A Divide and Conquer Algorithm of Bayesian Density Estimation
ABSTRACT Datasets for statistical analysis become extremely large even when stored on one single machine with some difficulty. Even when the data can be stored in one machine, the computational cost would still be intimidating. We propose a divide and conquer solution to density estimation using Bay...
Saved in:
| Published in | Australian & New Zealand journal of statistics Vol. 67; no. 2; pp. 250 - 264 |
|---|---|
| Main Author | |
| Format | Journal Article |
| Language | English |
| Published |
Hoboken
Wiley Subscription Services, Inc
01.06.2025
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 1369-1473 1467-842X 1467-842X |
| DOI | 10.1111/anzs.70008 |
Cover
| Abstract | ABSTRACT
Datasets for statistical analysis become extremely large even when stored on one single machine with some difficulty. Even when the data can be stored in one machine, the computational cost would still be intimidating. We propose a divide and conquer solution to density estimation using Bayesian mixture modelling, including the infinite mixture case. The methodology can be generalised to other application problems where a Bayesian mixture model is adopted. The proposed prior on each machine or subgroup modifies the original prior on both mixing probabilities and the rest of parameters in the distributions being mixed. The ultimate estimator is obtained by taking the average of the posterior samples corresponding to the proposed prior on each subset. Despite the tremendous reduction in time thanks to data splitting, the posterior contraction rate of the proposed estimator stays the same (up to a log$$ \log $$ factor) as that using the original prior when the data is analysed as a whole. Simulation studies also justify the competency of the proposed method compared to the established WASP estimator in the finite‐dimension case. In addition, one of our simulations is performed in a shape‐constrained deconvolution context and reveals promising results. The application to a GWAS dataset reveals the advantage over a naive divide and conquer method that uses the original prior. |
|---|---|
| AbstractList | Datasets for statistical analysis become extremely large even when stored on one single machine with some difficulty. Even when the data can be stored in one machine, the computational cost would still be intimidating. We propose a divide and conquer solution to density estimation using Bayesian mixture modelling, including the infinite mixture case. The methodology can be generalised to other application problems where a Bayesian mixture model is adopted. The proposed prior on each machine or subgroup modifies the original prior on both mixing probabilities and the rest of parameters in the distributions being mixed. The ultimate estimator is obtained by taking the average of the posterior samples corresponding to the proposed prior on each subset. Despite the tremendous reduction in time thanks to data splitting, the posterior contraction rate of the proposed estimator stays the same (up to a factor) as that using the original prior when the data is analysed as a whole. Simulation studies also justify the competency of the proposed method compared to the established WASP estimator in the finite‐dimension case. In addition, one of our simulations is performed in a shape‐constrained deconvolution context and reveals promising results. The application to a GWAS dataset reveals the advantage over a naive divide and conquer method that uses the original prior. Datasets for statistical analysis become extremely large even when stored on one single machine with some difficulty. Even when the data can be stored in one machine, the computational cost would still be intimidating. We propose a divide and conquer solution to density estimation using Bayesian mixture modelling, including the infinite mixture case. The methodology can be generalised to other application problems where a Bayesian mixture model is adopted. The proposed prior on each machine or subgroup modifies the original prior on both mixing probabilities and the rest of parameters in the distributions being mixed. The ultimate estimator is obtained by taking the average of the posterior samples corresponding to the proposed prior on each subset. Despite the tremendous reduction in time thanks to data splitting, the posterior contraction rate of the proposed estimator stays the same (up to a log$$ \log $$ factor) as that using the original prior when the data is analysed as a whole. Simulation studies also justify the competency of the proposed method compared to the established WASP estimator in the finite‐dimension case. In addition, one of our simulations is performed in a shape‐constrained deconvolution context and reveals promising results. The application to a GWAS dataset reveals the advantage over a naive divide and conquer method that uses the original prior. ABSTRACT Datasets for statistical analysis become extremely large even when stored on one single machine with some difficulty. Even when the data can be stored in one machine, the computational cost would still be intimidating. We propose a divide and conquer solution to density estimation using Bayesian mixture modelling, including the infinite mixture case. The methodology can be generalised to other application problems where a Bayesian mixture model is adopted. The proposed prior on each machine or subgroup modifies the original prior on both mixing probabilities and the rest of parameters in the distributions being mixed. The ultimate estimator is obtained by taking the average of the posterior samples corresponding to the proposed prior on each subset. Despite the tremendous reduction in time thanks to data splitting, the posterior contraction rate of the proposed estimator stays the same (up to a log$$ \log $$ factor) as that using the original prior when the data is analysed as a whole. Simulation studies also justify the competency of the proposed method compared to the established WASP estimator in the finite‐dimension case. In addition, one of our simulations is performed in a shape‐constrained deconvolution context and reveals promising results. The application to a GWAS dataset reveals the advantage over a naive divide and conquer method that uses the original prior. |
| Author | Su, Ya |
| Author_xml | – sequence: 1 givenname: Ya orcidid: 0000-0002-8755-529X surname: Su fullname: Su, Ya organization: Virginia Commonwealth University |
| BookMark | eNp9jz1PwzAQhi0EEm1h4RdYYgOl2M6XMzCEtnxIFQyAhFgsN76Aq9QudkoVfj0uYe4td8Nzr95niA6NNYDQGSVjGuZKmh8_zgkh_AANaJLlEU_Y22G446yIaJLHx2jo_ZIQmpA4G6DrEk_1t1aApVF4Ys3XBhwumw_rdPu5wrbGN7IDr6XBUzBetx2e-VavZKutOUFHtWw8nP7vEXq9nb1M7qP5093DpJxHFSs4j5IaWJ7RUKWSClRdqUoBKFjwVPGFLCRAnaU0z4uKc5XlCWFMEppynjKWVGk8Qpd97sasZbeVTSPWLnRwnaBE7MzFzlz8mQf6vKfXzgYd34ql3TgTCoqYsSIr4oLFgbroqcpZ7x3U-yNpD291A90eUpSP78_9zy_03He4 |
| Cites_doi | 10.1214/06-BA104 10.1214/22-STS868 10.1093/hmg/ddy271 10.1214/10-AOS811 10.1093/biomet/ast015 10.1198/jasa.2009.tm08439 10.1007/s11222-017-9791-1 10.1038/nature09410 10.1007/s11222-009-9150-y 10.1214/aos/1016218228 10.2307/3315951 10.1080/01621459.2014.960967 10.1080/17509653.2016.1142191 10.1214/009053606000001271 10.1214/17-BA1058 |
| ContentType | Journal Article |
| Copyright | 2025 The Author(s). published by John Wiley & Sons Australia, Ltd on behalf of Statistical Society of Australia. 2025. This work is published under Creative Commons Attribution License~https://creativecommons.org/licenses/by/3.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: 2025 The Author(s). published by John Wiley & Sons Australia, Ltd on behalf of Statistical Society of Australia. – notice: 2025. This work is published under Creative Commons Attribution License~https://creativecommons.org/licenses/by/3.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | 24P AAYXX CITATION 7SC 7TB 8FD FR3 H8D JQ2 KR7 L7M L~C L~D ADTOC UNPAY |
| DOI | 10.1111/anzs.70008 |
| DatabaseName | Wiley Online Library Open Access CrossRef Computer and Information Systems Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database Aerospace Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Unpaywall for CDI: Periodical Content Unpaywall |
| DatabaseTitle | CrossRef Aerospace Database Civil Engineering Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | CrossRef Aerospace Database |
| Database_xml | – sequence: 1 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher – sequence: 2 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Statistics |
| EISSN | 1467-842X |
| EndPage | 264 |
| ExternalDocumentID | 10.1111/anzs.70008 10_1111_anzs_70008 ANZS70008 |
| Genre | article |
| GroupedDBID | -~X .3N .GA .Y3 05W 0R~ 10A 1OB 1OC 23N 24P 31~ 33P 3SF 4.4 44B 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5GY 5HH 5LA 5VS 66C 6OB 702 7PT 8-0 8-1 8-3 8UM 930 A03 AAESR AAEVG AAHQN AAMMB AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABDBF ABEML ABJNI ABPVW ACAHQ ACBWZ ACCZN ACGFS ACIWK ACPOU ACRPL ACSCC ACUHS ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN AEFGJ AEIGN AEIMD AENEX AEUYR AEYWJ AFBPY AFEBI AFFPM AFGKR AFWVQ AFZJQ AGHNM AGQPQ AGXDD AGYGG AHBTC AIDQK AIDYY AITYG AIURR AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMVHM AMYDB ARTTT ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CAG COF CS3 D-E DCZOG DPXWK DR2 DRFUL DRSTM EAD EAP EAS EAZ EBS EJD EMK EST ESX F00 F5P FEDTE G-S G.N GODZA H.T H.X HF~ HGLYW HVGLF HZI HZ~ IHE IX1 J0M K48 LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ O66 O9- OIG P2P P2W P2X P4D Q.N Q11 QB0 R.K RJQFR ROL RX1 SUPJJ TN5 UB1 W8V W99 WBKPD WIH WIK WOHZO WQJ WXI WXSBR WYISQ XBAML XG1 ZY4 ZZTAW ~IA ~WT AAYXX AIQQE CITATION 7SC 7TB 8FD FR3 H8D JQ2 KR7 L7M L~C L~D ADTOC UNPAY |
| ID | FETCH-LOGICAL-c2988-4fe2761842cadedfcdcdeedeb85d8ba9aeef651779c88d674022a015885224c53 |
| IEDL.DBID | 24P |
| ISSN | 1369-1473 1467-842X |
| IngestDate | Sun Sep 07 10:47:41 EDT 2025 Wed Jul 30 08:40:35 EDT 2025 Wed Oct 01 05:41:46 EDT 2025 Wed Aug 20 07:27:34 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 2 |
| Language | English |
| License | Attribution cc-by |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c2988-4fe2761842cadedfcdcdeedeb85d8ba9aeef651779c88d674022a015885224c53 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-8755-529X |
| OpenAccessLink | https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fanzs.70008 |
| PQID | 3229693923 |
| PQPubID | 2045190 |
| PageCount | 264 |
| ParticipantIDs | unpaywall_primary_10_1111_anzs_70008 proquest_journals_3229693923 crossref_primary_10_1111_anzs_70008 wiley_primary_10_1111_anzs_70008_ANZS70008 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | June 2025 |
| PublicationDateYYYYMMDD | 2025-06-01 |
| PublicationDate_xml | – month: 06 year: 2025 text: June 2025 |
| PublicationDecade | 2020 |
| PublicationPlace | Hoboken |
| PublicationPlace_xml | – name: Hoboken |
| PublicationTitle | Australian & New Zealand journal of statistics |
| PublicationYear | 2025 |
| Publisher | Wiley Subscription Services, Inc |
| Publisher_xml | – name: Wiley Subscription Services, Inc |
| References | 2018; 19 2010; 38 2000; 28 2002; 30 2019; 20 2000 2023; 38 2010; 467 2015; 110 2013; 100 2011; 21 2019; 29 2016 2004 2006; 1 2014 1971; 2 2007; 35 2018; 27 2009; 104 1994; 4 2018; 13 2016; 11 e_1_2_7_6_1 e_1_2_7_5_1 e_1_2_7_4_1 Szabó B. (e_1_2_7_22_1) 2019; 20 e_1_2_7_9_1 Neiswanger W. (e_1_2_7_15_1) 2014 e_1_2_7_7_1 e_1_2_7_18_1 e_1_2_7_17_1 Srivastava S. (e_1_2_7_21_1) 2018; 19 e_1_2_7_2_1 e_1_2_7_14_1 e_1_2_7_13_1 Sethuraman J. (e_1_2_7_19_1) 1994; 4 e_1_2_7_24_1 e_1_2_7_12_1 e_1_2_7_23_1 Balakrishnan N. (e_1_2_7_3_1) 2004 e_1_2_7_11_1 Rasmussen C. E. (e_1_2_7_16_1) 2000 e_1_2_7_10_1 e_1_2_7_20_1 Feller W. (e_1_2_7_8_1) 1971 |
| References_xml | – volume: 28 start-page: 500 issue: 2 year: 2000 end-page: 531 article-title: Convergence Rates of Posterior Distributions publication-title: Annals of Statistics – volume: 35 start-page: 697 issue: 2 year: 2007 end-page: 723 article-title: Posterior Convergence Rates of Dirichlet Mixtures at Smooth Densities publication-title: Annals of Statistics – volume: 11 start-page: 78 year: 2016 end-page: 88 article-title: Bayes and Big Data: The Consensus Monte Carlo Algorithm publication-title: International Journal of Management Science and Engineering Management – volume: 100 start-page: 623 year: 2013 end-page: 640 article-title: Adaptive Bayesian Multivariate Density Estimation With Dirichlet Mixtures publication-title: Biometrika – volume: 27 start-page: 3641 year: 2018 end-page: 3649 article-title: Meta‐Analysis of Genome‐Wide Association Studies for Height and Body Mass Index in 700000 Individuals of European Ancestry publication-title: Human Molecular Genetics – start-page: 623 year: 2014 end-page: 632 – volume: 467 start-page: 832 issue: 7317 year: 2010 end-page: 838 article-title: Hundreds of Variants Clustered in Genomic Loci and Biological Pathways Affect Human Height publication-title: Nature – volume: 21 start-page: 93 year: 2011 end-page: 105 article-title: Slice Sampling Mixture Models publication-title: Statistics and Computing – volume: 110 start-page: 1479 year: 2015 end-page: 1490 article-title: Dirichlet–Laplace Priors for Optimal Shrinkage publication-title: Journal of the American Statistical Association – start-page: 554 year: 2000 end-page: 560 – volume: 20 start-page: 1 year: 2019 end-page: 30 article-title: An Asymptotic Analysis of Distributed Nonparametric Methods publication-title: Journal of Machine Learning Research – volume: 1 start-page: 121 year: 2006 end-page: 143 article-title: Variational Inference for Dirichlet Process Mixtures publication-title: Bayesian Analysis – volume: 29 start-page: 23 year: 2019 end-page: 32 article-title: Double‐Parallel Monte Carlo for Bayesian Analysis of Big Data publication-title: Statistics and Computing – volume: 19 start-page: 312 year: 2018 end-page: 346 article-title: Scalable Bayes via Barycenter in Wasserstein Space publication-title: Journal of Machine Learning Research – volume: 2 year: 1971 – year: 2004 – volume: 38 start-page: 3300 year: 2010 end-page: 3320 article-title: Adaptive Nonparametric Bayesian Inference Using Location‐Scale Mixture Priors publication-title: Annals of Statistics – volume: 104 start-page: 1042 year: 2009 end-page: 1051 article-title: Nonparametric Bayes Modeling of Multivariate Categorical Data publication-title: Journal of the American Statistical Association – volume: 38 start-page: 262 year: 2023 end-page: 284 article-title: Distributed Bayesian Inference in Massive Spatial Data publication-title: Statistical Science – year: 2016 – volume: 13 start-page: 703 issue: 3 year: 2018 end-page: 720 article-title: Some Aspects of Symmetric Gamma Process Mixtures publication-title: Bayesian Analysis – volume: 30 start-page: 269 year: 2002 end-page: 283 article-title: Exact and Approximate Sum Representations for the Dirichlet Process publication-title: Canadian Journal of Statistics – volume: 4 start-page: 639 year: 1994 end-page: 650 article-title: A Constructive Definition of Dirichlet Priors publication-title: Statistica Sinica – ident: e_1_2_7_5_1 doi: 10.1214/06-BA104 – ident: e_1_2_7_11_1 doi: 10.1214/22-STS868 – start-page: 554 volume-title: Advances in Neural Information Processing Systems year: 2000 ident: e_1_2_7_16_1 – ident: e_1_2_7_24_1 doi: 10.1093/hmg/ddy271 – ident: e_1_2_7_6_1 doi: 10.1214/10-AOS811 – ident: e_1_2_7_20_1 doi: 10.1093/biomet/ast015 – ident: e_1_2_7_7_1 doi: 10.1198/jasa.2009.tm08439 – ident: e_1_2_7_23_1 doi: 10.1007/s11222-017-9791-1 – ident: e_1_2_7_2_1 doi: 10.1038/nature09410 – volume: 19 start-page: 312 year: 2018 ident: e_1_2_7_21_1 article-title: Scalable Bayes via Barycenter in Wasserstein Space publication-title: Journal of Machine Learning Research – ident: e_1_2_7_13_1 doi: 10.1007/s11222-009-9150-y – volume: 4 start-page: 639 year: 1994 ident: e_1_2_7_19_1 article-title: A Constructive Definition of Dirichlet Priors publication-title: Statistica Sinica – ident: e_1_2_7_9_1 doi: 10.1214/aos/1016218228 – volume-title: An Introduction to Probability Theory and Its Applications year: 1971 ident: e_1_2_7_8_1 – ident: e_1_2_7_12_1 doi: 10.2307/3315951 – ident: e_1_2_7_17_1 – ident: e_1_2_7_4_1 doi: 10.1080/01621459.2014.960967 – ident: e_1_2_7_18_1 doi: 10.1080/17509653.2016.1142191 – start-page: 623 volume-title: Proceedings of the Thirtieth Conference on Uncertainty in Artificial Intelligence year: 2014 ident: e_1_2_7_15_1 – volume: 20 start-page: 1 year: 2019 ident: e_1_2_7_22_1 article-title: An Asymptotic Analysis of Distributed Nonparametric Methods publication-title: Journal of Machine Learning Research – ident: e_1_2_7_10_1 doi: 10.1214/009053606000001271 – ident: e_1_2_7_14_1 doi: 10.1214/17-BA1058 – volume-title: A Primer on Statistical Distributions year: 2004 ident: e_1_2_7_3_1 |
| SSID | ssj0014036 |
| Score | 2.3604639 |
| Snippet | ABSTRACT
Datasets for statistical analysis become extremely large even when stored on one single machine with some difficulty. Even when the data can be stored... Datasets for statistical analysis become extremely large even when stored on one single machine with some difficulty. Even when the data can be stored in one... |
| SourceID | unpaywall proquest crossref wiley |
| SourceType | Open Access Repository Aggregation Database Index Database Publisher |
| StartPage | 250 |
| SubjectTerms | Bayesian analysis Bayesian density estimation Bayesian mixture model Datasets Density divide and conquer posterior contraction rate Statistical analysis Subgroups |
| SummonAdditionalLinks | – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LSwMxEB6kHvTiW6xWCepJ2NKm2Wxy8LBWpQgWQQvVy5LNQ8W6Le0Wqb_eZB9qPRRve9iEYZLZ-bKZ7xuAU5uTZCCa0qMtxTwiifQsiG153Nj4kxRjwRwb-bZLOz1y0_f7S3BccmF-39-7ihsLkCb1oJHxeZepb_F2BZZ73bvwMSdUca9JsmvkLOIZwf1Cg3R-8HzW-YGSK9NkJGYfYjCYB6dZdrleh3ZpV15U8lafpnFdfv6RbFxs-AasFeAShflu2IQlnWzBqsOTuRzzNpyH6NIRsDQSiULtYWItHKNw8Dwcv6Yv72ho0IWYacesRJeutj2doSs7Nic47kDv-uqh3fGKDgqexNyGADEaB66lC3bF9spIJZVNijpmvmKxE-bWhvrNIOCSMUUDe5jEwgIExiwsI9Jv7UIlGSZ6D5BuCF9TZmImODFE8ED4AvPYN9ooQ1UVTkoPR6NcKCMqDxjOF1HmiyrUSudHRbBMIvtN4ZRboNaqwun3giyc5SxbqwWvRGH36T572v_fnAewil1r3-wHSw0q6XiqDy3eSOOjYsN9Aff00HU priority: 102 providerName: Unpaywall |
| Title | A Divide and Conquer Algorithm of Bayesian Density Estimation |
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fanzs.70008 https://www.proquest.com/docview/3229693923 https://doi.org/10.1111/anzs.70008 |
| UnpaywallVersion | publishedVersion |
| Volume | 67 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library - Core collection (SURFmarket) issn: 1467-842X databaseCode: DR2 dateStart: 19970101 customDbUrl: isFulltext: true eissn: 1467-842X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0014036 providerName: Wiley-Blackwell |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEA6lPehFfGK1loCehJVuNptNQA9rHxTBImpBvSzZPPRQt8VWpP_eSbateil4WfaQ5PDtTOZLdr4ZhM4gJqlEhipgkeYBVVQFQGKjQFjwP8UIkdypkW8HrD-kN0_xUwVdLrUwZX2I1YWb8wy_XzsHl_n0l5MDdZpeJC2v9K2FQGScfRN6t_qHQFu-QWAYMRGENIkWxUldHs_P3L_h6IdjbnwWEzn_kqPRX9bqw05vG20t-CJOyw-8gyqm2EWbjiKWFZb30FWKO05TZbAsNG6PC1j7A6ej1zGc-9_e8djiazk3TiyJOy5dfTbHXZhbahb30bDXfWz3g0VThEARAVZNrSGJ69JCXP68tkorDXHO5DzWPHe1to1lcZgkQnGuWQLnQyIh5nMOTIuqODpA1WJcmEOETUvGhnGbcymopVIkMpZE5LE1Vlum6-h0iU02KWtfZMszg0Mw8wjWUWMJW7aw_2kG24RgArhXVEdnKyjXrnLuUV4zJEsHLw_-7eg_g4_RJnE9e_3NSQNVZx-f5gSIxCxvenuBZ-eeNFFtOLhLn78BybfGNg |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LTwIxEG4MHuBifEYUtYmcTNaw3W63PXhAHkEFYiIkxMum24cecCE8Yvj3tt0F5ULibQ9tD187nW-6880AUDU-SUTcFx4JJPWwwMIzJDbwmDb2JwhCnFo1cq9POkP8PApHeW6O1cJk9SE2D27WMtx9bQ3cPkj_sXLDneb3Uc1Jffcx8YmNvRB-3fxEwDXXIdAPCPN8HAV5dVKbyPM7d9sf_ZLM4jKd8tU3H4-3aavzO-1DcJATRljPdvgI7Kn0GJQsR8xKLJ-AhzpsWlGVgjyVsDFJzdozWB9_TEzg__kFJxo-8pWyaknYtPnqixVsmbmZaPEUDNutQaPj5V0RPIGYOdZYKxTZNi3IJtBLLaSQxtGphIaSJrbYttIk9KOICUoliUyAiLhx-pQaqoVFGJyBQjpJ1TmAqsZDRahOKGdYY84iHnLEklArLTWRZXC7xiaeZsUv4nXQYBGMHYJlUFnDFucGMI_NPcEIM-QrKIPqBsqdq9w5lHcMiev99zf3dfGfwTeg2Bn0unH3qf9yCUrINvB1zygVUFjMlurKsIpFcu3Ozg-liscJ |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEA6ioF58i9WqAXsSttjdbDY5eKjW4rOIDxAvSzYPFeu2tFuk_noz2W2rHgS95ZAsm0km8yXM9w1CFRuTZCRq0qOBYh6RRHoWxAYeN9b_JPV9wYCNfNWip_fk_CF8KHJzgAuT60OMH9zAM9x5DQ6uu8p88XKLnfrV6MBRfWdIyBlk9DVuxupRoERHc9oV92okCgp1UkjkmYz9Ho8mIHNukHbF8F20299hq4s7zcW8uGrfyRVCuslrdZAlVfnxQ8zx31NaQgsFIsX1fAstoymdrqB5AKG5hvMqOqzjBrC2NBapwsed1P58D9fbT53eS_b8hjsGH4mhBjombkBCfDbEJ3ZszopcQ_fNk7vjU68ou-BJn1u_IUb7EdSB8SFDXxmppLKRVCcsVCwBNW9taFiLIi4ZUzSyN1BfWFTBmMVyRIbBOppOO6neQFgfiFBTZhImODFE8EiEwudJaLRRhqoS2hsZP-7m6hrx6FYCtoidLUqoPFqXuPCwfmwPIk65RXdBCVXGa_XrV_ad7X_pEtdbj7eutfmXzrto9rrRjC_PWhdbaN6HAsHumaaMprPeQG9b1JIlO25vfgIBBue- |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LSwMxEB6kHvTiW6xWCepJ2NKm2Wxy8LBWpQgWQQvVy5LNQ8W6Le0Wqb_eZB9qPRRve9iEYZLZ-bKZ7xuAU5uTZCCa0qMtxTwiifQsiG153Nj4kxRjwRwb-bZLOz1y0_f7S3BccmF-39-7ihsLkCb1oJHxeZepb_F2BZZ73bvwMSdUca9JsmvkLOIZwf1Cg3R-8HzW-YGSK9NkJGYfYjCYB6dZdrleh3ZpV15U8lafpnFdfv6RbFxs-AasFeAShflu2IQlnWzBqsOTuRzzNpyH6NIRsDQSiULtYWItHKNw8Dwcv6Yv72ho0IWYacesRJeutj2doSs7Nic47kDv-uqh3fGKDgqexNyGADEaB66lC3bF9spIJZVNijpmvmKxE-bWhvrNIOCSMUUDe5jEwgIExiwsI9Jv7UIlGSZ6D5BuCF9TZmImODFE8ED4AvPYN9ooQ1UVTkoPR6NcKCMqDxjOF1HmiyrUSudHRbBMIvtN4ZRboNaqwun3giyc5SxbqwWvRGH36T572v_fnAewil1r3-wHSw0q6XiqDy3eSOOjYsN9Aff00HU |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Divide+and+Conquer+Algorithm+of+Bayesian+Density+Estimation&rft.jtitle=Australian+%26+New+Zealand+journal+of+statistics&rft.au=Su%2C+Ya&rft.date=2025-06-01&rft.issn=1369-1473&rft.eissn=1467-842X&rft.volume=67&rft.issue=2&rft.spage=250&rft.epage=264&rft_id=info:doi/10.1111%2Fanzs.70008&rft.externalDBID=10.1111%252Fanzs.70008&rft.externalDocID=ANZS70008 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1369-1473&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1369-1473&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1369-1473&client=summon |