Interaction of wave structure in the generalized perturbed KdV equation in mechanics

In this article, we investigate a generalized perturbed-KdV equation, which describes the physical mechanism of sound propagation in fluid and appears in the applications of aerodynamics, acoustics, and medical engineering. The improved (G′/G)-expansion method is employed to explore the hyperbolic a...

Full description

Saved in:
Bibliographic Details
Published inNonlinear dynamics Vol. 113; no. 10; pp. 12047 - 12055
Main Authors Liu, Jian-Guo, Zhang, Chun-Qiang
Format Journal Article
LanguageEnglish
Published Dordrecht Springer Nature B.V 01.05.2025
Subjects
Online AccessGet full text
ISSN0924-090X
1573-269X
DOI10.1007/s11071-024-10811-8

Cover

Abstract In this article, we investigate a generalized perturbed-KdV equation, which describes the physical mechanism of sound propagation in fluid and appears in the applications of aerodynamics, acoustics, and medical engineering. The improved (G′/G)-expansion method is employed to explore the hyperbolic and trigonometric solutions of the equation. Compared to traditional methods, we provide the condition that parameter ξ is not subject to any restrictions. Additionally, the polynomial function method is utilized to look for the lump solution of the generalized perturbed-KdV equation based on the Hirota’s bilinear form. From the results, it can be seen that this method is very simple and effective, with few constraints on unknown parameters. Finally, graphical representations such as 3-dimensional, contour, and density plots are shown with the help of the Mathematica software.
AbstractList In this article, we investigate a generalized perturbed-KdV equation, which describes the physical mechanism of sound propagation in fluid and appears in the applications of aerodynamics, acoustics, and medical engineering. The improved (G′/G)-expansion method is employed to explore the hyperbolic and trigonometric solutions of the equation. Compared to traditional methods, we provide the condition that parameter ξ is not subject to any restrictions. Additionally, the polynomial function method is utilized to look for the lump solution of the generalized perturbed-KdV equation based on the Hirota’s bilinear form. From the results, it can be seen that this method is very simple and effective, with few constraints on unknown parameters. Finally, graphical representations such as 3-dimensional, contour, and density plots are shown with the help of the Mathematica software.
Author Liu, Jian-Guo
Zhang, Chun-Qiang
Author_xml – sequence: 1
  givenname: Jian-Guo
  surname: Liu
  fullname: Liu, Jian-Guo
– sequence: 2
  givenname: Chun-Qiang
  surname: Zhang
  fullname: Zhang, Chun-Qiang
BookMark eNotkE1LAzEQhoNUsK3-AU8Bz6szm3aTPUrxo1jwUqW3kI9Zu6XdbZNdRX-9sfX0DrzPzMAzYoOmbYixa4RbBJB3EREkZpBPMgSFmKkzNsSpFFlelKsBG0KZKihhdcFGMW4AQOSghmw5bzoKxnV12_C24l_mk3jsQu-6PhCvG96tiX9Qk6Bt_UOe7ymkyqbpxb9zOvTmuJvIHbm1aWoXL9l5ZbaRrv5zzN4eH5az52zx-jSf3S8yl5eqy4SV1soiV2iKEoTzSoC31k8KLBHdVHjpUngpQNhCTowgZ6QsCrLeGqrEmN2c7u5De-gpdnrT9qFJL7XAZEEBKpmo_ES50MYYqNL7UO9M-NYI-s-ePtnTyZ4-2tNK_AKsTGU2
Cites_doi 10.1016/j.aej.2024.06.079
10.1007/s11071-023-08257-5
10.1007/s11071-023-08699-x
10.1007/s00033-021-01584-w
10.1007/s11071-016-2941-8
10.1142/S0218348X23500238
10.1007/s11082-023-05913-3
10.1142/S0129183121501497
10.1007/s11071-022-07509-0
10.37256/cm.4420233575
10.1007/s11082-023-06134-4
10.1007/s11071-022-07207-x
10.1016/S0375-9601(98)00547-7
10.1016/j.nonrwa.2018.09.017
10.1007/s11071-022-08074-2
10.1016/j.rinp.2023.107129
10.1038/s41598-024-62113-z
10.1142/S0218863524500097
10.1016/j.physleta.2007.07.051
10.59277/RomRepPhys.2023.75.116
10.1016/j.ijleo.2023.170708
10.1142/S0217979223501412
10.1007/s11071-022-07517-0
10.1007/s10910-023-01554-9
ContentType Journal Article
Copyright Copyright Springer Nature B.V. May 2025
Copyright_xml – notice: Copyright Springer Nature B.V. May 2025
DBID AAYXX
CITATION
DOI 10.1007/s11071-024-10811-8
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Engineering
EISSN 1573-269X
EndPage 12055
ExternalDocumentID 10_1007_s11071_024_10811_8
GroupedDBID -Y2
-~C
-~X
.86
.DC
.VR
06D
0R~
0VY
123
1N0
1SB
2.D
203
28-
29N
29~
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5QI
5VS
67Z
6NX
8FE
8FG
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAPKM
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYXX
AAYZH
ABAKF
ABBBX
ABBRH
ABBXA
ABDBE
ABDZT
ABECU
ABFSG
ABFTV
ABHLI
ABHQN
ABJCF
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABRTQ
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACSTC
ACZOJ
ADHHG
ADHIR
ADHKG
ADIMF
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AEZWR
AFBBN
AFDZB
AFEXP
AFFNX
AFGCZ
AFHIU
AFKRA
AFLOW
AFOHR
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGQPQ
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHPBZ
AHSBF
AHWEU
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AIXLP
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMVHM
AMXSW
AMYLF
AMYQR
AOCGG
ARCEE
ARMRJ
ASPBG
ATHPR
AVWKF
AXYYD
AYFIA
AYJHY
AZFZN
B-.
BA0
BBWZM
BDATZ
BENPR
BGLVJ
BGNMA
BSONS
CAG
CCPQU
CITATION
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
EBLON
EBS
EIOEI
EJD
ESBYG
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
IWAJR
IXC
IXD
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
L6V
LAK
LLZTM
M4Y
M7S
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P9T
PF0
PHGZM
PHGZT
PQGLB
PT4
PT5
PTHSS
PUEGO
QOK
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCLPG
SCV
SDH
SDM
SEG
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WH7
WK8
YLTOR
Z45
Z8Z
ZMTXR
~A9
~EX
ID FETCH-LOGICAL-c298t-3b7bb76281a6903cd830dbbd461911c53d7c1c5d7303b674a3eca7766ebdbaef3
ISSN 0924-090X
IngestDate Fri Jul 25 11:05:40 EDT 2025
Wed Oct 01 06:36:27 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 10
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c298t-3b7bb76281a6903cd830dbbd461911c53d7c1c5d7303b674a3eca7766ebdbaef3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 3181180187
PQPubID 2043746
PageCount 9
ParticipantIDs proquest_journals_3181180187
crossref_primary_10_1007_s11071_024_10811_8
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2025-05-01
PublicationDateYYYYMMDD 2025-05-01
PublicationDate_xml – month: 05
  year: 2025
  text: 2025-05-01
  day: 01
PublicationDecade 2020
PublicationPlace Dordrecht
PublicationPlace_xml – name: Dordrecht
PublicationTitle Nonlinear dynamics
PublicationYear 2025
Publisher Springer Nature B.V
Publisher_xml – name: Springer Nature B.V
References YL Cao (10811_CR35) 2021; 3
A Asghar (10811_CR16) 2024; 56
RF Zhang (10811_CR1) 2023; 111
AM Wazwaz (10811_CR26) 2023; 35
J Wang (10811_CR4) 2022; 31
AM Wazwaz (10811_CR41) 2023; 111
SMR Islam (10811_CR42) 2024; 44
AM Wazwaz (10811_CR44) 2023; 277
A Sonia (10811_CR21) 2023; 54
AM Wazwaz (10811_CR29) 2023; 75
A Jamshad (10811_CR20) 2024; 62
JJ Wu (10811_CR36) 2023; 45
ZZ Lan (10811_CR28) 2023; 147
WX Ma (10811_CR9) 2019; 47
A Sonia (10811_CR47) 2024; 56
SMR Islam (10811_CR22) 2024; 19
SMR Islam (10811_CR46) 2024
KJ Wang (10811_CR37) 2023; 111
S Sayed (10811_CR25) 2022; 454
JC Pu (10811_CR19) 2022; 4
AM Wazwaz (10811_CR2) 2023; 35
KA Gepreel (10811_CR12) 2021; 32
R Nauman (10811_CR32) 2023; 292
ML Wang (10811_CR13) 2008; 372
C Lü (10811_CR3) 2023; 141
AM Wazwaz (10811_CR18) 2007; 190
Z Aniqa (10811_CR43) 2021; 21
UR Shafqat (10811_CR45) 2023; 98
EG Fan (10811_CR8) 1998; 246
SJ Chen (10811_CR33) 2023; 5
AM Wazwaz (10811_CR40) 2022; 109
YQ Chen (10811_CR31) 2023; 35
AM Wazwaz (10811_CR39) 2023; 35
SMR Islam (10811_CR49) 2024; 14
Y Li (10811_CR17) 2023; 145
JG Liu (10811_CR14) 2021; 72
A Jamshad (10811_CR23) 2024; 15
Z Du (10811_CR34) 2022; 34
K Hosseini (10811_CR10) 2023; 54
CQ Dai (10811_CR7) 2016; 86
D Gao (10811_CR11) 2023; 98
A Marwan (10811_CR24) 2022; 109
HL An (10811_CR38) 2023; 476
RF Zhang (10811_CR27) 2022; 108
AR Adem (10811_CR30) 2023; 4
KJ Wang (10811_CR6) 2023; 31
B Guo (10811_CR15) 2012; 85
10811_CR48
Y Gu (10811_CR5) 2023; 37
References_xml – ident: 10811_CR48
  doi: 10.1016/j.aej.2024.06.079
– volume: 476
  year: 2023
  ident: 10811_CR38
  publication-title: Phys. Lett. A
– volume: 190
  start-page: 633
  issue: 1
  year: 2007
  ident: 10811_CR18
  publication-title: Appl. Math. Comput.
– volume: 111
  start-page: 8637
  year: 2023
  ident: 10811_CR1
  publication-title: Nonlinear Dyn.
  doi: 10.1007/s11071-023-08257-5
– volume: 85
  year: 2012
  ident: 10811_CR15
  publication-title: Phys. Rev. E
– volume: 54
  year: 2023
  ident: 10811_CR21
  publication-title: Results Phys.
– volume: 141
  year: 2023
  ident: 10811_CR3
  publication-title: Appl. Math. Lett.
– volume: 19
  issue: 5
  year: 2024
  ident: 10811_CR22
  publication-title: PLoS ONE
– volume: 111
  start-page: 16427
  year: 2023
  ident: 10811_CR37
  publication-title: Nonlinear Dyn.
  doi: 10.1007/s11071-023-08699-x
– volume: 292
  year: 2023
  ident: 10811_CR32
  publication-title: Optik
– volume: 72
  start-page: 154
  year: 2021
  ident: 10811_CR14
  publication-title: Z. Angew. Math. Phys.
  doi: 10.1007/s00033-021-01584-w
– volume: 86
  start-page: 999
  year: 2016
  ident: 10811_CR7
  publication-title: Nonlinear Dyn.
  doi: 10.1007/s11071-016-2941-8
– volume: 45
  year: 2023
  ident: 10811_CR36
  publication-title: Results Phys.
– volume: 31
  year: 2022
  ident: 10811_CR4
  publication-title: Chinese Phys. B
– volume: 35
  year: 2023
  ident: 10811_CR26
  publication-title: Phys. Fluids
– volume: 31
  start-page: 2350023
  issue: 03
  year: 2023
  ident: 10811_CR6
  publication-title: Fractals
  doi: 10.1142/S0218348X23500238
– volume: 56
  start-page: 380
  year: 2024
  ident: 10811_CR47
  publication-title: Opt. Quant. Electron.
  doi: 10.1007/s11082-023-05913-3
– volume: 32
  start-page: 2150149
  issue: 11
  year: 2021
  ident: 10811_CR12
  publication-title: Int. J. Mod. Phys.
  doi: 10.1142/S0129183121501497
– volume: 35
  year: 2023
  ident: 10811_CR31
  publication-title: Phys. Fluids
– volume: 109
  start-page: 1985
  year: 2022
  ident: 10811_CR24
  publication-title: Nonlinear Dyn.
  doi: 10.1007/s11071-022-07509-0
– volume: 4
  start-page: 666
  issue: 4
  year: 2023
  ident: 10811_CR30
  publication-title: Contemp. Math.
  doi: 10.37256/cm.4420233575
– volume: 56
  start-page: 166
  year: 2024
  ident: 10811_CR16
  publication-title: Opt. Quant. Electron.
  doi: 10.1007/s11082-023-06134-4
– volume: 108
  start-page: 521
  year: 2022
  ident: 10811_CR27
  publication-title: Nonlinear Dyn.
  doi: 10.1007/s11071-022-07207-x
– volume: 21
  year: 2021
  ident: 10811_CR43
  publication-title: Results Phys.
– volume: 246
  start-page: 403
  issue: 5
  year: 1998
  ident: 10811_CR8
  publication-title: Phys. Lett. A
  doi: 10.1016/S0375-9601(98)00547-7
– volume: 147
  year: 2023
  ident: 10811_CR28
  publication-title: Appl. Math. Lett.
– volume: 44
  start-page: 59
  issue: 1
  year: 2024
  ident: 10811_CR42
  publication-title: GANIT J. Bangladesh Math. Soc.
– volume: 145
  year: 2023
  ident: 10811_CR17
  publication-title: Appl. Math. Lett.
– volume: 98
  year: 2023
  ident: 10811_CR45
  publication-title: Phys. Scr.
– volume: 3
  start-page: 32
  year: 2021
  ident: 10811_CR35
  publication-title: Commun. Theor. Phys.
– volume: 47
  start-page: 1
  year: 2019
  ident: 10811_CR9
  publication-title: Nonlinear Anal.
  doi: 10.1016/j.nonrwa.2018.09.017
– volume: 111
  start-page: 3623
  year: 2023
  ident: 10811_CR41
  publication-title: Nonlinear Dyn.
  doi: 10.1007/s11071-022-08074-2
– volume: 4
  start-page: 861
  year: 2022
  ident: 10811_CR19
  publication-title: Acta Math. Appl. Sin.
– volume: 54
  year: 2023
  ident: 10811_CR10
  publication-title: Results Phys.
  doi: 10.1016/j.rinp.2023.107129
– volume: 14
  start-page: 11428
  year: 2024
  ident: 10811_CR49
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-024-62113-z
– year: 2024
  ident: 10811_CR46
  publication-title: J. Nonlinear Opt. Phys.
  doi: 10.1142/S0218863524500097
– volume: 372
  start-page: 417
  issue: 4
  year: 2008
  ident: 10811_CR13
  publication-title: Phys. Lett. A
  doi: 10.1016/j.physleta.2007.07.051
– volume: 75
  start-page: 116
  issue: 3
  year: 2023
  ident: 10811_CR29
  publication-title: Rom. Rep. Phys.
  doi: 10.59277/RomRepPhys.2023.75.116
– volume: 277
  year: 2023
  ident: 10811_CR44
  publication-title: Optik
  doi: 10.1016/j.ijleo.2023.170708
– volume: 37
  start-page: 2350141
  issue: 15
  year: 2023
  ident: 10811_CR5
  publication-title: Int. J. Mod. Phys. B
  doi: 10.1142/S0217979223501412
– volume: 35
  year: 2023
  ident: 10811_CR39
  publication-title: Phys. Fluids
– volume: 109
  start-page: 1929
  year: 2022
  ident: 10811_CR40
  publication-title: Nonlinear Dyn.
  doi: 10.1007/s11071-022-07517-0
– volume: 98
  issue: 9
  year: 2023
  ident: 10811_CR11
  publication-title: Phys. Scr.
– volume: 5
  start-page: 52
  year: 2023
  ident: 10811_CR33
  publication-title: Commun. Theor. Phys.
– volume: 62
  start-page: 2798
  year: 2024
  ident: 10811_CR20
  publication-title: J. Math. Chem.
  doi: 10.1007/s10910-023-01554-9
– volume: 454
  year: 2022
  ident: 10811_CR25
  publication-title: Phys. Lett. A
– volume: 35
  year: 2023
  ident: 10811_CR2
  publication-title: Phys. Fluids
– volume: 34
  year: 2022
  ident: 10811_CR34
  publication-title: Phys. Fluids
– volume: 15
  year: 2024
  ident: 10811_CR23
  publication-title: Ain Shams Eng. J.
SSID ssj0003208
Score 2.4355395
Snippet In this article, we investigate a generalized perturbed-KdV equation, which describes the physical mechanism of sound propagation in fluid and appears in the...
SourceID proquest
crossref
SourceType Aggregation Database
Index Database
StartPage 12047
SubjectTerms Aerodynamics
Engineering
Functions (mathematics)
Graphical representations
Korteweg-Devries equation
Mechanics
Methods
Parameters
Polynomials
Propagation
Software
Sound propagation
Title Interaction of wave structure in the generalized perturbed KdV equation in mechanics
URI https://www.proquest.com/docview/3181180187
Volume 113
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVLSH
  databaseName: SpringerLink Journals
  customDbUrl:
  mediaType: online
  eissn: 1573-269X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0003208
  issn: 0924-090X
  databaseCode: AFBBN
  dateStart: 19900101
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVAVX
  databaseName: SpringerLINK - Czech Republic Consortium
  customDbUrl:
  eissn: 1573-269X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0003208
  issn: 0924-090X
  databaseCode: AGYKE
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://link.springer.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: SpringerLink Journals (ICM)
  customDbUrl:
  eissn: 1573-269X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0003208
  issn: 0924-090X
  databaseCode: U2A
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://www.springerlink.com/journals/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NT9swFLf4uMBhGzBEN5h8QLtURnGc2OkRTSC0QbmkU25WHDuIA6VApUn96_de7KQNmxBwSVLHapv3fnnv-eP3HiHHRtUQFCcVs0ltWFLHKSul4jDmsaYUqawjiQTnq7G8mCQ_i7RYFv5r2CVzc1It_ssreY9WoQ30iizZN2i2-1JogGvQLxxBw3B8lY6b6bxQ7BuCvj9YScgnhMVlgbCD8cYnlr5dQGg5c49wy8DVL_t76B58nm_seeeQAtxufQ_R6tjn0Sgfh9YXru9NEoDAuy15vUlC3AGNf6AjsfiZwDjB6ZrCu4RgB5VgsRwVPUPpWaMtIqIVu8fjyCfODE4UPvvsu_9Y6CgwlmHYyRkECOAHMs5ZtvRH7Rr8-FqfTy4vdX5W5N9nDwwrheGKeiibsk42Y7DkWK5jEp923lfETRXC7qECUcrTJZ__aD8Y6fviJsDIP5EPYWRAT72ad8iam-6Sj2GUQIMNftol2yspJPdIvoIBel9TxADtMEBvpxQwQFcwQDsMUMAAbTGAPTsMfCaT87P8xwULlTJYFY-yORNGGQPCyHgpR5GobCYia4xNYHjMeZUKqyo4WTDnwkiVlMJVpVJSOgOvpKvFPtmY3k_dAaHKZDUSto0ssV9lErDSigtoT4WzfECGrcj0zCdE0cvU1yhgDQLWjYB1NiCHrVR1eHGeNLgRTDzIM_Xl5dtfydYSzIdkA4TnjiAGnJtvjdL_Aif5XF4
linkProvider Springer Nature
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Interaction+of+wave+structure+in+the+generalized+perturbed+KdV+equation+in+mechanics&rft.jtitle=Nonlinear+dynamics&rft.date=2025-05-01&rft.pub=Springer+Nature+B.V&rft.issn=0924-090X&rft.eissn=1573-269X&rft.volume=113&rft.issue=10&rft.spage=12047&rft.epage=12055&rft_id=info:doi/10.1007%2Fs11071-024-10811-8&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0924-090X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0924-090X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0924-090X&client=summon