Trigonometrically-Fitted Methods: A Review

Numerical methods for the solution of ordinary differential equations are based on polynomial interpolation. In 1952, Brock and Murray have suggested exponentials for the case that the solution is known to be of exponential type. In 1961, Gautschi came up with the idea of using information on the fr...

Full description

Saved in:
Bibliographic Details
Published inMathematics (Basel) Vol. 7; no. 12; p. 1197
Main Authors Chun, Changbum, Neta, Beny
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 01.12.2019
Subjects
Online AccessGet full text
ISSN2227-7390
2227-7390
DOI10.3390/math7121197

Cover

Abstract Numerical methods for the solution of ordinary differential equations are based on polynomial interpolation. In 1952, Brock and Murray have suggested exponentials for the case that the solution is known to be of exponential type. In 1961, Gautschi came up with the idea of using information on the frequency of a solution to modify linear multistep methods by allowing the coefficients to depend on the frequency. Thus the methods integrate exactly appropriate trigonometric polynomials. This was done for both first order systems and second order initial value problems. Gautschi concluded that “the error reduction is not very substantial unless” the frequency estimate is close enough. As a result, no other work was done in this direction until 1984 when Neta and Ford showed that “Nyström’s and Milne-Simpson’s type methods for systems of first order initial value problems are not sensitive to changes in frequency”. This opened the flood gates and since then there have been many papers on the subject.
AbstractList Numerical methods for the solution of ordinary differential equations are based on polynomial interpolation. In 1952, Brock and Murray have suggested exponentials for the case that the solution is known to be of exponential type. In 1961, Gautschi came up with the idea of using information on the frequency of a solution to modify linear multistep methods by allowing the coefficients to depend on the frequency. Thus the methods integrate exactly appropriate trigonometric polynomials. This was done for both first order systems and second order initial value problems. Gautschi concluded that “the error reduction is not very substantial unless” the frequency estimate is close enough. As a result, no other work was done in this direction until 1984 when Neta and Ford showed that “Nyström’s and Milne-Simpson’s type methods for systems of first order initial value problems are not sensitive to changes in frequency”. This opened the flood gates and since then there have been many papers on the subject.
Author Neta, Beny
Chun, Changbum
Author_xml – sequence: 1
  givenname: Changbum
  surname: Chun
  fullname: Chun, Changbum
– sequence: 2
  givenname: Beny
  orcidid: 0000-0002-7417-7496
  surname: Neta
  fullname: Neta, Beny
BookMark eNqFj0FLAzEQhYNUsNae_AML3tTVTbJJNt5KsSpUBKnnZTabtSnbTU3Slv57U-qhiOBcZhi-mffeOep1ttMIXeLsjlKZ3S8hzAUmGEtxgvqEEJGKuO8dzWdo6P0iiyUxLXLZR9czZz5tZ5c6OKOgbXfpxISg6-RVh7mt_UMySt71xujtBTptoPV6-NMH6GPyOBs_p9O3p5fxaJoqIouQFoI0tQAtJRYsFxnDwJXaqwPoSleE5ZIC45zUvMo5BZ5TqUE1kNWMMEoH6Pbwd92tYLeNnsqVM0twuxJn5T5qeRQ14lcHfOXs11r7UC7s2nXRYRmlCs5wEVUG6OZAKWe9d7r55yf-RSsTIBjbBQem_fPmG4Q-cj4
CitedBy_id crossref_primary_10_3390_axioms13080514
crossref_primary_10_3390_math12040504
crossref_primary_10_3390_sym16050508
crossref_primary_10_3390_math12233652
crossref_primary_10_3390_math9080806
crossref_primary_10_3390_math7121197
crossref_primary_10_3390_axioms13090649
Cites_doi 10.1017/S0305004100034526
10.1214/aoms/1177729955
10.1093/imamat/18.2.189
10.1016/0377-0427(86)90028-2
10.1086/115629
10.1016/0168-9274(86)90016-4
10.1016/j.cpc.2008.07.013
10.3390/math7121197
10.1016/j.cam.2005.03.035
10.1016/0377-0427(86)90033-6
10.1002/zamm.19620420906
10.1016/0010-4655(78)90047-4
10.1007/BF01952791
10.1080/00207169108803985
10.1137/S0036142995286763
10.1098/rspa.1993.0061
10.1137/0724041
10.1007/BF01386037
10.1093/imanum/7.4.407
10.1016/j.cam.2009.08.103
10.1007/s11075-007-9084-4
10.1016/j.cam.2005.04.044
10.1016/j.camwa.2005.11.041
10.2307/2002545
10.1016/0377-0427(92)90224-L
10.1098/rspa.2003.1210
10.1093/imanum/drl040
10.2307/2008328
10.1016/S0898-1221(03)80005-6
10.1142/S0129183101002292
10.1007/BF03546251
10.1007/BF01601084
10.1016/j.apnum.2008.03.018
10.1007/BF02163234
10.1007/BF01934522
10.1016/0377-0427(84)90066-9
10.1002/nme.1620150506
10.1016/S0010-4655(01)00285-5
10.1016/j.cpc.2007.07.007
10.1016/j.cam.2014.09.008
10.1007/BF02247883
10.1007/BF01937488
10.1080/00207168608803532
10.2514/6.1998-4577
ContentType Journal Article
Copyright 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
3V.
7SC
7TB
7XB
8AL
8FD
8FE
8FG
8FK
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
FR3
GNUQQ
HCIFZ
JQ2
K7-
KR7
L6V
L7M
L~C
L~D
M0N
M7S
P62
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
Q9U
ADTOC
UNPAY
DOI 10.3390/math7121197
DatabaseName CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
Mechanical & Transportation Engineering Abstracts
ProQuest Central (purchase pre-March 2016)
Computing Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Advanced Technologies & Aerospace Database
ProQuest Central Essentials
ProQuest Central
Technology Collection (via ProQuest SciTech Premium Collection)
ProQuest One Community College
ProQuest Central
Engineering Research Database
ProQuest Central Student
SciTech Premium Collection (via ProQuest)
ProQuest Computer Science Collection
Computer Science Database
Civil Engineering Abstracts
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Computing Database
Engineering Database (Proquest)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
ProQuest Central Basic
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
Publicly Available Content Database
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies Database with Aerospace
Engineering Collection
Advanced Technologies & Aerospace Collection
Civil Engineering Abstracts
ProQuest Computing
Engineering Database
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
DatabaseTitleList CrossRef
Publicly Available Content Database
Database_xml – sequence: 1
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 2227-7390
ExternalDocumentID 10.3390/math7121197
10_3390_math7121197
GroupedDBID -~X
5VS
85S
8FE
8FG
AADQD
AAFWJ
AAYXX
ABDBF
ABJCF
ABPPZ
ABUWG
ACIPV
ACIWK
ADBBV
AFKRA
AFPKN
AFZYC
ALMA_UNASSIGNED_HOLDINGS
AMVHM
ARAPS
AZQEC
BCNDV
BENPR
BGLVJ
BPHCQ
CCPQU
CITATION
DWQXO
GNUQQ
GROUPED_DOAJ
HCIFZ
IAO
K6V
K7-
KQ8
L6V
M7S
MODMG
M~E
OK1
PHGZM
PHGZT
PIMPY
PQGLB
PQQKQ
PROAC
PTHSS
RNS
3V.
7SC
7TB
7XB
8AL
8FD
8FK
FR3
JQ2
KR7
L7M
L~C
L~D
M0N
P62
PKEHL
PQEST
PQUKI
PRINS
Q9U
ADTOC
IPNFZ
ITC
RIG
UNPAY
ID FETCH-LOGICAL-c298t-872fd7ae9917547051a6cc7390aaebeb25493a5662d6b463a6439eacfa0d52533
IEDL.DBID UNPAY
ISSN 2227-7390
IngestDate Sun Oct 26 04:16:48 EDT 2025
Fri Jul 25 12:10:00 EDT 2025
Thu Oct 16 04:28:33 EDT 2025
Thu Apr 24 23:14:53 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 12
Language English
License cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c298t-872fd7ae9917547051a6cc7390aaebeb25493a5662d6b463a6439eacfa0d52533
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-7417-7496
OpenAccessLink https://proxy.k.utb.cz/login?url=https://www.mdpi.com/2227-7390/7/12/1197/pdf?version=1576219730
PQID 2548651846
PQPubID 2032364
ParticipantIDs unpaywall_primary_10_3390_math7121197
proquest_journals_2548651846
crossref_primary_10_3390_math7121197
crossref_citationtrail_10_3390_math7121197
PublicationCentury 2000
PublicationDate 2019-12-01
PublicationDateYYYYMMDD 2019-12-01
PublicationDate_xml – month: 12
  year: 2019
  text: 2019-12-01
  day: 01
PublicationDecade 2010
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Mathematics (Basel)
PublicationYear 2019
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Lambert (ref_17) 1962; 13
Wang (ref_42) 2005; 461
Lambert (ref_5) 1976; 18
Neta (ref_34) 2002; 50
(ref_50) 2009; 233
Twizell (ref_9) 1986; 15
ref_51
Ramos (ref_21) 2007; 27
Simos (ref_41) 1993; 441
Demba (ref_49) 2016; 109
Sommeijer (ref_27) 1987; 7
Chawla (ref_46) 1984; 24
Franco (ref_20) 2016; 273
(ref_35) 1998; 35
Obrechkoff (ref_15) 1942; 65
Sommeijer (ref_39) 1986; 2
Neta (ref_43) 2007; 54
Simos (ref_52) 2004; 460
Simos (ref_13) 1990; 45
Simos (ref_14) 2001; 12
(ref_19) 2007; 44
Simos (ref_11) 1991; 39
Brock (ref_23) 1952; 6
Tsitouras (ref_47) 2003; 45
Ramos (ref_26) 2015; 277
Franco (ref_45) 2006; 187
Gautschi (ref_1) 1961; 3
Salzer (ref_25) 1962; 42
Stiefel (ref_30) 1969; 13
Ananthakrishnaiah (ref_18) 1987; 49
ref_31
Achar (ref_16) 2011; 218
Greenwood (ref_22) 1949; 20
Ramos (ref_36) 2008; 178
Fang (ref_48) 2008; 179
Brusa (ref_6) 1980; 15
Neta (ref_28) 1989; 31
Neta (ref_38) 1986; 20
Thomas (ref_8) 1984; 24
Raptis (ref_29) 1978; 14
(ref_44) 2009; 59
Sommeijer (ref_7) 1987; 24
Simos (ref_33) 2001; 140
ref_40
ref_3
(ref_37) 2006; 192
Neta (ref_2) 1984; 10
Raptis (ref_10) 1991; 31
Dennis (ref_24) 1960; 56
Quinlan (ref_32) 1990; 100
Simos (ref_12) 1992; 39
Chawla (ref_4) 1986; 15
References_xml – volume: 56
  start-page: 240
  year: 1960
  ident: ref_24
  article-title: The numerical integration of ordinary differential equations possessing exponential type solutions
  publication-title: Math. Proc. Camb. Phil. Soc.
  doi: 10.1017/S0305004100034526
– volume: 109
  start-page: 207
  year: 2016
  ident: ref_49
  article-title: New explicit trigonometrically-fitted fourth-order and fifth-order Runge-Kutta-Nyström methods for periodic initial value problems
  publication-title: Int. J. Pure Appl. Math.
– volume: 20
  start-page: 608
  year: 1949
  ident: ref_22
  article-title: Numerical integration of linear sums of exponential functions
  publication-title: Ann. Math. Stat.
  doi: 10.1214/aoms/1177729955
– volume: 18
  start-page: 189
  year: 1976
  ident: ref_5
  article-title: Symmetric multistep methods for periodic initial value problems
  publication-title: J. Inst. Math. Appl.
  doi: 10.1093/imamat/18.2.189
– volume: 15
  start-page: 213
  year: 1986
  ident: ref_4
  article-title: Families of two-step fourth order P-stable methods for second order differential equations
  publication-title: J. Comput. Appl. Math.
  doi: 10.1016/0377-0427(86)90028-2
– volume: 100
  start-page: 1694
  year: 1990
  ident: ref_32
  article-title: Symmetric multistep methods for the numerical integration of planetary orbits
  publication-title: Astronom. J.
  doi: 10.1086/115629
– volume: 2
  start-page: 69
  year: 1986
  ident: ref_39
  article-title: Symmetric linear multistep methods for second-order differential equations with periodic solutions
  publication-title: Appl. Numer. Math.
  doi: 10.1016/0168-9274(86)90016-4
– volume: 179
  start-page: 801
  year: 2008
  ident: ref_48
  article-title: Trigonometrically fitted explicit Numerov-type method for periodic IVPs with two frequencies
  publication-title: Comput. Phys. Commun.
  doi: 10.1016/j.cpc.2008.07.013
– ident: ref_51
  doi: 10.3390/math7121197
– volume: 187
  start-page: 41
  year: 2006
  ident: ref_45
  article-title: A class of explicit two-step hybrid methods for second-order IVPs
  publication-title: J. Comput. Appl. Math.
  doi: 10.1016/j.cam.2005.03.035
– volume: 15
  start-page: 261
  year: 1986
  ident: ref_9
  article-title: Phase-lag analysis for a family of two-step methods for second order periodic initial value problems
  publication-title: J. Comput. Appl. Math.
  doi: 10.1016/0377-0427(86)90033-6
– volume: 42
  start-page: 403
  year: 1962
  ident: ref_25
  article-title: Trigonometric interpolation and predictor-corrector formulas for numerical integration
  publication-title: ZAMM
  doi: 10.1002/zamm.19620420906
– volume: 14
  start-page: 1
  year: 1978
  ident: ref_29
  article-title: Exponential-fitting methods for the numerical solution of the Schrödinger equation
  publication-title: Comput. Phys. Commun.
  doi: 10.1016/0010-4655(78)90047-4
– volume: 31
  start-page: 160
  year: 1991
  ident: ref_10
  article-title: A four-step phase-fitted method for the numerical integration of second order initial-value problems
  publication-title: BIT
  doi: 10.1007/BF01952791
– volume: 39
  start-page: 135
  year: 1991
  ident: ref_11
  article-title: A two-step method with phase-lag of order infinity for the numerical integration of second order periodic initial-value problem
  publication-title: Int. J. Comput. Math.
  doi: 10.1080/00207169108803985
– ident: ref_31
– volume: 35
  start-page: 1684
  year: 1998
  ident: ref_35
  article-title: A general procedure for the adaptation of multistep algorithms to the integration of oscillatory problems
  publication-title: SIAM J. Numer. Anal.
  doi: 10.1137/S0036142995286763
– volume: 441
  start-page: 283
  year: 1993
  ident: ref_41
  article-title: A P-stable complete in phase Obrechkoff trigonometric fitted method for periodic initial-value problems
  publication-title: Proc. R. Soc. Lond. A
  doi: 10.1098/rspa.1993.0061
– volume: 24
  start-page: 595
  year: 1987
  ident: ref_7
  article-title: Explicit Runge-Kutta-Nyström methods with reduced phase errors for computing oscillating solutions
  publication-title: SIAM J. Numer. Anal.
  doi: 10.1137/0724041
– volume: 3
  start-page: 381
  year: 1961
  ident: ref_1
  article-title: Numerical integration of ordinary differential equations based on trigonometric polynomials
  publication-title: Numer. Math.
  doi: 10.1007/BF01386037
– volume: 7
  start-page: 407
  year: 1987
  ident: ref_27
  article-title: Predictor-corrector methods for periodic second-order initial-value problems
  publication-title: IMA J. Numer. Anal.
  doi: 10.1093/imanum/7.4.407
– volume: 233
  start-page: 969
  year: 2009
  ident: ref_50
  article-title: Trigonometric polynomial or exponential fitting approach?
  publication-title: J. Comput. Appl. Math.
  doi: 10.1016/j.cam.2009.08.103
– volume: 44
  start-page: 115
  year: 2007
  ident: ref_19
  article-title: P-stable Obrechkoff methods of arbitrary order for second-order differential equations
  publication-title: Numer. Algor.
  doi: 10.1007/s11075-007-9084-4
– volume: 65
  start-page: 191
  year: 1942
  ident: ref_15
  article-title: On mechanical quadrature (Bulgarian, French summary)
  publication-title: Spis. Bulgar. Akad. Nauk
– volume: 192
  start-page: 100
  year: 2006
  ident: ref_37
  article-title: Exponential fitting BDF algorithms: Explicit and implicit 0-stable methods
  publication-title: J. Comput. Math. Anal.
  doi: 10.1016/j.cam.2005.04.044
– volume: 54
  start-page: 117
  year: 2007
  ident: ref_43
  article-title: P-stable high-order super-implicit and Obrechkoff methods for periodic initial value problems
  publication-title: Comput. Math. Appl.
  doi: 10.1016/j.camwa.2005.11.041
– volume: 218
  start-page: 2237
  year: 2011
  ident: ref_16
  article-title: Symmetric multistep Obrechkoff methods with zero phase-lag for periodic initial value problems of second order differential equations
  publication-title: Appl. Math. Comput.
– volume: 6
  start-page: 63
  year: 1952
  ident: ref_23
  article-title: The use of exponential sums in step by step integration
  publication-title: Math. Tables Aids Comput.
  doi: 10.2307/2002545
– volume: 39
  start-page: 89
  year: 1992
  ident: ref_12
  article-title: Explicit two-step methods with minimal phase-lag for the numerical integration of special second-order initial-value problems and their application to the one-dimensional Schrödinger equation
  publication-title: J. Comput. Appl. Math.
  doi: 10.1016/0377-0427(92)90224-L
– volume: 273
  start-page: 493
  year: 2016
  ident: ref_20
  article-title: Explicit exponentially fitted two-step hybrid methods of high order for second-order oscillatory IVPs
  publication-title: Appl. Math. Comput.
– volume: 460
  start-page: 561
  year: 2004
  ident: ref_52
  article-title: Controlling the error growth in long-term numerical integration of perturbed oscillations in one or several frequencies
  publication-title: Proc. Math. Phys. Eng. Sci.
  doi: 10.1098/rspa.2003.1210
– volume: 27
  start-page: 798
  year: 2007
  ident: ref_21
  article-title: A family of A-stable Runge-Kutta collocation methods of higher order for initial value problems
  publication-title: IMA J. Numer. Anal.
  doi: 10.1093/imanum/drl040
– volume: 49
  start-page: 553
  year: 1987
  ident: ref_18
  article-title: P-stable Obrechkoff methods with minimal phase-lag for periodic initial-value problems
  publication-title: Math. Comput.
  doi: 10.2307/2008328
– volume: 31
  start-page: 161
  year: 1989
  ident: ref_28
  article-title: Special methods for problems whose oscillatory solution is damped
  publication-title: Appl. Math. Comput.
– volume: 45
  start-page: 37
  year: 2003
  ident: ref_47
  article-title: Explicit Numerov type methods with reduced number of stages
  publication-title: Comput. Math. Appl.
  doi: 10.1016/S0898-1221(03)80005-6
– ident: ref_3
– volume: 12
  start-page: 1035
  year: 2001
  ident: ref_14
  article-title: A symmetric high order method with minimal phase-lag for the numerical solution of the Schrödinger equation
  publication-title: Int. J. Mod. Phys. C
  doi: 10.1142/S0129183101002292
– volume: 50
  start-page: 255
  year: 2002
  ident: ref_34
  article-title: A New Scheme for Trajectory Propagation
  publication-title: J. Astro. Sci.
  doi: 10.1007/BF03546251
– volume: 461
  start-page: 1639
  year: 2005
  ident: ref_42
  article-title: An improved trigonometrically fitted P-stable Obrechkoff method for periodic initial-value problems
  publication-title: Proc. Math. Phys. Eng. Sci.
– volume: 13
  start-page: 223
  year: 1962
  ident: ref_17
  article-title: On the solution of y’ = f(x,y) by a class of high accuracy difference formulae of low order
  publication-title: Z. Angew. Math. Phys.
  doi: 10.1007/BF01601084
– volume: 59
  start-page: 815
  year: 2009
  ident: ref_44
  article-title: Exponentially-fitted Obrechkoff methods for second-order differential equations
  publication-title: Appl. Numer. Math.
  doi: 10.1016/j.apnum.2008.03.018
– volume: 13
  start-page: 154
  year: 1969
  ident: ref_30
  article-title: Stabilization of Cowell’s methods
  publication-title: Numer. Math.
  doi: 10.1007/BF02163234
– volume: 24
  start-page: 117
  year: 1984
  ident: ref_46
  article-title: Numerov made explicit has better stability
  publication-title: BIT
  doi: 10.1007/BF01934522
– volume: 10
  start-page: 33
  year: 1984
  ident: ref_2
  article-title: Families of methods for ordinary differential equations based on trigonometric polynomials
  publication-title: J. Comput. Appl. Math.
  doi: 10.1016/0377-0427(84)90066-9
– volume: 15
  start-page: 685
  year: 1980
  ident: ref_6
  article-title: A one-step method for the direct integration of structural dynamic equations
  publication-title: Internat. J. Numer. Meth. Engng.
  doi: 10.1002/nme.1620150506
– volume: 140
  start-page: 358
  year: 2001
  ident: ref_33
  article-title: An exponentially-fitted high order method for long-term integration of periodic initial-value problems
  publication-title: Comput. Phys. Comm.
  doi: 10.1016/S0010-4655(01)00285-5
– volume: 178
  start-page: 15
  year: 2008
  ident: ref_36
  article-title: Exponential fitting BDF-Runge-Kutta algorithms
  publication-title: Comput. Phys. Commun.
  doi: 10.1016/j.cpc.2007.07.007
– volume: 277
  start-page: 94
  year: 2015
  ident: ref_26
  article-title: On the choice of the frequency in trigonometrically-fitted methods for periodic problems
  publication-title: J. Comput. Appl. Math.
  doi: 10.1016/j.cam.2014.09.008
– volume: 45
  start-page: 175
  year: 1990
  ident: ref_13
  article-title: Numerov-type methods with minimal phase-lag for the numerical integration of the one-dimensional Schrödinger equation
  publication-title: Computing
  doi: 10.1007/BF02247883
– volume: 24
  start-page: 225
  year: 1984
  ident: ref_8
  article-title: Phase properties of high order, almost P-stable formulae
  publication-title: BIT
  doi: 10.1007/BF01937488
– volume: 20
  start-page: 67
  year: 1986
  ident: ref_38
  article-title: Families of Backward Differentiation Methods based on Trigonometric Polynomials
  publication-title: Int. J. Comput. Math.
  doi: 10.1080/00207168608803532
– ident: ref_40
  doi: 10.2514/6.1998-4577
SSID ssj0000913849
Score 2.134273
SecondaryResourceType review_article
Snippet Numerical methods for the solution of ordinary differential equations are based on polynomial interpolation. In 1952, Brock and Murray have suggested...
SourceID unpaywall
proquest
crossref
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
StartPage 1197
SubjectTerms Algebra
Boundary value problems
Differential equations
Error reduction
Floodgates
Interpolation
Mathematics
Methods
Numerical methods
Ordinary differential equations
Polynomials
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LS8NAEB5qelAP4hOrVXLQS2FpN69NBJEqDUVoEWmht7CPFIWQVpsi_ffO5tFWkN6XZfkmmflmH98HcCcVRxpCFcHiaxOHCkGE7DAy5Y4ub66UxQXZodcfO68Td1KDYfUWRl-rrHJinqjVTOo98jY2Mr7nYj_iPc2_iHaN0qerlYUGL60V1GMuMbYHdUsrYxlQf-4N397Xuy5aBdN3guKhno39fht54QfLdc7Y39K04Zv7y3TOVz88SbZKT3gMRyVnNLtFkE-gFqencDhYC64uzqA1wqXq9wnaIAthT1Yk_MyQTZqD3CJ68WB2zeIc4BzGYW_00ielDQKRVuBnmK-sqWI8RibHXIfhX8Q9KRkunnMMgdAtns2RllnKE4gw1yQD8-mUd5RrIZ27ACOdpfElmEJR4dvYMooAR7I4oC7rcEFjJqktAtqAVoVAJEuNcG1VkUTYK2i4oi24GhjpavC8kMb4f1izgjIq_49FtIlmA-7X8O6a5mr3NNdwgFQmKC6aNMHIvpfxDdKFTNyW38AvIYm-2A
  priority: 102
  providerName: ProQuest
Title Trigonometrically-Fitted Methods: A Review
URI https://www.proquest.com/docview/2548651846
https://www.mdpi.com/2227-7390/7/12/1197/pdf?version=1576219730
UnpaywallVersion publishedVersion
Volume 7
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 2227-7390
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000913849
  issn: 2227-7390
  databaseCode: KQ8
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: Directory of Open Access Journals (DOAJ)
  customDbUrl:
  eissn: 2227-7390
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000913849
  issn: 2227-7390
  databaseCode: DOA
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVEBS
  databaseName: EBSCOhost Academic Search Ultimate
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 2227-7390
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000913849
  issn: 2227-7390
  databaseCode: ABDBF
  dateStart: 20170101
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVEBS
  databaseName: EBSCOhost Mathematics Source - trial do 30.11.2025
  customDbUrl:
  eissn: 2227-7390
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913849
  issn: 2227-7390
  databaseCode: AMVHM
  dateStart: 20170101
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/mathematics-source
  providerName: EBSCOhost
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources (selected full-text only)
  customDbUrl:
  eissn: 2227-7390
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000913849
  issn: 2227-7390
  databaseCode: M~E
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 2227-7390
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000913849
  issn: 2227-7390
  databaseCode: BENPR
  dateStart: 20130301
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 2227-7390
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000913849
  issn: 2227-7390
  databaseCode: 8FG
  dateStart: 20130301
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1NT8JAEJ0IHNSD30YUmx70QrJAW9qlXgwaKjGBEAMJnurutkRiU4ktGvz1zvYD0Rhj4n3a7PbN7rzXnZ0BOBMeQxqieQSDr0GaGueEiwYlE9aU4c0UIk2Q7VvdUfN2bI6zPqdRllaJUnyabNLyniahqMrrtK7pdXniVZ95k8vX7FeShmQZVxw6aQFKlolkvAilUX_Qvpct5fKH01t5hnwNksBHmhQ1o1_j0Ce5XJ-HM7Z4Y0GwEmecbXjIR5imlzzV5jGvifdvxRv_MYUd2Mo4qNpOnWYX1vxwDzZ7ywKu0T5Uh6ja5X0H2XALYQwWxJnGyE7VXtJyOrpQ22p6rnAAI6czvO6SrK0CEbrdinH_0yceZT4yQ2o2Ka5KZgkhx8gYQsqlZDQY0jzdszgixiRpwf15whqeqSM9PIRi-Bz6R6ByT-MtAyUot9GS-jZOp8G45lOhGdzWylDNP7IrsprjsvVF4KL2kIi4K4iU0XNy41laauNns0qOlputt8jFMbcsE9WqVYbzJYK_veb4j3YnsIEcyU4zWCpQjF_m_inykJgrUGg5NwqUrjr9wZ2SqHkl878P9onZ8Q
linkProvider Unpaywall
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LTwIxEG4IHNCD8RlR1D3IhaSBfXZrQgwqBOQRYyDhtrbdJZpsFnSXEP6cv83pPgAT441706RfpzPf13ZmELoVLgMaoroYgq-ODZVzzEWd4CkzZHgzhUg-yA6tzth4npiTHPrOcmHkt8rMJ8aO2p0JeUdeAyFjWyboEet-_oll1yj5upq10GBpawW3EZcYSxM7et5qCRIubHSfYL8rmtZujR47OO0ygIVG7QjcgTZ1CfOAKBHTIGCkzBKC6LTOGKyQSwWlM2A9mmtxWACTMRzc1ZTVXVMz5YUohICCoRsUxF_hoTV8eV3f8siqm7ZBk8RAHeasAQ99J3FdNfI7FG74bXERzNlqyXx_K9S1D9FBylGVZmJURyjnBcdof7Au8BqeoOoIoJH5ELIhF2yzv8LtjwjYqzKIW1KHd0pTSd4dTtF4J4CcoXwwC7xzpHBX5bYOEpVTGEk8qpqkzrjqEaHqnKolVM0QcERak1y2xvAd0CYSLmcLrhJYVjZ4npTi-HtYOYPSSc9j6Gysp4Qqa3j_m-bi_2luULEzGvSdfnfYu0R7QKNo8smljPLR18K7AqoS8evUHhT0tmsT_AFCBvtG
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LS8NAEB5KBR8H8YnVqjnYSyG0eW4iiBRrbK0tHlroLe5uEhRCWk1K6V_z1zmbR1tBvPW-LMm3X2a-2cwD4IZ7FGWI4snofDVZVxiTGW8SOaC6cG8G51mC7MDsjPTnsTEuwXdRCyPSKgubmBpqb8LFHXkDAxnLNDAeMRtBnhbx2nbup5-ymCAl_rQW4zQyivT8xRzDt_iu28azrqmq8zh86Mj5hAGZq7aVoClQA49QH0USMXSCBKUm50Szm5Ti2zERPWkUFY_qmQwfngr_jaYqoE3PUA1xGYrmf4uILu6iSt15Wt7viH6blm5nJYEa7thABfpO0o5q5LcTXCnbnVk0pYs5DcM1J-ccwH6uTqVWRqdDKPnREez1l61d42OoDxEIUQkhRnHhAYcL2flIULdK_XQYdXwrtaTsj8MJjDYCxymUo0nkn4HEPIVZGganzMaVxLcVgzQpU3zCFY3ZSgXqBQIuz7uRi6EYoYtRiYDLXYOrgpwqFk-zJhx_L6sWULr5lxi7K95UoLaE979tzv_f5hq2kXjuS3fQu4Bd1E92lt1ShXLyNfMvUaMk7ColgwRvm2bfD2H4-OA
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1NS8NAEB20PagHv8VqlRz0UljTzdc2XqSIpQgtHlqop7i7SbAYYjGpUn-9s82mVhERvE_Cbt7sznvZ2RmAMxlypCE0JBh8beJQIYiQTUZi7qjw5kpZJMj2ve7QuR25I93nNNNplSjFx_NNWt3TJAxVuclMapnqxMuchPHVq_6VRJEs44pDJ12FquciGa9Addi_a9-rlnLlw8WtPFu9BkngI5sXNWNf49AnuVybphM-e-NJshRnOlvwUI6wSC95upjm4kK-fyve-I8pbMOm5qBGu3CaHViJ0l3Y6C0KuGZ70Bigalf3HVTDLYQxmZHOOEd2avTmLaezS6NtFOcK-zDs3Ayuu0S3VSDS8ls57n9WHDIeITNkrsNwVXJPSjVGzhFSoSSjzZHmWaEnEDGuSAvuzzFvhq6F9PAAKulzGh2CIUIqWjZKUOGjJYt8nE6TCxoxSW3h0xo0yo8cSF1zXLW-SALUHgqRYAmRGnpOaTwpSm38bFYv0Qr0essCHHPLc1GtejU4XyD422uO_mh3DOvIkfwig6UOlfxlGp0gD8nFqfa1Dxnj1nw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Trigonometrically-Fitted+Methods%3A+A+Review&rft.jtitle=Mathematics+%28Basel%29&rft.au=Chun%2C+Changbum&rft.au=Neta%2C+Beny&rft.date=2019-12-01&rft.issn=2227-7390&rft.eissn=2227-7390&rft.volume=7&rft.issue=12&rft.spage=1197&rft_id=info:doi/10.3390%2Fmath7121197&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_math7121197
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2227-7390&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2227-7390&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2227-7390&client=summon