‘One Size Does Not Fit All’: A Roadmap of Purpose-Driven Mixed-Method Pathways for Sensitivity Analysis of Agent-Based Models

Designing, implementing, and applying agent-based models (ABMs) requires a structured approach, part of which is a comprehensive analysis of the output to input variability in the form of uncertainty and sensitivity analysis (SA). The objective of this paper is to assist in choosing, for a given ABM...

Full description

Saved in:
Bibliographic Details
Published inJournal of artificial societies and social simulation Vol. 23; no. 1
Main Authors Ligmann-Zielinska, Arika, Siebers, Peer-Olaf, Magliocca, Nicholas, Parker, Dawn C., Grimm, Volker, Du, Jing, Cenek, Martin, Radchuk, Viktoriia, Arbab, Nazia N., Li, Sheng, Berger, Uta, Paudel, Rajiv, Robinson, Derek T., Jankowski, Piotr, An, Li, Ye, Xinyue
Format Journal Article
LanguageEnglish
Published Guildford Department of Sociology, University of Surrey 01.01.2020
Subjects
Online AccessGet full text
ISSN1460-7425
1460-7425
DOI10.18564/jasss.4201

Cover

Abstract Designing, implementing, and applying agent-based models (ABMs) requires a structured approach, part of which is a comprehensive analysis of the output to input variability in the form of uncertainty and sensitivity analysis (SA). The objective of this paper is to assist in choosing, for a given ABM, the most appropriate methods of SA. We argue that no single SA method fits all ABMs and that different methods of SA should be used based on the overarching purpose of the model. For example, abstract exploratory models that focus on deeper understanding of the target system and its properties are fed with only the most critical data representing patterns or stylized facts. For them, simple SA methods may be sufficient in capturing the dependencies between the output-input spaces. In contrast, applied models used in scenario and policy-analysis are usually more complex and data-rich because a higher level of realism is required. Here the choice of a more sophisticated SA may be critical in establishing the robustness of the results before the model (or its results) can be passed on to end-users. Accordingly, we present a roadmap that guides ABM developers through the process of performing SA that best fits the purpose of their ABM. This roadmap covers a wide range of ABM applications and advocates for the routine use of global methods that capture input interactions and are, therefore, mandatory if scientists want to recognize all sensitivities. As part of this roadmap, we report on frontier SA methods emerging in recent years: a) handling temporal and spatial outputs, b) using the whole output distribution of a result rather than its variance, c) looking at topological relationships between input data points rather than their values, and d) looking into the ABM black box âĂŞ– finding behavioral primitives and using them to study complex system characteristics like regime shifts, tipping points, and condensation versus dissipation of collective system behavior.
AbstractList Designing, implementing, and applying agent-based models (ABMs) requires a structured approach, part of which is a comprehensive analysis of the output to input variability in the form of uncertainty and sensitivity analysis (SA). The objective of this paper is to assist in choosing, for a given ABM, the most appropriate methods of SA. We argue that no single SA method fits all ABMs and that different methods of SA should be used based on the overarching purpose of the model. For example, abstract exploratory models that focus on deeper understanding of the target system and its properties are fed with only the most critical data representing patterns or stylized facts. For them, simple SA methods may be sufficient in capturing the dependencies between the output-input spaces. In contrast, applied models used in scenario and policy-analysis are usually more complex and data-rich because a higher level of realism is required. Here the choice of a more sophisticated SA may be critical in establishing the robustness of the results before the model (or its results) can be passed on to end-users. Accordingly, we present a roadmap that guides ABM developers through the process of performing SA that best fits the purpose of their ABM. This roadmap covers a wide range of ABM applications and advocates for the routine use of global methods that capture input interactions and are, therefore, mandatory if scientists want to recognize all sensitivities. As part of this roadmap, we report on frontier SA methods emerging in recent years: a) handling temporal and spatial outputs, b) using the whole output distribution of a result rather than its variance, c) looking at topological relationships between input data points rather than their values, and d) looking into the ABM black box âĂŞ– finding behavioral primitives and using them to study complex system characteristics like regime shifts, tipping points, and condensation versus dissipation of collective system behavior.
Author Arbab, Nazia N.
Radchuk, Viktoriia
Li, Sheng
Grimm, Volker
Ye, Xinyue
Jankowski, Piotr
Cenek, Martin
Magliocca, Nicholas
Berger, Uta
An, Li
Parker, Dawn C.
Siebers, Peer-Olaf
Du, Jing
Paudel, Rajiv
Robinson, Derek T.
Ligmann-Zielinska, Arika
Author_xml – sequence: 1
  givenname: Arika
  surname: Ligmann-Zielinska
  fullname: Ligmann-Zielinska, Arika
– sequence: 2
  givenname: Peer-Olaf
  surname: Siebers
  fullname: Siebers, Peer-Olaf
– sequence: 3
  givenname: Nicholas
  surname: Magliocca
  fullname: Magliocca, Nicholas
– sequence: 4
  givenname: Dawn C.
  surname: Parker
  fullname: Parker, Dawn C.
– sequence: 5
  givenname: Volker
  surname: Grimm
  fullname: Grimm, Volker
– sequence: 6
  givenname: Jing
  surname: Du
  fullname: Du, Jing
– sequence: 7
  givenname: Martin
  surname: Cenek
  fullname: Cenek, Martin
– sequence: 8
  givenname: Viktoriia
  surname: Radchuk
  fullname: Radchuk, Viktoriia
– sequence: 9
  givenname: Nazia N.
  surname: Arbab
  fullname: Arbab, Nazia N.
– sequence: 10
  givenname: Sheng
  surname: Li
  fullname: Li, Sheng
– sequence: 11
  givenname: Uta
  surname: Berger
  fullname: Berger, Uta
– sequence: 12
  givenname: Rajiv
  surname: Paudel
  fullname: Paudel, Rajiv
– sequence: 13
  givenname: Derek T.
  surname: Robinson
  fullname: Robinson, Derek T.
– sequence: 14
  givenname: Piotr
  surname: Jankowski
  fullname: Jankowski, Piotr
– sequence: 15
  givenname: Li
  surname: An
  fullname: An, Li
– sequence: 16
  givenname: Xinyue
  surname: Ye
  fullname: Ye, Xinyue
BookMark eNptkMtOwzAQRS0EEuWx4gcssUQB5-Uk7ALlJVFaUVhH02QMrkJcPC4QVvAX8Hv9EtrCAiFWM9KcezU6G2y1MQ0ytuOLfT-NZXQwBiLajwLhr7COH0nhJVEQr_7a19kG0ViIIAxk3GHvs7ePfoN8qF-Rdw0SvzKOn2rH87qevX0e8pxfG6geYMKN4oOpnRhCr2v1Eza8p1-w8nro7k3FB-Dun6ElrozlQ2xIO_2kXcvzBuqWNC0K8jtsnHcEhBXvmQpr2mJrCmrC7Z-5yW5PT26Oz73L_tnFcX7plUGWOi-skhJGYZRJJVNQaRllAUDmKwmpSiTKxaFUkMWxSEYyLRFGUqgEFUYoZBhust3v3ok1j1MkV4zN1M5foyII40DILIqTOeV_U6U1RBZVUWoHTpvGWdB14YtiabpYmi4WpueZvT-ZidUPYNt_6S_kqYVK
CitedBy_id crossref_primary_10_1016_j_ecolmodel_2021_109685
crossref_primary_10_1016_j_envsoft_2024_105980
crossref_primary_10_1016_j_jenvman_2021_113353
crossref_primary_10_1111_gean_12418
crossref_primary_10_1111_1477_9552_12447
crossref_primary_10_1016_j_envsoft_2022_105559
crossref_primary_10_1038_s41598_024_64331_x
crossref_primary_10_2139_ssrn_4161475
crossref_primary_10_3390_land9120519
crossref_primary_10_1038_s41598_023_38519_6
crossref_primary_10_1080_13658816_2024_2331536
crossref_primary_10_1016_j_jclepro_2023_136299
crossref_primary_10_2139_ssrn_3964901
crossref_primary_10_1080_03031853_2023_2283017
crossref_primary_10_1007_s10980_020_01095_5
crossref_primary_10_1007_s43762_024_00144_y
crossref_primary_10_3389_fsysb_2022_959665
crossref_primary_10_3390_land10030282
crossref_primary_10_1016_j_jhydrol_2022_128015
crossref_primary_10_1016_j_apgeog_2024_103492
crossref_primary_10_3390_app12041982
crossref_primary_10_1111_ecaf_12482
crossref_primary_10_1016_j_envsoft_2020_104932
crossref_primary_10_1080_1747423X_2023_2173325
crossref_primary_10_3390_a16070338
crossref_primary_10_1080_24725854_2022_2123998
crossref_primary_10_1111_tgis_13099
crossref_primary_10_1016_j_mex_2024_102779
crossref_primary_10_1002_ecs2_70160
crossref_primary_10_1073_pnas_2215675120
crossref_primary_10_3390_systems12050159
crossref_primary_10_1016_j_compenvurbsys_2022_101889
crossref_primary_10_1016_j_soh_2023_100051
crossref_primary_10_1016_j_ecolmodel_2024_110697
crossref_primary_10_33166_AETiC_2021_02_004
ContentType Journal Article
Copyright Copyright Department of Sociology, University of Surrey Jan 2020
Copyright_xml – notice: Copyright Department of Sociology, University of Surrey Jan 2020
DBID AAYXX
CITATION
7U4
8BJ
BHHNA
DWI
FQK
JBE
WZK
DOI 10.18564/jasss.4201
DatabaseName CrossRef
Sociological Abstracts (pre-2017)
International Bibliography of the Social Sciences (IBSS)
Sociological Abstracts
Sociological Abstracts
International Bibliography of the Social Sciences
International Bibliography of the Social Sciences
Sociological Abstracts (Ovid)
DatabaseTitle CrossRef
Sociological Abstracts (pre-2017)
International Bibliography of the Social Sciences (IBSS)
Sociological Abstracts
DatabaseTitleList Sociological Abstracts (pre-2017)
DeliveryMethod fulltext_linktorsrc
Discipline Social Sciences (General)
EISSN 1460-7425
ExternalDocumentID 10_18564_jasss_4201
GroupedDBID 29J
2WC
5GY
5VS
AAFWJ
AAKPC
AAYXX
ACGFO
ADBBV
ADZJE
AFPKN
AIAGR
ALMA_UNASSIGNED_HOLDINGS
BCNDV
C1A
CITATION
E3Z
EBS
EJD
ESI
FRS
GROUPED_DOAJ
KQ8
OK1
OVT
P2P
RNS
TR2
XSB
7U4
8BJ
BHHNA
DWI
FQK
JBE
WZK
ID FETCH-LOGICAL-c298t-3d7cab3496f68af8c492aa91f6a8f76e696f6cfa95507b68ceab60f7efe4e0633
ISSN 1460-7425
IngestDate Sun Jun 29 16:18:18 EDT 2025
Tue Jul 01 01:10:32 EDT 2025
Thu Apr 24 23:05:31 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c298t-3d7cab3496f68af8c492aa91f6a8f76e696f6cfa95507b68ceab60f7efe4e0633
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://doi.org/10.18564/jasss.4201
PQID 2352069457
PQPubID 2039993
ParticipantIDs proquest_journals_2352069457
crossref_citationtrail_10_18564_jasss_4201
crossref_primary_10_18564_jasss_4201
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-01-01
PublicationDateYYYYMMDD 2020-01-01
PublicationDate_xml – month: 01
  year: 2020
  text: 2020-01-01
  day: 01
PublicationDecade 2020
PublicationPlace Guildford
PublicationPlace_xml – name: Guildford
PublicationTitle Journal of artificial societies and social simulation
PublicationYear 2020
Publisher Department of Sociology, University of Surrey
Publisher_xml – name: Department of Sociology, University of Surrey
SSID ssj0023265
Score 2.4389787
Snippet Designing, implementing, and applying agent-based models (ABMs) requires a structured approach, part of which is a comprehensive analysis of the output to...
SourceID proquest
crossref
SourceType Aggregation Database
Enrichment Source
Index Database
SubjectTerms Mixed methods research
Policy analysis
Realism
Robustness
Sensitivity analysis
Simulation
Structural models
Uncertainty
Variability
Title ‘One Size Does Not Fit All’: A Roadmap of Purpose-Driven Mixed-Method Pathways for Sensitivity Analysis of Agent-Based Models
URI https://www.proquest.com/docview/2352069457
Volume 23
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NbtQwELaWcuGC-BWFgnzoAVh52SaO43BbClWFVIpoK1VcIiex26jZpNqkKvRU3gKeibfokzD-STYLi1S4RCuv7USZT_PjzDeD0DpjGQ-SLCD-WChChcoIl9InNBn7gVS6hLtJkP3Atg_o-8PgcDD42ctaOmuSUXqxlFfyP1KFMZCrZsn-g2S7TWEAfoN84QoShuu1ZNxmKvBdcBX38gsJ_rAExVU1w628GU6Kop0RWQb6p0pkU3FqEt_gDVe1JG9nWt8Nd_IvMiM7pp-0rtt_fC6-mlINoE1Knddlekz0S5hMNCmLvAErmJmOakX9F0dXP7irU1GbHFEIzoe98_o6n7oeYl12UH40FWVJPueaLV-f2LPfWX7S2ZC9HGBhu7t9lHJGdguh5ofrR0VeAWYc0nX03kUOhuU9s9n85-Vwc9Q_9vDGvWMPq6kpGxOI6-0ncblkzKl3S2fuw_gPq8EDRk27grquR9Rzt1mozf2bzewyGXUMpZfHZnGsF99AN70QHLk2vnfRP_jJgaW62Wd0ZFG9-NX8zovu0aJ3YFye_TvothMhnljg3UUDWd5Dq5bQjZ1RqPFzV7n8xX307eryO0ARayhiDUUMUMQARQxQvLr88RpPsIMgrhRehCDuQxC3EMQAQdyDIG4hqDfoQRBbCD5AB1vv9je3ievxQVIv4g3xszAVie5aoBgXiqc08oSINhQTXIVMMv1HqkSk6-4ljKdSJGysQqkkleBe-w_RSlmV8hHCSZbSIPO54llEI8kjKUNPbvCUa6tF01X0sn21ceoK4Os-LEW8RIiraL2bfGrrviyfttbKKHaKoY49CGo0nzwIH19vlyfo1hzia2ilmZ3Jp-DrNskzg6FfY6Sv_Q
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%E2%80%98One+Size+Does+Not+Fit+All%E2%80%99%3A+A+Roadmap+of+Purpose-Driven+Mixed-Method+Pathways+for+Sensitivity+Analysis+of+Agent-Based+Models&rft.jtitle=Journal+of+artificial+societies+and+social+simulation&rft.au=Ligmann-Zielinska%2C+Arika&rft.au=Siebers%2C+Peer-Olaf&rft.au=Magliocca%2C+Nicholas&rft.au=Parker%2C+Dawn+C.&rft.date=2020-01-01&rft.issn=1460-7425&rft.eissn=1460-7425&rft.volume=23&rft.issue=1&rft_id=info:doi/10.18564%2Fjasss.4201&rft.externalDBID=n%2Fa&rft.externalDocID=10_18564_jasss_4201
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1460-7425&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1460-7425&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1460-7425&client=summon