PyMLDA: A Python open-source code for Machine Learning Damage Assessment

The PyMLDA-Machine Learning for Damage Assessment is an open-source software developed for damage pattern recognition, detection, and quantification that uses the system’s vibration signatures as input. The software automatically evaluates the structure or system integrity by detecting and assessing...

Full description

Saved in:
Bibliographic Details
Published inSoftware impacts Vol. 19; p. 100628
Main Authors Coelho, Jefferson da Silva, Machado, Marcela Rodrigues, de Sousa, Amanda Aryda S.R.
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.03.2024
Subjects
Online AccessGet full text
ISSN2665-9638
2665-9638
DOI10.1016/j.simpa.2024.100628

Cover

Abstract The PyMLDA-Machine Learning for Damage Assessment is an open-source software developed for damage pattern recognition, detection, and quantification that uses the system’s vibration signatures as input. The software automatically evaluates the structure or system integrity by detecting and assessing structural damage by combining supervised, unsupervised, and regression Machine Learning (ML) algorithms. It employs different damage index techniques based on the system’s dynamic response, such as natural or frequency response frequency, to normalise the dataset input of the software. The classification ML route effectively identifies and categorises the damage, even when the integrity condition of the structure is unknown. The regression algorithm quantifies the damage levels, considering the uncertainty quantification in the estimation. The PyMLDA employs a range of validation and cross-validation metrics to evaluate the effectiveness and accuracy of these ML algorithms in detecting and diagnosing structural damage. •PyMLDA is an open-source code combining ML-SHM for pattern recognition and damage assessment.•PyMLDA assists the entire SHM process, from data acquisition to system integrity prognosis.•Integrating data-driven with preprocessing, feature selection, and pattern recognition.•System’s dynamic reposnse and damge index are the PyMLDA.•PyMLDA uses unsupervised-supervised and regression ML for enhanced dataset analysis and SHM.•Broader contributions include operational diagnoses, management, and decision-making.
AbstractList The PyMLDA-Machine Learning for Damage Assessment is an open-source software developed for damage pattern recognition, detection, and quantification that uses the system’s vibration signatures as input. The software automatically evaluates the structure or system integrity by detecting and assessing structural damage by combining supervised, unsupervised, and regression Machine Learning (ML) algorithms. It employs different damage index techniques based on the system’s dynamic response, such as natural or frequency response frequency, to normalise the dataset input of the software. The classification ML route effectively identifies and categorises the damage, even when the integrity condition of the structure is unknown. The regression algorithm quantifies the damage levels, considering the uncertainty quantification in the estimation. The PyMLDA employs a range of validation and cross-validation metrics to evaluate the effectiveness and accuracy of these ML algorithms in detecting and diagnosing structural damage. •PyMLDA is an open-source code combining ML-SHM for pattern recognition and damage assessment.•PyMLDA assists the entire SHM process, from data acquisition to system integrity prognosis.•Integrating data-driven with preprocessing, feature selection, and pattern recognition.•System’s dynamic reposnse and damge index are the PyMLDA.•PyMLDA uses unsupervised-supervised and regression ML for enhanced dataset analysis and SHM.•Broader contributions include operational diagnoses, management, and decision-making.
ArticleNumber 100628
Author Coelho, Jefferson da Silva
de Sousa, Amanda Aryda S.R.
Machado, Marcela Rodrigues
Author_xml – sequence: 1
  givenname: Jefferson da Silva
  surname: Coelho
  fullname: Coelho, Jefferson da Silva
  organization: Federal University of Amazonas, Itacoatiara, Amazonas, Brazil
– sequence: 2
  givenname: Marcela Rodrigues
  orcidid: 0000-0002-7488-7201
  surname: Machado
  fullname: Machado, Marcela Rodrigues
  email: marcelam@unb.br
  organization: Department of Mechanical Engineering, University of Brasília, Campus Universitário Darcy Ribeiro, Brasília, Brazil
– sequence: 3
  givenname: Amanda Aryda S.R.
  surname: de Sousa
  fullname: de Sousa, Amanda Aryda S.R.
  organization: Department of Mechanical Engineering, University of Brasília, Campus Universitário Darcy Ribeiro, Brasília, Brazil
BookMark eNqNkMFOwzAMhiM0JMbYE3DJC3QkaZs1SBymDRhSJ3aAc5Sm7pZpTaqkA_Xt6SgHTgj5YOuXPsv-rtHIOgsI3VIyo4Tyu8MsmLpRM0ZY0ieEs-wCjRnnaSR4nI1-zVdoGsKBEMJSSinPxmi97Tb5anGPF3jbtXtnsWvARsGdvAasXQm4ch5vlN4bCzgH5a2xO7xStdoBXoQAIdRg2xt0WaljgOlPn6D3p8e35TrKX59flos80kxkbSR0RQo6T8_FNSlSJsoy5UUB_fkVKCpKkcwVyQgvWTznQscFz5hItNJplrF4gpJh78k2qvtUx6NsvKmV7yQl8ixEHuS3EHkWIgchPRYPmPYuBA_VP6mHgYL-ow8DXgZtwGoojQfdytKZP_kvBYN7MQ
Cites_doi 10.1007/s40430-023-04628-6
10.1016/j.apm.2021.05.018
10.1111/ffe.13699
10.1177/14759217221075241
10.1177/14759217211036880
10.1088/1361-665X/ac8ef9
10.3390/s23218824
10.1007/s40430-018-1330-2
ContentType Journal Article
Copyright 2024
Copyright_xml – notice: 2024
DBID 6I.
AAFTH
AAYXX
CITATION
ADTOC
UNPAY
DOI 10.1016/j.simpa.2024.100628
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
DatabaseTitleList
Database_xml – sequence: 1
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
EISSN 2665-9638
ExternalDocumentID 10.1016/j.simpa.2024.100628
10_1016_j_simpa_2024_100628
S2665963824000162
GroupedDBID 0SF
6I.
AAEDW
AAFTH
AALRI
AAXUO
AEXQZ
AITUG
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
EBS
EJD
FDB
M41
M~E
NCXOZ
ROL
0R~
AAYWO
AAYXX
ACVFH
ADCNI
ADVLN
AEUPX
AFJKZ
AFPUW
AIGII
AKBMS
AKYEP
APXCP
CITATION
ADTOC
UNPAY
ID FETCH-LOGICAL-c298t-9cf0b17575756c0b529dd56bbe202fea19d947a0806d23769c3b68294cac58823
IEDL.DBID UNPAY
ISSN 2665-9638
IngestDate Tue Aug 19 22:24:56 EDT 2025
Tue Jul 01 01:39:22 EDT 2025
Sat Mar 30 16:21:38 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Structural health monitoring
Damage detection
Raw signal
Damage Index
Vibration signal
Language English
License This is an open access article under the CC BY-NC-ND license.
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c298t-9cf0b17575756c0b529dd56bbe202fea19d947a0806d23769c3b68294cac58823
ORCID 0000-0002-7488-7201
OpenAccessLink https://proxy.k.utb.cz/login?url=https://doi.org/10.1016/j.simpa.2024.100628
ParticipantIDs unpaywall_primary_10_1016_j_simpa_2024_100628
crossref_primary_10_1016_j_simpa_2024_100628
elsevier_sciencedirect_doi_10_1016_j_simpa_2024_100628
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate March 2024
2024-03-00
PublicationDateYYYYMMDD 2024-03-01
PublicationDate_xml – month: 03
  year: 2024
  text: March 2024
PublicationDecade 2020
PublicationTitle Software impacts
PublicationYear 2024
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Machado, Moura, Dey, Mukhopadhyay (b16) 2022; 31
Sousa, Machado (b13) 2024
Dallali, Khalij, Conforto (b15) 2022; 45
Farrar, Worden (b3) 2012
Bishop (b9) 2006
Figueiredo, Brownjohn (b6) 2022; 21
Jia, Li (b7) 2023; 23
Machado, Adhikari, Santos (b14) 2018; 40
Barreto, Machado, Santos, de Moura, Khalij (b2) 2021; 18
Coelho, Machado, Dutkiewicz (b12) 2024; 46
Machado, Santos (b1) 2015; 2015
Machado, Santos (b4) 2021; 98
Sinou (b10) 2009
Sousa, Coelho, Machado, Dutkiewicz (b11) 2023
Malekloo, Ozer, AlHamaydeh, Girolami (b5) 2022; 21
Sousa, Machado (b8) 2023
Machado (10.1016/j.simpa.2024.100628_b4) 2021; 98
Sousa (10.1016/j.simpa.2024.100628_b13) 2024
Malekloo (10.1016/j.simpa.2024.100628_b5) 2022; 21
Dallali (10.1016/j.simpa.2024.100628_b15) 2022; 45
Farrar (10.1016/j.simpa.2024.100628_b3) 2012
Coelho (10.1016/j.simpa.2024.100628_b12) 2024; 46
Machado (10.1016/j.simpa.2024.100628_b14) 2018; 40
Sousa (10.1016/j.simpa.2024.100628_b11) 2023
Bishop (10.1016/j.simpa.2024.100628_b9) 2006
Machado (10.1016/j.simpa.2024.100628_b1) 2015; 2015
Sousa (10.1016/j.simpa.2024.100628_b8) 2023
Machado (10.1016/j.simpa.2024.100628_b16) 2022; 31
Sinou (10.1016/j.simpa.2024.100628_b10) 2009
Jia (10.1016/j.simpa.2024.100628_b7) 2023; 23
Barreto (10.1016/j.simpa.2024.100628_b2) 2021; 18
Figueiredo (10.1016/j.simpa.2024.100628_b6) 2022; 21
References_xml – volume: 45
  start-page: 1784
  year: 2022
  end-page: 1795
  ident: b15
  article-title: Effect of geometric size deviation induced by machining on the vibration fatigue behavior of Ti-6Al-4V
  publication-title: Fatigue Fract. Eng. Mater. Struct.
– volume: 18
  year: 2021
  ident: b2
  article-title: Damage indices evaluation for one-dimensional guided wave-based structural health monitoring
  publication-title: Lat. Am. J. Solids Struct. [Internet]
– volume: 98
  start-page: 498
  year: 2021
  end-page: 517
  ident: b4
  article-title: Effect and identification of parametric distributed uncertainties in longitudinal wave propagation
  publication-title: Appl. Math. Model.
– volume: 21
  start-page: 1906
  year: 2022
  end-page: 1955
  ident: b5
  article-title: Machine learning and structural health monitoring overview with emerging technology and high-dimensional data source highlights
  publication-title: Struct. Health Monitor.
– volume: 21
  start-page: 3018
  year: 2022
  end-page: 3054
  ident: b6
  article-title: Three decades of statistical pattern recognition paradigm for SHM of bridges
  publication-title: Struct. Health Monitor.
– volume: 23
  start-page: 8824
  year: 2023
  ident: b7
  article-title: Deep learning for structural health monitoring: Data, algorithms, applications, challenges, and trends
  publication-title: Sensors
– volume: 46
  start-page: 75
  year: 2024
  ident: b12
  article-title: Data-driven machine learning for pattern recognition and detection of loosening torque in bolted joints
  publication-title: J. Braz. Soc. Mech. Sci. Eng.
– volume: 31
  year: 2022
  ident: b16
  article-title: Bandgap manipulation of single and multi-frequency smart metastructures with random impedance disorder
  publication-title: Smart Mater. Struct.
– volume: 2015
  year: 2015
  ident: b1
  article-title: Reliability analysis of damaged beam spectral element with parameter uncertainties
  publication-title: Shock Vib.
– year: 2024
  ident: b13
  article-title: Experimental vibration dataset collected of a beam reinforced with masses under different health conditions
  publication-title: Data in Brief
– volume: 40
  start-page: 415
  year: 2018
  ident: b14
  article-title: Spectral element-based method for a one-dimensional damaged structure with distributed random properties
  publication-title: J. Braz. Soc. Mech. Sci. Eng.
– year: 2023
  ident: b8
  article-title: Damage assessment of a physical beam reinforced with masses - dataset
  publication-title: Multiclass Supervised Machine Learning Algorithms Applied To Damage and Assessment using Beam Dynamic Response
– start-page: 643
  year: 2009
  end-page: 702
  ident: b10
  article-title: A review of damage detection and health monitoring of mechanical systems from changes in the measurement of linear and non-linear vibrations
  publication-title: Mechanical Vibrations: Measurement, Effects and Control
– year: 2023
  ident: b11
  article-title: Multiclass supervised machine learning algorithms applied to damage and assessment using beam dynamic response
  publication-title: J. Vibr. Eng. Technol.
– year: 2006
  ident: b9
  article-title: Pattern Recognition and Machine Learning. (Information Science and Statistics)
– start-page: 45
  year: 2012
  end-page: 52
  ident: b3
  article-title: Operational evaluation
  publication-title: Structural Health Monitoring: A Machine Learning Perspective
– volume: 46
  start-page: 75
  year: 2024
  ident: 10.1016/j.simpa.2024.100628_b12
  article-title: Data-driven machine learning for pattern recognition and detection of loosening torque in bolted joints
  publication-title: J. Braz. Soc. Mech. Sci. Eng.
  doi: 10.1007/s40430-023-04628-6
– volume: 98
  start-page: 498
  year: 2021
  ident: 10.1016/j.simpa.2024.100628_b4
  article-title: Effect and identification of parametric distributed uncertainties in longitudinal wave propagation
  publication-title: Appl. Math. Model.
  doi: 10.1016/j.apm.2021.05.018
– year: 2006
  ident: 10.1016/j.simpa.2024.100628_b9
– volume: 45
  start-page: 1784
  issue: 6
  year: 2022
  ident: 10.1016/j.simpa.2024.100628_b15
  article-title: Effect of geometric size deviation induced by machining on the vibration fatigue behavior of Ti-6Al-4V
  publication-title: Fatigue Fract. Eng. Mater. Struct.
  doi: 10.1111/ffe.13699
– volume: 21
  start-page: 3018
  issue: 6
  year: 2022
  ident: 10.1016/j.simpa.2024.100628_b6
  article-title: Three decades of statistical pattern recognition paradigm for SHM of bridges
  publication-title: Struct. Health Monitor.
  doi: 10.1177/14759217221075241
– volume: 2015
  year: 2015
  ident: 10.1016/j.simpa.2024.100628_b1
  article-title: Reliability analysis of damaged beam spectral element with parameter uncertainties
  publication-title: Shock Vib.
– volume: 21
  start-page: 1906
  issue: 4
  year: 2022
  ident: 10.1016/j.simpa.2024.100628_b5
  article-title: Machine learning and structural health monitoring overview with emerging technology and high-dimensional data source highlights
  publication-title: Struct. Health Monitor.
  doi: 10.1177/14759217211036880
– year: 2023
  ident: 10.1016/j.simpa.2024.100628_b11
  article-title: Multiclass supervised machine learning algorithms applied to damage and assessment using beam dynamic response
  publication-title: J. Vibr. Eng. Technol.
– volume: 31
  issue: 10
  year: 2022
  ident: 10.1016/j.simpa.2024.100628_b16
  article-title: Bandgap manipulation of single and multi-frequency smart metastructures with random impedance disorder
  publication-title: Smart Mater. Struct.
  doi: 10.1088/1361-665X/ac8ef9
– year: 2024
  ident: 10.1016/j.simpa.2024.100628_b13
  article-title: Experimental vibration dataset collected of a beam reinforced with masses under different health conditions
  publication-title: Data in Brief
– start-page: 45
  year: 2012
  ident: 10.1016/j.simpa.2024.100628_b3
  article-title: Operational evaluation
– volume: 18
  issue: 2
  year: 2021
  ident: 10.1016/j.simpa.2024.100628_b2
  article-title: Damage indices evaluation for one-dimensional guided wave-based structural health monitoring
  publication-title: Lat. Am. J. Solids Struct. [Internet]
– year: 2023
  ident: 10.1016/j.simpa.2024.100628_b8
  article-title: Damage assessment of a physical beam reinforced with masses - dataset
– start-page: 643
  year: 2009
  ident: 10.1016/j.simpa.2024.100628_b10
  article-title: A review of damage detection and health monitoring of mechanical systems from changes in the measurement of linear and non-linear vibrations
– volume: 23
  start-page: 8824
  year: 2023
  ident: 10.1016/j.simpa.2024.100628_b7
  article-title: Deep learning for structural health monitoring: Data, algorithms, applications, challenges, and trends
  publication-title: Sensors
  doi: 10.3390/s23218824
– volume: 40
  start-page: 415
  year: 2018
  ident: 10.1016/j.simpa.2024.100628_b14
  article-title: Spectral element-based method for a one-dimensional damaged structure with distributed random properties
  publication-title: J. Braz. Soc. Mech. Sci. Eng.
  doi: 10.1007/s40430-018-1330-2
SSID ssj0002511168
Score 2.25833
Snippet The PyMLDA-Machine Learning for Damage Assessment is an open-source software developed for damage pattern recognition, detection, and quantification that uses...
SourceID unpaywall
crossref
elsevier
SourceType Open Access Repository
Index Database
Publisher
StartPage 100628
SubjectTerms Damage detection
Damage Index
Raw signal
Structural health monitoring
Vibration signal
Title PyMLDA: A Python open-source code for Machine Learning Damage Assessment
URI https://dx.doi.org/10.1016/j.simpa.2024.100628
https://doi.org/10.1016/j.simpa.2024.100628
UnpaywallVersion publishedVersion
Volume 19
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2665-9638
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002511168
  issn: 2665-9638
  databaseCode: M~E
  dateStart: 20190101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 2665-9638
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002511168
  issn: 2665-9638
  databaseCode: AKRWK
  dateStart: 20190901
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NS8NAEF1se_DkBypWtOzBo1vqJjvJegu2pYgpPViop5DdJILWtNgUqQd_uzv5KCoqlVwzZJmZZN5m570h5Dwxmx6uzPvtCGEx1CthLkDInCgSltDKcQRyh_0hDMb2zURMSp1t5MJ8Ob_P-7AWSBc0Gzlu44k-cLdGGiAM8K6Txng48u5xfByAYJhKla7Qz5a_1Z7tZToPV6_hdPqptvR3C9L2IpckxJaSp_YyU2399k2wccNl75GdEmNSr0iKfbIVpwdkMFr5t13vinp0tELBAIqDs1jx854is50a_Er9vLkypqXu6gPths_mk0O9tYLnIRn3e3fXA1aOUWCaSzdjUicdZVACXqA7SnBpAgFKxWZ1SRxeykjaTmigI0TYIyO1pcDl0tahFgaAW0ekns7S-JhQWzugBY_cyDUmiYVydVxJsIVyYxFBk1xUDg7mhVpGULWRPQa5SwJ0SVC4pEmgCkJQFvyikAfGn38bsnXINnnQyT_vPyX17GUZnxm8kakWqfnvvVaZbR_qsNDU
linkProvider Unpaywall
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NS8NAEF20PXjyAxUVlT14dEvdZCe73oK1FLGlBwv1FHY3iaA1Fpsi9de7k4-iolLJNUOWmUnmbXbeG0LOUrfp4ca934EQHkO9EiYBNAviWHjCmiAQyB3uD6A38m_GYlzpbCMX5sv5fdGHNUO6oNvIcR9P9IHLddIE4YB3gzRHg2F4j-PjAATDVKp1hX62_K32bMyzqV686cnkU23pbpWk7VkhSYgtJU-teW5a9v2bYOOKy94mmxXGpGGZFDtkLcl2SW-46N92wksa0uECBQMoDs5i5c97isx26vAr7RfNlQmtdFcfaEc_u08ODZcKnntk1L2-u-qxaowCs1zJnCmbto1DCXiBbRvBlQsEGJO41aWJvlCx8gPtoCPE2COjrGdAcuVbbYUD4N4-aWQvWXJAqG8DsILHMpbOJPVQro4bBb4wMhExHJLz2sHRtFTLiOo2sseocEmELolKlxwSqIMQVQW_LOSR8-ffhmwZslUedPTP-49JI3-dJycOb-TmtMqzDwpSz6M
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=PyMLDA%3A+A+Python+open-source+code+for+Machine+Learning+Damage+Assessment&rft.jtitle=Software+impacts&rft.au=Coelho%2C+Jefferson+da+Silva&rft.au=Machado%2C+Marcela+Rodrigues&rft.au=de+Sousa%2C+Amanda+Aryda+S.R.&rft.date=2024-03-01&rft.pub=Elsevier+B.V&rft.issn=2665-9638&rft.eissn=2665-9638&rft.volume=19&rft_id=info:doi/10.1016%2Fj.simpa.2024.100628&rft.externalDocID=S2665963824000162
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2665-9638&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2665-9638&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2665-9638&client=summon