A New Belt Ore Image Segmentation Method Based on the Convolutional Neural Network and the Image-Processing Technology
In the field of mineral processing, an accurate image segmentation method is crucial for measuring the size distribution of run-of-mine ore on the conveyor belts in real time0The image-based measurement is considered to be real time, on-line, inexpensive, and non-intrusive. In this paper, a new belt...
        Saved in:
      
    
          | Published in | Minerals (Basel) Vol. 10; no. 12; p. 1115 | 
|---|---|
| Main Authors | , , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        Basel
          MDPI AG
    
        01.12.2020
     | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 2075-163X 2075-163X  | 
| DOI | 10.3390/min10121115 | 
Cover
| Abstract | In the field of mineral processing, an accurate image segmentation method is crucial for measuring the size distribution of run-of-mine ore on the conveyor belts in real time0The image-based measurement is considered to be real time, on-line, inexpensive, and non-intrusive. In this paper, a new belt ore image segmentation method was proposed based on a convolutional neural network and image processing technology. It consisted of a classification model and two segmentation algorithms. A total of 2880 images were collected as an original dataset from the process control system (PCS). The test images were processed using the proposed method, the PCS system, the coarse image segmentation (CIS) algorithm, and the fine image segmentation (FIS) algorithm, respectively. The segmentation results of each algorithm were compared with those of the manual segmentation. All empty belt images in the test images were accurately identified by our method. The maximum error between the segmentation results of our method and the results of manual segmentation is 5.61%. The proposed method can accurately identify the empty belt images and segment the coarse material images and mixed material images with high accuracy. Notably, it can be used as a brand new algorithm for belt ore image processing. | 
    
|---|---|
| AbstractList | In the field of mineral processing, an accurate image segmentation method is crucial for measuring the size distribution of run-of-mine ore on the conveyor belts in real time0The image-based measurement is considered to be real time, on-line, inexpensive, and non-intrusive. In this paper, a new belt ore image segmentation method was proposed based on a convolutional neural network and image processing technology. It consisted of a classification model and two segmentation algorithms. A total of 2880 images were collected as an original dataset from the process control system (PCS). The test images were processed using the proposed method, the PCS system, the coarse image segmentation (CIS) algorithm, and the fine image segmentation (FIS) algorithm, respectively. The segmentation results of each algorithm were compared with those of the manual segmentation. All empty belt images in the test images were accurately identified by our method. The maximum error between the segmentation results of our method and the results of manual segmentation is 5.61%. The proposed method can accurately identify the empty belt images and segment the coarse material images and mixed material images with high accuracy. Notably, it can be used as a brand new algorithm for belt ore image processing. | 
    
| Author | Ma, Xiqi Man, Xiaofei Zhang, Pengyu Ou, Leming  | 
    
| Author_xml | – sequence: 1 givenname: Xiqi orcidid: 0000-0002-9524-4002 surname: Ma fullname: Ma, Xiqi – sequence: 2 givenname: Pengyu orcidid: 0000-0002-2912-6585 surname: Zhang fullname: Zhang, Pengyu – sequence: 3 givenname: Xiaofei surname: Man fullname: Man, Xiaofei – sequence: 4 givenname: Leming surname: Ou fullname: Ou, Leming  | 
    
| BookMark | eNqFkE9PAjEQxRuDiYic_AJNPOpq2213t0cg_iFBMZGDt03ZHZbFpcW2C-Hbu7AejDFxLm8m85uXzDtHHW00IHRJyW0YSnK3LjUllFFKxQnqMhKLgEbhe-dHf4b6zq1IU5KGiWBdtB3gF9jhIVQeTy3g8VoVgN-gWIP2ypdG42fwS5PjoXKQ42b2S8Ajo7emqg97VTUOtT2K3xn7gZXOj9DRK3i1JgPnSl3gGWRLbSpT7C_Q6UJVDvrf2kOzh_vZ6CmYTB_Ho8EkyJhMfJBwnseCzuMkikWSS8W5zGMqOJOZoJKyhCjBI1iIPGEsm0ugMqORIAmROYewh25a21pv1H6nqird2HKt7D6lJD2klv5IrcGvWnxjzWcNzqcrU9vmQ5cyHhNBmBS8oa5bKrPGOQuLfzzpLzor22C9VWX1580Xx6mLOA | 
    
| CitedBy_id | crossref_primary_10_1016_j_measurement_2024_115776 crossref_primary_10_1080_08827508_2022_2047042 crossref_primary_10_1007_s00603_024_03955_x crossref_primary_10_3390_min12050526 crossref_primary_10_3390_s21082615 crossref_primary_10_1109_TIM_2023_3317480 crossref_primary_10_1016_j_cageo_2023_105455 crossref_primary_10_1016_j_measurement_2023_113628 crossref_primary_10_3390_min11121428 crossref_primary_10_3934_math_20231219 crossref_primary_10_1016_j_apt_2021_08_038 crossref_primary_10_3390_min15020110 crossref_primary_10_1007_s10462_023_10500_9 crossref_primary_10_3390_min13020219 crossref_primary_10_3390_min14020186 crossref_primary_10_3390_min11070736 crossref_primary_10_3390_min12121480  | 
    
| Cites_doi | 10.1109/CVPR.2016.90 10.1016/S1474-6670(17)54442-0 10.1680/geot.2008.58.3.227 10.1109/ICRCICN.2018.8718718 10.1016/S0032-5910(97)03405-0 10.1016/j.powtec.2010.09.021 10.1049/el:20064369 10.1080/2151237X.2007.10129236 10.1109/TIP.2007.894239 10.3390/min9090516 10.1117/12.183388 10.1109/AIPR.2010.5759719 10.1016/j.powtec.2011.06.013 10.1016/j.powtec.2008.08.013 10.1016/j.mineng.2006.05.011 10.1088/1757-899X/427/1/012013 10.1016/j.powtec.2014.04.038 10.1109/TASSP.1980.1163426 10.1109/ICICN.2019.8834974 10.1109/CVPR.2015.7298594 10.1016/j.mineng.2005.03.003 10.1109/ICSCCC.2018.8703316 10.1016/j.mineng.2007.04.009 10.1109/CIT.2016.32 10.1109/ISDEA.2014.199 10.1016/j.compag.2008.02.007 10.3390/min10020180 10.1088/1742-6596/887/1/012089 10.1016/j.ijmst.2012.08.026  | 
    
| ContentType | Journal Article | 
    
| Copyright | 2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. | 
    
| Copyright_xml | – notice: 2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. | 
    
| DBID | AAYXX CITATION 3V. 7TN 7UA 7WY 7WZ 7XB 87Z 8BQ 8FD 8FE 8FG 8FK 8FL ABJCF ABUWG AFKRA AZQEC BENPR BEZIV BGLVJ BHPHI BKSAR C1K CCPQU D1I DWQXO F1W FR3 FRNLG F~G H96 HCIFZ JG9 K60 K6~ KB. KR7 L.- L.G M0C PCBAR PDBOC PHGZM PHGZT PIMPY PKEHL PQBIZ PQBZA PQEST PQGLB PQQKQ PQUKI PRINS Q9U ADTOC UNPAY  | 
    
| DOI | 10.3390/min10121115 | 
    
| DatabaseName | CrossRef ProQuest Central (Corporate) Oceanic Abstracts Water Resources Abstracts ProQuest ABI/INFORM Collection ABI/INFORM Global (PDF only) ProQuest Central (purchase pre-March 2016) ABI/INFORM Collection METADEX Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ABI/INFORM Collection (Alumni Edition) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central ProQuest Central Essentials ProQuest Central Business Premium Collection Technology Collection (via ProQuest SciTech Premium Collection) Natural Science Collection Earth, Atmospheric & Aquatic Science Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Materials Science Collection ProQuest Central ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Business Premium Collection (Alumni) ABI/INFORM Global (Corporate) Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources SciTech Premium Collection Materials Research Database ProQuest Business Collection (Alumni Edition) ProQuest Business Collection Materials Science Database Civil Engineering Abstracts ABI/INFORM Professional Advanced Aquatic Science & Fisheries Abstracts (ASFA) Professional ABI/INFORM Global Earth, Atmospheric & Aquatic Science Collection Materials Science Collection ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Business ProQuest One Business (Alumni) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic Unpaywall for CDI: Periodical Content Unpaywall  | 
    
| DatabaseTitle | CrossRef Publicly Available Content Database Materials Research Database ProQuest Business Collection (Alumni Edition) ProQuest Central Essentials SciTech Premium Collection ProQuest Central China ABI/INFORM Complete Water Resources Abstracts Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences Natural Science Collection ProQuest Central (New) Business Premium Collection ABI/INFORM Global ProQuest One Academic Eastern Edition Earth, Atmospheric & Aquatic Science Database ProQuest Technology Collection ProQuest Business Collection ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic ProQuest One Academic (New) ABI/INFORM Global (Corporate) ProQuest One Business Aquatic Science & Fisheries Abstracts (ASFA) Professional Technology Collection Technology Research Database ProQuest One Academic Middle East (New) Materials Science Collection ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest Central Earth, Atmospheric & Aquatic Science Collection ABI/INFORM Professional Advanced Oceanic Abstracts ProQuest Central Korea Materials Science Database ABI/INFORM Complete (Alumni Edition) ProQuest Materials Science Collection Civil Engineering Abstracts ABI/INFORM Global (Alumni Edition) ProQuest Central Basic ProQuest SciTech Collection METADEX Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources ASFA: Aquatic Sciences and Fisheries Abstracts Materials Science & Engineering Collection ProQuest One Business (Alumni) ProQuest Central (Alumni) Business Premium Collection (Alumni)  | 
    
| DatabaseTitleList | Publicly Available Content Database CrossRef  | 
    
| Database_xml | – sequence: 1 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Geology | 
    
| EISSN | 2075-163X | 
    
| ExternalDocumentID | 10.3390/min10121115 10_3390_min10121115  | 
    
| GroupedDBID | 5VS 7WY 8FE 8FG 8FH 8FL AADQD AAFWJ AAHBH AAYXX ABDBF ABJCF ABUWG ACUHS ADBBV AENEX AFKRA AFZYC ALMA_UNASSIGNED_HOLDINGS BCNDV BENPR BEZIV BGLVJ BHPHI BKSAR BPHCQ CCPQU CITATION D1I DWQXO ESX FRNLG HCIFZ K60 K6~ KB. KQ8 LK5 M0C M7R MODMG M~E OK1 PCBAR PDBOC PHGZM PHGZT PIMPY PQBIZ PQBZA PQGLB PQQKQ PROAC 3V. 7TN 7UA 7XB 8BQ 8FD 8FK AZQEC C1K F1W FR3 H96 JG9 KR7 L.- L.G PKEHL PQEST PQUKI PRINS Q9U 2XV ADTOC IAO IPNFZ ITC PUEGO RIG UNPAY  | 
    
| ID | FETCH-LOGICAL-c298t-844d751b786758d9a449d715429c5191280a546ef5d822cb9e19c1650809d4e3 | 
    
| IEDL.DBID | UNPAY | 
    
| ISSN | 2075-163X | 
    
| IngestDate | Wed Oct 01 15:47:45 EDT 2025 Fri Jul 25 11:52:35 EDT 2025 Thu Oct 16 04:38:51 EDT 2025 Thu Apr 24 22:50:34 EDT 2025  | 
    
| IsDoiOpenAccess | true | 
    
| IsOpenAccess | true | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Issue | 12 | 
    
| Language | English | 
    
| License | cc-by | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c298t-844d751b786758d9a449d715429c5191280a546ef5d822cb9e19c1650809d4e3 | 
    
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14  | 
    
| ORCID | 0000-0002-2912-6585 0000-0002-9524-4002  | 
    
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://www.mdpi.com/2075-163X/10/12/1115/pdf?version=1607928526 | 
    
| PQID | 2470502954 | 
    
| PQPubID | 2032357 | 
    
| ParticipantIDs | unpaywall_primary_10_3390_min10121115 proquest_journals_2470502954 crossref_primary_10_3390_min10121115 crossref_citationtrail_10_3390_min10121115  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2020-12-01 | 
    
| PublicationDateYYYYMMDD | 2020-12-01 | 
    
| PublicationDate_xml | – month: 12 year: 2020 text: 2020-12-01 day: 01  | 
    
| PublicationDecade | 2020 | 
    
| PublicationPlace | Basel | 
    
| PublicationPlace_xml | – name: Basel | 
    
| PublicationTitle | Minerals (Basel) | 
    
| PublicationYear | 2020 | 
    
| Publisher | MDPI AG | 
    
| Publisher_xml | – name: MDPI AG | 
    
| References | Ilya (ref_10) 2007; 16 Lin (ref_5) 1993; 10 ref_14 Lange (ref_2) 1988; 21 Fannin (ref_16) 2008; 58 Lien (ref_36) 1994; 33 ref_34 ref_11 ref_32 ref_31 Yen (ref_7) 1998; 98 Miles (ref_9) 2007; 20 ref_19 ref_18 ref_17 Bradley (ref_33) 2007; 12 ref_39 ref_38 Guarnieri (ref_30) 2006; 42 ref_37 Cheng (ref_28) 2017; 887 Ko (ref_3) 2011; 212 Igathinathane (ref_13) 2008; 63 Tessier (ref_1) 2007; 20 Zhang (ref_20) 2012; 22 ref_25 Andersson (ref_12) 2011; 206 ref_24 ref_23 ref_22 Singh (ref_8) 2005; 18 ref_21 Hamzeloo (ref_4) 2014; 261 ref_40 Liao (ref_6) 2009; 189 Krawczykowski (ref_15) 2018; 427 Ataman (ref_35) 1980; 28 ref_29 ref_27 ref_26  | 
    
| References_xml | – ident: ref_24 doi: 10.1109/CVPR.2016.90 – ident: ref_26 – volume: 21 start-page: 25 year: 1988 ident: ref_2 article-title: Real-time measurement of the size distribution of rocks on a conveyor belt publication-title: IFAC Proc. Vol. doi: 10.1016/S1474-6670(17)54442-0 – volume: 58 start-page: 227 year: 2008 ident: ref_16 article-title: Influence of roundness on the void ratio and strength of uniform sand publication-title: Géotechnique doi: 10.1680/geot.2008.58.3.227 – ident: ref_22 doi: 10.1109/ICRCICN.2018.8718718 – ident: ref_11 – volume: 98 start-page: 1 year: 1998 ident: ref_7 article-title: Particle overlap and segregation problems in on-line coarse particle size measurement publication-title: Powder Technol. doi: 10.1016/S0032-5910(97)03405-0 – volume: 206 start-page: 218 year: 2011 ident: ref_12 article-title: Minimizing profile error when estimating the sieve-size distribution of iron ore pellets using ordinal logistic regression publication-title: Powder Technol. doi: 10.1016/j.powtec.2010.09.021 – volume: 42 start-page: 396 year: 2006 ident: ref_30 article-title: Fast bilateral filter for edge-preserving smoothing publication-title: Electron. Lett. doi: 10.1049/el:20064369 – volume: 12 start-page: 13 year: 2007 ident: ref_33 article-title: Adaptive thresholding using the integral image publication-title: J. Graph. GPU Game Tools doi: 10.1080/2151237X.2007.10129236 – volume: 16 start-page: 1437 year: 2007 ident: ref_10 article-title: Classification-driven watershed segmentation publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2007.894239 – ident: ref_29 doi: 10.3390/min9090516 – ident: ref_40 – volume: 33 start-page: 3733 year: 1994 ident: ref_36 article-title: Efficient implementation of binary morphological image processing publication-title: Opt. Eng. doi: 10.1117/12.183388 – ident: ref_39 doi: 10.1109/AIPR.2010.5759719 – volume: 212 start-page: 359 year: 2011 ident: ref_3 article-title: A neural network-based soft sensor for particle size distribution using image analysis publication-title: Powder Technol. doi: 10.1016/j.powtec.2011.06.013 – ident: ref_37 – volume: 189 start-page: 508 year: 2009 ident: ref_6 article-title: On-line automatic optical inspection system for coarse particle size distribution publication-title: Powder Technol. doi: 10.1016/j.powtec.2008.08.013 – volume: 20 start-page: 72 year: 2007 ident: ref_9 article-title: Estimation of the size distribution of particles moving on a conveyor belt publication-title: Minerals Eng. doi: 10.1016/j.mineng.2006.05.011 – ident: ref_18 – volume: 427 start-page: 1 year: 2018 ident: ref_15 article-title: Application of a vision systems for assessment of particle size and shape for mineral crushing products publication-title: IOP Conf. Ser. Mater. Sci. Eng. doi: 10.1088/1757-899X/427/1/012013 – ident: ref_23 – volume: 261 start-page: 185 year: 2014 ident: ref_4 article-title: Estimation of particle size distribution on an industrial conveyor belt using image analysis and neural networks publication-title: Powder Technol. doi: 10.1016/j.powtec.2014.04.038 – volume: 28 start-page: 415 year: 1980 ident: ref_35 article-title: A fast method for real-time median filtering publication-title: IEEE Trans. Acoust. Speech Signal. Process. doi: 10.1109/TASSP.1980.1163426 – ident: ref_34 doi: 10.1109/ICICN.2019.8834974 – ident: ref_25 doi: 10.1109/CVPR.2015.7298594 – volume: 18 start-page: 1412 year: 2005 ident: ref_8 article-title: Application of image processing and radial basis neural network techniques for ore sorting and ore classification publication-title: Miner. Eng. doi: 10.1016/j.mineng.2005.03.003 – ident: ref_21 doi: 10.1109/ICSCCC.2018.8703316 – ident: ref_31 – volume: 20 start-page: 1129 year: 2007 ident: ref_1 article-title: A machine vision approach to on-line estimation of run-of-mine ore composition on conveyor belts publication-title: Miner. Eng. doi: 10.1016/j.mineng.2007.04.009 – ident: ref_32 doi: 10.1109/CIT.2016.32 – volume: 10 start-page: 29 year: 1993 ident: ref_5 article-title: Development of a pc, image-based, on-line particle-size analyzer publication-title: Min. Metall. Explor. – ident: ref_38 – ident: ref_17 – ident: ref_19 – ident: ref_27 doi: 10.1109/ISDEA.2014.199 – volume: 63 start-page: 168 year: 2008 ident: ref_13 article-title: Shape identification and particles size distribution from basic shape parameters using imagej publication-title: Comput. Electron. Agric. doi: 10.1016/j.compag.2008.02.007 – ident: ref_14 doi: 10.3390/min10020180 – volume: 887 start-page: 012089 year: 2017 ident: ref_28 article-title: Rock images classification by using deep convolution neural network publication-title: J. Physics Conf. Ser. doi: 10.1088/1742-6596/887/1/012089 – volume: 22 start-page: 739 year: 2012 ident: ref_20 article-title: Estimation of coal particle size distribution by image segmentation publication-title: Int. J. Mining Sci. Technol. doi: 10.1016/j.ijmst.2012.08.026  | 
    
| SSID | ssj0000913852 | 
    
| Score | 2.337222 | 
    
| Snippet | In the field of mineral processing, an accurate image segmentation method is crucial for measuring the size distribution of run-of-mine ore on the conveyor... | 
    
| SourceID | unpaywall proquest crossref  | 
    
| SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database  | 
    
| StartPage | 1115 | 
    
| SubjectTerms | Accuracy Algorithms Artificial neural networks Belt conveyors Cameras Classification Computer peripherals Control systems Datasets Deep learning Energy consumption Image classification Image processing Image segmentation Information processing Machine learning Mineral processing Neural networks Particle size Process control Process controls Size distribution Technology Vision systems  | 
    
| SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1NT8JAEJ0gxOjF-BlRNHvAi8kGWra0PRgDBEUT0fiRcGu2u1tjAgURMPx7d5YtcDCcmiabOexOZ95Md94DKGs3YLEvOY0DVaeMqYDGXlKjNeZJX7oOFwIb-k_deueDPfa8Xg662SwMXqvMYqIJ1HIosEdecZlf9ar4V-p29E1RNQr_rmYSGtxKK8gbQzG2BQUXmbHyUGi2uy-vy64LsmAGnrsY1Kvper8y-Eodw3OGwrjrqWmFN3em6YjPf3m_v5Z67vZhz2JG0lgc8gHkVHoI2_dGk3d-BLMG0aGKNFV_Qp7HijwMdIwgb-pzYOeKUvJkdKJJU6csSfS7Rn2kNUxn1u-0cSTpMA9zK5zwVJpFxha10wQ6y5FVK_4Y3u_a760OtXIKVLhhMKEBY9L3nNgPsEiQIWcslL6DglVC4zidqKrcY3WVeFKjBhGHygmFgwiuGkqmaieQT4epOgWiEoEwKHbcRBsVMhRxPfE1EOSOxGq7CNfZRkbCUo2j4kU_0iUH7nq0tutFKC8XjxYMG_8vK2UnEtnP7CdaOUURrpantMnM2WYz57DrYkFt7quUID8ZT9WFRh2T-NK60h84lNZP priority: 102 providerName: ProQuest  | 
    
| Title | A New Belt Ore Image Segmentation Method Based on the Convolutional Neural Network and the Image-Processing Technology | 
    
| URI | https://www.proquest.com/docview/2470502954 https://www.mdpi.com/2075-163X/10/12/1115/pdf?version=1607928526  | 
    
| UnpaywallVersion | publishedVersion | 
    
| Volume | 10 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 2075-163X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000913852 issn: 2075-163X databaseCode: KQ8 dateStart: 20110101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVEBS databaseName: EBSCOhost Academic Search Ultimate customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 2075-163X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000913852 issn: 2075-163X databaseCode: ABDBF dateStart: 20120901 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2075-163X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000913852 issn: 2075-163X databaseCode: M~E dateStart: 20110101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 2075-163X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000913852 issn: 2075-163X databaseCode: BENPR dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 2075-163X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000913852 issn: 2075-163X databaseCode: 8FG dateStart: 20110101 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dSxtBEB9qQmlf-l1M1bAP-lJYk93s3seTJGK0BaO0CunTsV9XxOQM9pJi__rObjYapJRCn46DueGOmd35zd7M_AB20Q2ETq2iOnMJFcJlVMuyR3tC2tRypozxB_qno-TkUnwey_FaF78vq8RU_Cps0hzjGUXAMMa13WG8g-tSdma2PFjEsyQ_HS3nmeTJBjQTiWi8Ac3L0Xn_m-eUWz29bMvrYXbfmV5VLEw18zS464HoAV0-m1czdfdTTSZrgWb4EtTqFZf1Jdf781rvm1-Ppjf-zze8ghcRhZL-0m1ewxNXvYGnx4Hl9-4tLPoENz8ycJOanN068mmKuw756r5PY6dSRU4D8zQZYBC0BO8RR5LDm2oRPRmV-7Ef4RLqzImqbBAKumjsT8C4SR4O99_BxfDo4vCERoIGanie1TQTwqaS6TTzaYfNlRC5TZmnwDKIDDH0dZUUiSulRRxidO5YbpjHhN3cCtd7D43qpnKbQFxpPLDSjJeo1Njc6KRMEVoqZn3-3oKPK2MVJg4v9xwakwKTGG_ZYs2yLdi9F54tZ3b8WWx7ZfUiLtwfBRdpV3b9z88W7N17wt_UfPhHuS14zn2uHkphtqFR387dDgKaWrdhIxset6E5OBqdf2lHD_4N_0_w9Q | 
    
| linkProvider | Unpaywall | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LTxsxEB5REKIXREurBmjrA1wqWezDm10fECI8mhSSVm0qcVt5bW9VKdkECKD8OP5bZxxvkkPFjdNqJWsO4_HMN2PPfAD7aAaiSI3iRWabXAib8SIpYx6LxKQmCpXWVNDv9prt3-LbdXK9Ak91Lww9q6x9onPUZqSpRn4YiTRIArqVOh7fcGKNotvVmkJDeWoFc-RGjPnGjks7fcQU7u6oc4b7fRBFF-f90zb3LANcRzKb8EwIkyZhkWaEnY1UQkiThsTjpBHeoP8OVCKatkwMBlNdSBtKHRKwCaQRNkaxr2BNxEJi7rfWOu_9-Dkv8tDQzSyJZn2BcSyDw-HfKnRj1YiHdzkSLuDtxn01VtNHNRgsRbqLLdj0EJWdzGzqDazY6i2sf3UUwNNteDhh6BlZyw4m7PutZZ0huiT2y_4Z-jaminUdLTVrYYQ0DP8RZLLTUfXgzRyF00wQ93GP0JmqjFvkZHHfvIBBlS0q_--g_xJ6fQ-r1aiyH4DZUhPqKsKoRKHaSF00yxRxpwoNJfcN-FIrMtd-sjkRbAxyzHBI6_mS1huwP188ng30-P-yvXpHcn-q7_KFDTbgYL5Lz4nZeV7MZ9ho97tX-VWnd7kLryPK5d1TmT1Yndze248IeCbFJ29WDPIXNuR_0awQAg | 
    
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LS8NAEB584OMiPrFadQ96EZbmsWmSg0hbrdY3qOAtJLsbEdq0alX60_x3zmyTtgfx5ikEljnMTma-mczMB7CPZiASX8U8CXSVC6EDnnipy13hKV85diwlFfSvb6rnj-LiyXuagu9iFobaKgufaBy16kqqkVcc4VueRX-lKmneFnF30jzuvXJikKI_rQWdxtBELvXgC9O396PWCd71geM0Tx8a5zxnGODSCYM-D4RQvmcnfkC4WYWxEKHybeJwkght0HdbsSeqOvUUBlKZhNoOpU2gxgqV0C6KnYZZn5a405B682xU3qF1m4HnDCcCXTe0Kp2XzDYL1YiBdzIGjoHtwkfWiwdfcbs9EeOay7CUg1NWG1rTCkzpbBXmzgz572ANPmsMfSKr63af3b5p1uqgM2L3-rmTDzBl7NoQUrM6xkbF8B3hJWt0s8_cwFE4bQMxD9N-zuJMmUNGFs_HFjCcsnHNfx0e_kOrGzCTdTO9CUynkvBWYjspCpUqlEk19RFxxraitL4Eh4UiI5nvNCdqjXaEuQ1pPZrQegn2R4d7w1Uevx8rFzcS5d_zezS2vhIcjG7pLzFbf4vZg3k03-iqdXO5DYsOJfGmR6YMM_23D72DSKef7BqbYhD9sw3_AFVuDZw | 
    
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dSxtBEB80IvpitVUaa2Uf7EthTXazex9PJUr9Aq2gQvp07NeJNDmDXlLsX9_ZzUaDiAg-HQdzwx0zu_ObvZn5AeygGwidWkV15hIqhMuolmWHdoS0qeVMGeMP9E_PkqMrcdKTvZkufl9Wian4TdikOcYzioChh2u7xXgL16VsDW35YxzPkvx0tJxnkifzsJBIROMNWLg6O-_-9pxy06cnbXkdzO5bg5uKhalmngZ3NhA9oculUTVUD39Vvz8TaA4-gJq-4qS-5M_uqNa75t-z6Y3v-YZVWIkolHQnbrMGc676CIuHgeX34ROMuwQ3P7Ln-jX5defI8QB3HXLhrgexU6kip4F5muxhELQE7xFHkv3bahw9GZX7sR_hEurMiapsEAq6aOxPwLhJng731-Hy4Ofl_hGNBA3U8DyraSaETSXTaebTDpsrIXKbMk-BZRAZYuhrKykSV0qLOMTo3LHcMI8J27kVrrMBjeq2cp-BuNJ4YKUZL1GpsbnRSZkitFTM-vy9Cd-nxipMHF7uOTT6BSYx3rLFjGWbsPMoPJzM7HhZbGtq9SIu3PuCi7Qt2_7nZxO-PXrCa2o23yj3BZa5z9VDKcwWNOq7kfuKgKbW29Fn_wPpE-51 | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+New+Belt+Ore+Image+Segmentation+Method+Based+on+the+Convolutional+Neural+Network+and+the+Image-Processing+Technology&rft.jtitle=Minerals+%28Basel%29&rft.au=Ma%2C+Xiqi&rft.au=Zhang%2C+Pengyu&rft.au=Man%2C+Xiaofei&rft.au=Ou%2C+Leming&rft.date=2020-12-01&rft.issn=2075-163X&rft.eissn=2075-163X&rft.volume=10&rft.issue=12&rft.spage=1115&rft_id=info:doi/10.3390%2Fmin10121115&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_min10121115 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2075-163X&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2075-163X&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2075-163X&client=summon |