Numerical Simulation of Water Mitigation Effects on Shock Wave with SPH Method

The water mitigation effect on the propagation of shock wave was investigated numerically. The traditional smoothed particle hydrodynamics (SPH) method was modified based on Riemann solution. The comparison of numerical results with the analytical solution indicated that the modified SPH method has...

Full description

Saved in:
Bibliographic Details
Published inTransactions of Tianjin University Vol. 14; no. 5; pp. 387 - 390
Main Author 毛益明 方秦 张亚栋 高振儒
Format Journal Article
LanguageEnglish
Published Heidelberg Tianjin University 01.10.2008
Engineering Institute of Corps of Engineers,PLA University of Science and Technology,Nanjing 210007,China
Subjects
Online AccessGet full text
ISSN1006-4982
1995-8196
DOI10.1007/s12209-008-0066-y

Cover

Abstract The water mitigation effect on the propagation of shock wave was investigated numerically. The traditional smoothed particle hydrodynamics (SPH) method was modified based on Riemann solution. The comparison of numerical results with the analytical solution indicated that the modified SPH method has more advantages than the traditional SPH method. Using the modified SPH algorithm, a series of one-dimensional planar wave propagation problems were investigated, focusing on the influence of the air-gap between the high-pressure air and water and the thickness of water, The numerical results showed that water mitigation effect is significant. Up to 60% shock wave pressure reduction could be achieved with the existence of water, and the shape of shock wave was also changed greatly. It is seemly that the small air-gap between the high-pressure air and water has more influence on water mitigation effect.
AbstractList O4; The water mitigation effect on the propagation of shock wave was investigated numerically.The traditionaf smoothed particle hydrodynamics(SPH)method was modified based on Riemann solution.The comparison of numerical results with the analytical solution indicated that the modified SPH method has more advantages than the traditional SPH method.Using the modified SPH algorithm.a series of one-dimensional planar wave propagation problems were investigated,focusing on the influence of the air-gap between the high-pressure air and water and the thickness of water.The humerical results showed that water mitigation effect is significant.Up to 60%shock wave pressure reduction could be achieved with the existence of water.and the shape of shock wave was also changed greatly.It is seemly that fhe small air-gap between the high-pressure air and water has more influence on water mitigation effect.
The water mitigation effect on the propagation of shock wave was investigated numerically. The traditional smoothed particle hydrodynamics (SPH) method was modified based on Riemann solution. The comparison of numerical results with the analytical solution indicated that the modified SPH method has more advantages than the traditional SPH method. Using the modified SPH algorithm, a series of one-dimensional planar wave propagation problems were investigated, focusing on the influence of the air-gap between the high-pressure air and water and the thickness of water. The numerical results showed that water mitigation effect is significant. Up to 60% shock wave pressure reduction could be achieved with the existence of water, and the shape of shock wave was also changed greatly. It is seemly that the small air-gap between the high-pressure air and water has more influence on water mitigation effect.
The water mitigation effect on the propagation of shock wave was investigated numerically. The traditional smoothed particle hydrodynamics (SPH) method was modified based on Riemann solution. The comparison of numerical results with the analytical solution indicated that the modified SPH method has more advantages than the traditional SPH method. Using the modified SPH algorithm, a series of one-dimensional planar wave propagation problems were investigated, focusing on the influence of the air-gap between the high-pressure air and water and the thickness of water, The numerical results showed that water mitigation effect is significant. Up to 60% shock wave pressure reduction could be achieved with the existence of water, and the shape of shock wave was also changed greatly. It is seemly that the small air-gap between the high-pressure air and water has more influence on water mitigation effect.
Author 毛益明 方秦 张亚栋 高振儒
AuthorAffiliation Engineering Institute of Corps of Engineers, PLA University of Science and Technology, Nanjing 210007, China
AuthorAffiliation_xml – name: Engineering Institute of Corps of Engineers,PLA University of Science and Technology,Nanjing 210007,China
Author_xml – sequence: 1
  fullname: 毛益明 方秦 张亚栋 高振儒
BookMark eNp9kE1v1DAQhi1UJNrCD-AWceBEir_i2EdUtRSpLUgL4mg5znjX26zd2g7t_nvcphIShx6sGY2ex6N5j9BBiAEQek_wCcG4_5wJpVi1GMv6hGj3r9AhUaprJVHioPZ12nIl6Rt0lPMWY65wTw7R9fW8g-StmZqV382TKT6GJrrmtymQmitf_HqZnTkHtuSmtqtNtDeV-APNvS-bZvXjormCsonjW_TamSnDu-d6jH6dn_08vWgvv3_9dvrlsrVUSd6ODJuRcwmKq2HsraOWY26E6M1AejF0xHVcdnwUBBxIa90A0ANmuMNMyo4do0_Lv_cmOBPWehvnFOpGXbwJ2_HhYdBAaxpVILziHxf8NsW7GXLRO58tTJMJEOesWdcRxTitYL-ANsWcEzhtfXm6vyTjJ02wfoxbL3HrukA_xq331ST_mbfJ70zav-jQxcmVDWtI_854SfrwvGgTw_quenow9sb5CTSVTAomFPsL60mfcQ
CitedBy_id crossref_primary_10_1016_j_cpc_2010_08_022
crossref_primary_10_1115_1_4064588
Cites_doi 10.1093/mnras/181.3.375
10.1155/1999/790873
10.1002/prs.680190309
10.1086/112164
ClassificationCodes O4
ContentType Journal Article
Copyright Tianjin University and Springer-Verlag GmbH 2008
Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
Copyright_xml – notice: Tianjin University and Springer-Verlag GmbH 2008
– notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
DBID 2RA
92L
CQIGP
W92
~WA
AAYXX
CITATION
7SC
7SP
7SR
7TB
7U5
8BQ
8FD
FR3
JG9
JQ2
KR7
L7M
L~C
L~D
2B.
4A8
92I
93N
PSX
TCJ
DOI 10.1007/s12209-008-0066-y
DatabaseName 维普_期刊
中文科技期刊数据库-CALIS站点
维普中文期刊数据库
中文科技期刊数据库-工程技术
中文科技期刊数据库- 镜像站点
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Engineering Research Database
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Wanfang Data Journals - Hong Kong
WANFANG Data Centre
Wanfang Data Journals
万方数据期刊 - 香港版
China Online Journals (COJ)
China Online Journals (COJ)
DatabaseTitle CrossRef
Materials Research Database
Civil Engineering Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
METADEX
Computer and Information Systems Abstracts Professional
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
DatabaseTitleList
Materials Research Database


DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
Engineering
DocumentTitleAlternate Numerical Simulation of Water Mitigation Effects on Shock Wave with SPH Method
EISSN 1995-8196
EndPage 390
ExternalDocumentID tianjdxxb_e200805014
10_1007_s12209_008_0066_y
28386369
GrantInformation_xml – fundername: 国家自然科学基金(50638030; 50525825); 国家科学技术支持项目
  funderid: 国家自然科学基金(50638030; 50525825); (2006BAJ13B02)
GroupedDBID -03
-0C
-5B
-5G
-BR
-EM
-SC
-S~
-Y2
-~C
.86
.VR
06D
0R~
0VY
123
1N0
29Q
29~
2B.
2C-
2J2
2JN
2JY
2KG
2KM
2LR
2RA
2VQ
2~H
30V
4.4
406
408
40D
40E
5VR
5VS
69O
6NX
8TC
92D
92I
92L
92M
93E
93N
95-
95.
95~
96X
9D9
9DC
AAAVM
AABHQ
AAFGU
AAHNG
AAHTB
AAIAL
AAJKR
AANZL
AAPBV
AARHV
AARTL
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
ABDZT
ABECU
ABFGW
ABFTV
ABHQN
ABJOX
ABKAS
ABKCH
ABMNI
ABMQK
ABNWP
ABPEJ
ABQBU
ABSXP
ABTEG
ABTHY
ABTMW
ABXPI
ACBMV
ACBRV
ACBXY
ACBYP
ACGFS
ACHSB
ACHXU
ACIGE
ACIPQ
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACSNA
ACTTH
ACVWB
ACWMK
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADMDM
ADRFC
ADTIX
ADURQ
ADYFF
ADZKW
AEBTG
AEFTE
AEGAL
AEGNC
AEJHL
AEJRE
AEOHA
AEPYU
AESTI
AETLH
AEVTX
AEXYK
AFGCZ
AFLOW
AFQWF
AFUIB
AFWTZ
AFZKB
AGAYW
AGDGC
AGGBP
AGJBK
AGMZJ
AGQMX
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHSBF
AHYZX
AIAKS
AIIXL
AILAN
AIMYW
AITGF
AJBLW
AJDOV
AJRNO
AJZVZ
AKQUC
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMYLF
AMYQR
ARMRJ
AXYYD
B-.
BA0
BDATZ
BGNMA
CAG
CAJEC
CAJUS
CCEZO
CDYEO
CEKLB
CHBEP
COF
CQIGP
CS3
CSCUP
CTIDA
CW9
DNIVK
EBLON
EBS
EIOEI
EJD
ESBYG
FA0
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
H13
HF~
HG6
HLICF
HMJXF
HRMNR
HZ~
IJ-
IPNFZ
IXC
IXD
I~X
I~Z
J-C
JBSCW
JUIAU
JZLTJ
KOV
LLZTM
M4Y
MA-
NQJWS
NU0
O9-
O9J
P9P
PF0
PT4
Q--
Q-2
QOS
R-C
R89
R9I
RIG
ROL
RPX
RSV
RT3
S16
S1Z
S27
S3B
SAP
SCL
SDH
SEG
SHX
SISQX
SNE
SNX
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T8S
TCJ
TGH
TSG
TSV
TUC
U1F
U1G
U2A
U5C
U5M
UG4
UNUBA
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W48
W92
WK8
YLTOR
Z7R
ZMTXR
~A9
~WA
AACDK
AAJBT
AASML
AATNV
AAXDM
AAYZH
ABAKF
ABJNI
ABTKH
ABWNU
ACAOD
ACDTI
ACPIV
ACZOJ
ADTPH
AEFQL
AEMSY
AESKC
AEVLU
AFBBN
AGQEE
AIGIU
AMXSW
AOCGG
DDRTE
DPUIP
IKXTQ
IWAJR
NPVJJ
SJYHP
SNPRN
SOHCF
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
AEZWR
AFDZB
AFHIU
AFOHR
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
7SC
7SP
7SR
7TB
7U5
8BQ
8FD
FR3
JG9
JQ2
KR7
L7M
L~C
L~D
4A8
PSX
ID FETCH-LOGICAL-c2984-d30ad448e949bd7cf2c404a667ab176b51f54854d61efe8ccfbee7e0305038853
IEDL.DBID AGYKE
ISSN 1006-4982
IngestDate Thu May 29 04:11:18 EDT 2025
Thu Sep 04 20:13:52 EDT 2025
Wed Oct 01 02:59:13 EDT 2025
Thu Apr 24 23:05:32 EDT 2025
Fri Feb 21 02:33:42 EST 2025
Fri Nov 25 17:03:48 EST 2022
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords shock wave
water mitigation
smoothed particle hydrodynamics (SPH) method
Riemann solution
smoothed particle hydrodynamics(SPH)method
Language English
License http://www.springer.com/tdm
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2984-d30ad448e949bd7cf2c404a667ab176b51f54854d61efe8ccfbee7e0305038853
Notes shock wave
TU1
12-1248/T
water mitigation; Riemann solution; smoothed particle hydrodynamics (SPH) method;shock wave
Riemann solution
smoothed particle hydrodynamics (SPH) method
water mitigation
ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
PQID 35519342
PQPubID 23500
PageCount 4
ParticipantIDs wanfang_journals_tianjdxxb_e200805014
proquest_miscellaneous_35519342
crossref_citationtrail_10_1007_s12209_008_0066_y
crossref_primary_10_1007_s12209_008_0066_y
springer_journals_10_1007_s12209_008_0066_y
chongqing_backfile_28386369
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20081000
PublicationDateYYYYMMDD 2008-10-01
PublicationDate_xml – month: 10
  year: 2008
  text: 20081000
PublicationDecade 2000
PublicationPlace Heidelberg
PublicationPlace_xml – name: Heidelberg
PublicationTitle Transactions of Tianjin University
PublicationTitleAbbrev Trans. Tianjin Univ
PublicationTitleAlternate Transactions of Tianjin University
PublicationTitle_FL TRANSACTIONS OF TIANJIN UNIVERSITY
PublicationYear 2008
Publisher Tianjin University
Engineering Institute of Corps of Engineers,PLA University of Science and Technology,Nanjing 210007,China
Publisher_xml – name: Tianjin University
– name: Engineering Institute of Corps of Engineers,PLA University of Science and Technology,Nanjing 210007,China
References Malvar L J, Tancreto J E. Analytical and tests results for water mitigation of explosion effects [C]. In: The 28th DoD Explosives Safety Seminar. Orlando, Florida, USA, 1998.
LiuM. B.LiuG. R.LamK. Y.Investigations into water mitigation using a meshless particle method [J]Shock Waves, Earth and Environmental Science, Engineering and Physics and Astronomy2002123181195
Wingerden K, Bakke J R. Water Sprays for Mitigation of Gaseous Explosions in Offshore Modules [R]. DE94777315, 1992.
Hong K, Chin L H. Water Mitigation Free Field Tests [R]. ETSC Pretest Report V. Ministry of Defence of Singapore, Lands and Estates Organization, 1998.
Forsen R, Hansson H, Carlberg A. Large Scale Test on Mitigation Effects of Water in the KLOTZ Club Installation in Aelvdalen[R]. PB97209662, 1997.
GingoldR AMonaghanJ JSmoothed particle hydrodynamics: Theory and application to non-spherical stars [J]MNRAS1977181375389
Xu Zhihong, Tang Wenhui, Zhang Ruoqi. A modified SPH method based on Riemann solution [J]. Chinese Journal of Computational Physics, 2006(6): 713–716(in Chinese).
Forsen R, Hanssan H, Carlberg C. Small scale tests on mitigation effects of water in a model of the KLOTZ club tunnel in Aelvdalen [C]. In: The 27th DoD Explosives Safety Seminar. Las Vegas, USA, 1997.
Chong W K, Lam K Y, Yeo K S et al. A comparison of simulation’s results with experiment on water mitigation of an explosion [J]. J Shock Vibration, 1999(6): 73–80.
Jones S J, Averill A F, Ingram J M et al. Mitigation of hydrogen-air explosions using fine water mist sprays [C]. In: Symposium on Hazards XIX Process Safety and Environmental Protection. Manchester, Great Britain, 2006. 440–447.
LiuX.LuS.ZhangL.The experimental study of mitigation of gas explosion by water sprays [C]2002 International Symposium on Safety Science and Technology (ISSST)20023PartB13011306
Keenan W A, Wager P C. Mitigation of confined explosion effects by placing water in proximity of explosives [C]. In: The 25th DoD Explosives Safety Seminar. Anaheim, California, USA, 1992.
Birnbaum N K, Fairlie G E, Francis N J. Numerical modeling of small scale water mitigation feasibility tests [C]. In: Proceedings of the 28th Department of Defence Explosives Safety Seminar. Orlando, FL, USA, 1998.
Cheng M, Liu Z J, Hung K C et al. Blast wave mitigation by water wall [C]. In: Proceedings of the International Conference on Protection of Structures Against Hazards. Singapore, 2002. 153–158.
WingerdenK.Mitigation of gas explosions using water deluge [J]Process Safety Progress200019317317810.1002/prs.680190309
Hansen O R, Wilkins B A, Eckhoff K. Mitigation and prevention of hydrocarbon explosions by micromist water inerting [C]. In: Major Hazards Offshore Conference, 2003. 51–59.
Hansson H, Forsen R. Mitigation Effects of Water on Ground Shock: Large Scale Testing in Aelvdalen [R]. PB97206965, 1997.
ZhaoH.Water effects on shock wave delay in free field [J]Explosion and Shock Waves20012112628
LucyL. A.Numerical approach to testing the fission hypothesis [J]Astron J19778221013102410.1086/112164
X. Liu (66_CR3) 2002; 3
66_CR8
66_CR13
66_CR9
66_CR14
66_CR6
H. Zhao (66_CR15) 2001; 21
66_CR7
66_CR18
66_CR19
66_CR1
K. Wingerden (66_CR2) 2000; 19
66_CR4
66_CR5
M. B. Liu (66_CR16) 2002; 12
L. A. Lucy (66_CR17) 1977; 82
66_CR10
66_CR11
66_CR12
References_xml – reference: Forsen R, Hanssan H, Carlberg C. Small scale tests on mitigation effects of water in a model of the KLOTZ club tunnel in Aelvdalen [C]. In: The 27th DoD Explosives Safety Seminar. Las Vegas, USA, 1997.
– reference: Wingerden K, Bakke J R. Water Sprays for Mitigation of Gaseous Explosions in Offshore Modules [R]. DE94777315, 1992.
– reference: WingerdenK.Mitigation of gas explosions using water deluge [J]Process Safety Progress200019317317810.1002/prs.680190309
– reference: GingoldR AMonaghanJ JSmoothed particle hydrodynamics: Theory and application to non-spherical stars [J]MNRAS1977181375389
– reference: LiuM. B.LiuG. R.LamK. Y.Investigations into water mitigation using a meshless particle method [J]Shock Waves, Earth and Environmental Science, Engineering and Physics and Astronomy2002123181195
– reference: Xu Zhihong, Tang Wenhui, Zhang Ruoqi. A modified SPH method based on Riemann solution [J]. Chinese Journal of Computational Physics, 2006(6): 713–716(in Chinese).
– reference: Keenan W A, Wager P C. Mitigation of confined explosion effects by placing water in proximity of explosives [C]. In: The 25th DoD Explosives Safety Seminar. Anaheim, California, USA, 1992.
– reference: Birnbaum N K, Fairlie G E, Francis N J. Numerical modeling of small scale water mitigation feasibility tests [C]. In: Proceedings of the 28th Department of Defence Explosives Safety Seminar. Orlando, FL, USA, 1998.
– reference: Hansson H, Forsen R. Mitigation Effects of Water on Ground Shock: Large Scale Testing in Aelvdalen [R]. PB97206965, 1997.
– reference: LucyL. A.Numerical approach to testing the fission hypothesis [J]Astron J19778221013102410.1086/112164
– reference: Malvar L J, Tancreto J E. Analytical and tests results for water mitigation of explosion effects [C]. In: The 28th DoD Explosives Safety Seminar. Orlando, Florida, USA, 1998.
– reference: Forsen R, Hansson H, Carlberg A. Large Scale Test on Mitigation Effects of Water in the KLOTZ Club Installation in Aelvdalen[R]. PB97209662, 1997.
– reference: Chong W K, Lam K Y, Yeo K S et al. A comparison of simulation’s results with experiment on water mitigation of an explosion [J]. J Shock Vibration, 1999(6): 73–80.
– reference: Cheng M, Liu Z J, Hung K C et al. Blast wave mitigation by water wall [C]. In: Proceedings of the International Conference on Protection of Structures Against Hazards. Singapore, 2002. 153–158.
– reference: Hong K, Chin L H. Water Mitigation Free Field Tests [R]. ETSC Pretest Report V. Ministry of Defence of Singapore, Lands and Estates Organization, 1998.
– reference: ZhaoH.Water effects on shock wave delay in free field [J]Explosion and Shock Waves20012112628
– reference: Jones S J, Averill A F, Ingram J M et al. Mitigation of hydrogen-air explosions using fine water mist sprays [C]. In: Symposium on Hazards XIX Process Safety and Environmental Protection. Manchester, Great Britain, 2006. 440–447.
– reference: LiuX.LuS.ZhangL.The experimental study of mitigation of gas explosion by water sprays [C]2002 International Symposium on Safety Science and Technology (ISSST)20023PartB13011306
– reference: Hansen O R, Wilkins B A, Eckhoff K. Mitigation and prevention of hydrocarbon explosions by micromist water inerting [C]. In: Major Hazards Offshore Conference, 2003. 51–59.
– ident: 66_CR18
  doi: 10.1093/mnras/181.3.375
– ident: 66_CR19
– volume: 12
  start-page: 181
  issue: 3
  year: 2002
  ident: 66_CR16
  publication-title: Shock Waves, Earth and Environmental Science, Engineering and Physics and Astronomy
– volume: 3
  start-page: 1301
  issue: PartB
  year: 2002
  ident: 66_CR3
  publication-title: 2002 International Symposium on Safety Science and Technology (ISSST)
– ident: 66_CR9
– ident: 66_CR8
– ident: 66_CR13
  doi: 10.1155/1999/790873
– ident: 66_CR1
– volume: 19
  start-page: 173
  issue: 3
  year: 2000
  ident: 66_CR2
  publication-title: Process Safety Progress
  doi: 10.1002/prs.680190309
– ident: 66_CR6
– ident: 66_CR7
– ident: 66_CR5
– ident: 66_CR4
– ident: 66_CR10
– volume: 82
  start-page: 1013
  issue: 2
  year: 1977
  ident: 66_CR17
  publication-title: Astron J
  doi: 10.1086/112164
– volume: 21
  start-page: 26
  issue: 1
  year: 2001
  ident: 66_CR15
  publication-title: Explosion and Shock Waves
– ident: 66_CR11
– ident: 66_CR12
– ident: 66_CR14
SSID ssj0049071
Score 1.7231178
Snippet The water mitigation effect on the propagation of shock wave was investigated numerically. The traditional smoothed particle hydrodynamics (SPH) method was...
The water mitigation effect on the propagation of shock wave was investigated numerically. The traditional smoothed particle hydrodynamics (SPH) method was...
O4; The water mitigation effect on the propagation of shock wave was investigated numerically.The traditionaf smoothed particle hydrodynamics(SPH)method was...
SourceID wanfang
proquest
crossref
springer
chongqing
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 387
SubjectTerms Engineering
Humanities and Social Sciences
Mechanical Engineering
multidisciplinary
Science
SPH
光滑颗粒
冲击波
黎曼几何解
Title Numerical Simulation of Water Mitigation Effects on Shock Wave with SPH Method
URI http://lib.cqvip.com/qk/85460X/20085/28386369.html
https://link.springer.com/article/10.1007/s12209-008-0066-y
https://www.proquest.com/docview/35519342
https://d.wanfangdata.com.cn/periodical/tianjdxxb-e200805014
Volume 14
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVLSH
  databaseName: SpringerLink Journals
  customDbUrl:
  mediaType: online
  eissn: 1995-8196
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0049071
  issn: 1006-4982
  databaseCode: AFBBN
  dateStart: 20080201
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVAVX
  databaseName: SpringerLINK - Czech Republic Consortium
  customDbUrl:
  eissn: 1995-8196
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0049071
  issn: 1006-4982
  databaseCode: AGYKE
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: http://link.springer.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: SpringerLink Journals (ICM)
  customDbUrl:
  eissn: 1995-8196
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0049071
  issn: 1006-4982
  databaseCode: U2A
  dateStart: 20081001
  isFulltext: true
  titleUrlDefault: http://www.springerlink.com/journals/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fb9MwED6x7gUegA0QZTD8ABI_lClxHcd5rNBGBaJCYpXGkxU79ja2pbC0sPHXc9fY7UBo0t6iyHES3_nuO5_9HcALURTSq7pOHJo_ClBUYqwpEsnTwninlMjo7PCnsRxNxIeD_CCc427jbveYklxY6tVhN85pIZ_S9egnk8s1WM8pPunB-vD914-70QALjPcWcRYFy6JUPCYz_9cJUSocTZvDH_jCv13TCm8uU6SLgz2Nr5rDKz5o7x7sx6_vtp6c7MxnZsf-_ofY8Ya_dx_uBkzKhp0SbcAt12zCnStMhZuwEWxAy14FourXD2A8nnf5nlPWHp-FOmBs6tkvBLDn7Oy44-_Ae2HXCMPL9ggtMLb46RitAbMvn0esK2P9ECZ7u_vvRkmoz5BYXiqR1IO0qjG8c6UoTV1Yz61IRSVlUZmskCbPPMZDuahl5lDs1nrjXOHIxBAHTT54BL1m2rjHwHhuUSmct3xgBEJShQqOkaTyiF9Mncs-bC3FhP7dnhBrlUZopORAln1Io-C0DdTmVGHjVK9ImWl09aLkJo6uvuzDm-Uj3ztej-saP4_aoHH2UUqlatx03mpEa4iABe_D2yhVHYxAe11_L4MerRqTPf9WX1wY7WhLSkr53ic36nULbvNI1ps9hd7sfO6eIWKame0wQ7ZhbcKHfwBR1QyH
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwEB7R5UB7KI8WdUtbfACpDwUlXsdxjggBWx6rSl0kerJixwYKZFuy2wK_nvHG3oWqQuIWRc4k8YzH33jsbwDWWJZxK8oyMuj-XIAiIqVVFnEaZ8oaIVjizg4f9nj3iO0dp8f-HHcddruHlOTYU08Pu1HqFvJduh7nyejmGcyyBIW1YHZz98f-dnDADOO9cZzlgmWWCxqSmf8T4igVTgfVyW984cOpaYo3JynS8cGeyhbVyb05aGce-uHrm60n5xujodrQt_8QOz7x9xbgpcekZLMxokWYMdUSvLjHVLgEi94H1OSjJ6r-9Ap6vVGT77kg9dmlrwNGBpb8RQB7RS7PGv4OvOd3jRC8rE_RA2OLP4a4NWDy_VuXNGWsX8PRznZ_qxv5-gyRprlgUdmJixLDO5OzXJWZtlSzmBWcZ4VKMq7SxGI8lLKSJwbVrrVVxmTGuRjHQZN2lqFVDSrzBghNNRqFsZp2FENIKtDAMZIUFvGLKlPehpWJmnB-1-eOtUoiNBK8w_M2xEFxUntqc1dh40JOSZld78pxyU3sXXnThs-TR341vB6PNV4N1iBx9LmUSlGZwaiWiNYQATPahi9Bq9I7gfoxeevejqaNnT__WV5fK2nclpTY5XvfPknqKsx1-4cH8uBrb38FntNA3Ju8g9bwamTeI3oaqg9-tNwBy2gOjw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwEB61VKraAwLaii2l-NBKfSgi8TqOc0TQ1fa1QmpX4mbFL6CFLJDdFv59ZzbOLpUqpN6iyHEkjz3zfR77G4BXoihkUM4lHt0fERSVGGuKRPK0MMErJTK6O_x1JIdj8ekoP4p1TpvutHuXkmzvNJBKUz3dvXBhd3nxjXPa1KfUPcbM5OY-PBAYqol9jfle54oFMr854yLaLErFu7Tmv7ogcYWTSX18ib_-O0gtkeciWTq_4lOHqj6-FY0Ga7AaYSTba-2-Dvd8vQGPb4kLbsB6XLYNexO1pd8-gdFo1qZozlhzeh5Ld7FJYL8Rc16x89NWcgPfxYMeDB-bE3Sa2OKXZ7Rty74dDllbefopjAcfvu8Pk1hSIbG8VCJx_bRyyMh8KUrjChu4FamopCwqkxXS5FlACpMLJzOPlrI2GO8LT16BZGPy_jNYqSe13wTGc4t29MHyvhGIIhXOSSR_KiDkMC6XPdhajCeGZPuThKY0ohkl-7LsQdqNsLZRjZyKYpzppY4yGUjPq2SigfRND94tPrlopTjuarzTmU3jgqEsSFX7yazRCLAQtAreg_edNXVct81d_b2OBl82Jhf8w11fG-3pFElKKdrn_9XrDjw8PBjoLx9Hn7fgEe-kdrMXsDK9mvltxDtT83I-p_8AGwH1ug
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Numerical+simulation+of+water+mitigation+effects+on+shock+wave+with+SPH+method&rft.jtitle=Transactions+of+Tianjin+University&rft.au=Mao%2C+Yiming&rft.au=Zhang%2C+Yadong&rft.au=Gao%2C+Zhenru&rft.date=2008-10-01&rft.issn=1006-4982&rft.volume=14&rft.issue=5&rft.spage=387&rft.epage=390&rft_id=info:doi/10.1007%2Fs12209-008-0066-y&rft.externalDBID=NO_FULL_TEXT
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fimage.cqvip.com%2Fvip1000%2Fqk%2F85460X%2F85460X.jpg
http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Ftianjdxxb-e%2Ftianjdxxb-e.jpg