PyMLDA: A Python open-source code for Machine Learning Damage Assessment
The PyMLDA-Machine Learning for Damage Assessment is an open-source software developed for damage pattern recognition, detection, and quantification that uses the system’s vibration signatures as input. The software automatically evaluates the structure or system integrity by detecting and assessing...
Saved in:
| Published in | Software impacts Vol. 19; p. 100628 |
|---|---|
| Main Authors | , , |
| Format | Journal Article |
| Language | English |
| Published |
Elsevier B.V
01.03.2024
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 2665-9638 2665-9638 |
| DOI | 10.1016/j.simpa.2024.100628 |
Cover
| Abstract | The PyMLDA-Machine Learning for Damage Assessment is an open-source software developed for damage pattern recognition, detection, and quantification that uses the system’s vibration signatures as input. The software automatically evaluates the structure or system integrity by detecting and assessing structural damage by combining supervised, unsupervised, and regression Machine Learning (ML) algorithms. It employs different damage index techniques based on the system’s dynamic response, such as natural or frequency response frequency, to normalise the dataset input of the software. The classification ML route effectively identifies and categorises the damage, even when the integrity condition of the structure is unknown. The regression algorithm quantifies the damage levels, considering the uncertainty quantification in the estimation. The PyMLDA employs a range of validation and cross-validation metrics to evaluate the effectiveness and accuracy of these ML algorithms in detecting and diagnosing structural damage.
•PyMLDA is an open-source code combining ML-SHM for pattern recognition and damage assessment.•PyMLDA assists the entire SHM process, from data acquisition to system integrity prognosis.•Integrating data-driven with preprocessing, feature selection, and pattern recognition.•System’s dynamic reposnse and damge index are the PyMLDA.•PyMLDA uses unsupervised-supervised and regression ML for enhanced dataset analysis and SHM.•Broader contributions include operational diagnoses, management, and decision-making. |
|---|---|
| AbstractList | The PyMLDA-Machine Learning for Damage Assessment is an open-source software developed for damage pattern recognition, detection, and quantification that uses the system’s vibration signatures as input. The software automatically evaluates the structure or system integrity by detecting and assessing structural damage by combining supervised, unsupervised, and regression Machine Learning (ML) algorithms. It employs different damage index techniques based on the system’s dynamic response, such as natural or frequency response frequency, to normalise the dataset input of the software. The classification ML route effectively identifies and categorises the damage, even when the integrity condition of the structure is unknown. The regression algorithm quantifies the damage levels, considering the uncertainty quantification in the estimation. The PyMLDA employs a range of validation and cross-validation metrics to evaluate the effectiveness and accuracy of these ML algorithms in detecting and diagnosing structural damage.
•PyMLDA is an open-source code combining ML-SHM for pattern recognition and damage assessment.•PyMLDA assists the entire SHM process, from data acquisition to system integrity prognosis.•Integrating data-driven with preprocessing, feature selection, and pattern recognition.•System’s dynamic reposnse and damge index are the PyMLDA.•PyMLDA uses unsupervised-supervised and regression ML for enhanced dataset analysis and SHM.•Broader contributions include operational diagnoses, management, and decision-making. |
| ArticleNumber | 100628 |
| Author | Coelho, Jefferson da Silva de Sousa, Amanda Aryda S.R. Machado, Marcela Rodrigues |
| Author_xml | – sequence: 1 givenname: Jefferson da Silva surname: Coelho fullname: Coelho, Jefferson da Silva organization: Federal University of Amazonas, Itacoatiara, Amazonas, Brazil – sequence: 2 givenname: Marcela Rodrigues orcidid: 0000-0002-7488-7201 surname: Machado fullname: Machado, Marcela Rodrigues email: marcelam@unb.br organization: Department of Mechanical Engineering, University of Brasília, Campus Universitário Darcy Ribeiro, Brasília, Brazil – sequence: 3 givenname: Amanda Aryda S.R. surname: de Sousa fullname: de Sousa, Amanda Aryda S.R. organization: Department of Mechanical Engineering, University of Brasília, Campus Universitário Darcy Ribeiro, Brasília, Brazil |
| BookMark | eNqNkMFOwzAMhiM0JMbYE3DJC3QkaZs1SBymDRhSJ3aAc5Sm7pZpTaqkA_Xt6SgHTgj5YOuXPsv-rtHIOgsI3VIyo4Tyu8MsmLpRM0ZY0ieEs-wCjRnnaSR4nI1-zVdoGsKBEMJSSinPxmi97Tb5anGPF3jbtXtnsWvARsGdvAasXQm4ch5vlN4bCzgH5a2xO7xStdoBXoQAIdRg2xt0WaljgOlPn6D3p8e35TrKX59flos80kxkbSR0RQo6T8_FNSlSJsoy5UUB_fkVKCpKkcwVyQgvWTznQscFz5hItNJplrF4gpJh78k2qvtUx6NsvKmV7yQl8ixEHuS3EHkWIgchPRYPmPYuBA_VP6mHgYL-ow8DXgZtwGoojQfdytKZP_kvBYN7MQ |
| Cites_doi | 10.1007/s40430-023-04628-6 10.1016/j.apm.2021.05.018 10.1111/ffe.13699 10.1177/14759217221075241 10.1177/14759217211036880 10.1088/1361-665X/ac8ef9 10.3390/s23218824 10.1007/s40430-018-1330-2 |
| ContentType | Journal Article |
| Copyright | 2024 |
| Copyright_xml | – notice: 2024 |
| DBID | 6I. AAFTH AAYXX CITATION ADTOC UNPAY |
| DOI | 10.1016/j.simpa.2024.100628 |
| DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef Unpaywall for CDI: Periodical Content Unpaywall |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
| DeliveryMethod | fulltext_linktorsrc |
| EISSN | 2665-9638 |
| ExternalDocumentID | 10.1016/j.simpa.2024.100628 10_1016_j_simpa_2024_100628 S2665963824000162 |
| GroupedDBID | 0SF 6I. AAEDW AAFTH AALRI AAXUO AEXQZ AITUG AKRWK ALMA_UNASSIGNED_HOLDINGS AMRAJ EBS EJD FDB M41 M~E NCXOZ ROL 0R~ AAYWO AAYXX ACVFH ADCNI ADVLN AEUPX AFJKZ AFPUW AIGII AKBMS AKYEP APXCP CITATION ADTOC UNPAY |
| ID | FETCH-LOGICAL-c298t-9cf0b17575756c0b529dd56bbe202fea19d947a0806d23769c3b68294cac58823 |
| IEDL.DBID | UNPAY |
| ISSN | 2665-9638 |
| IngestDate | Tue Aug 19 22:24:56 EDT 2025 Tue Jul 01 01:39:22 EDT 2025 Sat Mar 30 16:21:38 EDT 2024 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Structural health monitoring Damage detection Raw signal Damage Index Vibration signal |
| Language | English |
| License | This is an open access article under the CC BY-NC-ND license. cc-by |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c298t-9cf0b17575756c0b529dd56bbe202fea19d947a0806d23769c3b68294cac58823 |
| ORCID | 0000-0002-7488-7201 |
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://doi.org/10.1016/j.simpa.2024.100628 |
| ParticipantIDs | unpaywall_primary_10_1016_j_simpa_2024_100628 crossref_primary_10_1016_j_simpa_2024_100628 elsevier_sciencedirect_doi_10_1016_j_simpa_2024_100628 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | March 2024 2024-03-00 |
| PublicationDateYYYYMMDD | 2024-03-01 |
| PublicationDate_xml | – month: 03 year: 2024 text: March 2024 |
| PublicationDecade | 2020 |
| PublicationTitle | Software impacts |
| PublicationYear | 2024 |
| Publisher | Elsevier B.V |
| Publisher_xml | – name: Elsevier B.V |
| References | Machado, Moura, Dey, Mukhopadhyay (b16) 2022; 31 Sousa, Machado (b13) 2024 Dallali, Khalij, Conforto (b15) 2022; 45 Farrar, Worden (b3) 2012 Bishop (b9) 2006 Figueiredo, Brownjohn (b6) 2022; 21 Jia, Li (b7) 2023; 23 Machado, Adhikari, Santos (b14) 2018; 40 Barreto, Machado, Santos, de Moura, Khalij (b2) 2021; 18 Coelho, Machado, Dutkiewicz (b12) 2024; 46 Machado, Santos (b1) 2015; 2015 Machado, Santos (b4) 2021; 98 Sinou (b10) 2009 Sousa, Coelho, Machado, Dutkiewicz (b11) 2023 Malekloo, Ozer, AlHamaydeh, Girolami (b5) 2022; 21 Sousa, Machado (b8) 2023 Machado (10.1016/j.simpa.2024.100628_b4) 2021; 98 Sousa (10.1016/j.simpa.2024.100628_b13) 2024 Malekloo (10.1016/j.simpa.2024.100628_b5) 2022; 21 Dallali (10.1016/j.simpa.2024.100628_b15) 2022; 45 Farrar (10.1016/j.simpa.2024.100628_b3) 2012 Coelho (10.1016/j.simpa.2024.100628_b12) 2024; 46 Machado (10.1016/j.simpa.2024.100628_b14) 2018; 40 Sousa (10.1016/j.simpa.2024.100628_b11) 2023 Bishop (10.1016/j.simpa.2024.100628_b9) 2006 Machado (10.1016/j.simpa.2024.100628_b1) 2015; 2015 Sousa (10.1016/j.simpa.2024.100628_b8) 2023 Machado (10.1016/j.simpa.2024.100628_b16) 2022; 31 Sinou (10.1016/j.simpa.2024.100628_b10) 2009 Jia (10.1016/j.simpa.2024.100628_b7) 2023; 23 Barreto (10.1016/j.simpa.2024.100628_b2) 2021; 18 Figueiredo (10.1016/j.simpa.2024.100628_b6) 2022; 21 |
| References_xml | – volume: 45 start-page: 1784 year: 2022 end-page: 1795 ident: b15 article-title: Effect of geometric size deviation induced by machining on the vibration fatigue behavior of Ti-6Al-4V publication-title: Fatigue Fract. Eng. Mater. Struct. – volume: 18 year: 2021 ident: b2 article-title: Damage indices evaluation for one-dimensional guided wave-based structural health monitoring publication-title: Lat. Am. J. Solids Struct. [Internet] – volume: 98 start-page: 498 year: 2021 end-page: 517 ident: b4 article-title: Effect and identification of parametric distributed uncertainties in longitudinal wave propagation publication-title: Appl. Math. Model. – volume: 21 start-page: 1906 year: 2022 end-page: 1955 ident: b5 article-title: Machine learning and structural health monitoring overview with emerging technology and high-dimensional data source highlights publication-title: Struct. Health Monitor. – volume: 21 start-page: 3018 year: 2022 end-page: 3054 ident: b6 article-title: Three decades of statistical pattern recognition paradigm for SHM of bridges publication-title: Struct. Health Monitor. – volume: 23 start-page: 8824 year: 2023 ident: b7 article-title: Deep learning for structural health monitoring: Data, algorithms, applications, challenges, and trends publication-title: Sensors – volume: 46 start-page: 75 year: 2024 ident: b12 article-title: Data-driven machine learning for pattern recognition and detection of loosening torque in bolted joints publication-title: J. Braz. Soc. Mech. Sci. Eng. – volume: 31 year: 2022 ident: b16 article-title: Bandgap manipulation of single and multi-frequency smart metastructures with random impedance disorder publication-title: Smart Mater. Struct. – volume: 2015 year: 2015 ident: b1 article-title: Reliability analysis of damaged beam spectral element with parameter uncertainties publication-title: Shock Vib. – year: 2024 ident: b13 article-title: Experimental vibration dataset collected of a beam reinforced with masses under different health conditions publication-title: Data in Brief – volume: 40 start-page: 415 year: 2018 ident: b14 article-title: Spectral element-based method for a one-dimensional damaged structure with distributed random properties publication-title: J. Braz. Soc. Mech. Sci. Eng. – year: 2023 ident: b8 article-title: Damage assessment of a physical beam reinforced with masses - dataset publication-title: Multiclass Supervised Machine Learning Algorithms Applied To Damage and Assessment using Beam Dynamic Response – start-page: 643 year: 2009 end-page: 702 ident: b10 article-title: A review of damage detection and health monitoring of mechanical systems from changes in the measurement of linear and non-linear vibrations publication-title: Mechanical Vibrations: Measurement, Effects and Control – year: 2023 ident: b11 article-title: Multiclass supervised machine learning algorithms applied to damage and assessment using beam dynamic response publication-title: J. Vibr. Eng. Technol. – year: 2006 ident: b9 article-title: Pattern Recognition and Machine Learning. (Information Science and Statistics) – start-page: 45 year: 2012 end-page: 52 ident: b3 article-title: Operational evaluation publication-title: Structural Health Monitoring: A Machine Learning Perspective – volume: 46 start-page: 75 year: 2024 ident: 10.1016/j.simpa.2024.100628_b12 article-title: Data-driven machine learning for pattern recognition and detection of loosening torque in bolted joints publication-title: J. Braz. Soc. Mech. Sci. Eng. doi: 10.1007/s40430-023-04628-6 – volume: 98 start-page: 498 year: 2021 ident: 10.1016/j.simpa.2024.100628_b4 article-title: Effect and identification of parametric distributed uncertainties in longitudinal wave propagation publication-title: Appl. Math. Model. doi: 10.1016/j.apm.2021.05.018 – year: 2006 ident: 10.1016/j.simpa.2024.100628_b9 – volume: 45 start-page: 1784 issue: 6 year: 2022 ident: 10.1016/j.simpa.2024.100628_b15 article-title: Effect of geometric size deviation induced by machining on the vibration fatigue behavior of Ti-6Al-4V publication-title: Fatigue Fract. Eng. Mater. Struct. doi: 10.1111/ffe.13699 – volume: 21 start-page: 3018 issue: 6 year: 2022 ident: 10.1016/j.simpa.2024.100628_b6 article-title: Three decades of statistical pattern recognition paradigm for SHM of bridges publication-title: Struct. Health Monitor. doi: 10.1177/14759217221075241 – volume: 2015 year: 2015 ident: 10.1016/j.simpa.2024.100628_b1 article-title: Reliability analysis of damaged beam spectral element with parameter uncertainties publication-title: Shock Vib. – volume: 21 start-page: 1906 issue: 4 year: 2022 ident: 10.1016/j.simpa.2024.100628_b5 article-title: Machine learning and structural health monitoring overview with emerging technology and high-dimensional data source highlights publication-title: Struct. Health Monitor. doi: 10.1177/14759217211036880 – year: 2023 ident: 10.1016/j.simpa.2024.100628_b11 article-title: Multiclass supervised machine learning algorithms applied to damage and assessment using beam dynamic response publication-title: J. Vibr. Eng. Technol. – volume: 31 issue: 10 year: 2022 ident: 10.1016/j.simpa.2024.100628_b16 article-title: Bandgap manipulation of single and multi-frequency smart metastructures with random impedance disorder publication-title: Smart Mater. Struct. doi: 10.1088/1361-665X/ac8ef9 – year: 2024 ident: 10.1016/j.simpa.2024.100628_b13 article-title: Experimental vibration dataset collected of a beam reinforced with masses under different health conditions publication-title: Data in Brief – start-page: 45 year: 2012 ident: 10.1016/j.simpa.2024.100628_b3 article-title: Operational evaluation – volume: 18 issue: 2 year: 2021 ident: 10.1016/j.simpa.2024.100628_b2 article-title: Damage indices evaluation for one-dimensional guided wave-based structural health monitoring publication-title: Lat. Am. J. Solids Struct. [Internet] – year: 2023 ident: 10.1016/j.simpa.2024.100628_b8 article-title: Damage assessment of a physical beam reinforced with masses - dataset – start-page: 643 year: 2009 ident: 10.1016/j.simpa.2024.100628_b10 article-title: A review of damage detection and health monitoring of mechanical systems from changes in the measurement of linear and non-linear vibrations – volume: 23 start-page: 8824 year: 2023 ident: 10.1016/j.simpa.2024.100628_b7 article-title: Deep learning for structural health monitoring: Data, algorithms, applications, challenges, and trends publication-title: Sensors doi: 10.3390/s23218824 – volume: 40 start-page: 415 year: 2018 ident: 10.1016/j.simpa.2024.100628_b14 article-title: Spectral element-based method for a one-dimensional damaged structure with distributed random properties publication-title: J. Braz. Soc. Mech. Sci. Eng. doi: 10.1007/s40430-018-1330-2 |
| SSID | ssj0002511168 |
| Score | 2.25833 |
| Snippet | The PyMLDA-Machine Learning for Damage Assessment is an open-source software developed for damage pattern recognition, detection, and quantification that uses... |
| SourceID | unpaywall crossref elsevier |
| SourceType | Open Access Repository Index Database Publisher |
| StartPage | 100628 |
| SubjectTerms | Damage detection Damage Index Raw signal Structural health monitoring Vibration signal |
| Title | PyMLDA: A Python open-source code for Machine Learning Damage Assessment |
| URI | https://dx.doi.org/10.1016/j.simpa.2024.100628 https://doi.org/10.1016/j.simpa.2024.100628 |
| UnpaywallVersion | publishedVersion |
| Volume | 19 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2665-9638 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002511168 issn: 2665-9638 databaseCode: M~E dateStart: 20190101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 2665-9638 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002511168 issn: 2665-9638 databaseCode: AKRWK dateStart: 20190901 isFulltext: true providerName: Library Specific Holdings |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NS8NAEF1se_DkBypWtOzBo1vqJjvJegu2pYgpPViop5DdJILWtNgUqQd_uzv5KCoqlVwzZJmZZN5m570h5Dwxmx6uzPvtCGEx1CthLkDInCgSltDKcQRyh_0hDMb2zURMSp1t5MJ8Ob_P-7AWSBc0Gzlu44k-cLdGGiAM8K6Txng48u5xfByAYJhKla7Qz5a_1Z7tZToPV6_hdPqptvR3C9L2IpckxJaSp_YyU2399k2wccNl75GdEmNSr0iKfbIVpwdkMFr5t13vinp0tELBAIqDs1jx854is50a_Er9vLkypqXu6gPths_mk0O9tYLnIRn3e3fXA1aOUWCaSzdjUicdZVACXqA7SnBpAgFKxWZ1SRxeykjaTmigI0TYIyO1pcDl0tahFgaAW0ekns7S-JhQWzugBY_cyDUmiYVydVxJsIVyYxFBk1xUDg7mhVpGULWRPQa5SwJ0SVC4pEmgCkJQFvyikAfGn38bsnXINnnQyT_vPyX17GUZnxm8kakWqfnvvVaZbR_qsNDU |
| linkProvider | Unpaywall |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NS8NAEF20PXjyAxUVlT14dEvdZCe73oK1FLGlBwv1FHY3iaA1Fpsi9de7k4-iolLJNUOWmUnmbXbeG0LOUrfp4ca934EQHkO9EiYBNAviWHjCmiAQyB3uD6A38m_GYlzpbCMX5sv5fdGHNUO6oNvIcR9P9IHLddIE4YB3gzRHg2F4j-PjAATDVKp1hX62_K32bMyzqV686cnkU23pbpWk7VkhSYgtJU-teW5a9v2bYOOKy94mmxXGpGGZFDtkLcl2SW-46N92wksa0uECBQMoDs5i5c97isx26vAr7RfNlQmtdFcfaEc_u08ODZcKnntk1L2-u-qxaowCs1zJnCmbto1DCXiBbRvBlQsEGJO41aWJvlCx8gPtoCPE2COjrGdAcuVbbYUD4N4-aWQvWXJAqG8DsILHMpbOJPVQro4bBb4wMhExHJLz2sHRtFTLiOo2sseocEmELolKlxwSqIMQVQW_LOSR8-ffhmwZslUedPTP-49JI3-dJycOb-TmtMqzDwpSz6M |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=PyMLDA%3A+A+Python+open-source+code+for+Machine+Learning+Damage+Assessment&rft.jtitle=Software+impacts&rft.au=Coelho%2C+Jefferson+da+Silva&rft.au=Machado%2C+Marcela+Rodrigues&rft.au=de+Sousa%2C+Amanda+Aryda+S.R.&rft.date=2024-03-01&rft.pub=Elsevier+B.V&rft.issn=2665-9638&rft.eissn=2665-9638&rft.volume=19&rft_id=info:doi/10.1016%2Fj.simpa.2024.100628&rft.externalDocID=S2665963824000162 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2665-9638&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2665-9638&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2665-9638&client=summon |