Application of Bat Algorithm and Its Modified Form Trained with ANN in Channel Equalization

The transmission of high-speed data over communication channels is the function of digital communication systems. Due to linear and nonlinear distortions, data transmitted through this process is distorted. In a communication system, the channel is the medium through which signals are transmitted. T...

Full description

Saved in:
Bibliographic Details
Published inSymmetry (Basel) Vol. 14; no. 10; p. 2078
Main Authors Kumar Mohapatra, Pradyumna, Kumar Rout, Saroja, Kishoro Bisoy, Sukant, Kautish, Sandeep, Hamzah, Muzaffar, Jasser, Muhammed Basheer, Mohamed, Ali Wagdy
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 01.10.2022
Subjects
Online AccessGet full text
ISSN2073-8994
2073-8994
DOI10.3390/sym14102078

Cover

Abstract The transmission of high-speed data over communication channels is the function of digital communication systems. Due to linear and nonlinear distortions, data transmitted through this process is distorted. In a communication system, the channel is the medium through which signals are transmitted. The useful signal received at the receiver becomes corrupted because it is associated with noise, ISI, CCI, etc. The equalizers function at the front end of the receiver to eliminate these factors, and they are designed to make them work efficiently with proper network topology and parameters. In the case of highly dispersive and nonlinear channels, it is well known that neural network-based equalizers are more effective than linear equalizers, which use finite impulse response filters. An alternative approach to training neural network-based equalizers is to use metaheuristic algorithms. Here, in this work, to develop the symmetry-based efficient channel equalization in wireless communication, this paper proposes a modified form of bat algorithm trained with ANN for channel equalization. It adopts a population-based and local search algorithm to exploit the advantages of bats’ echolocation. The foremost initiative is to boost the flexibility of both the variants of the proposed algorithm and the utilization of proper weight, topology, and the transfer function of ANN in channel equalization. To evaluate the equalizer’s performance, MSE and BER can be calculated by considering popular nonlinear channels and adding nonlinearities. Experimental and statistical analyses show that, in comparison with the bat as well as variants of the bat and state-of-the-art algorithms, the proposed algorithm substantially outperforms them significantly, based on MSE and BER.
AbstractList The transmission of high-speed data over communication channels is the function of digital communication systems. Due to linear and nonlinear distortions, data transmitted through this process is distorted. In a communication system, the channel is the medium through which signals are transmitted. The useful signal received at the receiver becomes corrupted because it is associated with noise, ISI, CCI, etc. The equalizers function at the front end of the receiver to eliminate these factors, and they are designed to make them work efficiently with proper network topology and parameters. In the case of highly dispersive and nonlinear channels, it is well known that neural network-based equalizers are more effective than linear equalizers, which use finite impulse response filters. An alternative approach to training neural network-based equalizers is to use metaheuristic algorithms. Here, in this work, to develop the symmetry-based efficient channel equalization in wireless communication, this paper proposes a modified form of bat algorithm trained with ANN for channel equalization. It adopts a population-based and local search algorithm to exploit the advantages of bats’ echolocation. The foremost initiative is to boost the flexibility of both the variants of the proposed algorithm and the utilization of proper weight, topology, and the transfer function of ANN in channel equalization. To evaluate the equalizer’s performance, MSE and BER can be calculated by considering popular nonlinear channels and adding nonlinearities. Experimental and statistical analyses show that, in comparison with the bat as well as variants of the bat and state-of-the-art algorithms, the proposed algorithm substantially outperforms them significantly, based on MSE and BER.
Author Kumar Mohapatra, Pradyumna
Kautish, Sandeep
Mohamed, Ali Wagdy
Kishoro Bisoy, Sukant
Hamzah, Muzaffar
Jasser, Muhammed Basheer
Kumar Rout, Saroja
Author_xml – sequence: 1
  givenname: Pradyumna
  orcidid: 0000-0001-6083-9594
  surname: Kumar Mohapatra
  fullname: Kumar Mohapatra, Pradyumna
– sequence: 2
  givenname: Saroja
  orcidid: 0000-0001-9007-3665
  surname: Kumar Rout
  fullname: Kumar Rout, Saroja
– sequence: 3
  givenname: Sukant
  surname: Kishoro Bisoy
  fullname: Kishoro Bisoy, Sukant
– sequence: 4
  givenname: Sandeep
  orcidid: 0000-0001-5120-5741
  surname: Kautish
  fullname: Kautish, Sandeep
– sequence: 5
  givenname: Muzaffar
  orcidid: 0000-0002-9362-7771
  surname: Hamzah
  fullname: Hamzah, Muzaffar
– sequence: 6
  givenname: Muhammed Basheer
  orcidid: 0000-0001-5292-465X
  surname: Jasser
  fullname: Jasser, Muhammed Basheer
– sequence: 7
  givenname: Ali Wagdy
  orcidid: 0000-0002-5895-2632
  surname: Mohamed
  fullname: Mohamed, Ali Wagdy
BookMark eNp9kM9PwjAUxxuDiYic_AeaeNRp17VsPSIBJUG84MnD8rZuUtK1o9tC8K-3ggdiou_yfS_5vO_7cYl6xpoCoeuQ3EeRIA_NvgpZSCiJkzPU9xIFiRCsd5JfoGHTbIgPTjgbkT56H9e1Vjm0yhpsS_wILR7rD-tUu64wGInnbYNfrFSlKiSeWVfhlQNlfLHzDB4vl1gZPFmDMYXG020HWn0e_K7QeQm6KYY_OkBvs-lq8hwsXp_mk_EiyKlI2oDTXMZEJhEUMGKUAU14LGlGRCkogSzKBMlKTkmYxzQEBhIk47GIeMFJCCQaoLujb2dq2O9A67R2qgK3T0OSfv8mPfmNx2-OeO3stiuaNt3Yzhm_YUpjP5smjDNPhUcqd7ZpXFGmuWoPZ7X-fP2H8-2vnv_2-AKBeYKS
CitedBy_id crossref_primary_10_1016_j_eij_2025_100617
crossref_primary_10_3390_electronics13030601
crossref_primary_10_1007_s42979_024_02632_8
crossref_primary_10_3390_biomimetics9050292
crossref_primary_10_1016_j_jksuci_2024_102132
crossref_primary_10_3233_HIS_240020
crossref_primary_10_3390_sym15061265
crossref_primary_10_3390_telecom6010006
crossref_primary_10_1002_acs_3650
crossref_primary_10_1007_s13198_024_02643_x
crossref_primary_10_1186_s13638_023_02326_4
crossref_primary_10_3390_sym15020325
Cites_doi 10.1109/TNN.2008.2011481
10.1016/j.asoc.2015.08.002
10.1016/j.neunet.2010.09.009
10.1016/j.eswa.2013.10.053
10.1109/CTISC52352.2021.00046
10.1109/SIBGRAPI.2012.47
10.1049/iet-com.2011.0415
10.1109/3477.752798
10.1109/TVT.2019.2892390
10.1109/ACC.2006.1657637
10.1016/j.ins.2011.09.036
10.1016/j.eswa.2019.112970
10.1016/j.asoc.2010.04.011
10.1007/978-981-10-5687-1_51
10.1016/j.jocs.2011.12.005
10.1016/j.sigpro.2009.09.001
10.1016/j.dsp.2011.05.004
10.1007/978-981-10-6875-1_48
10.1016/j.aeue.2020.153371
10.1109/TSP.2003.822358
10.1016/j.sigpro.2009.05.004
10.1109/TST.2007.6071814
10.1016/j.asoc.2014.10.040
10.1109/VTCFall.2017.8288015
10.1016/j.eswa.2008.06.109
10.1016/j.sigpro.2009.07.013
10.1109/ICSMC.2008.4811554
10.1109/TCOMM.2010.08.080612
10.1109/ACCESS.2022.3174369
10.1016/j.ins.2011.04.033
10.1016/j.epsr.2022.108619
10.1007/978-3-642-12538-6_6
10.1002/acs.1019
10.1016/j.asoc.2017.03.029
10.1016/j.eswa.2022.117433
10.1016/j.jhydrol.2006.02.025
10.1016/j.asoc.2011.05.012
10.1016/j.eswa.2021.115828
10.1016/j.asoc.2007.12.001
10.1016/j.aeue.2014.05.005
ContentType Journal Article
Copyright 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
7SC
7SR
7U5
8BQ
8FD
8FE
8FG
ABJCF
ABUWG
AFKRA
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
H8D
HCIFZ
JG9
JQ2
L6V
L7M
L~C
L~D
M7S
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
ADTOC
UNPAY
DOI 10.3390/sym14102078
DatabaseName CrossRef
Computer and Information Systems Abstracts
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest Technology Collection (LUT)
ProQuest One
ProQuest Central
Aerospace Database
SciTech Premium Collection
Materials Research Database
ProQuest Computer Science Collection
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Engineering Database
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering collection
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
Publicly Available Content Database
Materials Research Database
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
Aerospace Database
Engineered Materials Abstracts
ProQuest Engineering Collection
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies Database with Aerospace
Engineering Collection
Engineering Database
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
METADEX
Computer and Information Systems Abstracts Professional
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
Solid State and Superconductivity Abstracts
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList CrossRef
Publicly Available Content Database
Database_xml – sequence: 1
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
EISSN 2073-8994
ExternalDocumentID 10.3390/sym14102078
10_3390_sym14102078
GroupedDBID 5VS
8FE
8FG
AADQD
AAYXX
ABDBF
ABJCF
ACUHS
ADBBV
ADMLS
AFKRA
AFZYC
ALMA_UNASSIGNED_HOLDINGS
AMVHM
BCNDV
BENPR
BGLVJ
CCPQU
CITATION
E3Z
ESX
GX1
HCIFZ
IAO
ITC
J9A
KQ8
L6V
M7S
MODMG
M~E
OK1
PHGZM
PHGZT
PIMPY
PQGLB
PROAC
PTHSS
TR2
TUS
7SC
7SR
7U5
8BQ
8FD
ABUWG
AZQEC
DWQXO
H8D
JG9
JQ2
L7M
L~C
L~D
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
ADTOC
C1A
IPNFZ
RIG
UNPAY
ID FETCH-LOGICAL-c298t-52cd70d83aea6424a2857d2b09f920ab3b90bf5201c721a4adad457935e501a03
IEDL.DBID UNPAY
ISSN 2073-8994
IngestDate Sun Oct 26 04:11:54 EDT 2025
Fri Jul 25 12:01:52 EDT 2025
Thu Apr 24 23:00:19 EDT 2025
Thu Oct 16 04:31:21 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 10
Language English
License cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c298t-52cd70d83aea6424a2857d2b09f920ab3b90bf5201c721a4adad457935e501a03
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-9007-3665
0000-0001-6083-9594
0000-0002-5895-2632
0000-0002-9362-7771
0000-0001-5120-5741
0000-0001-5292-465X
OpenAccessLink https://proxy.k.utb.cz/login?url=https://www.mdpi.com/2073-8994/14/10/2078/pdf?version=1666601966
PQID 2728528454
PQPubID 2032326
ParticipantIDs unpaywall_primary_10_3390_sym14102078
proquest_journals_2728528454
crossref_citationtrail_10_3390_sym14102078
crossref_primary_10_3390_sym14102078
PublicationCentury 2000
PublicationDate 2022-10-01
PublicationDateYYYYMMDD 2022-10-01
PublicationDate_xml – month: 10
  year: 2022
  text: 2022-10-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Symmetry (Basel)
PublicationYear 2022
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Blas (ref_24) 2012; 3
Zhao (ref_12) 2010; 90
Zhao (ref_9) 2011; 181
Liang (ref_49) 2004; 52
Zhao (ref_10) 2009; 20
Lin (ref_20) 2009; 36
ref_16
Patra (ref_5) 1999; 29
Zhang (ref_38) 2007; 12
Mohapatra (ref_34) 2017; 9
Chau (ref_17) 2006; 329
Lee (ref_19) 2012; 186
Akila (ref_48) 2021; 187
Zhao (ref_7) 2011; 24
ref_28
Ingle (ref_36) 2020; 138
ref_26
Patra (ref_32) 2009; 89
Zhao (ref_11) 2012; 6
Mohapatra (ref_41) 2022; 10
ref_31
ref_30
Das (ref_18) 2014; 41
Baeza (ref_40) 2019; 68
Panda (ref_27) 2015; 27
ref_39
ref_37
Abiyev (ref_14) 2011; 11
Zhao (ref_8) 2011; 21
Lin (ref_21) 2011; 11
Panigrahi (ref_15) 2008; 22
Ingle (ref_35) 2019; 145
Jaddi (ref_43) 2015; 37
Zhao (ref_13) 2010; 58
Panigrahi (ref_25) 2008; 8
ref_45
ref_44
ref_42
Potter (ref_23) 2010; 90
ref_1
ref_3
Nanda (ref_29) 2017; 57
ref_2
Sampaio (ref_47) 2022; 211
Dereli (ref_46) 2022; 202
Panda (ref_33) 2014; 68
Hong (ref_22) 2008; 200
ref_4
ref_6
References_xml – volume: 20
  start-page: 665
  year: 2009
  ident: ref_10
  article-title: Adaptively combined FIR and functional link neural network equalizer for nonlinear communication channel
  publication-title: IEEE Trans. Neural Netw.
  doi: 10.1109/TNN.2008.2011481
– volume: 37
  start-page: 71
  year: 2015
  ident: ref_43
  article-title: Optimization of neural network model using modified bat-inspired algorithm
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2015.08.002
– volume: 24
  start-page: 12
  year: 2011
  ident: ref_7
  article-title: A novel joint-processing adaptive nonlinear equalizer using a modular recurrent neural network for chaotic communication systems
  publication-title: Neural Netw.
  doi: 10.1016/j.neunet.2010.09.009
– volume: 41
  start-page: 3491
  year: 2014
  ident: ref_18
  article-title: Artificial Neural Network trained by Particle Swarm Optimization for non-linear channel equalization
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2013.10.053
– ident: ref_37
  doi: 10.1109/CTISC52352.2021.00046
– ident: ref_44
  doi: 10.1109/SIBGRAPI.2012.47
– volume: 6
  start-page: 1082
  year: 2012
  ident: ref_11
  article-title: Complex-valued pipelined decision feedback recurrent neural network for nonlinear channel equalization
  publication-title: IET Commun.
  doi: 10.1049/iet-com.2011.0415
– ident: ref_16
– volume: 29
  start-page: 262
  year: 1999
  ident: ref_5
  article-title: Nonlinear channel equalization for QAM signal constellation using artificial neural networks
  publication-title: IEEE Trans. Syst. Man Cybern. Part B
  doi: 10.1109/3477.752798
– volume: 68
  start-page: 2413
  year: 2019
  ident: ref_40
  article-title: Non-Coherent Massive SIMO System Based on M-DPSK for Rician Channels
  publication-title: IEEE Trans. Veh. Technol.
  doi: 10.1109/TVT.2019.2892390
– ident: ref_1
– ident: ref_4
  doi: 10.1109/ACC.2006.1657637
– volume: 186
  start-page: 59
  year: 2012
  ident: ref_19
  article-title: Nonlinear systems design by a novel fuzzy neural system via hybridization of electromagnetism-like mechanism and particle swarm optimisation algorithms
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2011.09.036
– volume: 145
  start-page: 112970
  year: 2019
  ident: ref_35
  article-title: An Efficient JAYA Algorithm with Lévy Flight for Non-linear Channel Equalization
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2019.112970
– volume: 11
  start-page: 1396
  year: 2011
  ident: ref_14
  article-title: A type-2 neuro-fuzzy system based on clustering and gradient techniques applied to system identification and channel equalization
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2010.04.011
– ident: ref_28
  doi: 10.1007/978-981-10-5687-1_51
– volume: 3
  start-page: 46
  year: 2012
  ident: ref_24
  article-title: The optimal combination: Grammatical swarm, particle swarm optimization and neural networks
  publication-title: J. Comput. Sci.
  doi: 10.1016/j.jocs.2011.12.005
– ident: ref_31
– volume: 90
  start-page: 834
  year: 2010
  ident: ref_12
  article-title: Adaptive reduced feedback FLNN nonlinear filter for active control of nonlinear noise processes
  publication-title: Signal Process.
  doi: 10.1016/j.sigpro.2009.09.001
– volume: 21
  start-page: 679
  year: 2011
  ident: ref_8
  article-title: An adaptive decision feedback equalizer based on the combination of the FIR and FLNN
  publication-title: Digit. Signal Process.
  doi: 10.1016/j.dsp.2011.05.004
– ident: ref_26
  doi: 10.1007/978-981-10-6875-1_48
– ident: ref_45
– volume: 138
  start-page: 153371
  year: 2020
  ident: ref_36
  article-title: A new training scheme for neural network based non-linear channel equalizers in wireless communication system using Cuckoo Search Algorithm
  publication-title: AEU Int. J. Electron. Commun.
  doi: 10.1016/j.aeue.2020.153371
– volume: 52
  start-page: 657
  year: 2004
  ident: ref_49
  article-title: FIR channel estimation through generalized cumulant slice weighting
  publication-title: IEEE Trans. Signal Process.
  doi: 10.1109/TSP.2003.822358
– ident: ref_3
– volume: 89
  start-page: 2251
  year: 2009
  ident: ref_32
  article-title: Nonlinear channel equalization for wireless communication systems using Legendre neural networks
  publication-title: Signal Process.
  doi: 10.1016/j.sigpro.2009.05.004
– volume: 12
  start-page: 658
  year: 2007
  ident: ref_38
  article-title: MIMO channel estimation and equalization using three-layer neural networks with feedback
  publication-title: Tsinghua Sci. Technol.
  doi: 10.1109/TST.2007.6071814
– volume: 27
  start-page: 47
  year: 2015
  ident: ref_27
  article-title: A new training scheme for neural networks and application in non-linear channel equalization
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2014.10.040
– ident: ref_39
  doi: 10.1109/VTCFall.2017.8288015
– volume: 36
  start-page: 5212
  year: 2009
  ident: ref_20
  article-title: Image backlight compensation using neuro-fuzzy networks with immune particle swarm optimization
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2008.06.109
– volume: 90
  start-page: 440
  year: 2010
  ident: ref_23
  article-title: RNN based MIMO channel prediction
  publication-title: Signal Process.
  doi: 10.1016/j.sigpro.2009.07.013
– ident: ref_30
  doi: 10.1109/ICSMC.2008.4811554
– volume: 58
  start-page: 2193
  year: 2010
  ident: ref_13
  article-title: Nonlinear adaptive equalizer using a pipelined decision feedback recurrent neural network in communication systems
  publication-title: IEEE Trans. Commun.
  doi: 10.1109/TCOMM.2010.08.080612
– volume: 10
  start-page: 51229
  year: 2022
  ident: ref_41
  article-title: Training Strategy of Fuzzy-Firefly Based ANN in Non-Linear Channel Equalization
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2022.3174369
– volume: 181
  start-page: 3677
  year: 2011
  ident: ref_9
  article-title: Pipelined functional link artificial recurrent neural network with the decision feedback structure for nonlinear channel equalization
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2011.04.033
– volume: 211
  start-page: 108619
  year: 2022
  ident: ref_47
  article-title: Adaptive fuzzy directional bat algorithm for the optimal coordination of protection systems based on directional overcurrent relays
  publication-title: Electr. Power Syst. Res.
  doi: 10.1016/j.epsr.2022.108619
– ident: ref_42
  doi: 10.1007/978-3-642-12538-6_6
– volume: 22
  start-page: 705
  year: 2008
  ident: ref_15
  article-title: A genetic-based neuro-fuzzy controller for blind equalization of time-varying channels
  publication-title: Int. J. Adapt. Control Signal Process.
  doi: 10.1002/acs.1019
– ident: ref_6
– volume: 200
  start-page: 41
  year: 2008
  ident: ref_22
  article-title: Rainfall forecasting by technological machine learning models
  publication-title: Appl. Math. Comput.
– volume: 57
  start-page: 197
  year: 2017
  ident: ref_29
  article-title: Robust nonlinear channel equalization using WNN trained by symbiotic organism search algorithm
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2017.03.029
– volume: 202
  start-page: 117433
  year: 2022
  ident: ref_46
  article-title: A novel approach for text categorization by applying hybrid genetic bat algorithm through feature extraction and feature selection methods
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2022.117433
– ident: ref_2
– volume: 329
  start-page: 363
  year: 2006
  ident: ref_17
  article-title: Particle swarm optimization training algorithm for ANNs in stage prediction of Shing Mun River
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2006.02.025
– volume: 11
  start-page: 5463
  year: 2011
  ident: ref_21
  article-title: Nonlinear system control using self-evolving neural fuzzy inference networks with reinforcement evolutionary learning
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2011.05.012
– volume: 187
  start-page: 115828
  year: 2021
  ident: ref_48
  article-title: A wrapper based binary bat algorithm with greedy crossover for attribute selection
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2021.115828
– volume: 8
  start-page: 1536
  year: 2008
  ident: ref_25
  article-title: Hybrid ANN reducing training time requirements and decision delay for equalization in presence of co-channel interference
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2007.12.001
– volume: 9
  start-page: 249
  year: 2017
  ident: ref_34
  article-title: Shuffled Frog-Leaping Algorithm trained RBFNN Equalizer
  publication-title: Int. J. Comput. Inf. Syst. Ind. Manag. Appl.
– volume: 68
  start-page: 1031
  year: 2014
  ident: ref_33
  article-title: A new training strategy for neural network using shuffled frog-leaping algorithm and application to channel equalization
  publication-title: AEU Int. J. Electron. Commun.
  doi: 10.1016/j.aeue.2014.05.005
SSID ssj0000505460
Score 2.3896115
Snippet The transmission of high-speed data over communication channels is the function of digital communication systems. Due to linear and nonlinear distortions, data...
SourceID unpaywall
proquest
crossref
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
StartPage 2078
SubjectTerms Algorithms
Channels
Communication channels
Communications systems
Equalization
Equalizers
FIR filters
Heuristic methods
Mathematical analysis
Network topologies
Neural networks
Nonlinearity
Optimization
Search algorithms
Statistical analysis
Training
Transfer functions
Transmitters
Wireless communications
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3NS8MwFH_oPOhF_MT5RQ4KKhTTtLHLQWTKhgoWEQXBQ0mTVAe1m64i_ve-t7XbDuKxEAJ9L-8z-b0fwEEW-NJIP_VUJgmSo6yHYcT3pHIyUxHNBCM08l18dv0U3j7L5zmIaywMPausfeLIUdu-oR75qYhES6IvleHF4MMj1ii6Xa0pNHRFrWDPRyPG5mFB0GSsBixcduL7h0nXhXjbwjM-BuoFWO-fDn_e6amj4ES0Nhuapvnm4lcx0D_fOs9nQk93BZarnJG1x0pehTlXrMFqZZVDdlSNjj5eh5f29D6a9TN2qUvWzl_xP8q3d6YLy27KIbvr216GqSfrYsLKHokkAj-oI8vaccx6BSPMQeFy1hlhLsdIzQ146nYer669ij7BM0K1SiwxjY24bQXaaawyQo0CjKxIucqU4DoNUsVT1BD3DZaBOtRW21CivUonua95sAmNol-4LWDaVxLzwsBmPEOL9zXK26RGOidUaETUhJNacompZosTxUWeYI1BYk5mxNyEg8niwXikxt_LdmsVJJVdDZPpKWjC4UQt_22z_f82O7AkCNAwep63C43y88vtYZpRpvvV2fkFhO7Q7w
  priority: 102
  providerName: ProQuest
Title Application of Bat Algorithm and Its Modified Form Trained with ANN in Channel Equalization
URI https://www.proquest.com/docview/2728528454
https://www.mdpi.com/2073-8994/14/10/2078/pdf?version=1666601966
UnpaywallVersion publishedVersion
Volume 14
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 2073-8994
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000505460
  issn: 2073-8994
  databaseCode: KQ8
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVEBS
  databaseName: EBSCOhost Academic Search Ultimate
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 2073-8994
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000505460
  issn: 2073-8994
  databaseCode: ABDBF
  dateStart: 20100301
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 2073-8994
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000505460
  issn: 2073-8994
  databaseCode: ADMLS
  dateStart: 20100301
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
– providerCode: PRVEBS
  databaseName: Mathematics Source
  customDbUrl:
  eissn: 2073-8994
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000505460
  issn: 2073-8994
  databaseCode: AMVHM
  dateStart: 20100301
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/mathematics-source
  providerName: EBSCOhost
– providerCode: PRVFQY
  databaseName: GFMER Free Medical Journals
  customDbUrl:
  eissn: 2073-8994
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000505460
  issn: 2073-8994
  databaseCode: GX1
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php
  providerName: Geneva Foundation for Medical Education and Research
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2073-8994
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000505460
  issn: 2073-8994
  databaseCode: M~E
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 2073-8994
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000505460
  issn: 2073-8994
  databaseCode: BENPR
  dateStart: 20090301
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 2073-8994
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000505460
  issn: 2073-8994
  databaseCode: 8FG
  dateStart: 20090301
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3fb9MwED6x9gFeBuOH6BiVH4YESFltJ27iJ5ShdgNp0YRWqYiHyPEPqMjSak1B46_n3KRbQQghIeXFkmMlOtv3ffZ9dwCHLmRCC1YE0gkvyZEmQDfCAiGtcDL2OcG8GvksG55OovdTMd1S8fuwSqTis_UmzXH-BUgIogHDh_p2MlgY9-Zbe5bk77yGPsPLcAe6Q4FovAPdSXaefvQ15TZvN7K8ENn9YHl96QMb_UC_OqJbdHl3VS3U9XdVlluOZnwf1OYTm_iSr0erujjSP37L3vg___AAdlsUStJm2uzBHVs9hL12nS_JyzYZ9atH8Cm9veEmc0eOVU3S8vP8alZ_uSSqMuRdvSRnczNzCGbJGCEwufBlJ7Dhz3hJmmVkVhGvYqhsSUZrFWej_XwMk_Ho4u1p0BZkCDSXSY2kVZuYmiRUViFviRRPRGx4QaWTnKoiLCQt0OaUaSSWKlJGmUjgDiCsoEzR8Al0qnllnwJRTApEmqFx1OEewpTSWhdaWMtlpHncg9cb6-S6zVbui2aUObIWb8p8y5Q9OLzpvGiSdPy528HGzHm7Upc5j_En0EeLqAcvbkz_t2H2_7HfM7jHvVZiHfl3AJ36amWfI4Kpiz7sJOOTPnSPR9n5B2ydTFm_nbg_AW3W7HI
linkProvider Unpaywall
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1BT9swFH5icGCXaTCmdWPMB5BgUoTj2KQ-oKmwVu2gEZqKhLRD5tjOhhTSbglC_XP7bXtunbYHxI1jJMtR3nt5_p7t730A-3kUCi3CLJC5cJQcaQJcRsJASCtyGbueYI6NPExO-tf82424WYN_DRfGXatscuIsUZuxdnvkxyxmbYG5VPAvkz-BU41yp6uNhIby0grmdNZizBM7Luz0AUu46nTwFf19wFivOzrvB15lINBMtmusxLSJqWlHyioE41zhe2LDMipzyajKokzSDD-EhhqrJcWVUYYLDGthBQ0VjXDeF7DBIy6x-Ns46yZX3xe7PE4njp_QOTEwiiQ9rqZ37molo07YbXUpXOLbzftyoqYPqihWlrrea3jlMSrpzINqC9ZsuQ1bPgtU5NC3qj56Az86y_NvMs7JmapJp_iFdqt_3xFVGjKoKzIcm9scoS7pIUAmIydKgQ9uB5h0koTclsRxHEpbkO6M4zlnhu7A9bMY8i2sl-PSvgOiQikQh0YmpzlmmFChf3WmhbVMcs3iFnxuLJdq38vcSWoUKdY0zszpiplbsL8YPJm38Hh82G7jgtT_x1W6jLoWHCzc8tQ075-e5hNs9kfDy_RykFx8gJfMkSlmVwN3Yb3-e28_IsSpsz0fRwR-Pnfo_gfHKA0c
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Nb9QwEB2VIgEX1PIhFlrwoZUAKVrHiZv1AVVb2tCldMWhlSpxSB1_QKU0u5BU1f41fh0zm2R3D6i3HiNZjjIej9848-YB7PgolEaGeaC8JEqOsgEeI2EglZNeJdQTjNjIp-O94_P464W8WIO_HReGyiq7mDgP1HZi6I68LxIxkBhLZdz3bVnE98N0f_o7IAUp-tPayWk0LnLiZreYvlWfRoe41rtCpEdnn4-DVmEgMEINaszCjE24HUTaaQTiscZ3JFbkXHkluM6jXPEcP4KHBjMlHWurbSzRpaWTPNQ8wnkfwMOEurgTSz39srjfIYW4eI83lMAoUrxfza6pqFJwknRbPQSXyPbxTTnVs1tdFCuHXLoBT1t0yoaNO23CmiufwWa7_yv2vm1S_eE5_Bgu_3yziWcHumbD4idaqf51zXRp2aiu2OnEXnkEuSxFaMzOSI4CH-julw3HY3ZVMmI3lK5gR3N2Z8MJfQHn92LGl7BeTkr3CpgOlUQEGlnPPcaWUGtjTG6kc0LFRiQ9-NhZLjNtF3MS0ygyzGbIzNmKmXuwsxg8bZp3_H_YVrcEWbuDq2zpbz3YXSzLXdO8vnuad_AIHTb7NhqfvIEnglgU85rALViv_9y4bcQ2df527kQMLu_ba_8BarsKtg
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3PT9swFH4a7WFcgG6glR-TDyDBpFDHiZv6NAVEBUhUO1CpE4fI8Q9WEdKKpiD46_fcpKWbJjQJKRdLjpXo2X7fZ7_vPYB9G_hccT_1hOVOkiO0h27E97gw3IrI5QRzauSrXvu8H14O-GBJxe_CKpGKD2ebNMP55yEhCFs-PtS1O62xtt8fq7Mkd-fVdhle2itQb3NE4zWo93s_4p-uptz87VKWFyC7b02e711goxvoT0f0ii4_TvOxfH6SWbbkaLrrIOefWMaX3B1Pi_RYvfyVvfE9_7ABaxUKJXE5bRrwweSfoFGt8wk5rJJRH32Gm_j1hpuMLDmRBYmz29HDsPh1T2SuyUUxIVcjPbQIZkkXITC5dmUnsOHOeEnc65FhTpyKITcZOZupOEvt5yb0u2fXp-deVZDBU0x0CiStSkdUdwJpJPKWULIOjzRLqbCCUZkGqaAp2pz6ComlDKWWOuS4A3DDqS9psAW1fJSbL0CkLzgizUBbanEP8aVUSqWKG8NEqFjUhG9z6ySqylbuimZkCbIWZ8pkyZRN2F90HpdJOv7dbXdu5qRaqZOERfgT6KN52ISDhenfGmb7P_vtwCpzWolZ5N8u1IqHqdlDBFOkX6tJ-hsew-kB
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Application+of+Bat+Algorithm+and+Its+Modified+Form+Trained+with+ANN+in+Channel+Equalization&rft.jtitle=Symmetry+%28Basel%29&rft.au=Mohapatra%2C+Pradyumna+Kumar&rft.au=Rout%2C+Saroja+Kumar&rft.au=Bisoy%2C+Sukant+Kishoro&rft.au=Kautish%2C+Sandeep&rft.date=2022-10-01&rft.pub=MDPI+AG&rft.eissn=2073-8994&rft.volume=14&rft.issue=10&rft.spage=2078&rft_id=info:doi/10.3390%2Fsym14102078&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2073-8994&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2073-8994&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2073-8994&client=summon