Analysis of nonlinear implicit fractional differential equations with the Atangana-Baleanu derivative via measure of non-compactness

In this study, we proved existence results for nonlinear implicit fractional differential equations with the Caputo version of the Atangana-Baleanu derivative, subject to the boundary and nonlocal initial conditions. The Kuratowski's measure of non-compactness and its associated fixed point the...

Full description

Saved in:
Bibliographic Details
Published inAIMS mathematics Vol. 9; no. 10; pp. 27058 - 27079
Main Authors Kucche, Kishor D., Sutar, Sagar T., Nisar, Kottakkaran Sooppy
Format Journal Article
LanguageEnglish
Published AIMS Press 01.01.2024
Subjects
Online AccessGet full text
ISSN2473-6988
2473-6988
DOI10.3934/math.20241316

Cover

Abstract In this study, we proved existence results for nonlinear implicit fractional differential equations with the Caputo version of the Atangana-Baleanu derivative, subject to the boundary and nonlocal initial conditions. The Kuratowski's measure of non-compactness and its associated fixed point theorems–Darbo's fixed point theorem and Mönchh's fixed point theorem, are the foundation for the analysis in this paper. We support our results with examples of nonlinear implicit fractional differential equations involving the Caputo version of the Atangana-Baleanu derivative subject to both boundary and nonlocal initial conditions. In addition, we provide solutions to the problems we considered.
AbstractList In this study, we proved existence results for nonlinear implicit fractional differential equations with the Caputo version of the Atangana-Baleanu derivative, subject to the boundary and nonlocal initial conditions. The Kuratowski's measure of non-compactness and its associated fixed point theorems–Darbo's fixed point theorem and Mönchh's fixed point theorem, are the foundation for the analysis in this paper. We support our results with examples of nonlinear implicit fractional differential equations involving the Caputo version of the Atangana-Baleanu derivative subject to both boundary and nonlocal initial conditions. In addition, we provide solutions to the problems we considered.
Author Nisar, Kottakkaran Sooppy
Kucche, Kishor D.
Sutar, Sagar T.
Author_xml – sequence: 1
  givenname: Kishor D.
  surname: Kucche
  fullname: Kucche, Kishor D.
  organization: Department of Mathematics, Shivaji University, Kolhapur 416 004, Maharashtra, India
– sequence: 2
  givenname: Sagar T.
  surname: Sutar
  fullname: Sutar, Sagar T.
  organization: Department of Mathematics, Dattajirao Kadam Arts, Science and Commerce College, Ichalkaranji 416115, Maharashtra, India
– sequence: 3
  givenname: Kottakkaran Sooppy
  surname: Nisar
  fullname: Nisar, Kottakkaran Sooppy
  organization: Department of Mathematics, College of Science and Humanities, Prince Sattam bin Abdulaziz University, Al Kharj, Saudi Arabia
BookMark eNpNkUtPwzAQhC0EElB65O4_kOJXUudYKl5SJS5wjrb2mholTrHdot754aS0IE67Oxp9K81cktPQByTkmrOJrKW66SCvJoIJxSWvTsiFUFNZVLXWp__2czJO6Z0xJrhQYqouyNcsQLtLPtHe0QHZ-oAQqe_WrTc-UxfBZN8PJmq9cxgxZD8c-LGBvZ7op88rmldIZxnCGwQobqFFCBtqMfrt4Noi3XqgHULaRDw-KkzfrQd2wJSuyJmDNuH4OEfk9f7uZf5YLJ4fnuazRWFErXMhla4Y1xaAo1Soy5JrZkyNXFalNgYcYClKzrmVtatsLY20UAphldZlhXJEng5c28N7s46-g7hrevDNj9DHtwZi9qbFRukl1pJrLJVTzrGlGzJEOySpl1xO3cAqDiwT-5Qiuj8eZ82-kWbfSPPbiPwGF_uDmw
Cites_doi 10.1016/0362-546X(80)90010-3
10.1016/S0362-546X(97)00693-7
10.1016/j.na.2007.08.042
10.1016/j.chaos.2019.05.014
10.1007/978-3-662-00547-7
10.4467/2353737XCT.18.080.8562
10.22436/jnsa.010.03.20
10.1007/s12591-016-0297-7
10.1016/j.chaos.2022.111916
10.1007/s12215-021-00622-w
10.1016/j.physa.2019.122524
10.1016/j.chaos.2020.110557
10.1016/j.chaos.2023.113700
10.7153/fdc-05-17
10.1063/1.5112177
10.1016/0022-247X(91)90164-U
10.1016/j.rico.2024.100418
10.1063/1.5096159
10.1155/S104895339700035X
10.1016/0022-247X(81)90261-4
10.3389/fphy.2019.00196
10.1016/j.chaos.2020.110556
10.1515/mjpaa-2017-0004
10.2298/TSCI160111018A
10.1155/S1048953399000088
10.1016/j.aej.2024.03.022
ContentType Journal Article
DBID AAYXX
CITATION
DOA
DOI 10.3934/math.20241316
DatabaseName CrossRef
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList CrossRef

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 2473-6988
EndPage 27079
ExternalDocumentID oai_doaj_org_article_48be9318e54f4ff0bf473ed2478b137f
10_3934_math_20241316
GroupedDBID AAYXX
ADBBV
ALMA_UNASSIGNED_HOLDINGS
AMVHM
BCNDV
CITATION
EBS
FRJ
GROUPED_DOAJ
IAO
ITC
M~E
OK1
RAN
ID FETCH-LOGICAL-c298t-3486018daa1e34e855180cc9e13658ccafae525111d39f6d93c3da522d48856e3
IEDL.DBID DOA
ISSN 2473-6988
IngestDate Wed Aug 27 01:24:23 EDT 2025
Tue Jul 01 03:57:18 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 10
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c298t-3486018daa1e34e855180cc9e13658ccafae525111d39f6d93c3da522d48856e3
OpenAccessLink https://doaj.org/article/48be9318e54f4ff0bf473ed2478b137f
PageCount 22
ParticipantIDs doaj_primary_oai_doaj_org_article_48be9318e54f4ff0bf473ed2478b137f
crossref_primary_10_3934_math_20241316
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-01-01
PublicationDateYYYYMMDD 2024-01-01
PublicationDate_xml – month: 01
  year: 2024
  text: 2024-01-01
  day: 01
PublicationDecade 2020
PublicationTitle AIMS mathematics
PublicationYear 2024
Publisher AIMS Press
Publisher_xml – name: AIMS Press
References key-10.3934/math.20241316-23
key-10.3934/math.20241316-24
key-10.3934/math.20241316-25
key-10.3934/math.20241316-26
key-10.3934/math.20241316-7
key-10.3934/math.20241316-27
key-10.3934/math.20241316-8
key-10.3934/math.20241316-28
key-10.3934/math.20241316-9
key-10.3934/math.20241316-29
key-10.3934/math.20241316-20
key-10.3934/math.20241316-21
key-10.3934/math.20241316-22
key-10.3934/math.20241316-3
key-10.3934/math.20241316-4
key-10.3934/math.20241316-5
key-10.3934/math.20241316-6
key-10.3934/math.20241316-1
key-10.3934/math.20241316-2
key-10.3934/math.20241316-12
key-10.3934/math.20241316-34
key-10.3934/math.20241316-13
key-10.3934/math.20241316-35
key-10.3934/math.20241316-14
key-10.3934/math.20241316-15
key-10.3934/math.20241316-16
key-10.3934/math.20241316-17
key-10.3934/math.20241316-18
key-10.3934/math.20241316-19
key-10.3934/math.20241316-30
key-10.3934/math.20241316-31
key-10.3934/math.20241316-10
key-10.3934/math.20241316-32
key-10.3934/math.20241316-11
key-10.3934/math.20241316-33
References_xml – ident: key-10.3934/math.20241316-1
– ident: key-10.3934/math.20241316-26
  doi: 10.1016/0362-546X(80)90010-3
– ident: key-10.3934/math.20241316-20
  doi: 10.1016/S0362-546X(97)00693-7
– ident: key-10.3934/math.20241316-3
  doi: 10.1016/j.na.2007.08.042
– ident: key-10.3934/math.20241316-10
– ident: key-10.3934/math.20241316-35
  doi: 10.1016/j.chaos.2019.05.014
– ident: key-10.3934/math.20241316-5
– ident: key-10.3934/math.20241316-24
  doi: 10.1007/978-3-662-00547-7
– ident: key-10.3934/math.20241316-21
  doi: 10.4467/2353737XCT.18.080.8562
– ident: key-10.3934/math.20241316-34
  doi: 10.22436/jnsa.010.03.20
– ident: key-10.3934/math.20241316-30
  doi: 10.1007/s12591-016-0297-7
– ident: key-10.3934/math.20241316-13
  doi: 10.1016/j.chaos.2022.111916
– ident: key-10.3934/math.20241316-16
  doi: 10.1007/s12215-021-00622-w
– ident: key-10.3934/math.20241316-17
  doi: 10.1016/j.physa.2019.122524
– ident: key-10.3934/math.20241316-15
  doi: 10.1016/j.chaos.2020.110557
– ident: key-10.3934/math.20241316-4
– ident: key-10.3934/math.20241316-2
– ident: key-10.3934/math.20241316-12
  doi: 10.1016/j.chaos.2023.113700
– ident: key-10.3934/math.20241316-32
  doi: 10.7153/fdc-05-17
– ident: key-10.3934/math.20241316-9
  doi: 10.1063/1.5112177
– ident: key-10.3934/math.20241316-18
  doi: 10.1016/0022-247X(91)90164-U
– ident: key-10.3934/math.20241316-23
– ident: key-10.3934/math.20241316-29
  doi: 10.1016/j.rico.2024.100418
– ident: key-10.3934/math.20241316-6
  doi: 10.1063/1.5096159
– ident: key-10.3934/math.20241316-22
  doi: 10.1155/S104895339700035X
– ident: key-10.3934/math.20241316-27
  doi: 10.1016/0022-247X(81)90261-4
– ident: key-10.3934/math.20241316-7
  doi: 10.3389/fphy.2019.00196
– ident: key-10.3934/math.20241316-25
– ident: key-10.3934/math.20241316-14
  doi: 10.1016/j.chaos.2020.110556
– ident: key-10.3934/math.20241316-31
  doi: 10.1515/mjpaa-2017-0004
– ident: key-10.3934/math.20241316-11
  doi: 10.2298/TSCI160111018A
– ident: key-10.3934/math.20241316-33
– ident: key-10.3934/math.20241316-19
  doi: 10.1155/S1048953399000088
– ident: key-10.3934/math.20241316-8
  doi: 10.1016/j.physa.2019.122524
– ident: key-10.3934/math.20241316-28
  doi: 10.1016/j.aej.2024.03.022
SSID ssj0002124274
Score 2.246649
Snippet In this study, we proved existence results for nonlinear implicit fractional differential equations with the Caputo version of the Atangana-Baleanu derivative,...
SourceID doaj
crossref
SourceType Open Website
Index Database
StartPage 27058
SubjectTerms existence results
fixed point theorem
implicit fractional differential equations
measure of non-compactness
non-singular kernel
Title Analysis of nonlinear implicit fractional differential equations with the Atangana-Baleanu derivative via measure of non-compactness
URI https://doaj.org/article/48be9318e54f4ff0bf473ed2478b137f
Volume 9
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELZQJxgQT1Fe8oDYrCaxndhji0AVUpmo1C1yYhtVggBt2l_AD-cuTqpsLKxRdLbuzvfy-TtC7hCzTntrmTNCMuG4ZMrFkmWRsL6QqfMxvkaevaTTuXheyEVv1Bf2hAV44MC4kVCF06B4TgovvI8KLzLubCIyVcQ882h9Ix31kim0wWCQBeRbAVSTay5GEP_h3QNeI-Fs854T6mH1N07l6YgcttEgHYddHJM9V52Qg9kOSnV9Sn462BD66WkVgC3Mii6bTvBlTf0qPE0AMt2wEzi079R9BxDvNcVSKwWKdAyB4JupDJuAVzDVhlpQv22D_E23S0M_Qr2wXYg17elljbbwjMyfHl8fpqwdncDKRKuacZwtFStrTOy4cApx16Ky1A672hRIzRsnMbuILdc-tZqX3BqIxSwcaJAQPycDWMldEJr4QpWJTVOvcXqf1F45zmNeYrYYeT0k9x0v86-AkJFDZoFMz5Hpecf0IZkgp3c_IbB18wHEnbfizv8S9-V_ELki-7ipUEm5JoN6tXE3EFvUxW2jRr_iac_G
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Analysis+of+nonlinear+implicit+fractional+differential+equations+with+the+Atangana-Baleanu+derivative+via+measure+of+non-compactness&rft.jtitle=AIMS+mathematics&rft.au=Kucche%2C+Kishor+D.&rft.au=Sutar%2C+Sagar+T.&rft.au=Nisar%2C+Kottakkaran+Sooppy&rft.date=2024-01-01&rft.issn=2473-6988&rft.eissn=2473-6988&rft.volume=9&rft.issue=10&rft.spage=27058&rft.epage=27079&rft_id=info:doi/10.3934%2Fmath.20241316&rft.externalDBID=n%2Fa&rft.externalDocID=10_3934_math_20241316
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2473-6988&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2473-6988&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2473-6988&client=summon