A Divide and Conquer Algorithm of Bayesian Density Estimation

ABSTRACT Datasets for statistical analysis become extremely large even when stored on one single machine with some difficulty. Even when the data can be stored in one machine, the computational cost would still be intimidating. We propose a divide and conquer solution to density estimation using Bay...

Full description

Saved in:
Bibliographic Details
Published inAustralian & New Zealand journal of statistics Vol. 67; no. 2; pp. 250 - 264
Main Author Su, Ya
Format Journal Article
LanguageEnglish
Published Hoboken Wiley Subscription Services, Inc 01.06.2025
Subjects
Online AccessGet full text
ISSN1369-1473
1467-842X
1467-842X
DOI10.1111/anzs.70008

Cover

Abstract ABSTRACT Datasets for statistical analysis become extremely large even when stored on one single machine with some difficulty. Even when the data can be stored in one machine, the computational cost would still be intimidating. We propose a divide and conquer solution to density estimation using Bayesian mixture modelling, including the infinite mixture case. The methodology can be generalised to other application problems where a Bayesian mixture model is adopted. The proposed prior on each machine or subgroup modifies the original prior on both mixing probabilities and the rest of parameters in the distributions being mixed. The ultimate estimator is obtained by taking the average of the posterior samples corresponding to the proposed prior on each subset. Despite the tremendous reduction in time thanks to data splitting, the posterior contraction rate of the proposed estimator stays the same (up to a log$$ \log $$ factor) as that using the original prior when the data is analysed as a whole. Simulation studies also justify the competency of the proposed method compared to the established WASP estimator in the finite‐dimension case. In addition, one of our simulations is performed in a shape‐constrained deconvolution context and reveals promising results. The application to a GWAS dataset reveals the advantage over a naive divide and conquer method that uses the original prior.
AbstractList Datasets for statistical analysis become extremely large even when stored on one single machine with some difficulty. Even when the data can be stored in one machine, the computational cost would still be intimidating. We propose a divide and conquer solution to density estimation using Bayesian mixture modelling, including the infinite mixture case. The methodology can be generalised to other application problems where a Bayesian mixture model is adopted. The proposed prior on each machine or subgroup modifies the original prior on both mixing probabilities and the rest of parameters in the distributions being mixed. The ultimate estimator is obtained by taking the average of the posterior samples corresponding to the proposed prior on each subset. Despite the tremendous reduction in time thanks to data splitting, the posterior contraction rate of the proposed estimator stays the same (up to a factor) as that using the original prior when the data is analysed as a whole. Simulation studies also justify the competency of the proposed method compared to the established WASP estimator in the finite‐dimension case. In addition, one of our simulations is performed in a shape‐constrained deconvolution context and reveals promising results. The application to a GWAS dataset reveals the advantage over a naive divide and conquer method that uses the original prior.
Datasets for statistical analysis become extremely large even when stored on one single machine with some difficulty. Even when the data can be stored in one machine, the computational cost would still be intimidating. We propose a divide and conquer solution to density estimation using Bayesian mixture modelling, including the infinite mixture case. The methodology can be generalised to other application problems where a Bayesian mixture model is adopted. The proposed prior on each machine or subgroup modifies the original prior on both mixing probabilities and the rest of parameters in the distributions being mixed. The ultimate estimator is obtained by taking the average of the posterior samples corresponding to the proposed prior on each subset. Despite the tremendous reduction in time thanks to data splitting, the posterior contraction rate of the proposed estimator stays the same (up to a log$$ \log $$ factor) as that using the original prior when the data is analysed as a whole. Simulation studies also justify the competency of the proposed method compared to the established WASP estimator in the finite‐dimension case. In addition, one of our simulations is performed in a shape‐constrained deconvolution context and reveals promising results. The application to a GWAS dataset reveals the advantage over a naive divide and conquer method that uses the original prior.
ABSTRACT Datasets for statistical analysis become extremely large even when stored on one single machine with some difficulty. Even when the data can be stored in one machine, the computational cost would still be intimidating. We propose a divide and conquer solution to density estimation using Bayesian mixture modelling, including the infinite mixture case. The methodology can be generalised to other application problems where a Bayesian mixture model is adopted. The proposed prior on each machine or subgroup modifies the original prior on both mixing probabilities and the rest of parameters in the distributions being mixed. The ultimate estimator is obtained by taking the average of the posterior samples corresponding to the proposed prior on each subset. Despite the tremendous reduction in time thanks to data splitting, the posterior contraction rate of the proposed estimator stays the same (up to a log$$ \log $$ factor) as that using the original prior when the data is analysed as a whole. Simulation studies also justify the competency of the proposed method compared to the established WASP estimator in the finite‐dimension case. In addition, one of our simulations is performed in a shape‐constrained deconvolution context and reveals promising results. The application to a GWAS dataset reveals the advantage over a naive divide and conquer method that uses the original prior.
Author Su, Ya
Author_xml – sequence: 1
  givenname: Ya
  orcidid: 0000-0002-8755-529X
  surname: Su
  fullname: Su, Ya
  organization: Virginia Commonwealth University
BookMark eNp9jz1PwzAQhi0EEm1h4RdYYgOl2M6XMzCEtnxIFQyAhFgsN76Aq9QudkoVfj0uYe4td8Nzr95niA6NNYDQGSVjGuZKmh8_zgkh_AANaJLlEU_Y22G446yIaJLHx2jo_ZIQmpA4G6DrEk_1t1aApVF4Ys3XBhwumw_rdPu5wrbGN7IDr6XBUzBetx2e-VavZKutOUFHtWw8nP7vEXq9nb1M7qP5093DpJxHFSs4j5IaWJ7RUKWSClRdqUoBKFjwVPGFLCRAnaU0z4uKc5XlCWFMEppynjKWVGk8Qpd97sasZbeVTSPWLnRwnaBE7MzFzlz8mQf6vKfXzgYd34ql3TgTCoqYsSIr4oLFgbroqcpZ7x3U-yNpD291A90eUpSP78_9zy_03He4
Cites_doi 10.1214/06-BA104
10.1214/22-STS868
10.1093/hmg/ddy271
10.1214/10-AOS811
10.1093/biomet/ast015
10.1198/jasa.2009.tm08439
10.1007/s11222-017-9791-1
10.1038/nature09410
10.1007/s11222-009-9150-y
10.1214/aos/1016218228
10.2307/3315951
10.1080/01621459.2014.960967
10.1080/17509653.2016.1142191
10.1214/009053606000001271
10.1214/17-BA1058
ContentType Journal Article
Copyright 2025 The Author(s). published by John Wiley & Sons Australia, Ltd on behalf of Statistical Society of Australia.
2025. This work is published under Creative Commons Attribution License~https://creativecommons.org/licenses/by/3.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2025 The Author(s). published by John Wiley & Sons Australia, Ltd on behalf of Statistical Society of Australia.
– notice: 2025. This work is published under Creative Commons Attribution License~https://creativecommons.org/licenses/by/3.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 24P
AAYXX
CITATION
7SC
7TB
8FD
FR3
H8D
JQ2
KR7
L7M
L~C
L~D
ADTOC
UNPAY
DOI 10.1111/anzs.70008
DatabaseName Wiley Online Library Open Access
CrossRef
Computer and Information Systems Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
Aerospace Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
Aerospace Database
Civil Engineering Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList CrossRef
Aerospace Database

Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 2
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Statistics
EISSN 1467-842X
EndPage 264
ExternalDocumentID 10.1111/anzs.70008
10_1111_anzs_70008
ANZS70008
Genre article
GroupedDBID -~X
.3N
.GA
.Y3
05W
0R~
10A
1OB
1OC
23N
24P
31~
33P
3SF
4.4
44B
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5HH
5LA
5VS
66C
6OB
702
7PT
8-0
8-1
8-3
8UM
930
A03
AAESR
AAEVG
AAHQN
AAMMB
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABDBF
ABEML
ABJNI
ABPVW
ACAHQ
ACBWZ
ACCZN
ACGFS
ACIWK
ACPOU
ACRPL
ACSCC
ACUHS
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
AEFGJ
AEIGN
AEIMD
AENEX
AEUYR
AEYWJ
AFBPY
AFEBI
AFFPM
AFGKR
AFWVQ
AFZJQ
AGHNM
AGQPQ
AGXDD
AGYGG
AHBTC
AIDQK
AIDYY
AITYG
AIURR
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMVHM
AMYDB
ARTTT
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CAG
COF
CS3
D-E
DCZOG
DPXWK
DR2
DRFUL
DRSTM
EAD
EAP
EAS
EAZ
EBS
EJD
EMK
EST
ESX
F00
F5P
FEDTE
G-S
G.N
GODZA
H.T
H.X
HF~
HGLYW
HVGLF
HZI
HZ~
IHE
IX1
J0M
K48
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
R.K
RJQFR
ROL
RX1
SUPJJ
TN5
UB1
W8V
W99
WBKPD
WIH
WIK
WOHZO
WQJ
WXI
WXSBR
WYISQ
XBAML
XG1
ZY4
ZZTAW
~IA
~WT
AAYXX
AIQQE
CITATION
7SC
7TB
8FD
FR3
H8D
JQ2
KR7
L7M
L~C
L~D
ADTOC
UNPAY
ID FETCH-LOGICAL-c2988-4fe2761842cadedfcdcdeedeb85d8ba9aeef651779c88d674022a015885224c53
IEDL.DBID 24P
ISSN 1369-1473
1467-842X
IngestDate Sun Sep 07 10:47:41 EDT 2025
Wed Jul 30 08:40:35 EDT 2025
Wed Oct 01 05:41:46 EDT 2025
Wed Aug 20 07:27:34 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
License Attribution
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2988-4fe2761842cadedfcdcdeedeb85d8ba9aeef651779c88d674022a015885224c53
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-8755-529X
OpenAccessLink https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fanzs.70008
PQID 3229693923
PQPubID 2045190
PageCount 264
ParticipantIDs unpaywall_primary_10_1111_anzs_70008
proquest_journals_3229693923
crossref_primary_10_1111_anzs_70008
wiley_primary_10_1111_anzs_70008_ANZS70008
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate June 2025
PublicationDateYYYYMMDD 2025-06-01
PublicationDate_xml – month: 06
  year: 2025
  text: June 2025
PublicationDecade 2020
PublicationPlace Hoboken
PublicationPlace_xml – name: Hoboken
PublicationTitle Australian & New Zealand journal of statistics
PublicationYear 2025
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2018; 19
2010; 38
2000; 28
2002; 30
2019; 20
2000
2023; 38
2010; 467
2015; 110
2013; 100
2011; 21
2019; 29
2016
2004
2006; 1
2014
1971; 2
2007; 35
2018; 27
2009; 104
1994; 4
2018; 13
2016; 11
e_1_2_7_6_1
e_1_2_7_5_1
e_1_2_7_4_1
Szabó B. (e_1_2_7_22_1) 2019; 20
e_1_2_7_9_1
Neiswanger W. (e_1_2_7_15_1) 2014
e_1_2_7_7_1
e_1_2_7_18_1
e_1_2_7_17_1
Srivastava S. (e_1_2_7_21_1) 2018; 19
e_1_2_7_2_1
e_1_2_7_14_1
e_1_2_7_13_1
Sethuraman J. (e_1_2_7_19_1) 1994; 4
e_1_2_7_24_1
e_1_2_7_12_1
e_1_2_7_23_1
Balakrishnan N. (e_1_2_7_3_1) 2004
e_1_2_7_11_1
Rasmussen C. E. (e_1_2_7_16_1) 2000
e_1_2_7_10_1
e_1_2_7_20_1
Feller W. (e_1_2_7_8_1) 1971
References_xml – volume: 28
  start-page: 500
  issue: 2
  year: 2000
  end-page: 531
  article-title: Convergence Rates of Posterior Distributions
  publication-title: Annals of Statistics
– volume: 35
  start-page: 697
  issue: 2
  year: 2007
  end-page: 723
  article-title: Posterior Convergence Rates of Dirichlet Mixtures at Smooth Densities
  publication-title: Annals of Statistics
– volume: 11
  start-page: 78
  year: 2016
  end-page: 88
  article-title: Bayes and Big Data: The Consensus Monte Carlo Algorithm
  publication-title: International Journal of Management Science and Engineering Management
– volume: 100
  start-page: 623
  year: 2013
  end-page: 640
  article-title: Adaptive Bayesian Multivariate Density Estimation With Dirichlet Mixtures
  publication-title: Biometrika
– volume: 27
  start-page: 3641
  year: 2018
  end-page: 3649
  article-title: Meta‐Analysis of Genome‐Wide Association Studies for Height and Body Mass Index in 700000 Individuals of European Ancestry
  publication-title: Human Molecular Genetics
– start-page: 623
  year: 2014
  end-page: 632
– volume: 467
  start-page: 832
  issue: 7317
  year: 2010
  end-page: 838
  article-title: Hundreds of Variants Clustered in Genomic Loci and Biological Pathways Affect Human Height
  publication-title: Nature
– volume: 21
  start-page: 93
  year: 2011
  end-page: 105
  article-title: Slice Sampling Mixture Models
  publication-title: Statistics and Computing
– volume: 110
  start-page: 1479
  year: 2015
  end-page: 1490
  article-title: Dirichlet–Laplace Priors for Optimal Shrinkage
  publication-title: Journal of the American Statistical Association
– start-page: 554
  year: 2000
  end-page: 560
– volume: 20
  start-page: 1
  year: 2019
  end-page: 30
  article-title: An Asymptotic Analysis of Distributed Nonparametric Methods
  publication-title: Journal of Machine Learning Research
– volume: 1
  start-page: 121
  year: 2006
  end-page: 143
  article-title: Variational Inference for Dirichlet Process Mixtures
  publication-title: Bayesian Analysis
– volume: 29
  start-page: 23
  year: 2019
  end-page: 32
  article-title: Double‐Parallel Monte Carlo for Bayesian Analysis of Big Data
  publication-title: Statistics and Computing
– volume: 19
  start-page: 312
  year: 2018
  end-page: 346
  article-title: Scalable Bayes via Barycenter in Wasserstein Space
  publication-title: Journal of Machine Learning Research
– volume: 2
  year: 1971
– year: 2004
– volume: 38
  start-page: 3300
  year: 2010
  end-page: 3320
  article-title: Adaptive Nonparametric Bayesian Inference Using Location‐Scale Mixture Priors
  publication-title: Annals of Statistics
– volume: 104
  start-page: 1042
  year: 2009
  end-page: 1051
  article-title: Nonparametric Bayes Modeling of Multivariate Categorical Data
  publication-title: Journal of the American Statistical Association
– volume: 38
  start-page: 262
  year: 2023
  end-page: 284
  article-title: Distributed Bayesian Inference in Massive Spatial Data
  publication-title: Statistical Science
– year: 2016
– volume: 13
  start-page: 703
  issue: 3
  year: 2018
  end-page: 720
  article-title: Some Aspects of Symmetric Gamma Process Mixtures
  publication-title: Bayesian Analysis
– volume: 30
  start-page: 269
  year: 2002
  end-page: 283
  article-title: Exact and Approximate Sum Representations for the Dirichlet Process
  publication-title: Canadian Journal of Statistics
– volume: 4
  start-page: 639
  year: 1994
  end-page: 650
  article-title: A Constructive Definition of Dirichlet Priors
  publication-title: Statistica Sinica
– ident: e_1_2_7_5_1
  doi: 10.1214/06-BA104
– ident: e_1_2_7_11_1
  doi: 10.1214/22-STS868
– start-page: 554
  volume-title: Advances in Neural Information Processing Systems
  year: 2000
  ident: e_1_2_7_16_1
– ident: e_1_2_7_24_1
  doi: 10.1093/hmg/ddy271
– ident: e_1_2_7_6_1
  doi: 10.1214/10-AOS811
– ident: e_1_2_7_20_1
  doi: 10.1093/biomet/ast015
– ident: e_1_2_7_7_1
  doi: 10.1198/jasa.2009.tm08439
– ident: e_1_2_7_23_1
  doi: 10.1007/s11222-017-9791-1
– ident: e_1_2_7_2_1
  doi: 10.1038/nature09410
– volume: 19
  start-page: 312
  year: 2018
  ident: e_1_2_7_21_1
  article-title: Scalable Bayes via Barycenter in Wasserstein Space
  publication-title: Journal of Machine Learning Research
– ident: e_1_2_7_13_1
  doi: 10.1007/s11222-009-9150-y
– volume: 4
  start-page: 639
  year: 1994
  ident: e_1_2_7_19_1
  article-title: A Constructive Definition of Dirichlet Priors
  publication-title: Statistica Sinica
– ident: e_1_2_7_9_1
  doi: 10.1214/aos/1016218228
– volume-title: An Introduction to Probability Theory and Its Applications
  year: 1971
  ident: e_1_2_7_8_1
– ident: e_1_2_7_12_1
  doi: 10.2307/3315951
– ident: e_1_2_7_17_1
– ident: e_1_2_7_4_1
  doi: 10.1080/01621459.2014.960967
– ident: e_1_2_7_18_1
  doi: 10.1080/17509653.2016.1142191
– start-page: 623
  volume-title: Proceedings of the Thirtieth Conference on Uncertainty in Artificial Intelligence
  year: 2014
  ident: e_1_2_7_15_1
– volume: 20
  start-page: 1
  year: 2019
  ident: e_1_2_7_22_1
  article-title: An Asymptotic Analysis of Distributed Nonparametric Methods
  publication-title: Journal of Machine Learning Research
– ident: e_1_2_7_10_1
  doi: 10.1214/009053606000001271
– ident: e_1_2_7_14_1
  doi: 10.1214/17-BA1058
– volume-title: A Primer on Statistical Distributions
  year: 2004
  ident: e_1_2_7_3_1
SSID ssj0014036
Score 2.3604639
Snippet ABSTRACT Datasets for statistical analysis become extremely large even when stored on one single machine with some difficulty. Even when the data can be stored...
Datasets for statistical analysis become extremely large even when stored on one single machine with some difficulty. Even when the data can be stored in one...
SourceID unpaywall
proquest
crossref
wiley
SourceType Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 250
SubjectTerms Bayesian analysis
Bayesian density estimation
Bayesian mixture model
Datasets
Density
divide and conquer
posterior contraction rate
Statistical analysis
Subgroups
SummonAdditionalLinks – databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LSwMxEB6kHvTiW6xWCepJ2NKm2Wxy8LBWpQgWQQvVy5LNQ8W6Le0Wqb_eZB9qPRRve9iEYZLZ-bKZ7xuAU5uTZCCa0qMtxTwiifQsiG153Nj4kxRjwRwb-bZLOz1y0_f7S3BccmF-39-7ihsLkCb1oJHxeZepb_F2BZZ73bvwMSdUca9JsmvkLOIZwf1Cg3R-8HzW-YGSK9NkJGYfYjCYB6dZdrleh3ZpV15U8lafpnFdfv6RbFxs-AasFeAShflu2IQlnWzBqsOTuRzzNpyH6NIRsDQSiULtYWItHKNw8Dwcv6Yv72ho0IWYacesRJeutj2doSs7Nic47kDv-uqh3fGKDgqexNyGADEaB66lC3bF9spIJZVNijpmvmKxE-bWhvrNIOCSMUUDe5jEwgIExiwsI9Jv7UIlGSZ6D5BuCF9TZmImODFE8ED4AvPYN9ooQ1UVTkoPR6NcKCMqDxjOF1HmiyrUSudHRbBMIvtN4ZRboNaqwun3giyc5SxbqwWvRGH36T572v_fnAewil1r3-wHSw0q6XiqDy3eSOOjYsN9Aff00HU
  priority: 102
  providerName: Unpaywall
Title A Divide and Conquer Algorithm of Bayesian Density Estimation
URI https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fanzs.70008
https://www.proquest.com/docview/3229693923
https://doi.org/10.1111/anzs.70008
UnpaywallVersion publishedVersion
Volume 67
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library - Core collection (SURFmarket)
  issn: 1467-842X
  databaseCode: DR2
  dateStart: 19970101
  customDbUrl:
  isFulltext: true
  eissn: 1467-842X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014036
  providerName: Wiley-Blackwell
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEA6lPehFfGK1loCehJVuNptNQA9rHxTBImpBvSzZPPRQt8VWpP_eSbateil4WfaQ5PDtTOZLdr4ZhM4gJqlEhipgkeYBVVQFQGKjQFjwP8UIkdypkW8HrD-kN0_xUwVdLrUwZX2I1YWb8wy_XzsHl_n0l5MDdZpeJC2v9K2FQGScfRN6t_qHQFu-QWAYMRGENIkWxUldHs_P3L_h6IdjbnwWEzn_kqPRX9bqw05vG20t-CJOyw-8gyqm2EWbjiKWFZb30FWKO05TZbAsNG6PC1j7A6ej1zGc-9_e8djiazk3TiyJOy5dfTbHXZhbahb30bDXfWz3g0VThEARAVZNrSGJ69JCXP68tkorDXHO5DzWPHe1to1lcZgkQnGuWQLnQyIh5nMOTIuqODpA1WJcmEOETUvGhnGbcymopVIkMpZE5LE1Vlum6-h0iU02KWtfZMszg0Mw8wjWUWMJW7aw_2kG24RgArhXVEdnKyjXrnLuUV4zJEsHLw_-7eg_g4_RJnE9e_3NSQNVZx-f5gSIxCxvenuBZ-eeNFFtOLhLn78BybfGNg
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LTwIxEG4MHuBifEYUtYmcTNaw3W63PXhAHkEFYiIkxMum24cecCE8Yvj3tt0F5ULibQ9tD187nW-6880AUDU-SUTcFx4JJPWwwMIzJDbwmDb2JwhCnFo1cq9POkP8PApHeW6O1cJk9SE2D27WMtx9bQ3cPkj_sXLDneb3Uc1Jffcx8YmNvRB-3fxEwDXXIdAPCPN8HAV5dVKbyPM7d9sf_ZLM4jKd8tU3H4-3aavzO-1DcJATRljPdvgI7Kn0GJQsR8xKLJ-AhzpsWlGVgjyVsDFJzdozWB9_TEzg__kFJxo-8pWyaknYtPnqixVsmbmZaPEUDNutQaPj5V0RPIGYOdZYKxTZNi3IJtBLLaSQxtGphIaSJrbYttIk9KOICUoliUyAiLhx-pQaqoVFGJyBQjpJ1TmAqsZDRahOKGdYY84iHnLEklArLTWRZXC7xiaeZsUv4nXQYBGMHYJlUFnDFucGMI_NPcEIM-QrKIPqBsqdq9w5lHcMiev99zf3dfGfwTeg2Bn0unH3qf9yCUrINvB1zygVUFjMlurKsIpFcu3Ozg-liscJ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEA6ioF58i9WqAXsSttjdbDY5eKjW4rOIDxAvSzYPFeu2tFuk_noz2W2rHgS95ZAsm0km8yXM9w1CFRuTZCRq0qOBYh6RRHoWxAYeN9b_JPV9wYCNfNWip_fk_CF8KHJzgAuT60OMH9zAM9x5DQ6uu8p88XKLnfrV6MBRfWdIyBlk9DVuxupRoERHc9oV92okCgp1UkjkmYz9Ho8mIHNukHbF8F20299hq4s7zcW8uGrfyRVCuslrdZAlVfnxQ8zx31NaQgsFIsX1fAstoymdrqB5AKG5hvMqOqzjBrC2NBapwsed1P58D9fbT53eS_b8hjsGH4mhBjombkBCfDbEJ3ZszopcQ_fNk7vjU68ou-BJn1u_IUb7EdSB8SFDXxmppLKRVCcsVCwBNW9taFiLIi4ZUzSyN1BfWFTBmMVyRIbBOppOO6neQFgfiFBTZhImODFE8EiEwudJaLRRhqoS2hsZP-7m6hrx6FYCtoidLUqoPFqXuPCwfmwPIk65RXdBCVXGa_XrV_ad7X_pEtdbj7eutfmXzrto9rrRjC_PWhdbaN6HAsHumaaMprPeQG9b1JIlO25vfgIBBue-
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LSwMxEB6kHvTiW6xWCepJ2NKm2Wxy8LBWpQgWQQvVy5LNQ8W6Le0Wqb_eZB9qPRRve9iEYZLZ-bKZ7xuAU5uTZCCa0qMtxTwiifQsiG153Nj4kxRjwRwb-bZLOz1y0_f7S3BccmF-39-7ihsLkCb1oJHxeZepb_F2BZZ73bvwMSdUca9JsmvkLOIZwf1Cg3R-8HzW-YGSK9NkJGYfYjCYB6dZdrleh3ZpV15U8lafpnFdfv6RbFxs-AasFeAShflu2IQlnWzBqsOTuRzzNpyH6NIRsDQSiULtYWItHKNw8Dwcv6Yv72ho0IWYacesRJeutj2doSs7Nic47kDv-uqh3fGKDgqexNyGADEaB66lC3bF9spIJZVNijpmvmKxE-bWhvrNIOCSMUUDe5jEwgIExiwsI9Jv7UIlGSZ6D5BuCF9TZmImODFE8ED4AvPYN9ooQ1UVTkoPR6NcKCMqDxjOF1HmiyrUSudHRbBMIvtN4ZRboNaqwun3giyc5SxbqwWvRGH36T572v_fnAewil1r3-wHSw0q6XiqDy3eSOOjYsN9Aff00HU
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Divide+and+Conquer+Algorithm+of+Bayesian+Density+Estimation&rft.jtitle=Australian+%26+New+Zealand+journal+of+statistics&rft.au=Su%2C+Ya&rft.date=2025-06-01&rft.issn=1369-1473&rft.eissn=1467-842X&rft.volume=67&rft.issue=2&rft.spage=250&rft.epage=264&rft_id=info:doi/10.1111%2Fanzs.70008&rft.externalDBID=10.1111%252Fanzs.70008&rft.externalDocID=ANZS70008
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1369-1473&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1369-1473&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1369-1473&client=summon