Deep-learning-assisted optical communication with discretized state space of structured light
The rich structure of transverse spatial modes of structured light has facilitated their extensive applications in quantum information and optical communication. The Laguerre–Gaussian (LG) modes, which carry a well-defined orbital angular momentum (OAM), consist of a complete orthogonal basis descri...
Saved in:
Published in | Chinese physics B Vol. 33; no. 12; pp. 120304 - 201 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Chinese Physical Society and IOP Publishing Ltd
01.12.2024
|
Subjects | |
Online Access | Get full text |
ISSN | 1674-1056 2058-3834 |
DOI | 10.1088/1674-1056/ad8553 |
Cover
Abstract | The rich structure of transverse spatial modes of structured light has facilitated their extensive applications in quantum information and optical communication. The Laguerre–Gaussian (LG) modes, which carry a well-defined orbital angular momentum (OAM), consist of a complete orthogonal basis describing the transverse spatial modes of light. The application of OAM in free-space optical communication is restricted due to the experimentally limited OAM numbers and the complex OAM recognition methods. Here, we present a novel method that uses the advanced deep learning technique for LG modes recognition. By discretizing the spatial modes of structured light, we turn the OAM state regression into classification. A proof-of-principle experiment is also performed, showing that our method effectively categorizes OAM states with small training samples and the accuracy exceeds 99% from three-dimensional (3D) to fifteen-dimensional (15D) space. By assigning each category a classical information, we further apply our approach to an image transmission task, achieving a transmission accuracy of 99.58%, which demonstrates the ability to encode large data with low OAM number. This work opens up a new avenue for achieving high-capacity optical communication with low OAM number based on structured light. |
---|---|
AbstractList | The rich structure of transverse spatial modes of structured light has facilitated their extensive applications in quantum information and optical communication.The Laguerre-Gaussian(LG)modes,which carry a well-defined orbital angular momentum(OAM),consist of a complete orthogonal basis describing the transverse spatial modes of light.The application of OAM in free-space optical communication is restricted due to the experimentally limited OAM numbers and the complex OAM recognition methods.Here,we present a novel method that uses the advanced deep learning technique for LG modes recognition.By discretizing the spatial modes of structured light,we turn the OAM state regression into classification.A proof-of-principle experiment is also performed,showing that our method effectively categorizes OAM states with small training samples and the accuracy exceeds 99%from three-dimensional(3D)to fifteen-dimensional(15D)space.By assigning each category a classical information,we further apply our approach to an image transmission task,achieving a transmission accuracy of 99.58%,which demonstrates the ability to encode large data with low OAM number.This work opens up a new avenue for achieving high-capacity optical communication with low OAM number based on structured light. The rich structure of transverse spatial modes of structured light has facilitated their extensive applications in quantum information and optical communication. The Laguerre–Gaussian (LG) modes, which carry a well-defined orbital angular momentum (OAM), consist of a complete orthogonal basis describing the transverse spatial modes of light. The application of OAM in free-space optical communication is restricted due to the experimentally limited OAM numbers and the complex OAM recognition methods. Here, we present a novel method that uses the advanced deep learning technique for LG modes recognition. By discretizing the spatial modes of structured light, we turn the OAM state regression into classification. A proof-of-principle experiment is also performed, showing that our method effectively categorizes OAM states with small training samples and the accuracy exceeds 99% from three-dimensional (3D) to fifteen-dimensional (15D) space. By assigning each category a classical information, we further apply our approach to an image transmission task, achieving a transmission accuracy of 99.58%, which demonstrates the ability to encode large data with low OAM number. This work opens up a new avenue for achieving high-capacity optical communication with low OAM number based on structured light. |
Author | Chen, Dong-Xu Zhang, Minyang Ruan, Pengxiang Fu, Dong-Zhi Zhao, Jun-Long Yang, Chui-Ping Liu, Jun |
Author_xml | – sequence: 1 givenname: Minyang surname: Zhang fullname: Zhang, Minyang organization: Jiangsu University of Science and Technology School of Science, Zhenjiang 212003, China – sequence: 2 givenname: Dong-Xu surname: Chen fullname: Chen, Dong-Xu organization: Shangrao Normal University Jiangxi Province Key Laboratory of Applied Optical Technology (2024SSY03051), Shangrao 334001, China – sequence: 3 givenname: Pengxiang surname: Ruan fullname: Ruan, Pengxiang organization: Jiangsu University of Science and Technology School of Science, Zhenjiang 212003, China – sequence: 4 givenname: Jun surname: Liu fullname: Liu, Jun organization: Jiangsu University of Science and Technology School of Science, Zhenjiang 212003, China – sequence: 5 givenname: Dong-Zhi surname: Fu fullname: Fu, Dong-Zhi organization: Henan Institute of Technology School of Cable Engineering, Xinxiang 453003, China – sequence: 6 givenname: Jun-Long surname: Zhao fullname: Zhao, Jun-Long organization: Shangrao Normal University Quantum Information Research Center, Shangrao 334001, China – sequence: 7 givenname: Chui-Ping surname: Yang fullname: Yang, Chui-Ping organization: Hangzhou Normal University School of Physics, Hangzhou 311121, China |
BookMark | eNp1kM9LwzAUx4NMcJvePfamB-uSJmmzo8yfMPCiRwlpmnQZXVKSlOH-ejMqelF4vB-8z_s--M7AxDqrALhE8BZBxhaorEiOIC0XomGU4hMwLSBlOWaYTMD0Z30GZiFsISwRLPAUfNwr1eedEt4a2-YiBBOiajLXRyNFl0m32w02tdE4m-1N3GSNCdKraA4JC1FElYVeSJU5nUY_yDj4tOlMu4nn4FSLLqiL7zoH748Pb6vnfP369LK6W-eyWLKYV8sKI9QgXeuGlghJSVgDSalwTSCpNKU1xbjAKrUEL6UqWV0tSYlqVRNaKTwHV6PuXlgtbMu3bvA2feSHdt9xVcCCoJRwIuFISu9C8Erz3pud8J8cQX40kh-d4ken-GhkOrkeT4zrf4VlX3OMOSpSQAwJ7xud0Js_0H-VvwBrAYPj |
Cites_doi | 10.1103/PhysRevLett.101.100801 10.1103/PhysRevLett.119.180510 10.1126/science.1237861 10.1364/OE.26.010494 10.1103/PhysRevLett.88.127902 10.1016/0030-4018(93)90535-D 10.1088/1367-2630/18/1/013021 10.1038/ncomms5876 10.1073/pnas.1616889113 10.1088/0256-307X/41/7/074201 10.1088/1674-1056/26/6/060305 10.1038/s41377-021-00667-7 10.1016/j.physleta.2015.06.022 10.1103/PhysRevA.106.013519 10.1364/OE.465318 10.1038/s41598-021-03026-z 10.1103/PhysRevResearch.5.013142 10.1364/OL.34.003686 10.1103/PhysRevApplied.11.064058 10.1126/sciadv.1601915 10.1088/0256-307X/26/3/034202 10.1103/PhysRevLett.120.193904 10.1103/PhysRevApplied.17.054019 10.48550/arXiv.1603.08029 10.1103/PhysRevLett.105.153601 10.1103/PhysRevLett.124.160401 10.1103/PhysRevA.103.063704 10.1364/OL.31.000999 10.1038/nphoton.2012.138 10.1016/S0031-3203(01)00178-9 10.1103/PhysRevA.104.053525 10.1002/lpor.202300277 10.1038/s41598-021-82239-8 10.1364/OPTICA.388773 10.48550/arXiv.2101.11605 10.1002/qute.v4.3 10.1103/PhysRevLett.105.053904 10.1364/JOSAA.474611 10.1103/PhysRevLett.88.257901 10.1364/OPTICA.375875 10.1103/PhysRevA.98.042105 10.1364/OE.27.016671 10.1063/5.0061365 10.1103/PhysRevLett.108.143603 10.1103/PhysRevLett.123.183902 10.1103/PhysRevLett.104.060401 10.1088/1674-1056/ac935e 10.1088/1674-1056/26/11/114207 |
ContentType | Journal Article |
Copyright | 2024 Chinese Physical Society and IOP Publishing Ltd Copyright © Wanfang Data Co. Ltd. All Rights Reserved. |
Copyright_xml | – notice: 2024 Chinese Physical Society and IOP Publishing Ltd – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved. |
DBID | AAYXX CITATION 2B. 4A8 92I 93N PSX TCJ |
DOI | 10.1088/1674-1056/ad8553 |
DatabaseName | CrossRef Wanfang Data Journals - Hong Kong WANFANG Data Centre Wanfang Data Journals 万方数据期刊 - 香港版 China Online Journals (COJ) China Online Journals (COJ) |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics |
EISSN | 2058-3834 |
EndPage | 201 |
ExternalDocumentID | zgwl_e202412023 10_1088_1674_1056_ad8553 cpb_33_12_120304 |
GroupedDBID | -SA -S~ 1JI 29B 4.4 5B3 5GY 5VR 5VS 5ZH 6J9 7.M 7.Q AAGCD AAJIO AAJKP AATNI AAXDM ABHWH ABJNI ABQJV ACAFW ACGFS ACHIP AEFHF AENEX AFYNE AKPSB ALMA_UNASSIGNED_HOLDINGS AOAED ASPBG ATQHT AVWKF AZFZN CAJEA CCEZO CCVFK CEBXE CHBEP CJUJL CRLBU CS3 DU5 EBS EDWGO EMSAF EPQRW EQZZN FA0 HAK IJHAN IOP IZVLO KOT N5L PJBAE RIN RNS ROL RPA SY9 TCJ TGP U1G U5K UCJ W28 AAYXX ADEQX CITATION Q-- 02O 1WK 2B. 4A8 92I 93N AALHV ACARI AERVB AFUIB AGQPQ AHSEE ARNYC BBWZM EJD FEDTE HVGLF JCGBZ M45 NT- NT. PSX Q02 |
ID | FETCH-LOGICAL-c298t-797311d1fbfd5611cc48d046e3b4047f55b53323e7f5439ce68b79461beb457e3 |
IEDL.DBID | IOP |
ISSN | 1674-1056 |
IngestDate | Thu May 29 04:07:18 EDT 2025 Tue Jul 01 02:13:16 EDT 2025 Wed Dec 25 02:20:33 EST 2024 Wed Dec 25 02:20:34 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 12 |
Keywords | machine learning orbital angular momentum optical communication |
Language | English |
License | This article is available under the terms of the IOP-Standard License. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c298t-797311d1fbfd5611cc48d046e3b4047f55b53323e7f5439ce68b79461beb457e3 |
PageCount | 6 |
ParticipantIDs | crossref_primary_10_1088_1674_1056_ad8553 iop_journals_10_1088_1674_1056_ad8553 wanfang_journals_zgwl_e202412023 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-12-01 |
PublicationDateYYYYMMDD | 2024-12-01 |
PublicationDate_xml | – month: 12 year: 2024 text: 2024-12-01 day: 01 |
PublicationDecade | 2020 |
PublicationTitle | Chinese physics B |
PublicationTitleAlternate | Chin. Phys. B |
PublicationTitle_FL | Chinese Physics B |
PublicationYear | 2024 |
Publisher | Chinese Physical Society and IOP Publishing Ltd |
Publisher_xml | – name: Chinese Physical Society and IOP Publishing Ltd |
References | Dixon (cpb_33_12_120304bib3) 2012; 108 Na (cpb_33_12_120304bib39) 2021; 11 Berkhout (cpb_33_12_120304bib16) 2010; 105 Chen (cpb_33_12_120304bib42) 2021; 10 Srinivas (cpb_33_12_120304bib48) 2021 Cerf (cpb_33_12_120304bib1) 2002; 88 Chen (cpb_33_12_120304bib22) 2009; 26 Zhou (cpb_33_12_120304bib41) 2022; 106 Hickmann (cpb_33_12_120304bib14) 2010; 105 Bouchard (cpb_33_12_120304bib5) 2017; 3 Na (cpb_33_12_120304bib36) 2021; 11 Hu (cpb_33_12_120304bib6) 2020; 7 Beijersbergen (cpb_33_12_120304bib45) 1993; 96 Fickler (cpb_33_12_120304bib10) 2016; 113 Berkhout (cpb_33_12_120304bib12) 2008; 101 Guo (cpb_33_12_120304bib13) 2009; 34 Targ (cpb_33_12_120304bib47) 2016 Xu (cpb_33_12_120304bib44) 2024; 41 Babazadeh (cpb_33_12_120304bib18) 2017; 119 Liu (cpb_33_12_120304bib38) 2019; 123 Cozzolino (cpb_33_12_120304bib4) 2019; 11 Fonseca (cpb_33_12_120304bib9) 2018; 98 Chen (cpb_33_12_120304bib17) 2015; 379 Wang (cpb_33_12_120304bib37) 2022; 30 da Silva (cpb_33_12_120304bib30) 2021; 103 Li (cpb_33_12_120304bib33) 2018; 26 Zhan (cpb_33_12_120304bib43) 2023; 32 Wen (cpb_33_12_120304bib19) 2018; 120 Vértesi (cpb_33_12_120304bib7) 2010; 104 Leach (cpb_33_12_120304bib15) 2002; 88 Brandt (cpb_33_12_120304bib20) 2020; 7 zhou Cui (cpb_33_12_120304bib23) 2017; 26 Weiss (cpb_33_12_120304bib8) 2016; 18 Avramov-Zamurovic (cpb_33_12_120304bib29) 2023; 40 Bozinovic (cpb_33_12_120304bib25) 2013; 340 Cao (cpb_33_12_120304bib40) 2021; 119 Sztul (cpb_33_12_120304bib11) 2006; 31 Wang (cpb_33_12_120304bib24) 2012; 6 Zhang (cpb_33_12_120304bib27) 2021; 104 Chen (cpb_33_12_120304bib2) 2017; 26 Chen (cpb_33_12_120304bib21) 2023; 17 Zia (cpb_33_12_120304bib32) 2023; 5 Egmont-Petersen (cpb_33_12_120304bib46) 2002; 35 Bhusal (cpb_33_12_120304bib35) 2021; 4 Yan (cpb_33_12_120304bib26) 2014; 5 Liu (cpb_33_12_120304bib34) 2019; 27 Giordani (cpb_33_12_120304bib28) 2020; 124 Guo (cpb_33_12_120304bib31) 2022; 17 |
References_xml | – volume: 101 year: 2008 ident: cpb_33_12_120304bib12 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.101.100801 – volume: 119 year: 2017 ident: cpb_33_12_120304bib18 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.119.180510 – volume: 340 start-page: 1545 year: 2013 ident: cpb_33_12_120304bib25 publication-title: Science doi: 10.1126/science.1237861 – volume: 26 year: 2018 ident: cpb_33_12_120304bib33 publication-title: Opt. Express doi: 10.1364/OE.26.010494 – volume: 88 year: 2002 ident: cpb_33_12_120304bib1 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.88.127902 – volume: 96 start-page: 123 year: 1993 ident: cpb_33_12_120304bib45 publication-title: Opt. Commun. doi: 10.1016/0030-4018(93)90535-D – volume: 18 year: 2016 ident: cpb_33_12_120304bib8 publication-title: New J. Phys. doi: 10.1088/1367-2630/18/1/013021 – volume: 5 start-page: 4876 year: 2014 ident: cpb_33_12_120304bib26 publication-title: Nat. Commun. doi: 10.1038/ncomms5876 – volume: 113 year: 2016 ident: cpb_33_12_120304bib10 publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1616889113 – volume: 41 year: 2024 ident: cpb_33_12_120304bib44 publication-title: Chin. Phys. Lett. doi: 10.1088/0256-307X/41/7/074201 – volume: 26 year: 2017 ident: cpb_33_12_120304bib2 publication-title: Chin. Phys. B doi: 10.1088/1674-1056/26/6/060305 – volume: 10 start-page: 222 year: 2021 ident: cpb_33_12_120304bib42 publication-title: Light: Sci. Appl. doi: 10.1038/s41377-021-00667-7 – volume: 379 start-page: 2530 year: 2015 ident: cpb_33_12_120304bib17 publication-title: Phys. Lett. A doi: 10.1016/j.physleta.2015.06.022 – volume: 106 year: 2022 ident: cpb_33_12_120304bib41 publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.106.013519 – volume: 30 year: 2022 ident: cpb_33_12_120304bib37 publication-title: Opt. Express doi: 10.1364/OE.465318 – volume: 11 year: 2021 ident: cpb_33_12_120304bib36 publication-title: Sci. Rep. doi: 10.1038/s41598-021-03026-z – volume: 5 year: 2023 ident: cpb_33_12_120304bib32 publication-title: Phys. Rev. Res. doi: 10.1103/PhysRevResearch.5.013142 – volume: 34 start-page: 3686 year: 2009 ident: cpb_33_12_120304bib13 publication-title: Opt. Lett. doi: 10.1364/OL.34.003686 – volume: 11 year: 2019 ident: cpb_33_12_120304bib4 publication-title: Phys. Rev. Appl. doi: 10.1103/PhysRevApplied.11.064058 – volume: 3 year: 2017 ident: cpb_33_12_120304bib5 publication-title: Sci. Adv. doi: 10.1126/sciadv.1601915 – volume: 26 year: 2009 ident: cpb_33_12_120304bib22 publication-title: Chin. Phys. Lett. doi: 10.1088/0256-307X/26/3/034202 – volume: 120 year: 2018 ident: cpb_33_12_120304bib19 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.120.193904 – volume: 17 year: 2022 ident: cpb_33_12_120304bib31 publication-title: Phys. Rev. Appl. doi: 10.1103/PhysRevApplied.17.054019 – year: 2016 ident: cpb_33_12_120304bib47 doi: 10.48550/arXiv.1603.08029 – volume: 105 year: 2010 ident: cpb_33_12_120304bib16 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.105.153601 – volume: 124 year: 2020 ident: cpb_33_12_120304bib28 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.124.160401 – volume: 103 year: 2021 ident: cpb_33_12_120304bib30 publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.103.063704 – volume: 31 start-page: 999 year: 2006 ident: cpb_33_12_120304bib11 publication-title: Opt. Lett. doi: 10.1364/OL.31.000999 – volume: 6 start-page: 488 year: 2012 ident: cpb_33_12_120304bib24 publication-title: Nat. Photon. doi: 10.1038/nphoton.2012.138 – volume: 35 start-page: 2279 year: 2002 ident: cpb_33_12_120304bib46 publication-title: Pattern Recognition doi: 10.1016/S0031-3203(01)00178-9 – volume: 104 year: 2021 ident: cpb_33_12_120304bib27 publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.104.053525 – volume: 17 year: 2023 ident: cpb_33_12_120304bib21 publication-title: Laser Photon. Rev. doi: 10.1002/lpor.202300277 – volume: 11 start-page: 2678 year: 2021 ident: cpb_33_12_120304bib39 publication-title: Sci. Rep. doi: 10.1038/s41598-021-82239-8 – volume: 7 start-page: 738 year: 2020 ident: cpb_33_12_120304bib6 publication-title: Optica doi: 10.1364/OPTICA.388773 – year: 2021 ident: cpb_33_12_120304bib48 doi: 10.48550/arXiv.2101.11605 – volume: 4 year: 2021 ident: cpb_33_12_120304bib35 publication-title: Adv. Quantum Technol. doi: 10.1002/qute.v4.3 – volume: 105 year: 2010 ident: cpb_33_12_120304bib14 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.105.053904 – volume: 40 start-page: 64 year: 2023 ident: cpb_33_12_120304bib29 publication-title: J. Opt. Soc. Am. A doi: 10.1364/JOSAA.474611 – volume: 88 year: 2002 ident: cpb_33_12_120304bib15 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.88.257901 – volume: 7 start-page: 98 year: 2020 ident: cpb_33_12_120304bib20 publication-title: Optica doi: 10.1364/OPTICA.375875 – volume: 98 year: 2018 ident: cpb_33_12_120304bib9 publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.98.042105 – volume: 27 year: 2019 ident: cpb_33_12_120304bib34 publication-title: Opt. Express doi: 10.1364/OE.27.016671 – volume: 119 year: 2021 ident: cpb_33_12_120304bib40 publication-title: Appl. Phys. Lett. doi: 10.1063/5.0061365 – volume: 108 year: 2012 ident: cpb_33_12_120304bib3 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.108.143603 – volume: 123 year: 2019 ident: cpb_33_12_120304bib38 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.123.183902 – volume: 104 year: 2010 ident: cpb_33_12_120304bib7 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.104.060401 – volume: 32 year: 2023 ident: cpb_33_12_120304bib43 publication-title: Chin. Phys. B doi: 10.1088/1674-1056/ac935e – volume: 26 year: 2017 ident: cpb_33_12_120304bib23 publication-title: Chin. Phys. B doi: 10.1088/1674-1056/26/11/114207 |
SSID | ssj0061023 |
Score | 2.3546398 |
Snippet | The rich structure of transverse spatial modes of structured light has facilitated their extensive applications in quantum information and optical... |
SourceID | wanfang crossref iop |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 120304 |
SubjectTerms | machine learning optical communication orbital angular momentum |
Title | Deep-learning-assisted optical communication with discretized state space of structured light |
URI | https://iopscience.iop.org/article/10.1088/1674-1056/ad8553 https://d.wanfangdata.com.cn/periodical/zgwl-e202412023 |
Volume | 33 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LaxsxEB4Sh0AvzaMtcfNAheTQg2xrpfXK5BTyIATS5BCDDy1i9fIhYb0kNgX_-s7srpM4lFICexDs7Eo70krfSPPNABwmwoaeTwSPUkSuBkJz2wtYsonIpba4ohEb-fpH_3KorkbpaAWOn7kwk7KZ-jtYrAMF1ypsHOJ0l_zmOSWM7-Zep6lchTWp0a4g9t7N7WIa7lNMArK2FtLNGeXf3rC0Jq1ivRWDp4h5MX612FxswM9FM2sfk_vObGo7bv4mguM7v2MTPjYglJ3UoluwEoptWK-cQd3TJ_h1FkLJm3wSY47wmsaCZ5Oy2vhm7jWphNFOLiNyL_Eh5yhWcZQYzlQusElkdYTa2SPeeaCdgM8wvDi_O73kTRoG7pKBnvKMslsJL6KNHtGWcE5pj2Z1kFb1VBbT1CJmTGTAIsIbF_raUth6HAVWpVmQX6BVTIqwA0wr4USUSRa9VlJZnWUxj7nr2Xzg_SBrw_dFR5iyjrZhqlNyrQ2py5C6TK2uNhyhZk3zyz39Q-7bkpwrrZHSiAQvOhc2pY9tYE1_v8jNx78fTEgQwwhKMf_1P6vbhQ_0TO3xsgct1HHYR9wytQfV-PwDgBjkYQ |
linkProvider | IOP Publishing |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB4VqiIuUAqoy6M1Unvowbvr2Nl4jwhYQQuUQ5G4VG782kNRNoJFSPvrmUm8KiBUVaqUw0gZx8lnx_5szwPgUyZs6PtM8ChF5GooNLf9gJLNRCm1xRmNvJHPzgfHl-rrVX6V8pw2vjCTOg39XRTbQMEthMkgTvfIbp5Twvhe6XWey17t4wK8zmVeUO6Gk-8X86F4QHEJaMU1L5HOKV96ypN5aQHrbrx4qlhW40cTzmgVfs1ftbUz-d29m9qumz2L4vgf3_IWVhIZZfut-hq8CtU7eNMYhbrbdfh5GELNU16JMUeaTX3Cs0ndbIAz99i5hNGOLiMnX_KLnKFa46vEcMRygU0iayPV3t3gnWvaEdiAy9HRj4NjntIxcJcN9ZQXlOVKeBFt9Mi6hHNKe1xeB2lVXxUxzy1yx0wGFJHmuDDQlsLXY2-wKi-C3ITFalKF98C0Ek5EmRXRayWV1UURy1i6vi2H3g-LDnyZN4ap26gbpjkt19oQZIYgMy1kHfiM6Jr0693-RW_viZ6rrZHSiAwvOh82CH0HWGrzP3qz8f21CRlyGUGp5rf-sbqPsHRxODKnJ-fftmGZirdGMDuwiHCHXaQyU_uh6a4P5_rpyw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deep-learning-assisted+optical+communication+with+discretized+state+space+of+structured+light&rft.jtitle=Chinese+physics+B&rft.au=Zhang+%E5%BC%A0%2C+Minyang+%E6%95%8F%E6%B4%8B&rft.au=Chen+%E9%99%88%2C+Dong-Xu+%E4%B8%9C%E6%97%AD&rft.au=Ruan+%E9%98%AE%2C+Pengxiang+%E9%B9%8F%E7%A5%A5&rft.au=Liu+%E5%88%98%2C+Jun+%E4%BF%8A&rft.date=2024-12-01&rft.issn=1674-1056&rft.eissn=2058-3834&rft.volume=33&rft.issue=12&rft.spage=120304&rft_id=info:doi/10.1088%2F1674-1056%2Fad8553&rft.externalDBID=n%2Fa&rft.externalDocID=10_1088_1674_1056_ad8553 |
thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fzgwl-e%2Fzgwl-e.jpg |