Interaction of wave structure in the generalized perturbed KdV equation in mechanics
In this article, we investigate a generalized perturbed-KdV equation, which describes the physical mechanism of sound propagation in fluid and appears in the applications of aerodynamics, acoustics, and medical engineering. The improved (G′/G)-expansion method is employed to explore the hyperbolic a...
        Saved in:
      
    
          | Published in | Nonlinear dynamics Vol. 113; no. 10; pp. 12047 - 12055 | 
|---|---|
| Main Authors | , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        Dordrecht
          Springer Nature B.V
    
        01.05.2025
     | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 0924-090X 1573-269X  | 
| DOI | 10.1007/s11071-024-10811-8 | 
Cover
| Abstract | In this article, we investigate a generalized perturbed-KdV equation, which describes the physical mechanism of sound propagation in fluid and appears in the applications of aerodynamics, acoustics, and medical engineering. The improved (G′/G)-expansion method is employed to explore the hyperbolic and trigonometric solutions of the equation. Compared to traditional methods, we provide the condition that parameter ξ is not subject to any restrictions. Additionally, the polynomial function method is utilized to look for the lump solution of the generalized perturbed-KdV equation based on the Hirota’s bilinear form. From the results, it can be seen that this method is very simple and effective, with few constraints on unknown parameters. Finally, graphical representations such as 3-dimensional, contour, and density plots are shown with the help of the Mathematica software. | 
    
|---|---|
| AbstractList | In this article, we investigate a generalized perturbed-KdV equation, which describes the physical mechanism of sound propagation in fluid and appears in the applications of aerodynamics, acoustics, and medical engineering. The improved (G′/G)-expansion method is employed to explore the hyperbolic and trigonometric solutions of the equation. Compared to traditional methods, we provide the condition that parameter ξ is not subject to any restrictions. Additionally, the polynomial function method is utilized to look for the lump solution of the generalized perturbed-KdV equation based on the Hirota’s bilinear form. From the results, it can be seen that this method is very simple and effective, with few constraints on unknown parameters. Finally, graphical representations such as 3-dimensional, contour, and density plots are shown with the help of the Mathematica software. | 
    
| Author | Liu, Jian-Guo Zhang, Chun-Qiang  | 
    
| Author_xml | – sequence: 1 givenname: Jian-Guo surname: Liu fullname: Liu, Jian-Guo – sequence: 2 givenname: Chun-Qiang surname: Zhang fullname: Zhang, Chun-Qiang  | 
    
| BookMark | eNotkE1LAzEQhoNUsK3-AU8Bz6szm3aTPUrxo1jwUqW3kI9Zu6XdbZNdRX-9sfX0DrzPzMAzYoOmbYixa4RbBJB3EREkZpBPMgSFmKkzNsSpFFlelKsBG0KZKihhdcFGMW4AQOSghmw5bzoKxnV12_C24l_mk3jsQu-6PhCvG96tiX9Qk6Bt_UOe7ymkyqbpxb9zOvTmuJvIHbm1aWoXL9l5ZbaRrv5zzN4eH5az52zx-jSf3S8yl5eqy4SV1soiV2iKEoTzSoC31k8KLBHdVHjpUngpQNhCTowgZ6QsCrLeGqrEmN2c7u5De-gpdnrT9qFJL7XAZEEBKpmo_ES50MYYqNL7UO9M-NYI-s-ePtnTyZ4-2tNK_AKsTGU2 | 
    
| Cites_doi | 10.1016/j.aej.2024.06.079 10.1007/s11071-023-08257-5 10.1007/s11071-023-08699-x 10.1007/s00033-021-01584-w 10.1007/s11071-016-2941-8 10.1142/S0218348X23500238 10.1007/s11082-023-05913-3 10.1142/S0129183121501497 10.1007/s11071-022-07509-0 10.37256/cm.4420233575 10.1007/s11082-023-06134-4 10.1007/s11071-022-07207-x 10.1016/S0375-9601(98)00547-7 10.1016/j.nonrwa.2018.09.017 10.1007/s11071-022-08074-2 10.1016/j.rinp.2023.107129 10.1038/s41598-024-62113-z 10.1142/S0218863524500097 10.1016/j.physleta.2007.07.051 10.59277/RomRepPhys.2023.75.116 10.1016/j.ijleo.2023.170708 10.1142/S0217979223501412 10.1007/s11071-022-07517-0 10.1007/s10910-023-01554-9  | 
    
| ContentType | Journal Article | 
    
| Copyright | Copyright Springer Nature B.V. May 2025 | 
    
| Copyright_xml | – notice: Copyright Springer Nature B.V. May 2025 | 
    
| DBID | AAYXX CITATION  | 
    
| DOI | 10.1007/s11071-024-10811-8 | 
    
| DatabaseName | CrossRef | 
    
| DatabaseTitle | CrossRef | 
    
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Applied Sciences Engineering  | 
    
| EISSN | 1573-269X | 
    
| EndPage | 12055 | 
    
| ExternalDocumentID | 10_1007_s11071_024_10811_8 | 
    
| GroupedDBID | -Y2 -~C -~X .86 .DC .VR 06D 0R~ 0VY 123 1N0 1SB 2.D 203 28- 29N 29~ 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 5QI 5VS 67Z 6NX 8FE 8FG 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AAPKM AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYXX AAYZH ABAKF ABBBX ABBRH ABBXA ABDBE ABDZT ABECU ABFSG ABFTV ABHLI ABHQN ABJCF ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABRTQ ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACSTC ACZOJ ADHHG ADHIR ADHKG ADIMF ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AEZWR AFBBN AFDZB AFEXP AFFNX AFGCZ AFHIU AFKRA AFLOW AFOHR AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGQPQ AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHPBZ AHSBF AHWEU AHYZX AIAKS AIGIU AIIXL AILAN AITGF AIXLP AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMVHM AMXSW AMYLF AMYQR AOCGG ARCEE ARMRJ ASPBG ATHPR AVWKF AXYYD AYFIA AYJHY AZFZN B-. BA0 BBWZM BDATZ BENPR BGLVJ BGNMA BSONS CAG CCPQU CITATION COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP EBLON EBS EIOEI EJD ESBYG F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ7 GQ8 GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I09 IHE IJ- IKXTQ IWAJR IXC IXD IXE IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV KOW L6V LAK LLZTM M4Y M7S MA- N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P2P P9T PF0 PHGZM PHGZT PQGLB PT4 PT5 PTHSS PUEGO QOK QOS R4E R89 R9I RHV RNI RNS ROL RPX RSV RZC RZE RZK S16 S1Z S26 S27 S28 S3B SAP SCLPG SCV SDH SDM SEG SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TEORI TSG TSK TSV TUC U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WH7 WK8 YLTOR Z45 Z8Z ZMTXR ~A9 ~EX  | 
    
| ID | FETCH-LOGICAL-c298t-3b7bb76281a6903cd830dbbd461911c53d7c1c5d7303b674a3eca7766ebdbaef3 | 
    
| ISSN | 0924-090X | 
    
| IngestDate | Fri Jul 25 11:05:40 EDT 2025 Wed Oct 01 06:36:27 EDT 2025  | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Issue | 10 | 
    
| Language | English | 
    
| LinkModel | OpenURL | 
    
| MergedId | FETCHMERGED-LOGICAL-c298t-3b7bb76281a6903cd830dbbd461911c53d7c1c5d7303b674a3eca7766ebdbaef3 | 
    
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14  | 
    
| PQID | 3181180187 | 
    
| PQPubID | 2043746 | 
    
| PageCount | 9 | 
    
| ParticipantIDs | proquest_journals_3181180187 crossref_primary_10_1007_s11071_024_10811_8  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2025-05-01 | 
    
| PublicationDateYYYYMMDD | 2025-05-01 | 
    
| PublicationDate_xml | – month: 05 year: 2025 text: 2025-05-01 day: 01  | 
    
| PublicationDecade | 2020 | 
    
| PublicationPlace | Dordrecht | 
    
| PublicationPlace_xml | – name: Dordrecht | 
    
| PublicationTitle | Nonlinear dynamics | 
    
| PublicationYear | 2025 | 
    
| Publisher | Springer Nature B.V | 
    
| Publisher_xml | – name: Springer Nature B.V | 
    
| References | YL Cao (10811_CR35) 2021; 3 A Asghar (10811_CR16) 2024; 56 RF Zhang (10811_CR1) 2023; 111 AM Wazwaz (10811_CR26) 2023; 35 J Wang (10811_CR4) 2022; 31 AM Wazwaz (10811_CR41) 2023; 111 SMR Islam (10811_CR42) 2024; 44 AM Wazwaz (10811_CR44) 2023; 277 A Sonia (10811_CR21) 2023; 54 AM Wazwaz (10811_CR29) 2023; 75 A Jamshad (10811_CR20) 2024; 62 JJ Wu (10811_CR36) 2023; 45 ZZ Lan (10811_CR28) 2023; 147 WX Ma (10811_CR9) 2019; 47 A Sonia (10811_CR47) 2024; 56 SMR Islam (10811_CR22) 2024; 19 SMR Islam (10811_CR46) 2024 KJ Wang (10811_CR37) 2023; 111 S Sayed (10811_CR25) 2022; 454 JC Pu (10811_CR19) 2022; 4 AM Wazwaz (10811_CR2) 2023; 35 KA Gepreel (10811_CR12) 2021; 32 R Nauman (10811_CR32) 2023; 292 ML Wang (10811_CR13) 2008; 372 C Lü (10811_CR3) 2023; 141 AM Wazwaz (10811_CR18) 2007; 190 Z Aniqa (10811_CR43) 2021; 21 UR Shafqat (10811_CR45) 2023; 98 EG Fan (10811_CR8) 1998; 246 SJ Chen (10811_CR33) 2023; 5 AM Wazwaz (10811_CR40) 2022; 109 YQ Chen (10811_CR31) 2023; 35 AM Wazwaz (10811_CR39) 2023; 35 SMR Islam (10811_CR49) 2024; 14 Y Li (10811_CR17) 2023; 145 JG Liu (10811_CR14) 2021; 72 A Jamshad (10811_CR23) 2024; 15 Z Du (10811_CR34) 2022; 34 K Hosseini (10811_CR10) 2023; 54 CQ Dai (10811_CR7) 2016; 86 D Gao (10811_CR11) 2023; 98 A Marwan (10811_CR24) 2022; 109 HL An (10811_CR38) 2023; 476 RF Zhang (10811_CR27) 2022; 108 AR Adem (10811_CR30) 2023; 4 KJ Wang (10811_CR6) 2023; 31 B Guo (10811_CR15) 2012; 85 10811_CR48 Y Gu (10811_CR5) 2023; 37  | 
    
| References_xml | – ident: 10811_CR48 doi: 10.1016/j.aej.2024.06.079 – volume: 476 year: 2023 ident: 10811_CR38 publication-title: Phys. Lett. A – volume: 190 start-page: 633 issue: 1 year: 2007 ident: 10811_CR18 publication-title: Appl. Math. Comput. – volume: 111 start-page: 8637 year: 2023 ident: 10811_CR1 publication-title: Nonlinear Dyn. doi: 10.1007/s11071-023-08257-5 – volume: 85 year: 2012 ident: 10811_CR15 publication-title: Phys. Rev. E – volume: 54 year: 2023 ident: 10811_CR21 publication-title: Results Phys. – volume: 141 year: 2023 ident: 10811_CR3 publication-title: Appl. Math. Lett. – volume: 19 issue: 5 year: 2024 ident: 10811_CR22 publication-title: PLoS ONE – volume: 111 start-page: 16427 year: 2023 ident: 10811_CR37 publication-title: Nonlinear Dyn. doi: 10.1007/s11071-023-08699-x – volume: 292 year: 2023 ident: 10811_CR32 publication-title: Optik – volume: 72 start-page: 154 year: 2021 ident: 10811_CR14 publication-title: Z. Angew. Math. Phys. doi: 10.1007/s00033-021-01584-w – volume: 86 start-page: 999 year: 2016 ident: 10811_CR7 publication-title: Nonlinear Dyn. doi: 10.1007/s11071-016-2941-8 – volume: 45 year: 2023 ident: 10811_CR36 publication-title: Results Phys. – volume: 31 year: 2022 ident: 10811_CR4 publication-title: Chinese Phys. B – volume: 35 year: 2023 ident: 10811_CR26 publication-title: Phys. Fluids – volume: 31 start-page: 2350023 issue: 03 year: 2023 ident: 10811_CR6 publication-title: Fractals doi: 10.1142/S0218348X23500238 – volume: 56 start-page: 380 year: 2024 ident: 10811_CR47 publication-title: Opt. Quant. Electron. doi: 10.1007/s11082-023-05913-3 – volume: 32 start-page: 2150149 issue: 11 year: 2021 ident: 10811_CR12 publication-title: Int. J. Mod. Phys. doi: 10.1142/S0129183121501497 – volume: 35 year: 2023 ident: 10811_CR31 publication-title: Phys. Fluids – volume: 109 start-page: 1985 year: 2022 ident: 10811_CR24 publication-title: Nonlinear Dyn. doi: 10.1007/s11071-022-07509-0 – volume: 4 start-page: 666 issue: 4 year: 2023 ident: 10811_CR30 publication-title: Contemp. Math. doi: 10.37256/cm.4420233575 – volume: 56 start-page: 166 year: 2024 ident: 10811_CR16 publication-title: Opt. Quant. Electron. doi: 10.1007/s11082-023-06134-4 – volume: 108 start-page: 521 year: 2022 ident: 10811_CR27 publication-title: Nonlinear Dyn. doi: 10.1007/s11071-022-07207-x – volume: 21 year: 2021 ident: 10811_CR43 publication-title: Results Phys. – volume: 246 start-page: 403 issue: 5 year: 1998 ident: 10811_CR8 publication-title: Phys. Lett. A doi: 10.1016/S0375-9601(98)00547-7 – volume: 147 year: 2023 ident: 10811_CR28 publication-title: Appl. Math. Lett. – volume: 44 start-page: 59 issue: 1 year: 2024 ident: 10811_CR42 publication-title: GANIT J. Bangladesh Math. Soc. – volume: 145 year: 2023 ident: 10811_CR17 publication-title: Appl. Math. Lett. – volume: 98 year: 2023 ident: 10811_CR45 publication-title: Phys. Scr. – volume: 3 start-page: 32 year: 2021 ident: 10811_CR35 publication-title: Commun. Theor. Phys. – volume: 47 start-page: 1 year: 2019 ident: 10811_CR9 publication-title: Nonlinear Anal. doi: 10.1016/j.nonrwa.2018.09.017 – volume: 111 start-page: 3623 year: 2023 ident: 10811_CR41 publication-title: Nonlinear Dyn. doi: 10.1007/s11071-022-08074-2 – volume: 4 start-page: 861 year: 2022 ident: 10811_CR19 publication-title: Acta Math. Appl. Sin. – volume: 54 year: 2023 ident: 10811_CR10 publication-title: Results Phys. doi: 10.1016/j.rinp.2023.107129 – volume: 14 start-page: 11428 year: 2024 ident: 10811_CR49 publication-title: Sci. Rep. doi: 10.1038/s41598-024-62113-z – year: 2024 ident: 10811_CR46 publication-title: J. Nonlinear Opt. Phys. doi: 10.1142/S0218863524500097 – volume: 372 start-page: 417 issue: 4 year: 2008 ident: 10811_CR13 publication-title: Phys. Lett. A doi: 10.1016/j.physleta.2007.07.051 – volume: 75 start-page: 116 issue: 3 year: 2023 ident: 10811_CR29 publication-title: Rom. Rep. Phys. doi: 10.59277/RomRepPhys.2023.75.116 – volume: 277 year: 2023 ident: 10811_CR44 publication-title: Optik doi: 10.1016/j.ijleo.2023.170708 – volume: 37 start-page: 2350141 issue: 15 year: 2023 ident: 10811_CR5 publication-title: Int. J. Mod. Phys. B doi: 10.1142/S0217979223501412 – volume: 35 year: 2023 ident: 10811_CR39 publication-title: Phys. Fluids – volume: 109 start-page: 1929 year: 2022 ident: 10811_CR40 publication-title: Nonlinear Dyn. doi: 10.1007/s11071-022-07517-0 – volume: 98 issue: 9 year: 2023 ident: 10811_CR11 publication-title: Phys. Scr. – volume: 5 start-page: 52 year: 2023 ident: 10811_CR33 publication-title: Commun. Theor. Phys. – volume: 62 start-page: 2798 year: 2024 ident: 10811_CR20 publication-title: J. Math. Chem. doi: 10.1007/s10910-023-01554-9 – volume: 454 year: 2022 ident: 10811_CR25 publication-title: Phys. Lett. A – volume: 35 year: 2023 ident: 10811_CR2 publication-title: Phys. Fluids – volume: 34 year: 2022 ident: 10811_CR34 publication-title: Phys. Fluids – volume: 15 year: 2024 ident: 10811_CR23 publication-title: Ain Shams Eng. J.  | 
    
| SSID | ssj0003208 | 
    
| Score | 2.4355395 | 
    
| Snippet | In this article, we investigate a generalized perturbed-KdV equation, which describes the physical mechanism of sound propagation in fluid and appears in the... | 
    
| SourceID | proquest crossref  | 
    
| SourceType | Aggregation Database Index Database  | 
    
| StartPage | 12047 | 
    
| SubjectTerms | Aerodynamics Engineering Functions (mathematics) Graphical representations Korteweg-Devries equation Mechanics Methods Parameters Polynomials Propagation Software Sound propagation  | 
    
| Title | Interaction of wave structure in the generalized perturbed KdV equation in mechanics | 
    
| URI | https://www.proquest.com/docview/3181180187 | 
    
| Volume | 113 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVLSH databaseName: SpringerLink Journals customDbUrl: mediaType: online eissn: 1573-269X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0003208 issn: 0924-090X databaseCode: AFBBN dateStart: 19900101 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVAVX databaseName: SpringerLINK - Czech Republic Consortium customDbUrl: eissn: 1573-269X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0003208 issn: 0924-090X databaseCode: AGYKE dateStart: 19970101 isFulltext: true titleUrlDefault: http://link.springer.com providerName: Springer Nature – providerCode: PRVAVX databaseName: SpringerLink Journals (ICM) customDbUrl: eissn: 1573-269X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0003208 issn: 0924-090X databaseCode: U2A dateStart: 19970101 isFulltext: true titleUrlDefault: http://www.springerlink.com/journals/ providerName: Springer Nature  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NT9swFLf4uMBhGzBEN5h8QLtURnGc2OkRTSC0QbmkU25WHDuIA6VApUn96_de7KQNmxBwSVLHapv3fnnv-eP3HiHHRtUQFCcVs0ltWFLHKSul4jDmsaYUqawjiQTnq7G8mCQ_i7RYFv5r2CVzc1It_ssreY9WoQ30iizZN2i2-1JogGvQLxxBw3B8lY6b6bxQ7BuCvj9YScgnhMVlgbCD8cYnlr5dQGg5c49wy8DVL_t76B58nm_seeeQAtxufQ_R6tjn0Sgfh9YXru9NEoDAuy15vUlC3AGNf6AjsfiZwDjB6ZrCu4RgB5VgsRwVPUPpWaMtIqIVu8fjyCfODE4UPvvsu_9Y6CgwlmHYyRkECOAHMs5ZtvRH7Rr8-FqfTy4vdX5W5N9nDwwrheGKeiibsk42Y7DkWK5jEp923lfETRXC7qECUcrTJZ__aD8Y6fviJsDIP5EPYWRAT72ad8iam-6Sj2GUQIMNftol2yspJPdIvoIBel9TxADtMEBvpxQwQFcwQDsMUMAAbTGAPTsMfCaT87P8xwULlTJYFY-yORNGGQPCyHgpR5GobCYia4xNYHjMeZUKqyo4WTDnwkiVlMJVpVJSOgOvpKvFPtmY3k_dAaHKZDUSto0ssV9lErDSigtoT4WzfECGrcj0zCdE0cvU1yhgDQLWjYB1NiCHrVR1eHGeNLgRTDzIM_Xl5dtfydYSzIdkA4TnjiAGnJtvjdL_Aif5XF4 | 
    
| linkProvider | Springer Nature | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Interaction+of+wave+structure+in+the+generalized+perturbed+KdV+equation+in+mechanics&rft.jtitle=Nonlinear+dynamics&rft.date=2025-05-01&rft.pub=Springer+Nature+B.V&rft.issn=0924-090X&rft.eissn=1573-269X&rft.volume=113&rft.issue=10&rft.spage=12047&rft.epage=12055&rft_id=info:doi/10.1007%2Fs11071-024-10811-8&rft.externalDBID=NO_FULL_TEXT | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0924-090X&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0924-090X&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0924-090X&client=summon |