‘One Size Does Not Fit All’: A Roadmap of Purpose-Driven Mixed-Method Pathways for Sensitivity Analysis of Agent-Based Models
Designing, implementing, and applying agent-based models (ABMs) requires a structured approach, part of which is a comprehensive analysis of the output to input variability in the form of uncertainty and sensitivity analysis (SA). The objective of this paper is to assist in choosing, for a given ABM...
Saved in:
Published in | Journal of artificial societies and social simulation Vol. 23; no. 1 |
---|---|
Main Authors | , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Guildford
Department of Sociology, University of Surrey
01.01.2020
|
Subjects | |
Online Access | Get full text |
ISSN | 1460-7425 1460-7425 |
DOI | 10.18564/jasss.4201 |
Cover
Abstract | Designing, implementing, and applying agent-based models (ABMs) requires a structured approach, part of which is a comprehensive analysis of the output to input variability in the form of uncertainty and sensitivity analysis (SA). The objective of this paper is to assist in choosing, for a given ABM, the most appropriate methods of SA. We argue that no single SA method fits all ABMs and that different methods of SA should be used based on the overarching purpose of the model. For example, abstract exploratory models that focus on deeper understanding of the target system and its properties are fed with only the most critical data representing patterns or stylized facts. For them, simple SA methods may be sufficient in capturing the dependencies between the output-input spaces. In contrast, applied models used in scenario and policy-analysis are usually more complex and data-rich because a higher level of realism is required. Here the choice of a more sophisticated SA may be critical in establishing the robustness of the results before the model (or its results) can be passed on to end-users. Accordingly, we present a roadmap that guides ABM developers through the process of performing SA that best fits the purpose of their ABM. This roadmap covers a wide range of ABM applications and advocates for the routine use of global methods that capture input interactions and are, therefore, mandatory if scientists want to recognize all sensitivities. As part of this roadmap, we report on frontier SA methods emerging in recent years: a) handling temporal and spatial outputs, b) using the whole output distribution of a result rather than its variance, c) looking at topological relationships between input data points rather than their values, and d) looking into the ABM black box âĂŞ– finding behavioral primitives and using them to study complex system characteristics like regime shifts, tipping points, and condensation versus dissipation of collective system behavior. |
---|---|
AbstractList | Designing, implementing, and applying agent-based models (ABMs) requires a structured approach, part of which is a comprehensive analysis of the output to input variability in the form of uncertainty and sensitivity analysis (SA). The objective of this paper is to assist in choosing, for a given ABM, the most appropriate methods of SA. We argue that no single SA method fits all ABMs and that different methods of SA should be used based on the overarching purpose of the model. For example, abstract exploratory models that focus on deeper understanding of the target system and its properties are fed with only the most critical data representing patterns or stylized facts. For them, simple SA methods may be sufficient in capturing the dependencies between the output-input spaces. In contrast, applied models used in scenario and policy-analysis are usually more complex and data-rich because a higher level of realism is required. Here the choice of a more sophisticated SA may be critical in establishing the robustness of the results before the model (or its results) can be passed on to end-users. Accordingly, we present a roadmap that guides ABM developers through the process of performing SA that best fits the purpose of their ABM. This roadmap covers a wide range of ABM applications and advocates for the routine use of global methods that capture input interactions and are, therefore, mandatory if scientists want to recognize all sensitivities. As part of this roadmap, we report on frontier SA methods emerging in recent years: a) handling temporal and spatial outputs, b) using the whole output distribution of a result rather than its variance, c) looking at topological relationships between input data points rather than their values, and d) looking into the ABM black box âĂŞ– finding behavioral primitives and using them to study complex system characteristics like regime shifts, tipping points, and condensation versus dissipation of collective system behavior. |
Author | Arbab, Nazia N. Radchuk, Viktoriia Li, Sheng Grimm, Volker Ye, Xinyue Jankowski, Piotr Cenek, Martin Magliocca, Nicholas Berger, Uta An, Li Parker, Dawn C. Siebers, Peer-Olaf Du, Jing Paudel, Rajiv Robinson, Derek T. Ligmann-Zielinska, Arika |
Author_xml | – sequence: 1 givenname: Arika surname: Ligmann-Zielinska fullname: Ligmann-Zielinska, Arika – sequence: 2 givenname: Peer-Olaf surname: Siebers fullname: Siebers, Peer-Olaf – sequence: 3 givenname: Nicholas surname: Magliocca fullname: Magliocca, Nicholas – sequence: 4 givenname: Dawn C. surname: Parker fullname: Parker, Dawn C. – sequence: 5 givenname: Volker surname: Grimm fullname: Grimm, Volker – sequence: 6 givenname: Jing surname: Du fullname: Du, Jing – sequence: 7 givenname: Martin surname: Cenek fullname: Cenek, Martin – sequence: 8 givenname: Viktoriia surname: Radchuk fullname: Radchuk, Viktoriia – sequence: 9 givenname: Nazia N. surname: Arbab fullname: Arbab, Nazia N. – sequence: 10 givenname: Sheng surname: Li fullname: Li, Sheng – sequence: 11 givenname: Uta surname: Berger fullname: Berger, Uta – sequence: 12 givenname: Rajiv surname: Paudel fullname: Paudel, Rajiv – sequence: 13 givenname: Derek T. surname: Robinson fullname: Robinson, Derek T. – sequence: 14 givenname: Piotr surname: Jankowski fullname: Jankowski, Piotr – sequence: 15 givenname: Li surname: An fullname: An, Li – sequence: 16 givenname: Xinyue surname: Ye fullname: Ye, Xinyue |
BookMark | eNptkMtOwzAQRS0EEuWx4gcssUQB5-Uk7ALlJVFaUVhH02QMrkJcPC4QVvAX8Hv9EtrCAiFWM9KcezU6G2y1MQ0ytuOLfT-NZXQwBiLajwLhr7COH0nhJVEQr_7a19kG0ViIIAxk3GHvs7ePfoN8qF-Rdw0SvzKOn2rH87qevX0e8pxfG6geYMKN4oOpnRhCr2v1Eza8p1-w8nro7k3FB-Dun6ElrozlQ2xIO_2kXcvzBuqWNC0K8jtsnHcEhBXvmQpr2mJrCmrC7Z-5yW5PT26Oz73L_tnFcX7plUGWOi-skhJGYZRJJVNQaRllAUDmKwmpSiTKxaFUkMWxSEYyLRFGUqgEFUYoZBhust3v3ok1j1MkV4zN1M5foyII40DILIqTOeV_U6U1RBZVUWoHTpvGWdB14YtiabpYmi4WpueZvT-ZidUPYNt_6S_kqYVK |
CitedBy_id | crossref_primary_10_1016_j_ecolmodel_2021_109685 crossref_primary_10_1016_j_envsoft_2024_105980 crossref_primary_10_1016_j_jenvman_2021_113353 crossref_primary_10_1111_gean_12418 crossref_primary_10_1111_1477_9552_12447 crossref_primary_10_1016_j_envsoft_2022_105559 crossref_primary_10_1038_s41598_024_64331_x crossref_primary_10_2139_ssrn_4161475 crossref_primary_10_3390_land9120519 crossref_primary_10_1038_s41598_023_38519_6 crossref_primary_10_1080_13658816_2024_2331536 crossref_primary_10_1016_j_jclepro_2023_136299 crossref_primary_10_2139_ssrn_3964901 crossref_primary_10_1080_03031853_2023_2283017 crossref_primary_10_1007_s10980_020_01095_5 crossref_primary_10_1007_s43762_024_00144_y crossref_primary_10_3389_fsysb_2022_959665 crossref_primary_10_3390_land10030282 crossref_primary_10_1016_j_jhydrol_2022_128015 crossref_primary_10_1016_j_apgeog_2024_103492 crossref_primary_10_3390_app12041982 crossref_primary_10_1111_ecaf_12482 crossref_primary_10_1016_j_envsoft_2020_104932 crossref_primary_10_1080_1747423X_2023_2173325 crossref_primary_10_3390_a16070338 crossref_primary_10_1080_24725854_2022_2123998 crossref_primary_10_1111_tgis_13099 crossref_primary_10_1016_j_mex_2024_102779 crossref_primary_10_1002_ecs2_70160 crossref_primary_10_1073_pnas_2215675120 crossref_primary_10_3390_systems12050159 crossref_primary_10_1016_j_compenvurbsys_2022_101889 crossref_primary_10_1016_j_soh_2023_100051 crossref_primary_10_1016_j_ecolmodel_2024_110697 crossref_primary_10_33166_AETiC_2021_02_004 |
ContentType | Journal Article |
Copyright | Copyright Department of Sociology, University of Surrey Jan 2020 |
Copyright_xml | – notice: Copyright Department of Sociology, University of Surrey Jan 2020 |
DBID | AAYXX CITATION 7U4 8BJ BHHNA DWI FQK JBE WZK |
DOI | 10.18564/jasss.4201 |
DatabaseName | CrossRef Sociological Abstracts (pre-2017) International Bibliography of the Social Sciences (IBSS) Sociological Abstracts Sociological Abstracts International Bibliography of the Social Sciences International Bibliography of the Social Sciences Sociological Abstracts (Ovid) |
DatabaseTitle | CrossRef Sociological Abstracts (pre-2017) International Bibliography of the Social Sciences (IBSS) Sociological Abstracts |
DatabaseTitleList | Sociological Abstracts (pre-2017) |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Social Sciences (General) |
EISSN | 1460-7425 |
ExternalDocumentID | 10_18564_jasss_4201 |
GroupedDBID | 29J 2WC 5GY 5VS AAFWJ AAKPC AAYXX ACGFO ADBBV ADZJE AFPKN AIAGR ALMA_UNASSIGNED_HOLDINGS BCNDV C1A CITATION E3Z EBS EJD ESI FRS GROUPED_DOAJ KQ8 OK1 OVT P2P RNS TR2 XSB 7U4 8BJ BHHNA DWI FQK JBE WZK |
ID | FETCH-LOGICAL-c298t-3d7cab3496f68af8c492aa91f6a8f76e696f6cfa95507b68ceab60f7efe4e0633 |
ISSN | 1460-7425 |
IngestDate | Sun Jun 29 16:18:18 EDT 2025 Tue Jul 01 01:10:32 EDT 2025 Thu Apr 24 23:05:31 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c298t-3d7cab3496f68af8c492aa91f6a8f76e696f6cfa95507b68ceab60f7efe4e0633 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
OpenAccessLink | https://doi.org/10.18564/jasss.4201 |
PQID | 2352069457 |
PQPubID | 2039993 |
ParticipantIDs | proquest_journals_2352069457 crossref_citationtrail_10_18564_jasss_4201 crossref_primary_10_18564_jasss_4201 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-01-01 |
PublicationDateYYYYMMDD | 2020-01-01 |
PublicationDate_xml | – month: 01 year: 2020 text: 2020-01-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Guildford |
PublicationPlace_xml | – name: Guildford |
PublicationTitle | Journal of artificial societies and social simulation |
PublicationYear | 2020 |
Publisher | Department of Sociology, University of Surrey |
Publisher_xml | – name: Department of Sociology, University of Surrey |
SSID | ssj0023265 |
Score | 2.4389787 |
Snippet | Designing, implementing, and applying agent-based models (ABMs) requires a structured approach, part of which is a comprehensive analysis of the output to... |
SourceID | proquest crossref |
SourceType | Aggregation Database Enrichment Source Index Database |
SubjectTerms | Mixed methods research Policy analysis Realism Robustness Sensitivity analysis Simulation Structural models Uncertainty Variability |
Title | ‘One Size Does Not Fit All’: A Roadmap of Purpose-Driven Mixed-Method Pathways for Sensitivity Analysis of Agent-Based Models |
URI | https://www.proquest.com/docview/2352069457 |
Volume | 23 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NbtQwELaWcuGC-BWFgnzoAVh52SaO43BbClWFVIpoK1VcIiex26jZpNqkKvRU3gKeibfokzD-STYLi1S4RCuv7USZT_PjzDeD0DpjGQ-SLCD-WChChcoIl9InNBn7gVS6hLtJkP3Atg_o-8PgcDD42ctaOmuSUXqxlFfyP1KFMZCrZsn-g2S7TWEAfoN84QoShuu1ZNxmKvBdcBX38gsJ_rAExVU1w628GU6Kop0RWQb6p0pkU3FqEt_gDVe1JG9nWt8Nd_IvMiM7pp-0rtt_fC6-mlINoE1Knddlekz0S5hMNCmLvAErmJmOakX9F0dXP7irU1GbHFEIzoe98_o6n7oeYl12UH40FWVJPueaLV-f2LPfWX7S2ZC9HGBhu7t9lHJGdguh5ofrR0VeAWYc0nX03kUOhuU9s9n85-Vwc9Q_9vDGvWMPq6kpGxOI6-0ncblkzKl3S2fuw_gPq8EDRk27grquR9Rzt1mozf2bzewyGXUMpZfHZnGsF99AN70QHLk2vnfRP_jJgaW62Wd0ZFG9-NX8zovu0aJ3YFye_TvothMhnljg3UUDWd5Dq5bQjZ1RqPFzV7n8xX307eryO0ARayhiDUUMUMQARQxQvLr88RpPsIMgrhRehCDuQxC3EMQAQdyDIG4hqDfoQRBbCD5AB1vv9je3ievxQVIv4g3xszAVie5aoBgXiqc08oSINhQTXIVMMv1HqkSk6-4ljKdSJGysQqkkleBe-w_RSlmV8hHCSZbSIPO54llEI8kjKUNPbvCUa6tF01X0sn21ceoK4Os-LEW8RIiraL2bfGrrviyfttbKKHaKoY49CGo0nzwIH19vlyfo1hzia2ilmZ3Jp-DrNskzg6FfY6Sv_Q |
linkProvider | Directory of Open Access Journals |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%E2%80%98One+Size+Does+Not+Fit+All%E2%80%99%3A+A+Roadmap+of+Purpose-Driven+Mixed-Method+Pathways+for+Sensitivity+Analysis+of+Agent-Based+Models&rft.jtitle=Journal+of+artificial+societies+and+social+simulation&rft.au=Ligmann-Zielinska%2C+Arika&rft.au=Siebers%2C+Peer-Olaf&rft.au=Magliocca%2C+Nicholas&rft.au=Parker%2C+Dawn+C.&rft.date=2020-01-01&rft.issn=1460-7425&rft.eissn=1460-7425&rft.volume=23&rft.issue=1&rft_id=info:doi/10.18564%2Fjasss.4201&rft.externalDBID=n%2Fa&rft.externalDocID=10_18564_jasss_4201 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1460-7425&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1460-7425&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1460-7425&client=summon |