13748-016-0094-0 10.1109/SCP.2015.7342242 10.1088/1009-9271/7/3/15 10.1016/j.patcog.2016.03.028 10.1109/MECO.2017.7977132 10.1007/978-3-540-30116-5_32 10.1162/089976601750264965 10.1007/978-0-387-84858-7 |
| ContentType | Journal Article |
| Copyright | 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | AAYXX CITATION 7SC 7SR 7U5 8BQ 8FD 8FE 8FG ABJCF ABUWG AFKRA AZQEC BENPR BGLVJ CCPQU DWQXO H8D HCIFZ JG9 JQ2 L6V L7M L~C L~D M7S PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS ADTOC UNPAY |
| DOI | 10.3390/sym13040615 |
| DatabaseName | CrossRef Computer and Information Systems Abstracts Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials - QC ProQuest Central Technology Collection ProQuest One Community College ProQuest Central Korea Aerospace Database SciTech Premium Collection Materials Research Database ProQuest Computer Science Collection ProQuest Engineering Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Engineering Database Proquest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection Unpaywall for CDI: Periodical Content Unpaywall |
| DatabaseTitle | CrossRef Publicly Available Content Database Materials Research Database Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences Aerospace Database Engineered Materials Abstracts ProQuest Engineering Collection ProQuest Central Korea ProQuest Central (New) Advanced Technologies Database with Aerospace Engineering Collection Engineering Database ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection METADEX Computer and Information Systems Abstracts Professional ProQuest One Academic UKI Edition Materials Science & Engineering Collection Solid State and Superconductivity Abstracts ProQuest One Academic ProQuest One Academic (New) |
| DatabaseTitleList | Publicly Available Content Database CrossRef |
| Database_xml | – sequence: 1 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Sciences (General) |
| EISSN | 2073-8994 |
| ExternalDocumentID | 10.3390/sym13040615 10_3390_sym13040615 |
| GroupedDBID | 5VS 8FE 8FG AADQD AAYXX ABDBF ABJCF ACUHS ADBBV ADMLS AFKRA AFZYC ALMA_UNASSIGNED_HOLDINGS AMVHM BCNDV BENPR BGLVJ CCPQU CITATION E3Z ESX GX1 HCIFZ IAO ITC J9A KQ8 L6V M7S MODMG M~E OK1 PHGZM PHGZT PIMPY PQGLB PROAC PTHSS TR2 TUS 7SC 7SR 7U5 8BQ 8FD ABUWG AZQEC DWQXO H8D JG9 JQ2 L7M L~C L~D PKEHL PQEST PQQKQ PQUKI PRINS ADTOC C1A IPNFZ RIG UNPAY |
| ID | FETCH-LOGICAL-c298t-c8cf7c5bd0ad87e197017b7c9853626f00b6eadb9fd6fd6e7f9a1ab63d78f93d3 |
| IEDL.DBID | BENPR |
| ISSN | 2073-8994 |
| IngestDate | Sun Oct 26 04:16:50 EDT 2025 Fri Jul 25 12:10:08 EDT 2025 Thu Oct 16 04:31:56 EDT 2025 Thu Apr 24 22:52:31 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 4 |
| Language | English |
| License | cc-by |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c298t-c8cf7c5bd0ad87e197017b7c9853626f00b6eadb9fd6fd6e7f9a1ab63d78f93d3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0003-4516-3746 |
| OpenAccessLink | https://www.proquest.com/docview/2530151462?pq-origsite=%requestingapplication%&accountid=15518 |
| PQID | 2530151462 |
| PQPubID | 2032326 |
| ParticipantIDs | unpaywall_primary_10_3390_sym13040615 proquest_journals_2530151462 crossref_citationtrail_10_3390_sym13040615 crossref_primary_10_3390_sym13040615 |
| PublicationCentury | 2000 |
| PublicationDate | 2021-00-00 |
| PublicationDateYYYYMMDD | 2021-01-01 |
| PublicationDate_xml | – year: 2021 text: 2021-00-00 |
| PublicationDecade | 2020 |
| PublicationPlace | Basel |
| PublicationPlace_xml | – name: Basel |
| PublicationTitle | Symmetry (Basel) |
| PublicationYear | 2021 |
| Publisher | MDPI AG |
| Publisher_xml | – name: MDPI AG |
| References | ref_50 Li (ref_51) 2007; 7 Demidova (ref_69) 2021; 1727 Wang (ref_16) 2004; 47 Manevitz (ref_66) 2001; 2 ref_58 ref_57 ref_11 ref_10 ref_54 ref_52 Pham (ref_62) 2020; 8 ref_17 ref_59 Duggal (ref_41) 2015; 7 Anfyorov (ref_36) 2020; 7 Demidova (ref_22) 2016; 7 ref_61 Strehl (ref_46) 2003; 3 ref_25 ref_68 ref_23 ref_67 Alashwal (ref_65) 2006; 1 ref_20 Singer (ref_33) 2010; 127 ref_63 Rebentrost (ref_29) 2014; 113 Demidova (ref_21) 2016; 7 Burges (ref_19) 1998; 2 Platt (ref_56) 2001; 13 Priyadarshini (ref_26) 2015; 8 Liu (ref_60) 2014; 7 ref_28 Goldberg (ref_35) 1989; 5 Monteiro (ref_42) 2018; 9 Krawczyk (ref_55) 2016; 5 Xun (ref_39) 2015; 46 Cavallaro (ref_27) 2015; 8 Raikwal (ref_2) 2012; 50 Demidova (ref_48) 2016; 6 Storn (ref_37) 1997; 11 ref_34 ref_32 ref_31 Mayer (ref_38) 2005; 83 Shevade (ref_30) 2000; 11 Graf (ref_24) 2005; 17 Demidova (ref_49) 2015; 8 Erfani (ref_64) 2016; 58 Nigsch (ref_15) 2006; 46 ref_47 Breiman (ref_12) 2001; 45 ref_44 ref_43 Chapelle (ref_18) 2002; 46 Li (ref_5) 2005; Volume 3635 ref_40 ref_1 Saha (ref_45) 2012; 9 ref_3 ref_9 ref_8 ref_4 Hall (ref_14) 2008; 36 Demidova (ref_53) 2021; 1027 ref_7 ref_6 Meier (ref_13) 2010; 22 |
| References_xml | – ident: ref_58 doi: 10.1002/wics.1421 – volume: 5 start-page: 493 year: 1989 ident: ref_35 article-title: Messy genetic algorithms. motivation analysis, and first results publication-title: Complex Syst. – volume: 45 start-page: 5 year: 2001 ident: ref_12 article-title: Random Forests publication-title: Mach. Learn. doi: 10.1023/A:1010933404324 – ident: ref_32 – volume: 9 start-page: 21 year: 2018 ident: ref_42 article-title: Improving the performance of the fish school search algorithm publication-title: Int. J. Swarm Intell. Res. doi: 10.4018/IJSIR.2018100102 – volume: 2 start-page: 139 year: 2001 ident: ref_66 article-title: One-class SVMs for document classification publication-title: J. Mach. Learn. Res. – volume: 1 start-page: 120 year: 2006 ident: ref_65 article-title: One-class support vector machines for protein-protein interactions prediction publication-title: Int. J. Biomed. Sci. – volume: 113 start-page: 130503 year: 2014 ident: ref_29 article-title: Quantum support vector machine for big data classification publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.113.130503 – volume: 8 start-page: 446 year: 2015 ident: ref_49 article-title: Use of fuzzy clustering algorithms ensemble for SVM classifier development publication-title: Int. Rev. Model. Simul. – volume: 17 start-page: 521 year: 2005 ident: ref_24 article-title: Parallel support vector machines: The cascade SVM publication-title: Adv. Neural Inform. Process. Syst. – ident: ref_34 doi: 10.1007/978-1-4614-7138-7 – ident: ref_43 doi: 10.3390/sym12050784 – volume: 7 start-page: 294 year: 2016 ident: ref_22 article-title: Big data classification using the SVM classifiers with the modified particle swarm optimization and the SVM ensembles publication-title: Int. J. Adv. Comput. Sci. Appl. – volume: 7 start-page: 16 year: 2016 ident: ref_21 article-title: The SVM classifier based on the modified particle swarm optimization publication-title: Int. J. Adv. Comput. Sci. Appl. – volume: 8 start-page: 256 year: 2020 ident: ref_62 article-title: Predicting workflow task execution time in the cloud using a two-stage machine learning approach publication-title: IEEE Trans. Cloud Comput. doi: 10.1109/TCC.2017.2732344 – volume: 8 start-page: 77 year: 2015 ident: ref_26 article-title: A map reduce based support vector machine for big data classification publication-title: Int. J. Database Theory Appl. doi: 10.14257/ijdta.2015.8.5.07 – ident: ref_4 doi: 10.1007/BFb0026683 – volume: 46 start-page: 2412 year: 2006 ident: ref_15 article-title: Melting point prediction employing k-nearest neighbor algorithms and genetic parameter optimization publication-title: J. Chem. Inf. Model. doi: 10.1021/ci060149f – ident: ref_61 doi: 10.3390/sym10100485 – volume: 7 start-page: 134 year: 2020 ident: ref_36 article-title: Genetic clustering algorithm publication-title: Russ. Technol. J. doi: 10.32362/2500-316X-2019-7-6-134-150 – ident: ref_25 doi: 10.1007/978-3-319-01595-8_10 – ident: ref_20 doi: 10.7551/mitpress/7496.003.0003 – volume: 46 start-page: 367 year: 2015 ident: ref_39 article-title: Application of parallel particle swarm optimize support vector machine model based on hadoop framework in the analysis of railway passenger flow data in China publication-title: Chem. Eng. Trans. – volume: 3 start-page: 583 year: 2003 ident: ref_46 article-title: Cluster ensembles—A knowledge reuse framework for combining multiple partitions publication-title: J. Mach. Learn. Res. – volume: 50 start-page: 35 year: 2012 ident: ref_2 article-title: Performance evaluation of SVM and K-nearest neighbor algorithm over medical data set publication-title: Int. J. Comput. Appl. – ident: ref_44 doi: 10.3390/a13040085 – ident: ref_31 – volume: 11 start-page: 1188 year: 2000 ident: ref_30 article-title: Improvements to the SMO algorithm for SVM regression publication-title: IEEE Trans. Neural Netw. doi: 10.1109/72.870050 – volume: 1727 start-page: 012007 year: 2021 ident: ref_69 article-title: The two-stage classification based on 1-SVM and RF classifiers publication-title: J. Phys. Conf. Ser. doi: 10.1088/1742-6596/1727/1/012007 – volume: 22 start-page: 3207 year: 2010 ident: ref_13 article-title: Deep, big, simple neural nets for handwritten digit recognition publication-title: Neural Comput. doi: 10.1162/NECO_a_00052 – volume: 7 start-page: 765 year: 2014 ident: ref_60 article-title: Two-stage extreme learning machine for high-dimensional data publication-title: Int. J. Mach. Learn. Cybern. doi: 10.1007/s13042-014-0292-7 – volume: 7 start-page: 39 year: 2015 ident: ref_41 article-title: Analytics for the quality of fertility data using particle swarm optimization publication-title: Int. J. Bio-Sci. Bio-Technol. doi: 10.14257/ijbsbt.2015.7.1.05 – ident: ref_10 – volume: 11 start-page: 341 year: 1997 ident: ref_37 article-title: Differential evolution—A simple and efficient heuristic for global optimization over continuous spaces publication-title: J. Glob. Optim. doi: 10.1023/A:1008202821328 – volume: 46 start-page: 131 year: 2002 ident: ref_18 article-title: Choosing multiple parameters for support vector machines publication-title: Mach. Learn. doi: 10.1023/A:1012450327387 – ident: ref_57 doi: 10.1109/ICDM.2008.17 – volume: 6 start-page: 2003 year: 2016 ident: ref_48 article-title: Development of the SVM classifier ensemble for the classification accuracy increase publication-title: ITM Web Conf. doi: 10.1051/itmconf/20160602003 – ident: ref_1 doi: 10.1007/978-3-540-77803-5 – volume: 36 start-page: 2135 year: 2008 ident: ref_14 article-title: Choice of neighbor order in nearest-neighbor classification publication-title: Ann. Stat. doi: 10.1214/07-AOS537 – ident: ref_17 – ident: ref_59 doi: 10.1145/342009.335388 – volume: 1027 start-page: 012001 year: 2021 ident: ref_53 article-title: Approbation of the data classification method based on the SVM algorithm and the k nearest neighbors algorithm publication-title: IOP Conf. Ser. Mater. Sci. Eng. doi: 10.1088/1757-899X/1027/1/012001 – ident: ref_63 doi: 10.1007/978-3-642-17080-5_21 – volume: 47 start-page: 662 year: 2004 ident: ref_16 article-title: Extended k-nearest neighbours based on evidence theory publication-title: Computer – ident: ref_40 doi: 10.1007/978-3-642-18041-5 – ident: ref_7 – ident: ref_3 – volume: Volume 3635 start-page: 319 year: 2005 ident: ref_5 article-title: SVM based learning system for information extraction publication-title: Lecture Notes in Computer Science doi: 10.1007/11559887_19 – ident: ref_47 – ident: ref_11 – volume: 9 start-page: 52 year: 2012 ident: ref_45 article-title: SVMeFC: SVM ensemble fuzzy clustering for satellite image segmentation publication-title: IEEE Geosci. Remote Sens. Lett. doi: 10.1109/LGRS.2011.2160150 – volume: 2 start-page: 121 year: 1998 ident: ref_19 article-title: A Tutorial on Support Vector Machines for Pattern Recognition publication-title: Data Min. Knowl. Discov. doi: 10.1023/A:1009715923555 – ident: ref_67 – volume: 8 start-page: 4634 year: 2015 ident: ref_27 article-title: On understanding big data impacts in remotely sensed image classification using support vector machine methods publication-title: IEEE Sel. Top. Appl. Earth Obs. Remote. Sens. doi: 10.1109/JSTARS.2015.2458855 – volume: 83 start-page: 315 year: 2005 ident: ref_38 article-title: Differential evolution—An easy and efficient evolutionary algorithm for model optimisation publication-title: Agric. Syst. doi: 10.1016/j.agsy.2004.05.002 – ident: ref_28 doi: 10.17485/ijst/2015/v8i14/65745 – ident: ref_6 – ident: ref_68 doi: 10.1109/MECO.2018.8406039 – ident: ref_50 – volume: 5 start-page: 221 year: 2016 ident: ref_55 article-title: Learning from imbalanced data: Open challenges and future directions publication-title: Prog. Artif. Intell. doi: 10.1007/s13748-016-0094-0 – ident: ref_54 – ident: ref_23 doi: 10.1109/SCP.2015.7342242 – volume: 7 start-page: 441 year: 2007 ident: ref_51 article-title: Support vector machine combined with k-nearest neighbors for solar flare forecasting publication-title: Chin. J. Astron. Astrophys. doi: 10.1088/1009-9271/7/3/15 – volume: 58 start-page: 121 year: 2016 ident: ref_64 article-title: High-dimensional and large-scale anomaly detection using a linear one-class SVM with deep learning publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2016.03.028 – ident: ref_52 doi: 10.1109/MECO.2017.7977132 – ident: ref_9 doi: 10.1007/978-3-540-30116-5_32 – volume: 13 start-page: 1443 year: 2001 ident: ref_56 article-title: Estimating the support of a high-dimensional distribution publication-title: Neural Comput. doi: 10.1162/089976601750264965 – volume: 127 start-page: 3 year: 2010 ident: ref_33 article-title: Pegasos: Primal estimated sub-gradient solver for SVM publication-title: Math. Program. – ident: ref_8 doi: 10.1007/978-0-387-84858-7 |
| SSID | ssj0000505460 |
| Score | 2.366636 |
| Snippet | The paper considers a solution to the problem of developing two-stage hybrid SVM-kNN classifiers with the aim to increase the data classification quality by... |
| SourceID | unpaywall proquest crossref |
| SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database |
| StartPage | 615 |
| SubjectTerms | Algorithms Classification Classifiers Datasets Feasibility Optimization algorithms Parameters Strip Support vector machines Training |
| SummonAdditionalLinks | – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dT9swED-x8rC9MGCb6AbID0yCSSGJnTjOEypfqiZRIUEn9hTZsVMqSlqRdKj89Zxbly9NCCHl8WIlus_fyfc7gK1Y8SSIjPF0KKQl1eae0px5WlCWx5btRNh555MOb3ej3xfxhWu4Ve5aJULx_jRIU7Q_DwFB5IfMj3xMvv5IF3v_XCfJcr3bOVDGPsAij7EWb8Bit3Pa-ms3ys3fnQ3lMcT2fjW5xpBtU1j8PA091pYfx-VITm7lYPAkzRx_hmz-gbPbJVe741rt5ncvuBvf_wfLsOQqUNKamcwKLJhyFVacj1dk2xFR73yB1vnt0MNqtGdIe2Inu8ihrCWZ7tHsF3aHNtnHJKjJsCRnf06ILDW56nRIa9Ab3vTry-vqK3SPj84P2p5bueDlNBW1l4u8SPJY6UBqkZgwTdBjVZKnmNUR-hRBoDjankoLzfExSZHKUCrOdCKKlGn2DRrlsDRrQAIdCIn2QcMIQZyhKkXkmdJYhCwqVMSb8GuugSx3fOR2LcYgQ1xi1ZU9UVcTth6ERzMajv-Lrc9VmTlfrDIaYxDDupDTJvx8UO9rx3x_o9wP-ETtFZdpR2YdGvXN2GxgjVKrTWeI91_i3to priority: 102 providerName: Unpaywall |
| Title | Two-Stage Hybrid Data Classifiers Based on SVM and kNN Algorithms |
| URI | https://www.proquest.com/docview/2530151462 https://www.mdpi.com/2073-8994/13/4/615/pdf?version=1618226433 |
| UnpaywallVersion | publishedVersion |
| Volume | 13 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 2073-8994 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000505460 issn: 2073-8994 databaseCode: KQ8 dateStart: 20090101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVEBS databaseName: EBSCOhost Academic Search Ultimate customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 2073-8994 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000505460 issn: 2073-8994 databaseCode: ABDBF dateStart: 20100301 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVEBS databaseName: Inspec with Full Text customDbUrl: eissn: 2073-8994 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000505460 issn: 2073-8994 databaseCode: ADMLS dateStart: 20100301 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text providerName: EBSCOhost – providerCode: PRVEBS databaseName: Mathematics Source customDbUrl: eissn: 2073-8994 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000505460 issn: 2073-8994 databaseCode: AMVHM dateStart: 20100301 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/mathematics-source providerName: EBSCOhost – providerCode: PRVFQY databaseName: GFMER Free Medical Journals customDbUrl: eissn: 2073-8994 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000505460 issn: 2073-8994 databaseCode: GX1 dateStart: 20090101 isFulltext: true titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php providerName: Geneva Foundation for Medical Education and Research – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2073-8994 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000505460 issn: 2073-8994 databaseCode: M~E dateStart: 20080101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 2073-8994 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000505460 issn: 2073-8994 databaseCode: BENPR dateStart: 20090301 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 2073-8994 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000505460 issn: 2073-8994 databaseCode: 8FG dateStart: 20090301 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1bS8MwFD7o9qAv4rzgvJEHBRWKbdqm6YPIpptDsIg6mU8laVIVZzddRfbvPdnaqSBCXwIhkJNzTXO-D2DPlyywPa0t5XBhQLWZJRVzLcWpm_gG7YSbfueriHW63mXP781BVPbCmGeVpU-cOGo1SMwd-TH1URUxujN6OnyzDGuU-btaUmiIglpBnUwgxuahSg0yVgWqzVZ0fTO7dTG8bR6zp416Ltb7x6PxK7pxE9b836HpO99c-MiGYvwp-v0foae9DEtFzkga00OuwZzOVqBWWOWIHBTQ0Yer0Lj7HFiYPz5q0hmbXixyLnJBJsyXz6lhvSZNDFuKDDJye39FRKbISxSRRv8R95o_vY7WoNtu3Z11rIIkwUpoyHMr4UkaJL5UtlA80E4YoI3JIAkxDmOxktq2ZKgtMkwVw08HaSgcIZmrAp6GrnLXoZINMr0BxFY2R0EK6nhYdmkqQ6wVQ-pzx_VS6bE6HJXyiZMCQdwQWfRjrCSMMOMfwqzD3mzycAqc8fe07VLQcWE9o_j7rOuwPxP-f8ts_r_MFixS8xZlcnWyDZX8_UPvYDKRy12Y5-2L3UJPcHTRc3DUja4bD194IMsO |
| linkProvider | ProQuest |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1NT9wwEB1RONALKv1Qt6WtDyC1lSISO3HsA6qWLy2Fjap2qbilduwAYslum6DV_rn-Nsa7zkKlihtSjpYPz5N5M2PPPIDNRPM0jK0NTCSUG6rNA204C4ygrEjctBPh-p37Ge-dxl_PkrMl-Nv2wrhnla1PnDlqMypcjXybJmiKyO6cfhn_DpxqlLtdbSU0lJdWMDuzEWO-sePYTieYwtU7R_t43luUHh4M9nqBVxkICipFExSiKNMi0SZURqQ2kikaqU4LiUSG0X4Zhpoj3FqWhuNn01KqSGnOTCpKyQzDfZ_ASsxiicnfyu5B9u37osrjdOJiHs4bAxmT4XY9vUbacDSa_EuFd_Ht6k01VtOJGg7vUd3hM1jzMSrpzo1qHZZs9RzWvReoyUc_qvrTC-gOJqMA49VzS3pT1_tF9lWjyExp87J0KttkF2nSkFFFfvzsE1UZcpVlpDs8R2ybi-v6JZw-ClyvYLkaVfY1kNCEAg9O0SjGNM9SLTE3lTQREYtLHfMOfG7xyQs_sdwJZwxzzFwcmPk9MDuwuVg8ng_q-P-yjRbo3P-tdX5nWx3YWoD_0DZvHt7mA6z2Bv2T_OQoO34LT6l7BzMr22zAcvPnxr7DQKbR7721EPj12AZ6C9i3Bn4 |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1dT9swFL1iRdp4mfiaKCvMDyAxpKiJkzj2wzSVlVK-qkmDibdgxw4gStotQVX_Gr-O6zYpICHekPJo-eH42Odex_cegK1QscgNjHG0x6Vtqs0cpZnvaE79JLTdTritdz7tse55cHQRXszBQ1ULY59VVmfi5KDWg8TekTdpiFREdWe0mZbPIn63Oz-H_xzrIGX_tFZ2GlOKHJvxCNO3_MdhG9d6m9LO_tmvrlM6DDgJFbxwEp6kURIq7UrNI-OJCAmqokSgiGGkn7quYgi1Eqlm-JkoFdKTivk64qnwtY_zfoD5yHZxt1XqnYPZ_Y51iAuYOy0J9H3hNvPxHQqGFdDwpQg-Rbaf7rOhHI9kv_9M5DqL8LmMTklrSqclmDPZMiyV-z8nO2WT6u8r0DobDRyMVK8M6Y5t1Rdpy0KSicfmTWr9tckeCqQmg4z8-XtKZKbJba9HWv0rRLK4vstX4fxdwPoCtWyQmTUgrna5RO5QL8AEz1AlMCsVNOSeH6QqYHXYrfCJk7JXubXM6MeYs1gw42dg1mFrNng4bdHx-rBGBXRc7tM8fmJVHbZn4L81zfrb03yDj0jL-OSwd_wVFqh9ADO5r2lArfh_bzYwginU5oQqBC7fm5uPso4EGA |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dT9swED-x8rC9MGCb6AbID0yCSSGJnTjOEypfqiZRIUEn9hTZsVMqSlqRdKj89Zxbly9NCCHl8WIlus_fyfc7gK1Y8SSIjPF0KKQl1eae0px5WlCWx5btRNh555MOb3ej3xfxhWu4Ve5aJULx_jRIU7Q_DwFB5IfMj3xMvv5IF3v_XCfJcr3bOVDGPsAij7EWb8Bit3Pa-ms3ys3fnQ3lMcT2fjW5xpBtU1j8PA091pYfx-VITm7lYPAkzRx_hmz-gbPbJVe741rt5ncvuBvf_wfLsOQqUNKamcwKLJhyFVacj1dk2xFR73yB1vnt0MNqtGdIe2Inu8ihrCWZ7tHsF3aHNtnHJKjJsCRnf06ILDW56nRIa9Ab3vTry-vqK3SPj84P2p5bueDlNBW1l4u8SPJY6UBqkZgwTdBjVZKnmNUR-hRBoDjankoLzfExSZHKUCrOdCKKlGn2DRrlsDRrQAIdCIn2QcMIQZyhKkXkmdJYhCwqVMSb8GuugSx3fOR2LcYgQ1xi1ZU9UVcTth6ERzMajv-Lrc9VmTlfrDIaYxDDupDTJvx8UO9rx3x_o9wP-ETtFZdpR2YdGvXN2GxgjVKrTWeI91_i3to |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Two-Stage+Hybrid+Data+Classifiers+Based+on+SVM+and+kNN+Algorithms&rft.jtitle=Symmetry+%28Basel%29&rft.au=Demidova%2C+Liliya+A&rft.date=2021&rft.pub=MDPI+AG&rft.eissn=2073-8994&rft.volume=13&rft.issue=4&rft.spage=615&rft_id=info:doi/10.3390%2Fsym13040615&rft.externalDBID=HAS_PDF_LINK |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2073-8994&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2073-8994&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2073-8994&client=summon |