Deep-learning-assisted optical communication with discretized state space of structured light

The rich structure of transverse spatial modes of structured light has facilitated their extensive applications in quantum information and optical communication. The Laguerre–Gaussian (LG) modes, which carry a well-defined orbital angular momentum (OAM), consist of a complete orthogonal basis descri...

Full description

Saved in:
Bibliographic Details
Published inChinese physics B Vol. 33; no. 12; pp. 120304 - 201
Main Authors Zhang, Minyang, Chen, Dong-Xu, Ruan, Pengxiang, Liu, Jun, Fu, Dong-Zhi, Zhao, Jun-Long, Yang, Chui-Ping
Format Journal Article
LanguageEnglish
Published Chinese Physical Society and IOP Publishing Ltd 01.12.2024
Subjects
Online AccessGet full text
ISSN1674-1056
2058-3834
DOI10.1088/1674-1056/ad8553

Cover

Abstract The rich structure of transverse spatial modes of structured light has facilitated their extensive applications in quantum information and optical communication. The Laguerre–Gaussian (LG) modes, which carry a well-defined orbital angular momentum (OAM), consist of a complete orthogonal basis describing the transverse spatial modes of light. The application of OAM in free-space optical communication is restricted due to the experimentally limited OAM numbers and the complex OAM recognition methods. Here, we present a novel method that uses the advanced deep learning technique for LG modes recognition. By discretizing the spatial modes of structured light, we turn the OAM state regression into classification. A proof-of-principle experiment is also performed, showing that our method effectively categorizes OAM states with small training samples and the accuracy exceeds 99% from three-dimensional (3D) to fifteen-dimensional (15D) space. By assigning each category a classical information, we further apply our approach to an image transmission task, achieving a transmission accuracy of 99.58%, which demonstrates the ability to encode large data with low OAM number. This work opens up a new avenue for achieving high-capacity optical communication with low OAM number based on structured light.
AbstractList The rich structure of transverse spatial modes of structured light has facilitated their extensive applications in quantum information and optical communication.The Laguerre-Gaussian(LG)modes,which carry a well-defined orbital angular momentum(OAM),consist of a complete orthogonal basis describing the transverse spatial modes of light.The application of OAM in free-space optical communication is restricted due to the experimentally limited OAM numbers and the complex OAM recognition methods.Here,we present a novel method that uses the advanced deep learning technique for LG modes recognition.By discretizing the spatial modes of structured light,we turn the OAM state regression into classification.A proof-of-principle experiment is also performed,showing that our method effectively categorizes OAM states with small training samples and the accuracy exceeds 99%from three-dimensional(3D)to fifteen-dimensional(15D)space.By assigning each category a classical information,we further apply our approach to an image transmission task,achieving a transmission accuracy of 99.58%,which demonstrates the ability to encode large data with low OAM number.This work opens up a new avenue for achieving high-capacity optical communication with low OAM number based on structured light.
The rich structure of transverse spatial modes of structured light has facilitated their extensive applications in quantum information and optical communication. The Laguerre–Gaussian (LG) modes, which carry a well-defined orbital angular momentum (OAM), consist of a complete orthogonal basis describing the transverse spatial modes of light. The application of OAM in free-space optical communication is restricted due to the experimentally limited OAM numbers and the complex OAM recognition methods. Here, we present a novel method that uses the advanced deep learning technique for LG modes recognition. By discretizing the spatial modes of structured light, we turn the OAM state regression into classification. A proof-of-principle experiment is also performed, showing that our method effectively categorizes OAM states with small training samples and the accuracy exceeds 99% from three-dimensional (3D) to fifteen-dimensional (15D) space. By assigning each category a classical information, we further apply our approach to an image transmission task, achieving a transmission accuracy of 99.58%, which demonstrates the ability to encode large data with low OAM number. This work opens up a new avenue for achieving high-capacity optical communication with low OAM number based on structured light.
Author Chen, Dong-Xu
Zhang, Minyang
Ruan, Pengxiang
Fu, Dong-Zhi
Zhao, Jun-Long
Yang, Chui-Ping
Liu, Jun
Author_xml – sequence: 1
  givenname: Minyang
  surname: Zhang
  fullname: Zhang, Minyang
  organization: Jiangsu University of Science and Technology School of Science, Zhenjiang 212003, China
– sequence: 2
  givenname: Dong-Xu
  surname: Chen
  fullname: Chen, Dong-Xu
  organization: Shangrao Normal University Jiangxi Province Key Laboratory of Applied Optical Technology (2024SSY03051), Shangrao 334001, China
– sequence: 3
  givenname: Pengxiang
  surname: Ruan
  fullname: Ruan, Pengxiang
  organization: Jiangsu University of Science and Technology School of Science, Zhenjiang 212003, China
– sequence: 4
  givenname: Jun
  surname: Liu
  fullname: Liu, Jun
  organization: Jiangsu University of Science and Technology School of Science, Zhenjiang 212003, China
– sequence: 5
  givenname: Dong-Zhi
  surname: Fu
  fullname: Fu, Dong-Zhi
  organization: Henan Institute of Technology School of Cable Engineering, Xinxiang 453003, China
– sequence: 6
  givenname: Jun-Long
  surname: Zhao
  fullname: Zhao, Jun-Long
  organization: Shangrao Normal University Quantum Information Research Center, Shangrao 334001, China
– sequence: 7
  givenname: Chui-Ping
  surname: Yang
  fullname: Yang, Chui-Ping
  organization: Hangzhou Normal University School of Physics, Hangzhou 311121, China
BookMark eNp1kM9LwzAUx4NMcJvePfamB-uSJmmzo8yfMPCiRwlpmnQZXVKSlOH-ejMqelF4vB-8z_s--M7AxDqrALhE8BZBxhaorEiOIC0XomGU4hMwLSBlOWaYTMD0Z30GZiFsISwRLPAUfNwr1eedEt4a2-YiBBOiajLXRyNFl0m32w02tdE4m-1N3GSNCdKraA4JC1FElYVeSJU5nUY_yDj4tOlMu4nn4FSLLqiL7zoH748Pb6vnfP369LK6W-eyWLKYV8sKI9QgXeuGlghJSVgDSalwTSCpNKU1xbjAKrUEL6UqWV0tSYlqVRNaKTwHV6PuXlgtbMu3bvA2feSHdt9xVcCCoJRwIuFISu9C8Erz3pud8J8cQX40kh-d4ken-GhkOrkeT4zrf4VlX3OMOSpSQAwJ7xud0Js_0H-VvwBrAYPj
Cites_doi 10.1103/PhysRevLett.101.100801
10.1103/PhysRevLett.119.180510
10.1126/science.1237861
10.1364/OE.26.010494
10.1103/PhysRevLett.88.127902
10.1016/0030-4018(93)90535-D
10.1088/1367-2630/18/1/013021
10.1038/ncomms5876
10.1073/pnas.1616889113
10.1088/0256-307X/41/7/074201
10.1088/1674-1056/26/6/060305
10.1038/s41377-021-00667-7
10.1016/j.physleta.2015.06.022
10.1103/PhysRevA.106.013519
10.1364/OE.465318
10.1038/s41598-021-03026-z
10.1103/PhysRevResearch.5.013142
10.1364/OL.34.003686
10.1103/PhysRevApplied.11.064058
10.1126/sciadv.1601915
10.1088/0256-307X/26/3/034202
10.1103/PhysRevLett.120.193904
10.1103/PhysRevApplied.17.054019
10.48550/arXiv.1603.08029
10.1103/PhysRevLett.105.153601
10.1103/PhysRevLett.124.160401
10.1103/PhysRevA.103.063704
10.1364/OL.31.000999
10.1038/nphoton.2012.138
10.1016/S0031-3203(01)00178-9
10.1103/PhysRevA.104.053525
10.1002/lpor.202300277
10.1038/s41598-021-82239-8
10.1364/OPTICA.388773
10.48550/arXiv.2101.11605
10.1002/qute.v4.3
10.1103/PhysRevLett.105.053904
10.1364/JOSAA.474611
10.1103/PhysRevLett.88.257901
10.1364/OPTICA.375875
10.1103/PhysRevA.98.042105
10.1364/OE.27.016671
10.1063/5.0061365
10.1103/PhysRevLett.108.143603
10.1103/PhysRevLett.123.183902
10.1103/PhysRevLett.104.060401
10.1088/1674-1056/ac935e
10.1088/1674-1056/26/11/114207
ContentType Journal Article
Copyright 2024 Chinese Physical Society and IOP Publishing Ltd
Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
Copyright_xml – notice: 2024 Chinese Physical Society and IOP Publishing Ltd
– notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
DBID AAYXX
CITATION
2B.
4A8
92I
93N
PSX
TCJ
DOI 10.1088/1674-1056/ad8553
DatabaseName CrossRef
Wanfang Data Journals - Hong Kong
WANFANG Data Centre
Wanfang Data Journals
万方数据期刊 - 香港版
China Online Journals (COJ)
China Online Journals (COJ)
DatabaseTitle CrossRef
DatabaseTitleList
CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 2058-3834
EndPage 201
ExternalDocumentID zgwl_e202412023
10_1088_1674_1056_ad8553
cpb_33_12_120304
GroupedDBID -SA
-S~
1JI
29B
4.4
5B3
5GY
5VR
5VS
5ZH
6J9
7.M
7.Q
AAGCD
AAJIO
AAJKP
AATNI
AAXDM
ABHWH
ABJNI
ABQJV
ACAFW
ACGFS
ACHIP
AEFHF
AENEX
AFYNE
AKPSB
ALMA_UNASSIGNED_HOLDINGS
AOAED
ASPBG
ATQHT
AVWKF
AZFZN
CAJEA
CCEZO
CCVFK
CEBXE
CHBEP
CJUJL
CRLBU
CS3
DU5
EBS
EDWGO
EMSAF
EPQRW
EQZZN
FA0
HAK
IJHAN
IOP
IZVLO
KOT
N5L
PJBAE
RIN
RNS
ROL
RPA
SY9
TCJ
TGP
U1G
U5K
UCJ
W28
AAYXX
ADEQX
CITATION
Q--
02O
1WK
2B.
4A8
92I
93N
AALHV
ACARI
AERVB
AFUIB
AGQPQ
AHSEE
ARNYC
BBWZM
EJD
FEDTE
HVGLF
JCGBZ
M45
NT-
NT.
PSX
Q02
ID FETCH-LOGICAL-c298t-797311d1fbfd5611cc48d046e3b4047f55b53323e7f5439ce68b79461beb457e3
IEDL.DBID IOP
ISSN 1674-1056
IngestDate Thu May 29 04:07:18 EDT 2025
Tue Jul 01 02:13:16 EDT 2025
Wed Dec 25 02:20:33 EST 2024
Wed Dec 25 02:20:34 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 12
Keywords machine learning
orbital angular momentum
optical communication
Language English
License This article is available under the terms of the IOP-Standard License.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c298t-797311d1fbfd5611cc48d046e3b4047f55b53323e7f5439ce68b79461beb457e3
PageCount 6
ParticipantIDs crossref_primary_10_1088_1674_1056_ad8553
iop_journals_10_1088_1674_1056_ad8553
wanfang_journals_zgwl_e202412023
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-12-01
PublicationDateYYYYMMDD 2024-12-01
PublicationDate_xml – month: 12
  year: 2024
  text: 2024-12-01
  day: 01
PublicationDecade 2020
PublicationTitle Chinese physics B
PublicationTitleAlternate Chin. Phys. B
PublicationTitle_FL Chinese Physics B
PublicationYear 2024
Publisher Chinese Physical Society and IOP Publishing Ltd
Publisher_xml – name: Chinese Physical Society and IOP Publishing Ltd
References Dixon (cpb_33_12_120304bib3) 2012; 108
Na (cpb_33_12_120304bib39) 2021; 11
Berkhout (cpb_33_12_120304bib16) 2010; 105
Chen (cpb_33_12_120304bib42) 2021; 10
Srinivas (cpb_33_12_120304bib48) 2021
Cerf (cpb_33_12_120304bib1) 2002; 88
Chen (cpb_33_12_120304bib22) 2009; 26
Zhou (cpb_33_12_120304bib41) 2022; 106
Hickmann (cpb_33_12_120304bib14) 2010; 105
Bouchard (cpb_33_12_120304bib5) 2017; 3
Na (cpb_33_12_120304bib36) 2021; 11
Hu (cpb_33_12_120304bib6) 2020; 7
Beijersbergen (cpb_33_12_120304bib45) 1993; 96
Fickler (cpb_33_12_120304bib10) 2016; 113
Berkhout (cpb_33_12_120304bib12) 2008; 101
Guo (cpb_33_12_120304bib13) 2009; 34
Targ (cpb_33_12_120304bib47) 2016
Xu (cpb_33_12_120304bib44) 2024; 41
Babazadeh (cpb_33_12_120304bib18) 2017; 119
Liu (cpb_33_12_120304bib38) 2019; 123
Cozzolino (cpb_33_12_120304bib4) 2019; 11
Fonseca (cpb_33_12_120304bib9) 2018; 98
Chen (cpb_33_12_120304bib17) 2015; 379
Wang (cpb_33_12_120304bib37) 2022; 30
da Silva (cpb_33_12_120304bib30) 2021; 103
Li (cpb_33_12_120304bib33) 2018; 26
Zhan (cpb_33_12_120304bib43) 2023; 32
Wen (cpb_33_12_120304bib19) 2018; 120
Vértesi (cpb_33_12_120304bib7) 2010; 104
Leach (cpb_33_12_120304bib15) 2002; 88
Brandt (cpb_33_12_120304bib20) 2020; 7
zhou Cui (cpb_33_12_120304bib23) 2017; 26
Weiss (cpb_33_12_120304bib8) 2016; 18
Avramov-Zamurovic (cpb_33_12_120304bib29) 2023; 40
Bozinovic (cpb_33_12_120304bib25) 2013; 340
Cao (cpb_33_12_120304bib40) 2021; 119
Sztul (cpb_33_12_120304bib11) 2006; 31
Wang (cpb_33_12_120304bib24) 2012; 6
Zhang (cpb_33_12_120304bib27) 2021; 104
Chen (cpb_33_12_120304bib2) 2017; 26
Chen (cpb_33_12_120304bib21) 2023; 17
Zia (cpb_33_12_120304bib32) 2023; 5
Egmont-Petersen (cpb_33_12_120304bib46) 2002; 35
Bhusal (cpb_33_12_120304bib35) 2021; 4
Yan (cpb_33_12_120304bib26) 2014; 5
Liu (cpb_33_12_120304bib34) 2019; 27
Giordani (cpb_33_12_120304bib28) 2020; 124
Guo (cpb_33_12_120304bib31) 2022; 17
References_xml – volume: 101
  year: 2008
  ident: cpb_33_12_120304bib12
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.101.100801
– volume: 119
  year: 2017
  ident: cpb_33_12_120304bib18
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.119.180510
– volume: 340
  start-page: 1545
  year: 2013
  ident: cpb_33_12_120304bib25
  publication-title: Science
  doi: 10.1126/science.1237861
– volume: 26
  year: 2018
  ident: cpb_33_12_120304bib33
  publication-title: Opt. Express
  doi: 10.1364/OE.26.010494
– volume: 88
  year: 2002
  ident: cpb_33_12_120304bib1
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.88.127902
– volume: 96
  start-page: 123
  year: 1993
  ident: cpb_33_12_120304bib45
  publication-title: Opt. Commun.
  doi: 10.1016/0030-4018(93)90535-D
– volume: 18
  year: 2016
  ident: cpb_33_12_120304bib8
  publication-title: New J. Phys.
  doi: 10.1088/1367-2630/18/1/013021
– volume: 5
  start-page: 4876
  year: 2014
  ident: cpb_33_12_120304bib26
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms5876
– volume: 113
  year: 2016
  ident: cpb_33_12_120304bib10
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1616889113
– volume: 41
  year: 2024
  ident: cpb_33_12_120304bib44
  publication-title: Chin. Phys. Lett.
  doi: 10.1088/0256-307X/41/7/074201
– volume: 26
  year: 2017
  ident: cpb_33_12_120304bib2
  publication-title: Chin. Phys. B
  doi: 10.1088/1674-1056/26/6/060305
– volume: 10
  start-page: 222
  year: 2021
  ident: cpb_33_12_120304bib42
  publication-title: Light: Sci. Appl.
  doi: 10.1038/s41377-021-00667-7
– volume: 379
  start-page: 2530
  year: 2015
  ident: cpb_33_12_120304bib17
  publication-title: Phys. Lett. A
  doi: 10.1016/j.physleta.2015.06.022
– volume: 106
  year: 2022
  ident: cpb_33_12_120304bib41
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.106.013519
– volume: 30
  year: 2022
  ident: cpb_33_12_120304bib37
  publication-title: Opt. Express
  doi: 10.1364/OE.465318
– volume: 11
  year: 2021
  ident: cpb_33_12_120304bib36
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-021-03026-z
– volume: 5
  year: 2023
  ident: cpb_33_12_120304bib32
  publication-title: Phys. Rev. Res.
  doi: 10.1103/PhysRevResearch.5.013142
– volume: 34
  start-page: 3686
  year: 2009
  ident: cpb_33_12_120304bib13
  publication-title: Opt. Lett.
  doi: 10.1364/OL.34.003686
– volume: 11
  year: 2019
  ident: cpb_33_12_120304bib4
  publication-title: Phys. Rev. Appl.
  doi: 10.1103/PhysRevApplied.11.064058
– volume: 3
  year: 2017
  ident: cpb_33_12_120304bib5
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.1601915
– volume: 26
  year: 2009
  ident: cpb_33_12_120304bib22
  publication-title: Chin. Phys. Lett.
  doi: 10.1088/0256-307X/26/3/034202
– volume: 120
  year: 2018
  ident: cpb_33_12_120304bib19
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.120.193904
– volume: 17
  year: 2022
  ident: cpb_33_12_120304bib31
  publication-title: Phys. Rev. Appl.
  doi: 10.1103/PhysRevApplied.17.054019
– year: 2016
  ident: cpb_33_12_120304bib47
  doi: 10.48550/arXiv.1603.08029
– volume: 105
  year: 2010
  ident: cpb_33_12_120304bib16
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.105.153601
– volume: 124
  year: 2020
  ident: cpb_33_12_120304bib28
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.124.160401
– volume: 103
  year: 2021
  ident: cpb_33_12_120304bib30
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.103.063704
– volume: 31
  start-page: 999
  year: 2006
  ident: cpb_33_12_120304bib11
  publication-title: Opt. Lett.
  doi: 10.1364/OL.31.000999
– volume: 6
  start-page: 488
  year: 2012
  ident: cpb_33_12_120304bib24
  publication-title: Nat. Photon.
  doi: 10.1038/nphoton.2012.138
– volume: 35
  start-page: 2279
  year: 2002
  ident: cpb_33_12_120304bib46
  publication-title: Pattern Recognition
  doi: 10.1016/S0031-3203(01)00178-9
– volume: 104
  year: 2021
  ident: cpb_33_12_120304bib27
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.104.053525
– volume: 17
  year: 2023
  ident: cpb_33_12_120304bib21
  publication-title: Laser Photon. Rev.
  doi: 10.1002/lpor.202300277
– volume: 11
  start-page: 2678
  year: 2021
  ident: cpb_33_12_120304bib39
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-021-82239-8
– volume: 7
  start-page: 738
  year: 2020
  ident: cpb_33_12_120304bib6
  publication-title: Optica
  doi: 10.1364/OPTICA.388773
– year: 2021
  ident: cpb_33_12_120304bib48
  doi: 10.48550/arXiv.2101.11605
– volume: 4
  year: 2021
  ident: cpb_33_12_120304bib35
  publication-title: Adv. Quantum Technol.
  doi: 10.1002/qute.v4.3
– volume: 105
  year: 2010
  ident: cpb_33_12_120304bib14
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.105.053904
– volume: 40
  start-page: 64
  year: 2023
  ident: cpb_33_12_120304bib29
  publication-title: J. Opt. Soc. Am. A
  doi: 10.1364/JOSAA.474611
– volume: 88
  year: 2002
  ident: cpb_33_12_120304bib15
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.88.257901
– volume: 7
  start-page: 98
  year: 2020
  ident: cpb_33_12_120304bib20
  publication-title: Optica
  doi: 10.1364/OPTICA.375875
– volume: 98
  year: 2018
  ident: cpb_33_12_120304bib9
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.98.042105
– volume: 27
  year: 2019
  ident: cpb_33_12_120304bib34
  publication-title: Opt. Express
  doi: 10.1364/OE.27.016671
– volume: 119
  year: 2021
  ident: cpb_33_12_120304bib40
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/5.0061365
– volume: 108
  year: 2012
  ident: cpb_33_12_120304bib3
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.108.143603
– volume: 123
  year: 2019
  ident: cpb_33_12_120304bib38
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.123.183902
– volume: 104
  year: 2010
  ident: cpb_33_12_120304bib7
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.104.060401
– volume: 32
  year: 2023
  ident: cpb_33_12_120304bib43
  publication-title: Chin. Phys. B
  doi: 10.1088/1674-1056/ac935e
– volume: 26
  year: 2017
  ident: cpb_33_12_120304bib23
  publication-title: Chin. Phys. B
  doi: 10.1088/1674-1056/26/11/114207
SSID ssj0061023
Score 2.3546398
Snippet The rich structure of transverse spatial modes of structured light has facilitated their extensive applications in quantum information and optical...
SourceID wanfang
crossref
iop
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 120304
SubjectTerms machine learning
optical communication
orbital angular momentum
Title Deep-learning-assisted optical communication with discretized state space of structured light
URI https://iopscience.iop.org/article/10.1088/1674-1056/ad8553
https://d.wanfangdata.com.cn/periodical/zgwl-e202412023
Volume 33
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LaxsxEB4Sh0AvzaMtcfNAheTQg2xrpfXK5BTyIATS5BCDDy1i9fIhYb0kNgX_-s7srpM4lFICexDs7Eo70krfSPPNABwmwoaeTwSPUkSuBkJz2wtYsonIpba4ohEb-fpH_3KorkbpaAWOn7kwk7KZ-jtYrAMF1ypsHOJ0l_zmOSWM7-Zep6lchTWp0a4g9t7N7WIa7lNMArK2FtLNGeXf3rC0Jq1ivRWDp4h5MX612FxswM9FM2sfk_vObGo7bv4mguM7v2MTPjYglJ3UoluwEoptWK-cQd3TJ_h1FkLJm3wSY47wmsaCZ5Oy2vhm7jWphNFOLiNyL_Eh5yhWcZQYzlQusElkdYTa2SPeeaCdgM8wvDi_O73kTRoG7pKBnvKMslsJL6KNHtGWcE5pj2Z1kFb1VBbT1CJmTGTAIsIbF_raUth6HAVWpVmQX6BVTIqwA0wr4USUSRa9VlJZnWUxj7nr2Xzg_SBrw_dFR5iyjrZhqlNyrQ2py5C6TK2uNhyhZk3zyz39Q-7bkpwrrZHSiAQvOhc2pY9tYE1_v8jNx78fTEgQwwhKMf_1P6vbhQ_0TO3xsgct1HHYR9wytQfV-PwDgBjkYQ
linkProvider IOP Publishing
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB4VqiIuUAqoy6M1Unvowbvr2Nl4jwhYQQuUQ5G4VG782kNRNoJFSPvrmUm8KiBUVaqUw0gZx8lnx_5szwPgUyZs6PtM8ChF5GooNLf9gJLNRCm1xRmNvJHPzgfHl-rrVX6V8pw2vjCTOg39XRTbQMEthMkgTvfIbp5Twvhe6XWey17t4wK8zmVeUO6Gk-8X86F4QHEJaMU1L5HOKV96ypN5aQHrbrx4qlhW40cTzmgVfs1ftbUz-d29m9qumz2L4vgf3_IWVhIZZfut-hq8CtU7eNMYhbrbdfh5GELNU16JMUeaTX3Cs0ndbIAz99i5hNGOLiMnX_KLnKFa46vEcMRygU0iayPV3t3gnWvaEdiAy9HRj4NjntIxcJcN9ZQXlOVKeBFt9Mi6hHNKe1xeB2lVXxUxzy1yx0wGFJHmuDDQlsLXY2-wKi-C3ITFalKF98C0Ek5EmRXRayWV1UURy1i6vi2H3g-LDnyZN4ap26gbpjkt19oQZIYgMy1kHfiM6Jr0693-RW_viZ6rrZHSiAwvOh82CH0HWGrzP3qz8f21CRlyGUGp5rf-sbqPsHRxODKnJ-fftmGZirdGMDuwiHCHXaQyU_uh6a4P5_rpyw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deep-learning-assisted+optical+communication+with+discretized+state+space+of+structured+light&rft.jtitle=Chinese+physics+B&rft.au=Zhang+%E5%BC%A0%2C+Minyang+%E6%95%8F%E6%B4%8B&rft.au=Chen+%E9%99%88%2C+Dong-Xu+%E4%B8%9C%E6%97%AD&rft.au=Ruan+%E9%98%AE%2C+Pengxiang+%E9%B9%8F%E7%A5%A5&rft.au=Liu+%E5%88%98%2C+Jun+%E4%BF%8A&rft.date=2024-12-01&rft.issn=1674-1056&rft.eissn=2058-3834&rft.volume=33&rft.issue=12&rft.spage=120304&rft_id=info:doi/10.1088%2F1674-1056%2Fad8553&rft.externalDBID=n%2Fa&rft.externalDocID=10_1088_1674_1056_ad8553
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fzgwl-e%2Fzgwl-e.jpg