Analysis of nonlinear implicit fractional differential equations with the Atangana-Baleanu derivative via measure of non-compactness
In this study, we proved existence results for nonlinear implicit fractional differential equations with the Caputo version of the Atangana-Baleanu derivative, subject to the boundary and nonlocal initial conditions. The Kuratowski's measure of non-compactness and its associated fixed point the...
Saved in:
Published in | AIMS mathematics Vol. 9; no. 10; pp. 27058 - 27079 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
AIMS Press
01.01.2024
|
Subjects | |
Online Access | Get full text |
ISSN | 2473-6988 2473-6988 |
DOI | 10.3934/math.20241316 |
Cover
Abstract | In this study, we proved existence results for nonlinear implicit fractional differential equations with the Caputo version of the Atangana-Baleanu derivative, subject to the boundary and nonlocal initial conditions. The Kuratowski's measure of non-compactness and its associated fixed point theorems–Darbo's fixed point theorem and Mönchh's fixed point theorem, are the foundation for the analysis in this paper. We support our results with examples of nonlinear implicit fractional differential equations involving the Caputo version of the Atangana-Baleanu derivative subject to both boundary and nonlocal initial conditions. In addition, we provide solutions to the problems we considered. |
---|---|
AbstractList | In this study, we proved existence results for nonlinear implicit fractional differential equations with the Caputo version of the Atangana-Baleanu derivative, subject to the boundary and nonlocal initial conditions. The Kuratowski's measure of non-compactness and its associated fixed point theorems–Darbo's fixed point theorem and Mönchh's fixed point theorem, are the foundation for the analysis in this paper. We support our results with examples of nonlinear implicit fractional differential equations involving the Caputo version of the Atangana-Baleanu derivative subject to both boundary and nonlocal initial conditions. In addition, we provide solutions to the problems we considered. |
Author | Nisar, Kottakkaran Sooppy Kucche, Kishor D. Sutar, Sagar T. |
Author_xml | – sequence: 1 givenname: Kishor D. surname: Kucche fullname: Kucche, Kishor D. organization: Department of Mathematics, Shivaji University, Kolhapur 416 004, Maharashtra, India – sequence: 2 givenname: Sagar T. surname: Sutar fullname: Sutar, Sagar T. organization: Department of Mathematics, Dattajirao Kadam Arts, Science and Commerce College, Ichalkaranji 416115, Maharashtra, India – sequence: 3 givenname: Kottakkaran Sooppy surname: Nisar fullname: Nisar, Kottakkaran Sooppy organization: Department of Mathematics, College of Science and Humanities, Prince Sattam bin Abdulaziz University, Al Kharj, Saudi Arabia |
BookMark | eNpNkUtPwzAQhC0EElB65O4_kOJXUudYKl5SJS5wjrb2mholTrHdot754aS0IE67Oxp9K81cktPQByTkmrOJrKW66SCvJoIJxSWvTsiFUFNZVLXWp__2czJO6Z0xJrhQYqouyNcsQLtLPtHe0QHZ-oAQqe_WrTc-UxfBZN8PJmq9cxgxZD8c-LGBvZ7op88rmldIZxnCGwQobqFFCBtqMfrt4Noi3XqgHULaRDw-KkzfrQd2wJSuyJmDNuH4OEfk9f7uZf5YLJ4fnuazRWFErXMhla4Y1xaAo1Soy5JrZkyNXFalNgYcYClKzrmVtatsLY20UAphldZlhXJEng5c28N7s46-g7hrevDNj9DHtwZi9qbFRukl1pJrLJVTzrGlGzJEOySpl1xO3cAqDiwT-5Qiuj8eZ82-kWbfSPPbiPwGF_uDmw |
Cites_doi | 10.1016/0362-546X(80)90010-3 10.1016/S0362-546X(97)00693-7 10.1016/j.na.2007.08.042 10.1016/j.chaos.2019.05.014 10.1007/978-3-662-00547-7 10.4467/2353737XCT.18.080.8562 10.22436/jnsa.010.03.20 10.1007/s12591-016-0297-7 10.1016/j.chaos.2022.111916 10.1007/s12215-021-00622-w 10.1016/j.physa.2019.122524 10.1016/j.chaos.2020.110557 10.1016/j.chaos.2023.113700 10.7153/fdc-05-17 10.1063/1.5112177 10.1016/0022-247X(91)90164-U 10.1016/j.rico.2024.100418 10.1063/1.5096159 10.1155/S104895339700035X 10.1016/0022-247X(81)90261-4 10.3389/fphy.2019.00196 10.1016/j.chaos.2020.110556 10.1515/mjpaa-2017-0004 10.2298/TSCI160111018A 10.1155/S1048953399000088 10.1016/j.aej.2024.03.022 |
ContentType | Journal Article |
DBID | AAYXX CITATION DOA |
DOI | 10.3934/math.20241316 |
DatabaseName | CrossRef DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Mathematics |
EISSN | 2473-6988 |
EndPage | 27079 |
ExternalDocumentID | oai_doaj_org_article_48be9318e54f4ff0bf473ed2478b137f 10_3934_math_20241316 |
GroupedDBID | AAYXX ADBBV ALMA_UNASSIGNED_HOLDINGS AMVHM BCNDV CITATION EBS FRJ GROUPED_DOAJ IAO ITC M~E OK1 RAN |
ID | FETCH-LOGICAL-c298t-3486018daa1e34e855180cc9e13658ccafae525111d39f6d93c3da522d48856e3 |
IEDL.DBID | DOA |
ISSN | 2473-6988 |
IngestDate | Wed Aug 27 01:24:23 EDT 2025 Tue Jul 01 03:57:18 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 10 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c298t-3486018daa1e34e855180cc9e13658ccafae525111d39f6d93c3da522d48856e3 |
OpenAccessLink | https://doaj.org/article/48be9318e54f4ff0bf473ed2478b137f |
PageCount | 22 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_48be9318e54f4ff0bf473ed2478b137f crossref_primary_10_3934_math_20241316 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-01-01 |
PublicationDateYYYYMMDD | 2024-01-01 |
PublicationDate_xml | – month: 01 year: 2024 text: 2024-01-01 day: 01 |
PublicationDecade | 2020 |
PublicationTitle | AIMS mathematics |
PublicationYear | 2024 |
Publisher | AIMS Press |
Publisher_xml | – name: AIMS Press |
References | key-10.3934/math.20241316-23 key-10.3934/math.20241316-24 key-10.3934/math.20241316-25 key-10.3934/math.20241316-26 key-10.3934/math.20241316-7 key-10.3934/math.20241316-27 key-10.3934/math.20241316-8 key-10.3934/math.20241316-28 key-10.3934/math.20241316-9 key-10.3934/math.20241316-29 key-10.3934/math.20241316-20 key-10.3934/math.20241316-21 key-10.3934/math.20241316-22 key-10.3934/math.20241316-3 key-10.3934/math.20241316-4 key-10.3934/math.20241316-5 key-10.3934/math.20241316-6 key-10.3934/math.20241316-1 key-10.3934/math.20241316-2 key-10.3934/math.20241316-12 key-10.3934/math.20241316-34 key-10.3934/math.20241316-13 key-10.3934/math.20241316-35 key-10.3934/math.20241316-14 key-10.3934/math.20241316-15 key-10.3934/math.20241316-16 key-10.3934/math.20241316-17 key-10.3934/math.20241316-18 key-10.3934/math.20241316-19 key-10.3934/math.20241316-30 key-10.3934/math.20241316-31 key-10.3934/math.20241316-10 key-10.3934/math.20241316-32 key-10.3934/math.20241316-11 key-10.3934/math.20241316-33 |
References_xml | – ident: key-10.3934/math.20241316-1 – ident: key-10.3934/math.20241316-26 doi: 10.1016/0362-546X(80)90010-3 – ident: key-10.3934/math.20241316-20 doi: 10.1016/S0362-546X(97)00693-7 – ident: key-10.3934/math.20241316-3 doi: 10.1016/j.na.2007.08.042 – ident: key-10.3934/math.20241316-10 – ident: key-10.3934/math.20241316-35 doi: 10.1016/j.chaos.2019.05.014 – ident: key-10.3934/math.20241316-5 – ident: key-10.3934/math.20241316-24 doi: 10.1007/978-3-662-00547-7 – ident: key-10.3934/math.20241316-21 doi: 10.4467/2353737XCT.18.080.8562 – ident: key-10.3934/math.20241316-34 doi: 10.22436/jnsa.010.03.20 – ident: key-10.3934/math.20241316-30 doi: 10.1007/s12591-016-0297-7 – ident: key-10.3934/math.20241316-13 doi: 10.1016/j.chaos.2022.111916 – ident: key-10.3934/math.20241316-16 doi: 10.1007/s12215-021-00622-w – ident: key-10.3934/math.20241316-17 doi: 10.1016/j.physa.2019.122524 – ident: key-10.3934/math.20241316-15 doi: 10.1016/j.chaos.2020.110557 – ident: key-10.3934/math.20241316-4 – ident: key-10.3934/math.20241316-2 – ident: key-10.3934/math.20241316-12 doi: 10.1016/j.chaos.2023.113700 – ident: key-10.3934/math.20241316-32 doi: 10.7153/fdc-05-17 – ident: key-10.3934/math.20241316-9 doi: 10.1063/1.5112177 – ident: key-10.3934/math.20241316-18 doi: 10.1016/0022-247X(91)90164-U – ident: key-10.3934/math.20241316-23 – ident: key-10.3934/math.20241316-29 doi: 10.1016/j.rico.2024.100418 – ident: key-10.3934/math.20241316-6 doi: 10.1063/1.5096159 – ident: key-10.3934/math.20241316-22 doi: 10.1155/S104895339700035X – ident: key-10.3934/math.20241316-27 doi: 10.1016/0022-247X(81)90261-4 – ident: key-10.3934/math.20241316-7 doi: 10.3389/fphy.2019.00196 – ident: key-10.3934/math.20241316-25 – ident: key-10.3934/math.20241316-14 doi: 10.1016/j.chaos.2020.110556 – ident: key-10.3934/math.20241316-31 doi: 10.1515/mjpaa-2017-0004 – ident: key-10.3934/math.20241316-11 doi: 10.2298/TSCI160111018A – ident: key-10.3934/math.20241316-33 – ident: key-10.3934/math.20241316-19 doi: 10.1155/S1048953399000088 – ident: key-10.3934/math.20241316-8 doi: 10.1016/j.physa.2019.122524 – ident: key-10.3934/math.20241316-28 doi: 10.1016/j.aej.2024.03.022 |
SSID | ssj0002124274 |
Score | 2.246649 |
Snippet | In this study, we proved existence results for nonlinear implicit fractional differential equations with the Caputo version of the Atangana-Baleanu derivative,... |
SourceID | doaj crossref |
SourceType | Open Website Index Database |
StartPage | 27058 |
SubjectTerms | existence results fixed point theorem implicit fractional differential equations measure of non-compactness non-singular kernel |
Title | Analysis of nonlinear implicit fractional differential equations with the Atangana-Baleanu derivative via measure of non-compactness |
URI | https://doaj.org/article/48be9318e54f4ff0bf473ed2478b137f |
Volume | 9 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELZQJxgQT1Fe8oDYrCaxndhji0AVUpmo1C1yYhtVggBt2l_AD-cuTqpsLKxRdLbuzvfy-TtC7hCzTntrmTNCMuG4ZMrFkmWRsL6QqfMxvkaevaTTuXheyEVv1Bf2hAV44MC4kVCF06B4TgovvI8KLzLubCIyVcQ882h9Ix31kim0wWCQBeRbAVSTay5GEP_h3QNeI-Fs854T6mH1N07l6YgcttEgHYddHJM9V52Qg9kOSnV9Sn462BD66WkVgC3Mii6bTvBlTf0qPE0AMt2wEzi079R9BxDvNcVSKwWKdAyB4JupDJuAVzDVhlpQv22D_E23S0M_Qr2wXYg17elljbbwjMyfHl8fpqwdncDKRKuacZwtFStrTOy4cApx16Ky1A672hRIzRsnMbuILdc-tZqX3BqIxSwcaJAQPycDWMldEJr4QpWJTVOvcXqf1F45zmNeYrYYeT0k9x0v86-AkJFDZoFMz5Hpecf0IZkgp3c_IbB18wHEnbfizv8S9-V_ELki-7ipUEm5JoN6tXE3EFvUxW2jRr_iac_G |
linkProvider | Directory of Open Access Journals |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Analysis+of+nonlinear+implicit+fractional+differential+equations+with+the+Atangana-Baleanu+derivative+via+measure+of+non-compactness&rft.jtitle=AIMS+mathematics&rft.au=Kucche%2C+Kishor+D.&rft.au=Sutar%2C+Sagar+T.&rft.au=Nisar%2C+Kottakkaran+Sooppy&rft.date=2024-01-01&rft.issn=2473-6988&rft.eissn=2473-6988&rft.volume=9&rft.issue=10&rft.spage=27058&rft.epage=27079&rft_id=info:doi/10.3934%2Fmath.20241316&rft.externalDBID=n%2Fa&rft.externalDocID=10_3934_math_20241316 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2473-6988&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2473-6988&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2473-6988&client=summon |