A New Belt Ore Image Segmentation Method Based on the Convolutional Neural Network and the Image-Processing Technology

In the field of mineral processing, an accurate image segmentation method is crucial for measuring the size distribution of run-of-mine ore on the conveyor belts in real time0The image-based measurement is considered to be real time, on-line, inexpensive, and non-intrusive. In this paper, a new belt...

Full description

Saved in:
Bibliographic Details
Published inMinerals (Basel) Vol. 10; no. 12; p. 1115
Main Authors Ma, Xiqi, Zhang, Pengyu, Man, Xiaofei, Ou, Leming
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 01.12.2020
Subjects
Online AccessGet full text
ISSN2075-163X
2075-163X
DOI10.3390/min10121115

Cover

Abstract In the field of mineral processing, an accurate image segmentation method is crucial for measuring the size distribution of run-of-mine ore on the conveyor belts in real time0The image-based measurement is considered to be real time, on-line, inexpensive, and non-intrusive. In this paper, a new belt ore image segmentation method was proposed based on a convolutional neural network and image processing technology. It consisted of a classification model and two segmentation algorithms. A total of 2880 images were collected as an original dataset from the process control system (PCS). The test images were processed using the proposed method, the PCS system, the coarse image segmentation (CIS) algorithm, and the fine image segmentation (FIS) algorithm, respectively. The segmentation results of each algorithm were compared with those of the manual segmentation. All empty belt images in the test images were accurately identified by our method. The maximum error between the segmentation results of our method and the results of manual segmentation is 5.61%. The proposed method can accurately identify the empty belt images and segment the coarse material images and mixed material images with high accuracy. Notably, it can be used as a brand new algorithm for belt ore image processing.
AbstractList In the field of mineral processing, an accurate image segmentation method is crucial for measuring the size distribution of run-of-mine ore on the conveyor belts in real time0The image-based measurement is considered to be real time, on-line, inexpensive, and non-intrusive. In this paper, a new belt ore image segmentation method was proposed based on a convolutional neural network and image processing technology. It consisted of a classification model and two segmentation algorithms. A total of 2880 images were collected as an original dataset from the process control system (PCS). The test images were processed using the proposed method, the PCS system, the coarse image segmentation (CIS) algorithm, and the fine image segmentation (FIS) algorithm, respectively. The segmentation results of each algorithm were compared with those of the manual segmentation. All empty belt images in the test images were accurately identified by our method. The maximum error between the segmentation results of our method and the results of manual segmentation is 5.61%. The proposed method can accurately identify the empty belt images and segment the coarse material images and mixed material images with high accuracy. Notably, it can be used as a brand new algorithm for belt ore image processing.
Author Ma, Xiqi
Man, Xiaofei
Zhang, Pengyu
Ou, Leming
Author_xml – sequence: 1
  givenname: Xiqi
  orcidid: 0000-0002-9524-4002
  surname: Ma
  fullname: Ma, Xiqi
– sequence: 2
  givenname: Pengyu
  orcidid: 0000-0002-2912-6585
  surname: Zhang
  fullname: Zhang, Pengyu
– sequence: 3
  givenname: Xiaofei
  surname: Man
  fullname: Man, Xiaofei
– sequence: 4
  givenname: Leming
  surname: Ou
  fullname: Ou, Leming
BookMark eNqFkE9PAjEQxRuDiYic_AJNPOpq2213t0cg_iFBMZGDt03ZHZbFpcW2C-Hbu7AejDFxLm8m85uXzDtHHW00IHRJyW0YSnK3LjUllFFKxQnqMhKLgEbhe-dHf4b6zq1IU5KGiWBdtB3gF9jhIVQeTy3g8VoVgN-gWIP2ypdG42fwS5PjoXKQ42b2S8Ajo7emqg97VTUOtT2K3xn7gZXOj9DRK3i1JgPnSl3gGWRLbSpT7C_Q6UJVDvrf2kOzh_vZ6CmYTB_Ho8EkyJhMfJBwnseCzuMkikWSS8W5zGMqOJOZoJKyhCjBI1iIPGEsm0ugMqORIAmROYewh25a21pv1H6nqird2HKt7D6lJD2klv5IrcGvWnxjzWcNzqcrU9vmQ5cyHhNBmBS8oa5bKrPGOQuLfzzpLzor22C9VWX1580Xx6mLOA
CitedBy_id crossref_primary_10_1016_j_measurement_2024_115776
crossref_primary_10_1080_08827508_2022_2047042
crossref_primary_10_1007_s00603_024_03955_x
crossref_primary_10_3390_min12050526
crossref_primary_10_3390_s21082615
crossref_primary_10_1109_TIM_2023_3317480
crossref_primary_10_1016_j_cageo_2023_105455
crossref_primary_10_1016_j_measurement_2023_113628
crossref_primary_10_3390_min11121428
crossref_primary_10_3934_math_20231219
crossref_primary_10_1016_j_apt_2021_08_038
crossref_primary_10_3390_min15020110
crossref_primary_10_1007_s10462_023_10500_9
crossref_primary_10_3390_min13020219
crossref_primary_10_3390_min14020186
crossref_primary_10_3390_min11070736
crossref_primary_10_3390_min12121480
Cites_doi 10.1109/CVPR.2016.90
10.1016/S1474-6670(17)54442-0
10.1680/geot.2008.58.3.227
10.1109/ICRCICN.2018.8718718
10.1016/S0032-5910(97)03405-0
10.1016/j.powtec.2010.09.021
10.1049/el:20064369
10.1080/2151237X.2007.10129236
10.1109/TIP.2007.894239
10.3390/min9090516
10.1117/12.183388
10.1109/AIPR.2010.5759719
10.1016/j.powtec.2011.06.013
10.1016/j.powtec.2008.08.013
10.1016/j.mineng.2006.05.011
10.1088/1757-899X/427/1/012013
10.1016/j.powtec.2014.04.038
10.1109/TASSP.1980.1163426
10.1109/ICICN.2019.8834974
10.1109/CVPR.2015.7298594
10.1016/j.mineng.2005.03.003
10.1109/ICSCCC.2018.8703316
10.1016/j.mineng.2007.04.009
10.1109/CIT.2016.32
10.1109/ISDEA.2014.199
10.1016/j.compag.2008.02.007
10.3390/min10020180
10.1088/1742-6596/887/1/012089
10.1016/j.ijmst.2012.08.026
ContentType Journal Article
Copyright 2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
3V.
7TN
7UA
7WY
7WZ
7XB
87Z
8BQ
8FD
8FE
8FG
8FK
8FL
ABJCF
ABUWG
AFKRA
AZQEC
BENPR
BEZIV
BGLVJ
BHPHI
BKSAR
C1K
CCPQU
D1I
DWQXO
F1W
FR3
FRNLG
F~G
H96
HCIFZ
JG9
K60
K6~
KB.
KR7
L.-
L.G
M0C
PCBAR
PDBOC
PHGZM
PHGZT
PIMPY
PKEHL
PQBIZ
PQBZA
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
ADTOC
UNPAY
DOI 10.3390/min10121115
DatabaseName CrossRef
ProQuest Central (Corporate)
Oceanic Abstracts
Water Resources Abstracts
ProQuest ABI/INFORM Collection
ABI/INFORM Global (PDF only)
ProQuest Central (purchase pre-March 2016)
ABI/INFORM Collection
METADEX
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ABI/INFORM Collection (Alumni Edition)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central
ProQuest Central Essentials
ProQuest Central
Business Premium Collection
Technology Collection (via ProQuest SciTech Premium Collection)
Natural Science Collection
Earth, Atmospheric & Aquatic Science
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Materials Science Collection
ProQuest Central
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Business Premium Collection (Alumni)
ABI/INFORM Global (Corporate)
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
SciTech Premium Collection
Materials Research Database
ProQuest Business Collection (Alumni Edition)
ProQuest Business Collection
Materials Science Database
Civil Engineering Abstracts
ABI/INFORM Professional Advanced
Aquatic Science & Fisheries Abstracts (ASFA) Professional
ABI/INFORM Global
Earth, Atmospheric & Aquatic Science Collection
Materials Science Collection
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Business
ProQuest One Business (Alumni)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
Publicly Available Content Database
Materials Research Database
ProQuest Business Collection (Alumni Edition)
ProQuest Central Essentials
SciTech Premium Collection
ProQuest Central China
ABI/INFORM Complete
Water Resources Abstracts
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
Natural Science Collection
ProQuest Central (New)
Business Premium Collection
ABI/INFORM Global
ProQuest One Academic Eastern Edition
Earth, Atmospheric & Aquatic Science Database
ProQuest Technology Collection
ProQuest Business Collection
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
ABI/INFORM Global (Corporate)
ProQuest One Business
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
Materials Science Collection
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest Central
Earth, Atmospheric & Aquatic Science Collection
ABI/INFORM Professional Advanced
Oceanic Abstracts
ProQuest Central Korea
Materials Science Database
ABI/INFORM Complete (Alumni Edition)
ProQuest Materials Science Collection
Civil Engineering Abstracts
ABI/INFORM Global (Alumni Edition)
ProQuest Central Basic
ProQuest SciTech Collection
METADEX
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
ASFA: Aquatic Sciences and Fisheries Abstracts
Materials Science & Engineering Collection
ProQuest One Business (Alumni)
ProQuest Central (Alumni)
Business Premium Collection (Alumni)
DatabaseTitleList Publicly Available Content Database
CrossRef
Database_xml – sequence: 1
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Geology
EISSN 2075-163X
ExternalDocumentID 10.3390/min10121115
10_3390_min10121115
GroupedDBID 5VS
7WY
8FE
8FG
8FH
8FL
AADQD
AAFWJ
AAHBH
AAYXX
ABDBF
ABJCF
ABUWG
ACUHS
ADBBV
AENEX
AFKRA
AFZYC
ALMA_UNASSIGNED_HOLDINGS
BCNDV
BENPR
BEZIV
BGLVJ
BHPHI
BKSAR
BPHCQ
CCPQU
CITATION
D1I
DWQXO
ESX
FRNLG
HCIFZ
K60
K6~
KB.
KQ8
LK5
M0C
M7R
MODMG
M~E
OK1
PCBAR
PDBOC
PHGZM
PHGZT
PIMPY
PQBIZ
PQBZA
PQGLB
PQQKQ
PROAC
3V.
7TN
7UA
7XB
8BQ
8FD
8FK
AZQEC
C1K
F1W
FR3
H96
JG9
KR7
L.-
L.G
PKEHL
PQEST
PQUKI
PRINS
Q9U
2XV
ADTOC
IAO
IPNFZ
ITC
PUEGO
RIG
UNPAY
ID FETCH-LOGICAL-c298t-844d751b786758d9a449d715429c5191280a546ef5d822cb9e19c1650809d4e3
IEDL.DBID UNPAY
ISSN 2075-163X
IngestDate Wed Oct 01 15:47:45 EDT 2025
Fri Jul 25 11:52:35 EDT 2025
Thu Oct 16 04:38:51 EDT 2025
Thu Apr 24 22:50:34 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 12
Language English
License cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c298t-844d751b786758d9a449d715429c5191280a546ef5d822cb9e19c1650809d4e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-2912-6585
0000-0002-9524-4002
OpenAccessLink https://proxy.k.utb.cz/login?url=https://www.mdpi.com/2075-163X/10/12/1115/pdf?version=1607928526
PQID 2470502954
PQPubID 2032357
ParticipantIDs unpaywall_primary_10_3390_min10121115
proquest_journals_2470502954
crossref_primary_10_3390_min10121115
crossref_citationtrail_10_3390_min10121115
PublicationCentury 2000
PublicationDate 2020-12-01
PublicationDateYYYYMMDD 2020-12-01
PublicationDate_xml – month: 12
  year: 2020
  text: 2020-12-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Minerals (Basel)
PublicationYear 2020
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Ilya (ref_10) 2007; 16
Lin (ref_5) 1993; 10
ref_14
Lange (ref_2) 1988; 21
Fannin (ref_16) 2008; 58
Lien (ref_36) 1994; 33
ref_34
ref_11
ref_32
ref_31
Yen (ref_7) 1998; 98
Miles (ref_9) 2007; 20
ref_19
ref_18
ref_17
Bradley (ref_33) 2007; 12
ref_39
ref_38
Guarnieri (ref_30) 2006; 42
ref_37
Cheng (ref_28) 2017; 887
Ko (ref_3) 2011; 212
Igathinathane (ref_13) 2008; 63
Tessier (ref_1) 2007; 20
Zhang (ref_20) 2012; 22
ref_25
Andersson (ref_12) 2011; 206
ref_24
ref_23
ref_22
Singh (ref_8) 2005; 18
ref_21
Hamzeloo (ref_4) 2014; 261
ref_40
Liao (ref_6) 2009; 189
Krawczykowski (ref_15) 2018; 427
Ataman (ref_35) 1980; 28
ref_29
ref_27
ref_26
References_xml – ident: ref_24
  doi: 10.1109/CVPR.2016.90
– ident: ref_26
– volume: 21
  start-page: 25
  year: 1988
  ident: ref_2
  article-title: Real-time measurement of the size distribution of rocks on a conveyor belt
  publication-title: IFAC Proc. Vol.
  doi: 10.1016/S1474-6670(17)54442-0
– volume: 58
  start-page: 227
  year: 2008
  ident: ref_16
  article-title: Influence of roundness on the void ratio and strength of uniform sand
  publication-title: Géotechnique
  doi: 10.1680/geot.2008.58.3.227
– ident: ref_22
  doi: 10.1109/ICRCICN.2018.8718718
– ident: ref_11
– volume: 98
  start-page: 1
  year: 1998
  ident: ref_7
  article-title: Particle overlap and segregation problems in on-line coarse particle size measurement
  publication-title: Powder Technol.
  doi: 10.1016/S0032-5910(97)03405-0
– volume: 206
  start-page: 218
  year: 2011
  ident: ref_12
  article-title: Minimizing profile error when estimating the sieve-size distribution of iron ore pellets using ordinal logistic regression
  publication-title: Powder Technol.
  doi: 10.1016/j.powtec.2010.09.021
– volume: 42
  start-page: 396
  year: 2006
  ident: ref_30
  article-title: Fast bilateral filter for edge-preserving smoothing
  publication-title: Electron. Lett.
  doi: 10.1049/el:20064369
– volume: 12
  start-page: 13
  year: 2007
  ident: ref_33
  article-title: Adaptive thresholding using the integral image
  publication-title: J. Graph. GPU Game Tools
  doi: 10.1080/2151237X.2007.10129236
– volume: 16
  start-page: 1437
  year: 2007
  ident: ref_10
  article-title: Classification-driven watershed segmentation
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2007.894239
– ident: ref_29
  doi: 10.3390/min9090516
– ident: ref_40
– volume: 33
  start-page: 3733
  year: 1994
  ident: ref_36
  article-title: Efficient implementation of binary morphological image processing
  publication-title: Opt. Eng.
  doi: 10.1117/12.183388
– ident: ref_39
  doi: 10.1109/AIPR.2010.5759719
– volume: 212
  start-page: 359
  year: 2011
  ident: ref_3
  article-title: A neural network-based soft sensor for particle size distribution using image analysis
  publication-title: Powder Technol.
  doi: 10.1016/j.powtec.2011.06.013
– ident: ref_37
– volume: 189
  start-page: 508
  year: 2009
  ident: ref_6
  article-title: On-line automatic optical inspection system for coarse particle size distribution
  publication-title: Powder Technol.
  doi: 10.1016/j.powtec.2008.08.013
– volume: 20
  start-page: 72
  year: 2007
  ident: ref_9
  article-title: Estimation of the size distribution of particles moving on a conveyor belt
  publication-title: Minerals Eng.
  doi: 10.1016/j.mineng.2006.05.011
– ident: ref_18
– volume: 427
  start-page: 1
  year: 2018
  ident: ref_15
  article-title: Application of a vision systems for assessment of particle size and shape for mineral crushing products
  publication-title: IOP Conf. Ser. Mater. Sci. Eng.
  doi: 10.1088/1757-899X/427/1/012013
– ident: ref_23
– volume: 261
  start-page: 185
  year: 2014
  ident: ref_4
  article-title: Estimation of particle size distribution on an industrial conveyor belt using image analysis and neural networks
  publication-title: Powder Technol.
  doi: 10.1016/j.powtec.2014.04.038
– volume: 28
  start-page: 415
  year: 1980
  ident: ref_35
  article-title: A fast method for real-time median filtering
  publication-title: IEEE Trans. Acoust. Speech Signal. Process.
  doi: 10.1109/TASSP.1980.1163426
– ident: ref_34
  doi: 10.1109/ICICN.2019.8834974
– ident: ref_25
  doi: 10.1109/CVPR.2015.7298594
– volume: 18
  start-page: 1412
  year: 2005
  ident: ref_8
  article-title: Application of image processing and radial basis neural network techniques for ore sorting and ore classification
  publication-title: Miner. Eng.
  doi: 10.1016/j.mineng.2005.03.003
– ident: ref_21
  doi: 10.1109/ICSCCC.2018.8703316
– ident: ref_31
– volume: 20
  start-page: 1129
  year: 2007
  ident: ref_1
  article-title: A machine vision approach to on-line estimation of run-of-mine ore composition on conveyor belts
  publication-title: Miner. Eng.
  doi: 10.1016/j.mineng.2007.04.009
– ident: ref_32
  doi: 10.1109/CIT.2016.32
– volume: 10
  start-page: 29
  year: 1993
  ident: ref_5
  article-title: Development of a pc, image-based, on-line particle-size analyzer
  publication-title: Min. Metall. Explor.
– ident: ref_38
– ident: ref_17
– ident: ref_19
– ident: ref_27
  doi: 10.1109/ISDEA.2014.199
– volume: 63
  start-page: 168
  year: 2008
  ident: ref_13
  article-title: Shape identification and particles size distribution from basic shape parameters using imagej
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2008.02.007
– ident: ref_14
  doi: 10.3390/min10020180
– volume: 887
  start-page: 012089
  year: 2017
  ident: ref_28
  article-title: Rock images classification by using deep convolution neural network
  publication-title: J. Physics Conf. Ser.
  doi: 10.1088/1742-6596/887/1/012089
– volume: 22
  start-page: 739
  year: 2012
  ident: ref_20
  article-title: Estimation of coal particle size distribution by image segmentation
  publication-title: Int. J. Mining Sci. Technol.
  doi: 10.1016/j.ijmst.2012.08.026
SSID ssj0000913852
Score 2.337222
Snippet In the field of mineral processing, an accurate image segmentation method is crucial for measuring the size distribution of run-of-mine ore on the conveyor...
SourceID unpaywall
proquest
crossref
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
StartPage 1115
SubjectTerms Accuracy
Algorithms
Artificial neural networks
Belt conveyors
Cameras
Classification
Computer peripherals
Control systems
Datasets
Deep learning
Energy consumption
Image classification
Image processing
Image segmentation
Information processing
Machine learning
Mineral processing
Neural networks
Particle size
Process control
Process controls
Size distribution
Technology
Vision systems
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1NT8JAEJ0gxOjF-BlRNHvAi8kGWra0PRgDBEUT0fiRcGu2u1tjAgURMPx7d5YtcDCcmiabOexOZ95Md94DKGs3YLEvOY0DVaeMqYDGXlKjNeZJX7oOFwIb-k_deueDPfa8Xg662SwMXqvMYqIJ1HIosEdecZlf9ar4V-p29E1RNQr_rmYSGtxKK8gbQzG2BQUXmbHyUGi2uy-vy64LsmAGnrsY1Kvper8y-Eodw3OGwrjrqWmFN3em6YjPf3m_v5Z67vZhz2JG0lgc8gHkVHoI2_dGk3d-BLMG0aGKNFV_Qp7HijwMdIwgb-pzYOeKUvJkdKJJU6csSfS7Rn2kNUxn1u-0cSTpMA9zK5zwVJpFxha10wQ6y5FVK_4Y3u_a760OtXIKVLhhMKEBY9L3nNgPsEiQIWcslL6DglVC4zidqKrcY3WVeFKjBhGHygmFgwiuGkqmaieQT4epOgWiEoEwKHbcRBsVMhRxPfE1EOSOxGq7CNfZRkbCUo2j4kU_0iUH7nq0tutFKC8XjxYMG_8vK2UnEtnP7CdaOUURrpantMnM2WYz57DrYkFt7quUID8ZT9WFRh2T-NK60h84lNZP
  priority: 102
  providerName: ProQuest
Title A New Belt Ore Image Segmentation Method Based on the Convolutional Neural Network and the Image-Processing Technology
URI https://www.proquest.com/docview/2470502954
https://www.mdpi.com/2075-163X/10/12/1115/pdf?version=1607928526
UnpaywallVersion publishedVersion
Volume 10
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 2075-163X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000913852
  issn: 2075-163X
  databaseCode: KQ8
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVEBS
  databaseName: EBSCOhost Academic Search Ultimate
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 2075-163X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000913852
  issn: 2075-163X
  databaseCode: ABDBF
  dateStart: 20120901
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2075-163X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000913852
  issn: 2075-163X
  databaseCode: M~E
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 2075-163X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000913852
  issn: 2075-163X
  databaseCode: BENPR
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 2075-163X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000913852
  issn: 2075-163X
  databaseCode: 8FG
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dSxtBEB9qQmlf-l1M1bAP-lJYk93s3seTJGK0BaO0CunTsV9XxOQM9pJi__rObjYapJRCn46DueGOmd35zd7M_AB20Q2ETq2iOnMJFcJlVMuyR3tC2tRypozxB_qno-TkUnwey_FaF78vq8RU_Cps0hzjGUXAMMa13WG8g-tSdma2PFjEsyQ_HS3nmeTJBjQTiWi8Ac3L0Xn_m-eUWz29bMvrYXbfmV5VLEw18zS464HoAV0-m1czdfdTTSZrgWb4EtTqFZf1Jdf781rvm1-Ppjf-zze8ghcRhZL-0m1ewxNXvYGnx4Hl9-4tLPoENz8ycJOanN068mmKuw756r5PY6dSRU4D8zQZYBC0BO8RR5LDm2oRPRmV-7Ef4RLqzImqbBAKumjsT8C4SR4O99_BxfDo4vCERoIGanie1TQTwqaS6TTzaYfNlRC5TZmnwDKIDDH0dZUUiSulRRxidO5YbpjHhN3cCtd7D43qpnKbQFxpPLDSjJeo1Njc6KRMEVoqZn3-3oKPK2MVJg4v9xwakwKTGG_ZYs2yLdi9F54tZ3b8WWx7ZfUiLtwfBRdpV3b9z88W7N17wt_UfPhHuS14zn2uHkphtqFR387dDgKaWrdhIxset6E5OBqdf2lHD_4N_0_w9Q
linkProvider Unpaywall
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LTxsxEB5REKIXREurBmjrA1wqWezDm10fECI8mhSSVm0qcVt5bW9VKdkECKD8OP5bZxxvkkPFjdNqJWsO4_HMN2PPfAD7aAaiSI3iRWabXAib8SIpYx6LxKQmCpXWVNDv9prt3-LbdXK9Ak91Lww9q6x9onPUZqSpRn4YiTRIArqVOh7fcGKNotvVmkJDeWoFc-RGjPnGjks7fcQU7u6oc4b7fRBFF-f90zb3LANcRzKb8EwIkyZhkWaEnY1UQkiThsTjpBHeoP8OVCKatkwMBlNdSBtKHRKwCaQRNkaxr2BNxEJi7rfWOu_9-Dkv8tDQzSyJZn2BcSyDw-HfKnRj1YiHdzkSLuDtxn01VtNHNRgsRbqLLdj0EJWdzGzqDazY6i2sf3UUwNNteDhh6BlZyw4m7PutZZ0huiT2y_4Z-jaminUdLTVrYYQ0DP8RZLLTUfXgzRyF00wQ93GP0JmqjFvkZHHfvIBBlS0q_--g_xJ6fQ-r1aiyH4DZUhPqKsKoRKHaSF00yxRxpwoNJfcN-FIrMtd-sjkRbAxyzHBI6_mS1huwP188ng30-P-yvXpHcn-q7_KFDTbgYL5Lz4nZeV7MZ9ho97tX-VWnd7kLryPK5d1TmT1Yndze248IeCbFJ29WDPIXNuR_0awQAg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LS8NAEB584OMiPrFadQ96EZbmsWmSg0hbrdY3qOAtJLsbEdq0alX60_x3zmyTtgfx5ikEljnMTma-mczMB7CPZiASX8U8CXSVC6EDnnipy13hKV85diwlFfSvb6rnj-LiyXuagu9iFobaKgufaBy16kqqkVcc4VueRX-lKmneFnF30jzuvXJikKI_rQWdxtBELvXgC9O396PWCd71geM0Tx8a5zxnGODSCYM-D4RQvmcnfkC4WYWxEKHybeJwkght0HdbsSeqOvUUBlKZhNoOpU2gxgqV0C6KnYZZn5a405B682xU3qF1m4HnDCcCXTe0Kp2XzDYL1YiBdzIGjoHtwkfWiwdfcbs9EeOay7CUg1NWG1rTCkzpbBXmzgz572ANPmsMfSKr63af3b5p1uqgM2L3-rmTDzBl7NoQUrM6xkbF8B3hJWt0s8_cwFE4bQMxD9N-zuJMmUNGFs_HFjCcsnHNfx0e_kOrGzCTdTO9CUynkvBWYjspCpUqlEk19RFxxraitL4Eh4UiI5nvNCdqjXaEuQ1pPZrQegn2R4d7w1Uevx8rFzcS5d_zezS2vhIcjG7pLzFbf4vZg3k03-iqdXO5DYsOJfGmR6YMM_23D72DSKef7BqbYhD9sw3_AFVuDZw
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dSxtBEB80IvpitVUaa2Uf7EthTXazex9PJUr9Aq2gQvp07NeJNDmDXlLsX9_ZzUaDiAg-HQdzwx0zu_ObvZn5AeygGwidWkV15hIqhMuolmWHdoS0qeVMGeMP9E_PkqMrcdKTvZkufl9Wian4TdikOcYzioChh2u7xXgL16VsDW35YxzPkvx0tJxnkifzsJBIROMNWLg6O-_-9pxy06cnbXkdzO5bg5uKhalmngZ3NhA9oculUTVUD39Vvz8TaA4-gJq-4qS-5M_uqNa75t-z6Y3v-YZVWIkolHQnbrMGc676CIuHgeX34ROMuwQ3P7Ln-jX5defI8QB3HXLhrgexU6kip4F5muxhELQE7xFHkv3bahw9GZX7sR_hEurMiapsEAq6aOxPwLhJng731-Hy4Ofl_hGNBA3U8DyraSaETSXTaebTDpsrIXKbMk-BZRAZYuhrKykSV0qLOMTo3LHcMI8J27kVrrMBjeq2cp-BuNJ4YKUZL1GpsbnRSZkitFTM-vy9Cd-nxipMHF7uOTT6BSYx3rLFjGWbsPMoPJzM7HhZbGtq9SIu3PuCi7Qt2_7nZxO-PXrCa2o23yj3BZa5z9VDKcwWNOq7kfuKgKbW29Fn_wPpE-51
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+New+Belt+Ore+Image+Segmentation+Method+Based+on+the+Convolutional+Neural+Network+and+the+Image-Processing+Technology&rft.jtitle=Minerals+%28Basel%29&rft.au=Ma%2C+Xiqi&rft.au=Zhang%2C+Pengyu&rft.au=Man%2C+Xiaofei&rft.au=Ou%2C+Leming&rft.date=2020-12-01&rft.issn=2075-163X&rft.eissn=2075-163X&rft.volume=10&rft.issue=12&rft.spage=1115&rft_id=info:doi/10.3390%2Fmin10121115&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_min10121115
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2075-163X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2075-163X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2075-163X&client=summon