PA‐ResSeg: A phase attention residual network for liver tumor segmentation from multiphase CT images

Purpose Liver tumor segmentation is a crucial prerequisite for computer‐aided diagnosis of liver tumors. In the clinical diagnosis of liver tumors, radiologists usually examine multiphase CT images as these images provide abundant and complementary information of tumors. However, most known automati...

Full description

Saved in:
Bibliographic Details
Published inMedical physics (Lancaster) Vol. 48; no. 7; pp. 3752 - 3766
Main Authors Xu, Yingying, Cai, Ming, Lin, Lanfen, Zhang, Yue, Hu, Hongjie, Peng, Zhiyi, Zhang, Qiaowei, Chen, Qingqing, Mao, Xiongwei, Iwamoto, Yutaro, Han, Xian‐Hua, Chen, Yen‐Wei, Tong, Ruofeng
Format Journal Article
LanguageEnglish
Published 01.07.2021
Subjects
Online AccessGet full text
ISSN0094-2405
2473-4209
2473-4209
DOI10.1002/mp.14922

Cover

Abstract Purpose Liver tumor segmentation is a crucial prerequisite for computer‐aided diagnosis of liver tumors. In the clinical diagnosis of liver tumors, radiologists usually examine multiphase CT images as these images provide abundant and complementary information of tumors. However, most known automatic segmentation methods extract tumor features from CT images merely of a single phase, in which valuable multiphase information is ignored. Therefore, it is highly demanded to develop a method effectively incorporating multiphase information for automatic and accurate liver tumor segmentation. Methods In this paper, we propose a phase attention residual network (PA‐ResSeg) to model multiphase features for accurate liver tumor segmentation. A phase attention (PA) is newly proposed to additionally exploit the images of arterial (ART) phase to facilitate the segmentation of portal venous (PV) phase. The PA block consists of an intraphase attention (intra‐PA) module and an interphase attention (inter‐PA) module to capture channel‐wise self‐dependencies and cross‐phase interdependencies, respectively. Thus, it enables the network to learn more representative multiphase features by refining the PV features according to the channel dependencies and recalibrating the ART features based on the learned interdependencies between phases. We propose a PA‐based multiscale fusion (MSF) architecture to embed the PA blocks in the network at multiple levels along the encoding path to fuse multiscale features from multiphase images. Moreover, a 3D boundary‐enhanced loss (BE‐loss) is proposed for training to make the network more sensitive to boundaries. Results To evaluate the performance of our proposed PA‐ResSeg, we conducted experiments on a multiphase CT dataset of focal liver lesions (MPCT‐FLLs). Experimental results show the effectiveness of the proposed method by achieving a dice per case (DPC) of 0.7787, a dice global (DG) of 0.8682, a volumetric overlap error (VOE) of 0.3328, and a relative volume difference (RVD) of 0.0443 on the MPCT‐FLLs. Furthermore, to validate the effectiveness and robustness of PA‐ResSeg, we conducted extra experiments on another multiphase liver tumor dataset and obtained a DPC of 0.8290, a DG of 0.9132, a VOE of 0.2637, and a RVD of 0.0163. The proposed method shows its robustness and generalization capability in different datasets and different backbones. Conclusions The study demonstrates that our method can effectively model information from multiphase CT images to segment liver tumors and outperforms other state‐of‐the‐art methods. The PA‐based MSF method can learn more representative multiphase features at multiple scales and thereby improve the segmentation performance. Besides, the proposed 3D BE‐loss is conducive to tumor boundary segmentation by enforcing the network focus on boundary regions and marginal slices. Experimental results evaluated by quantitative metrics demonstrate the superiority of our PA‐ResSeg over the best‐known methods.
AbstractList Purpose Liver tumor segmentation is a crucial prerequisite for computer‐aided diagnosis of liver tumors. In the clinical diagnosis of liver tumors, radiologists usually examine multiphase CT images as these images provide abundant and complementary information of tumors. However, most known automatic segmentation methods extract tumor features from CT images merely of a single phase, in which valuable multiphase information is ignored. Therefore, it is highly demanded to develop a method effectively incorporating multiphase information for automatic and accurate liver tumor segmentation. Methods In this paper, we propose a phase attention residual network (PA‐ResSeg) to model multiphase features for accurate liver tumor segmentation. A phase attention (PA) is newly proposed to additionally exploit the images of arterial (ART) phase to facilitate the segmentation of portal venous (PV) phase. The PA block consists of an intraphase attention (intra‐PA) module and an interphase attention (inter‐PA) module to capture channel‐wise self‐dependencies and cross‐phase interdependencies, respectively. Thus, it enables the network to learn more representative multiphase features by refining the PV features according to the channel dependencies and recalibrating the ART features based on the learned interdependencies between phases. We propose a PA‐based multiscale fusion (MSF) architecture to embed the PA blocks in the network at multiple levels along the encoding path to fuse multiscale features from multiphase images. Moreover, a 3D boundary‐enhanced loss (BE‐loss) is proposed for training to make the network more sensitive to boundaries. Results To evaluate the performance of our proposed PA‐ResSeg, we conducted experiments on a multiphase CT dataset of focal liver lesions (MPCT‐FLLs). Experimental results show the effectiveness of the proposed method by achieving a dice per case (DPC) of 0.7787, a dice global (DG) of 0.8682, a volumetric overlap error (VOE) of 0.3328, and a relative volume difference (RVD) of 0.0443 on the MPCT‐FLLs. Furthermore, to validate the effectiveness and robustness of PA‐ResSeg, we conducted extra experiments on another multiphase liver tumor dataset and obtained a DPC of 0.8290, a DG of 0.9132, a VOE of 0.2637, and a RVD of 0.0163. The proposed method shows its robustness and generalization capability in different datasets and different backbones. Conclusions The study demonstrates that our method can effectively model information from multiphase CT images to segment liver tumors and outperforms other state‐of‐the‐art methods. The PA‐based MSF method can learn more representative multiphase features at multiple scales and thereby improve the segmentation performance. Besides, the proposed 3D BE‐loss is conducive to tumor boundary segmentation by enforcing the network focus on boundary regions and marginal slices. Experimental results evaluated by quantitative metrics demonstrate the superiority of our PA‐ResSeg over the best‐known methods.
Liver tumor segmentation is a crucial prerequisite for computer-aided diagnosis of liver tumors. In the clinical diagnosis of liver tumors, radiologists usually examine multiphase CT images as these images provide abundant and complementary information of tumors. However, most known automatic segmentation methods extract tumor features from CT images merely of a single phase, in which valuable multiphase information is ignored. Therefore, it is highly demanded to develop a method effectively incorporating multiphase information for automatic and accurate liver tumor segmentation.PURPOSELiver tumor segmentation is a crucial prerequisite for computer-aided diagnosis of liver tumors. In the clinical diagnosis of liver tumors, radiologists usually examine multiphase CT images as these images provide abundant and complementary information of tumors. However, most known automatic segmentation methods extract tumor features from CT images merely of a single phase, in which valuable multiphase information is ignored. Therefore, it is highly demanded to develop a method effectively incorporating multiphase information for automatic and accurate liver tumor segmentation.In this paper, we propose a phase attention residual network (PA-ResSeg) to model multiphase features for accurate liver tumor segmentation. A phase attention (PA) is newly proposed to additionally exploit the images of arterial (ART) phase to facilitate the segmentation of portal venous (PV) phase. The PA block consists of an intraphase attention (intra-PA) module and an interphase attention (inter-PA) module to capture channel-wise self-dependencies and cross-phase interdependencies, respectively. Thus, it enables the network to learn more representative multiphase features by refining the PV features according to the channel dependencies and recalibrating the ART features based on the learned interdependencies between phases. We propose a PA-based multiscale fusion (MSF) architecture to embed the PA blocks in the network at multiple levels along the encoding path to fuse multiscale features from multiphase images. Moreover, a 3D boundary-enhanced loss (BE-loss) is proposed for training to make the network more sensitive to boundaries.METHODSIn this paper, we propose a phase attention residual network (PA-ResSeg) to model multiphase features for accurate liver tumor segmentation. A phase attention (PA) is newly proposed to additionally exploit the images of arterial (ART) phase to facilitate the segmentation of portal venous (PV) phase. The PA block consists of an intraphase attention (intra-PA) module and an interphase attention (inter-PA) module to capture channel-wise self-dependencies and cross-phase interdependencies, respectively. Thus, it enables the network to learn more representative multiphase features by refining the PV features according to the channel dependencies and recalibrating the ART features based on the learned interdependencies between phases. We propose a PA-based multiscale fusion (MSF) architecture to embed the PA blocks in the network at multiple levels along the encoding path to fuse multiscale features from multiphase images. Moreover, a 3D boundary-enhanced loss (BE-loss) is proposed for training to make the network more sensitive to boundaries.To evaluate the performance of our proposed PA-ResSeg, we conducted experiments on a multiphase CT dataset of focal liver lesions (MPCT-FLLs). Experimental results show the effectiveness of the proposed method by achieving a dice per case (DPC) of 0.7787, a dice global (DG) of 0.8682, a volumetric overlap error (VOE) of 0.3328, and a relative volume difference (RVD) of 0.0443 on the MPCT-FLLs. Furthermore, to validate the effectiveness and robustness of PA-ResSeg, we conducted extra experiments on another multiphase liver tumor dataset and obtained a DPC of 0.8290, a DG of 0.9132, a VOE of 0.2637, and a RVD of 0.0163. The proposed method shows its robustness and generalization capability in different datasets and different backbones.RESULTSTo evaluate the performance of our proposed PA-ResSeg, we conducted experiments on a multiphase CT dataset of focal liver lesions (MPCT-FLLs). Experimental results show the effectiveness of the proposed method by achieving a dice per case (DPC) of 0.7787, a dice global (DG) of 0.8682, a volumetric overlap error (VOE) of 0.3328, and a relative volume difference (RVD) of 0.0443 on the MPCT-FLLs. Furthermore, to validate the effectiveness and robustness of PA-ResSeg, we conducted extra experiments on another multiphase liver tumor dataset and obtained a DPC of 0.8290, a DG of 0.9132, a VOE of 0.2637, and a RVD of 0.0163. The proposed method shows its robustness and generalization capability in different datasets and different backbones.The study demonstrates that our method can effectively model information from multiphase CT images to segment liver tumors and outperforms other state-of-the-art methods. The PA-based MSF method can learn more representative multiphase features at multiple scales and thereby improve the segmentation performance. Besides, the proposed 3D BE-loss is conducive to tumor boundary segmentation by enforcing the network focus on boundary regions and marginal slices. Experimental results evaluated by quantitative metrics demonstrate the superiority of our PA-ResSeg over the best-known methods.CONCLUSIONSThe study demonstrates that our method can effectively model information from multiphase CT images to segment liver tumors and outperforms other state-of-the-art methods. The PA-based MSF method can learn more representative multiphase features at multiple scales and thereby improve the segmentation performance. Besides, the proposed 3D BE-loss is conducive to tumor boundary segmentation by enforcing the network focus on boundary regions and marginal slices. Experimental results evaluated by quantitative metrics demonstrate the superiority of our PA-ResSeg over the best-known methods.
Author Chen, Yen‐Wei
Tong, Ruofeng
Peng, Zhiyi
Xu, Yingying
Hu, Hongjie
Cai, Ming
Han, Xian‐Hua
Zhang, Yue
Chen, Qingqing
Zhang, Qiaowei
Lin, Lanfen
Iwamoto, Yutaro
Mao, Xiongwei
Author_xml – sequence: 1
  givenname: Yingying
  surname: Xu
  fullname: Xu, Yingying
  organization: Research Center for Healthcare Data Science
– sequence: 2
  givenname: Ming
  surname: Cai
  fullname: Cai, Ming
  email: cm@zju.edu.cn
  organization: Zhejiang University
– sequence: 3
  givenname: Lanfen
  surname: Lin
  fullname: Lin, Lanfen
  organization: Zhejiang University
– sequence: 4
  givenname: Yue
  surname: Zhang
  fullname: Zhang, Yue
  organization: Zhejiang University
– sequence: 5
  givenname: Hongjie
  surname: Hu
  fullname: Hu, Hongjie
  organization: Zhejiang University
– sequence: 6
  givenname: Zhiyi
  surname: Peng
  fullname: Peng, Zhiyi
  organization: Zhejiang University
– sequence: 7
  givenname: Qiaowei
  surname: Zhang
  fullname: Zhang, Qiaowei
  organization: Zhejiang University
– sequence: 8
  givenname: Qingqing
  surname: Chen
  fullname: Chen, Qingqing
  organization: Zhejiang University
– sequence: 9
  givenname: Xiongwei
  surname: Mao
  fullname: Mao, Xiongwei
  organization: Zhejiang University
– sequence: 10
  givenname: Yutaro
  surname: Iwamoto
  fullname: Iwamoto, Yutaro
  organization: Ritsumeikan University
– sequence: 11
  givenname: Xian‐Hua
  surname: Han
  fullname: Han, Xian‐Hua
  organization: Yamaguchi University
– sequence: 12
  givenname: Yen‐Wei
  surname: Chen
  fullname: Chen, Yen‐Wei
  organization: Ritsumeikan University
– sequence: 13
  givenname: Ruofeng
  surname: Tong
  fullname: Tong, Ruofeng
  organization: Research Center for Healthcare Data Science
BookMark eNp10EtOwzAQBmALFYm2IHEEL9mkTPxIE3ZVxUsqooKyjlx3UgzOAzuh6o4jcEZOQmgQbMCbsTTf_NLMgPSKskBCjkMYhQDsNK9GoUgY2yN9JsY8EAySHukDJCJgAuQBGXj_BAARl9An2Xzy8fZ-h_4e12d0QqtH5ZGqusaiNmVBHXqzapSlBdab0j3TrHTUmld0tG7y9u9xnbdW7XTmypzmja1NlzNdUJOrNfpDsp8p6_Houw7Jw8X5YnoVzG4vr6eTWaBZErMg4jGPBOJqjAJYgrGOQ0SQgDocS6aTSMhoKSXKOFQAknOegFi23RWHpY75kJx0uZUrXxr0dZobr9FaVWDZ-JRJxnjSPt7SUUe1K713mKXadGvUThmbhpB-HTTNq3R30N_sn4HKtdu57V806OjGWNz-69Kbeec_Af-uhpo
CitedBy_id crossref_primary_10_1109_ACCESS_2023_3332910
crossref_primary_10_1016_j_patcog_2023_110233
crossref_primary_10_1109_TMI_2023_3275592
crossref_primary_10_1016_j_cmpb_2023_107997
crossref_primary_10_1016_j_semradonc_2022_06_002
crossref_primary_10_1007_s11548_022_02653_9
crossref_primary_10_1016_j_bspc_2025_107745
crossref_primary_10_1109_JBHI_2024_3403199
crossref_primary_10_1016_j_bspc_2023_105561
crossref_primary_10_1016_j_compbiomed_2024_108746
crossref_primary_10_3389_fonc_2024_1415859
crossref_primary_10_1007_s11227_023_05524_5
crossref_primary_10_1016_j_compeleceng_2021_107626
crossref_primary_10_1186_s12885_025_13529_x
crossref_primary_10_1109_LSP_2024_3356414
crossref_primary_10_1109_TRPMS_2024_3398360
crossref_primary_10_3390_diagnostics14232761
crossref_primary_10_3934_mbe_2024253
crossref_primary_10_1145_3712297
crossref_primary_10_1016_j_media_2022_102675
crossref_primary_10_3390_info15080493
crossref_primary_10_1016_j_isci_2023_108183
crossref_primary_10_3390_bioengineering10080899
Cites_doi 10.1016/j.artmed.2018.11.007
10.1109/TMI.2018.2791721
10.1109/TBME.2013.2267212
10.1016/j.jocs.2018.12.003
10.1007/s11548-016-1481-5
10.1016/j.media.2017.01.002
10.1016/j.media.2019.02.010
10.1007/s11548-016-1493-1
10.1016/j.nicl.2017.01.033
10.1155/2018/4769596
10.1007/978-3-319-13692-9_7
10.2197/ipsjjip.24.320
10.1007/s11548-015-1323-x
10.1007/s11760-011-0223-y
10.1109/ICASSP40776.2020.9053405
10.1016/0021-9991(88)90002-2
10.1016/0098-3004(84)90020-7
10.1109/ICIP.2019.8802942
10.1016/j.artmed.2017.03.008
10.1109/CVPR.2019.00326
10.1109/TMI.2018.2845918
10.1016/j.neuroimage.2017.04.041
10.1007/s11548-017-1671-9
10.1007/978-3-319-46723-8_48
10.1007/978-3-030-00889-5_1
10.1109/TMI.2019.2948320
10.1007/978-3-030-00934-2_74
10.1002/cncr.29936
10.1016/j.compmedimag.2015.08.003
10.1007/978-3-030-32226-7_20
10.1007/s11548-019-01989-z
10.1007/978-3-319-24574-4_28
10.1016/j.media.2016.07.007
10.1016/j.media.2017.10.002
10.1002/igs.1016
10.1016/j.compbiomed.2010.10.007
ContentType Journal Article
Copyright 2021 American Association of Physicists in Medicine
2021 American Association of Physicists in Medicine.
Copyright_xml – notice: 2021 American Association of Physicists in Medicine
– notice: 2021 American Association of Physicists in Medicine.
DBID AAYXX
CITATION
7X8
DOI 10.1002/mp.14922
DatabaseName CrossRef
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Physics
EISSN 2473-4209
EndPage 3766
ExternalDocumentID 10_1002_mp_14922
MP14922
Genre article
GrantInformation_xml – fundername: Major Scientific Project of Zhejiang Lab
  funderid: 2020ND8AD01
– fundername: China Postdoctoral Science Foundation
  funderid: 2020TQ0293
– fundername: Japanese Ministry for Education, Science, Culture and Sports
  funderid: 20KK0234; 21H03470; 20K21821; HTKJ2019KL502005
GroupedDBID ---
--Z
-DZ
.GJ
0R~
1OB
1OC
29M
2WC
33P
36B
3O-
4.4
53G
5GY
5RE
5VS
AAHHS
AAHQN
AAIPD
AAMNL
AANLZ
AAQQT
AASGY
AAXRX
AAYCA
AAZKR
ABCUV
ABDPE
ABEFU
ABFTF
ABJNI
ABLJU
ABQWH
ABTAH
ABXGK
ACAHQ
ACBEA
ACCFJ
ACCZN
ACGFO
ACGFS
ACGOF
ACPOU
ACXBN
ACXQS
ADBBV
ADBTR
ADKYN
ADOZA
ADXAS
ADZMN
AEEZP
AEGXH
AEIGN
AENEX
AEQDE
AEUYR
AFBPY
AFFPM
AFWVQ
AHBTC
AIACR
AIAGR
AITYG
AIURR
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMYDB
ASPBG
BFHJK
C45
CS3
DCZOG
DRFUL
DRMAN
DRSTM
DU5
EBD
EBS
EJD
EMB
EMOBN
F5P
HDBZQ
HGLYW
I-F
KBYEO
LATKE
LEEKS
LOXES
LUTES
LYRES
MEWTI
O9-
OVD
P2P
P2W
PALCI
PHY
RJQFR
RNS
ROL
SAMSI
SUPJJ
SV3
TEORI
TN5
TWZ
USG
WOHZO
WXSBR
XJT
ZGI
ZVN
ZXP
ZY4
ZZTAW
AAMMB
AAYXX
ADMLS
AEFGJ
AEYWJ
AGHNM
AGXDD
AGYGG
AIDQK
AIDYY
AIQQE
CITATION
LH4
7X8
ID FETCH-LOGICAL-c2982-638364eed7e4029e8c81ee050ec1752c96456b55e581a005333904bec1d30bc83
ISSN 0094-2405
2473-4209
IngestDate Thu Sep 04 17:20:13 EDT 2025
Wed Oct 01 04:33:07 EDT 2025
Thu Apr 24 23:04:08 EDT 2025
Wed Jan 22 16:29:31 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 7
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c2982-638364eed7e4029e8c81ee050ec1752c96456b55e581a005333904bec1d30bc83
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 2522399993
PQPubID 23479
PageCount 15
ParticipantIDs proquest_miscellaneous_2522399993
crossref_citationtrail_10_1002_mp_14922
crossref_primary_10_1002_mp_14922
wiley_primary_10_1002_mp_14922_MP14922
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate July 2021
2021-07-00
20210701
PublicationDateYYYYMMDD 2021-07-01
PublicationDate_xml – month: 07
  year: 2021
  text: July 2021
PublicationDecade 2020
PublicationTitle Medical physics (Lancaster)
PublicationYear 2021
References 2017; 83
2019; 97
2019; 30
2010
2019; 54
2019; 14
2020; 39
2016; 122
1988; 79
2013; 7
2018; 43
2016; 15
2016; 11
2015; 45
2018; 2018
2018; 170
2017; 37
2001
2017; 14
2001; 6
2020
1984; 10
2017; 35
2017; 12
2019
2011; 41
2013; 60
2018
2017
2016
2015
2014
2008; 41
2018; 37
2016; 24
2018; 13
e_1_2_10_23_1
e_1_2_10_46_1
e_1_2_10_24_1
Moghbel M (e_1_2_10_32_1) 2016; 15
e_1_2_10_45_1
e_1_2_10_21_1
e_1_2_10_22_1
e_1_2_10_43_1
e_1_2_10_42_1
e_1_2_10_20_1
e_1_2_10_41_1
e_1_2_10_40_1
e_1_2_10_2_1
e_1_2_10_4_1
e_1_2_10_18_1
e_1_2_10_3_1
e_1_2_10_19_1
e_1_2_10_6_1
e_1_2_10_16_1
e_1_2_10_39_1
e_1_2_10_5_1
e_1_2_10_17_1
e_1_2_10_38_1
e_1_2_10_8_1
e_1_2_10_14_1
e_1_2_10_37_1
e_1_2_10_7_1
e_1_2_10_15_1
e_1_2_10_36_1
e_1_2_10_12_1
e_1_2_10_35_1
e_1_2_10_9_1
e_1_2_10_13_1
e_1_2_10_34_1
e_1_2_10_10_1
e_1_2_10_33_1
e_1_2_10_11_1
e_1_2_10_31_1
e_1_2_10_30_1
Hahnloser RHR (e_1_2_10_44_1) 2001
e_1_2_10_29_1
e_1_2_10_27_1
Wong D (e_1_2_10_26_1) 2008; 41
e_1_2_10_28_1
e_1_2_10_25_1
e_1_2_10_47_1
References_xml – start-page: 234
  year: 2015
  end-page: 241
– volume: 170
  start-page: 446
  year: 2018
  end-page: 455
  article-title: VoxResNet: deep voxelwise residual networks for brain segmentation from 3D MR images
  publication-title: NeuroImage
– start-page: 1055
  year: 2020
  end-page: 1059
– volume: 24
  start-page: 320
  year: 2016
  end-page: 329
  article-title: Simultaneous segmentation of multiple organs using random walks
  publication-title: J Inform Process
– volume: 97
  start-page: 105
  year: 2019
  end-page: 117
  article-title: CT liver tumor segmentation hybrid approach using neutrosophic sets, fast fuzzy c‐means and adaptive watershed algorithm
  publication-title: Artif Intell Med
– volume: 30
  start-page: 174
  year: 2019
  end-page: 182
  article-title: Multi‐grade brain tumor classification using deep CNN with extensive data augmentation
  publication-title: J Comput Sci
– volume: 41
  start-page: 159
  year: 2008
  article-title: A semi‐automated method for liver tumor segmentation based on 2d region growing with knowledge‐based constraints
  publication-title: MICCAI workshop
– volume: 11
  start-page: 1267
  year: 2016
  end-page: 1283
  article-title: Improved segmentation of low‐contrast lesions using sigmoid edge model
  publication-title: Int J Comput Assist Radiol Surg
– start-page: 415
  year: 2016
  end-page: 423
– volume: 6
  start-page: 131
  year: 2001
  end-page: 142
  article-title: Fully automatic anatomical, pathological, and functional segmentation from ct scans for hepatic surgery
  publication-title: Comput Aided Surg
– volume: 41
  start-page: 1
  year: 2011
  end-page: 10
  article-title: Integrating spatial fuzzy clustering with level set methods for automated medical image segmentation
  publication-title: Comput Biol Med
– start-page: 3146
  year: 2019
  end-page: 3154
– volume: 13
  start-page: 151
  year: 2018
  end-page: 164
  article-title: Texture‐specific bag of visual words model and spatial cone matching‐based method for the retrieval of focal liver lesions using multiphase contrast‐enhanced CT images
  publication-title: Int J Comput Assist Radiol Surg
– volume: 83
  start-page: 58
  year: 2017
  end-page: 66
  article-title: Automatic segmentation of liver tumors from multiphase contrast‐enhanced CT images based on FCNs
  publication-title: Artif Intell Med
– volume: 45
  start-page: 75
  year: 2015
  end-page: 83
  article-title: Non‐rigid image registration with anatomical structure constraint for assessing locoregional therapy of hepatocellular carcinoma
  publication-title: Comput Med Imaging Graph
– volume: 79
  start-page: 12
  year: 1988
  end-page: 49
  article-title: Fronts propagation with curvature‐dependent speed: algorithms based on hamiton‐jacobi formulations
  publication-title: Comput Phys
– volume: 60
  start-page: 2967
  year: 2013
  end-page: 2977
  article-title: A likelihood and local constraint level set model for liver tumor segmentation from CT volumes
  publication-title: IEEE Trans Biomed Eng
– start-page: 3
  year: 2018
  end-page: 11
– start-page: 74
  year: 2014
  end-page: 83
– volume: 2018
  start-page: 1
  year: 2018
  end-page: 26
  article-title: A unified level set framework combining hybrid algorithms for liver and liver tumor segmentation in CT images
  publication-title: Biomed Res Int
– volume: 39
  start-page: 1316
  year: 2020
  end-page: 1325
  article-title: Modified U‐Net (mU‐Net) with incorporation of object‐dependent high level features for improved liver and liver‐tumor segmentation in CT images
  publication-title: IEEE Trans Med Imaging
– volume: 37
  start-page: 46
  year: 2017
  end-page: 55
  article-title: Adaptive local window for level set segmentation of ct and mri liver lesions
  publication-title: Med Image Anal
– year: 2014
– year: 2010
– start-page: 175
  year: 2019
  end-page: 184
– start-page: 666
  year: 2018
  end-page: 675
– volume: 12
  start-page: 205
  year: 2017
  end-page: 221
  article-title: Automated liver segmentation from a postmortem CT scan based on a statistical shape model
  publication-title: Int J Comput Assist Radiol Surg
– volume: 7
  start-page: 163
  year: 2013
  end-page: 172
  article-title: Automatic liver and lesion segmentation: a primary step in diagnosis of liver diseases
  publication-title: Signal Image Video Process
– volume: 14
  start-page: 391
  year: 2017
  end-page: 399
  article-title: Deep multi‐scale location‐aware 3D convolutional neural networks for automated detection of lacunes of presumed vascular origin
  publication-title: Neuroimage Clin
– volume: 43
  start-page: 98
  year: 2018
  end-page: 111
  article-title: A deep learning model integrating FCNNs and CRFs for brain tumor segmentation
  publication-title: Med Image Anal
– volume: 35
  start-page: 303
  year: 2017
  end-page: 312
  article-title: Large scale deep learning for computer aided detection of mammographic lesions
  publication-title: Med Image Anal
– volume: 37
  start-page: 2663
  year: 2018
  end-page: 2674
  article-title: H‐DenseUNet: hybrid densely connected UNet for liver and tumor segmentation from CT volume
  publication-title: IEEE Trans Med Imaging
– volume: 54
  start-page: 10
  year: 2019
  end-page: 19
  article-title: Medical image classification using synergic deep learning
  publication-title: Med Image Anal
– start-page: 217
  year: 2001
  end-page: 223
  article-title: Permitted and forbidden sets in symmetric threshold‐linear networks
  publication-title: Adv Neural Inf Process Syst
– volume: 122
  start-page: 1312
  year: 2016
  end-page: 1337
  article-title: Annual Report to the Nation on the Status of Cancer, 1975–2012, featuring the increasing incidence of liver cancer
  publication-title: Cancer
– volume: 12
  start-page: 223
  year: 2017
  end-page: 233
  article-title: Scale‐adaptive supervoxel‐based random forests for liver tumor segmentation in dynamic contrast‐enhanced ct scans
  publication-title: Int J Comput Assist Radiol Surg
– volume: 14
  start-page: 1275
  year: 2019
  end-page: 1284
  article-title: Liver tissue segmentation in multiphase CT scans using cascaded convolutional neural network
  publication-title: Int J Comput Assist Radiol Surg
– start-page: 255
  year: 2019
  end-page: 259
– year: 2017
– volume: 10
  start-page: 191
  year: 1984
  end-page: 203
  article-title: FCM: the fuzzy c‐means clustering algorithm
  publication-title: Comput Geosci
– volume: 37
  start-page: 1562
  year: 2018
  end-page: 1573
  article-title: Interactive medical image segmentation using deep learning with image‐specific fine tuning
  publication-title: IEEE Trans Med Imaging
– year: 2019
– volume: 15
  start-page: 500
  year: 2016
  article-title: Automatic liver segmentation on computed tomography using random walkers for treatment planning
  publication-title: EXCLI J
– year: 2015
– ident: e_1_2_10_47_1
– ident: e_1_2_10_5_1
  doi: 10.1016/j.artmed.2018.11.007
– ident: e_1_2_10_14_1
  doi: 10.1109/TMI.2018.2791721
– ident: e_1_2_10_4_1
  doi: 10.1109/TBME.2013.2267212
– ident: e_1_2_10_16_1
  doi: 10.1016/j.jocs.2018.12.003
– ident: e_1_2_10_30_1
  doi: 10.1007/s11548-016-1481-5
– ident: e_1_2_10_28_1
  doi: 10.1016/j.media.2017.01.002
– ident: e_1_2_10_21_1
– ident: e_1_2_10_11_1
  doi: 10.1016/j.media.2019.02.010
– volume: 15
  start-page: 500
  year: 2016
  ident: e_1_2_10_32_1
  article-title: Automatic liver segmentation on computed tomography using random walkers for treatment planning
  publication-title: EXCLI J
– ident: e_1_2_10_33_1
  doi: 10.1007/s11548-016-1493-1
– start-page: 217
  year: 2001
  ident: e_1_2_10_44_1
  article-title: Permitted and forbidden sets in symmetric threshold‐linear networks
  publication-title: Adv Neural Inf Process Syst
– ident: e_1_2_10_46_1
– ident: e_1_2_10_40_1
– ident: e_1_2_10_12_1
  doi: 10.1016/j.nicl.2017.01.033
– ident: e_1_2_10_29_1
  doi: 10.1155/2018/4769596
– ident: e_1_2_10_6_1
  doi: 10.1007/978-3-319-13692-9_7
– ident: e_1_2_10_43_1
– ident: e_1_2_10_31_1
  doi: 10.2197/ipsjjip.24.320
– ident: e_1_2_10_36_1
  doi: 10.1007/s11548-015-1323-x
– ident: e_1_2_10_3_1
  doi: 10.1007/s11760-011-0223-y
– ident: e_1_2_10_18_1
  doi: 10.1109/ICASSP40776.2020.9053405
– ident: e_1_2_10_34_1
  doi: 10.1016/0021-9991(88)90002-2
– ident: e_1_2_10_35_1
  doi: 10.1016/0098-3004(84)90020-7
– ident: e_1_2_10_37_1
– ident: e_1_2_10_23_1
  doi: 10.1109/ICIP.2019.8802942
– ident: e_1_2_10_8_1
  doi: 10.1016/j.artmed.2017.03.008
– ident: e_1_2_10_45_1
  doi: 10.1109/CVPR.2019.00326
– ident: e_1_2_10_19_1
  doi: 10.1109/TMI.2018.2845918
– ident: e_1_2_10_42_1
  doi: 10.1016/j.neuroimage.2017.04.041
– ident: e_1_2_10_39_1
  doi: 10.1007/s11548-017-1671-9
– ident: e_1_2_10_7_1
  doi: 10.1007/978-3-319-46723-8_48
– ident: e_1_2_10_17_1
  doi: 10.1007/978-3-030-00889-5_1
– ident: e_1_2_10_9_1
  doi: 10.1109/TMI.2019.2948320
– ident: e_1_2_10_10_1
  doi: 10.1007/978-3-030-00934-2_74
– volume: 41
  start-page: 159
  year: 2008
  ident: e_1_2_10_26_1
  article-title: A semi‐automated method for liver tumor segmentation based on 2d region growing with knowledge‐based constraints
  publication-title: MICCAI workshop
– ident: e_1_2_10_2_1
  doi: 10.1002/cncr.29936
– ident: e_1_2_10_41_1
  doi: 10.1016/j.compmedimag.2015.08.003
– ident: e_1_2_10_20_1
  doi: 10.1007/978-3-030-32226-7_20
– ident: e_1_2_10_24_1
  doi: 10.1007/s11548-019-01989-z
– ident: e_1_2_10_38_1
  doi: 10.1007/978-3-319-24574-4_28
– ident: e_1_2_10_13_1
  doi: 10.1016/j.media.2016.07.007
– ident: e_1_2_10_22_1
– ident: e_1_2_10_15_1
  doi: 10.1016/j.media.2017.10.002
– ident: e_1_2_10_25_1
  doi: 10.1002/igs.1016
– ident: e_1_2_10_27_1
  doi: 10.1016/j.compbiomed.2010.10.007
SSID ssj0006350
Score 2.5211084
Snippet Purpose Liver tumor segmentation is a crucial prerequisite for computer‐aided diagnosis of liver tumors. In the clinical diagnosis of liver tumors,...
Liver tumor segmentation is a crucial prerequisite for computer-aided diagnosis of liver tumors. In the clinical diagnosis of liver tumors, radiologists...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 3752
SubjectTerms 3D boundary‐enhanced loss
liver tumor segmentation
multiphase CT
multiscale fusion
phase attention
Title PA‐ResSeg: A phase attention residual network for liver tumor segmentation from multiphase CT images
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fmp.14922
https://www.proquest.com/docview/2522399993
Volume 48
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 2473-4209
  dateEnd: 20241102
  omitProxy: false
  ssIdentifier: ssj0006350
  issn: 0094-2405
  databaseCode: ADMLS
  dateStart: 20070101
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwELZKVyAuCBbQlpeMhOBQBRLHTmxuUQGt0BZVbFcqp6hxJ8tKm2xFmwOcOHPiN_JLGNt5sSrSwiWNrMRROl_m4ZlvTMgz4es4yjLpacOQ4SvNvAxiDFVARbmAXDAw3OHph-jwhL9fiMVg8KNXtVRts5f6205eyf9IFcdQroYl-w-SbSfFATxH-eIRJYzHK8l4lrS1Ch9hcwynjme-_oymaWwaZ7pSRoyoHeWqdDXftrTw3BRkjLdVgecbOC1qDlLpCCeuztDOM5mPzwrUOpu-H9vkd9zCiF25NWzqpdvno11cWFRWxaN5_NqYSJvvOHMV-93QkWtlgHPkHTetXcz-VEF_dYIFbSVrq3EVNxkcl7kGO8Z4HHqc-aqvhbnsoS3uqdQwdi1ua_OMCjHaqfpdK9lijbpfMdaZtyalf8nqtbWIrm8zS4t1au-8RvYYWgh_SPaSN9Oj49auo2vmCE31GzWtjH32qnnqn85NF7H04x7ruMxvk1t1xEETB587ZADlPrkxrWsq9sn1mZPhXZLPkl_ffzokvaYJtfKnLY5ogyNa44gijqjFEbU4on0cUYMj2uGITubU4egeOXn3dj459Op9ODzNFAZgqKLDiKMzFQP3mQKpZQDgCx80Op9Mqwi98EwIEDJYWnJ3qHyOyiFYhX6mZXifDMuLEg4I5ZrpWGkVgMq5FHLJIy0yAcs4Fysp8xF50fyBqa6b1Ju9Us7Ty2IakaftlWvXmGXXNY0MUtSaJhW2LOGi2qQMww50zdE5H5HnVjh_nSSdzuzvgys88CG52X0Ej8hw-6WCx-i0brMnNZp-A56Ulvo
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=PA%E2%80%90ResSeg%3A+A+phase+attention+residual+network+for+liver+tumor+segmentation+from+multiphase+CT+images&rft.jtitle=Medical+physics+%28Lancaster%29&rft.au=Xu%2C+Yingying&rft.au=Cai%2C+Ming&rft.au=Lin%2C+Lanfen&rft.au=Zhang%2C+Yue&rft.date=2021-07-01&rft.issn=0094-2405&rft.eissn=2473-4209&rft.volume=48&rft.issue=7&rft.spage=3752&rft.epage=3766&rft_id=info:doi/10.1002%2Fmp.14922&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_mp_14922
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0094-2405&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0094-2405&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0094-2405&client=summon