Composite adaptive attitude control for combined spacecraft with inertia uncertainties
This paper examines the attitude control problem of the combined spacecraft subject to inertia uncertainties. A composite adaptive finite-time control scheme with guaranteed parameter convergence is proposed to address this challenging problem, in the absence of persistent excitation. As a stepping...
Saved in:
Published in | Aerospace science and technology Vol. 131; p. 107984 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Masson SAS
01.12.2022
|
Subjects | |
Online Access | Get full text |
ISSN | 1270-9638 1626-3219 |
DOI | 10.1016/j.ast.2022.107984 |
Cover
Abstract | This paper examines the attitude control problem of the combined spacecraft subject to inertia uncertainties. A composite adaptive finite-time control scheme with guaranteed parameter convergence is proposed to address this challenging problem, in the absence of persistent excitation. As a stepping stone, the attitude dynamics of the combined spacecraft is first established with explicit consideration of the center-of-mass variation and thruster reconfiguration. Then, a composite adaptive finite-time controller is developed based on a constructive time-varying sliding manifold, and in particular, the concurrent learning technique is used in conjunction with the dynamic regressor extension and mixing procedure to achieve parameter convergence under finite excitation that is strictly weaker than the persistent excitation. Lyapunov stability analysis shows that the derived adaptive controller can simultaneously guarantee finite-time convergence of the attitude tracking and parameter estimation errors; moreover, its robustness against inertia variations and external disturbances is also analyzed. Finally, a set of numerical simulations under ideal and practical scenarios are performed to validate the effectiveness and outperformance of the proposed method. |
---|---|
AbstractList | This paper examines the attitude control problem of the combined spacecraft subject to inertia uncertainties. A composite adaptive finite-time control scheme with guaranteed parameter convergence is proposed to address this challenging problem, in the absence of persistent excitation. As a stepping stone, the attitude dynamics of the combined spacecraft is first established with explicit consideration of the center-of-mass variation and thruster reconfiguration. Then, a composite adaptive finite-time controller is developed based on a constructive time-varying sliding manifold, and in particular, the concurrent learning technique is used in conjunction with the dynamic regressor extension and mixing procedure to achieve parameter convergence under finite excitation that is strictly weaker than the persistent excitation. Lyapunov stability analysis shows that the derived adaptive controller can simultaneously guarantee finite-time convergence of the attitude tracking and parameter estimation errors; moreover, its robustness against inertia variations and external disturbances is also analyzed. Finally, a set of numerical simulations under ideal and practical scenarios are performed to validate the effectiveness and outperformance of the proposed method. |
ArticleNumber | 107984 |
Author | Hu, Qinglei Shao, Xiaodong Xu, Yiqi |
Author_xml | – sequence: 1 givenname: Yiqi surname: Xu fullname: Xu, Yiqi organization: School of Automation Science and Electrical Engineering, Beihang University, Beijing 100191, China – sequence: 2 givenname: Qinglei surname: Hu fullname: Hu, Qinglei email: huql_buaa@buaa.edu.cn organization: School of Automation Science and Electrical Engineering, Beihang University, Beijing 100191, China – sequence: 3 givenname: Xiaodong orcidid: 0000-0003-2640-5594 surname: Shao fullname: Shao, Xiaodong email: xdshao_sasee@buaa.edu.cn organization: School of Aeronautic Science and Engineering, Beihang University, Beijing 100191, China |
BookMark | eNp9kE1LAzEQhoNUsK3-AG_7B7Ym2ewXnqT4BQUv6jVkJxOc0m5Kklb896bUk4ee5pmBZ-B9Z2wy-hEZuxV8Ibho7tYLE9NCcinz3vadumBT0cimrKToJ5lly8u-qborNotxzTmXvZJT9rn0252PlLAw1uwSHTKkRGlvsQA_puA3hfMh83agEW0RdwYQgnGp-Kb0VeRjSGSK_QgZDI2JMF6zS2c2EW_-5px9PD2-L1_K1dvz6_JhVYLs21Q6kIimBl43jhsUOICyrXOqs65yUFvTdH0zOOy5kA4GqcAqpWoFhg8wQDVn4vQXgo8xoNO7QFsTfrTg-liMXutcjD4Wo0_FZKf95wAlk-gY1tDmrHl_MjFHOhAGHYEw57YUEJK2ns7Yv11Lg5s |
CitedBy_id | crossref_primary_10_1016_j_actaastro_2024_11_014 crossref_primary_10_1016_j_actaastro_2025_03_007 crossref_primary_10_1016_j_ast_2024_108875 crossref_primary_10_1016_j_ast_2023_108688 crossref_primary_10_1017_aer_2023_78 crossref_primary_10_1016_j_ast_2023_108796 crossref_primary_10_1007_s40815_023_01661_4 crossref_primary_10_1007_s40997_024_00820_8 crossref_primary_10_1109_TAES_2023_3341058 |
Cites_doi | 10.1109/TAC.2011.2159419 10.1016/j.ast.2021.106746 10.2514/2.4837 10.2514/1.46866 10.1016/j.paerosci.2020.100678 10.2514/1.33308 10.1016/j.ast.2020.106310 10.2514/1.35188 10.2514/1.31158 10.1109/TAES.2017.2729978 10.2514/2.4415 10.1016/j.ast.2020.106331 10.1016/j.actaastro.2018.11.008 10.1016/j.ast.2021.106560 10.1016/j.ast.2020.106380 10.1109/TAC.2017.2737324 10.1109/TAC.2019.2911863 10.1002/acs.2297 10.1016/j.ast.2017.09.044 10.1016/0309-1708(91)90056-T 10.2514/1.G000457 10.1016/j.ast.2016.02.006 10.1109/TCST.2021.3076439 10.1016/j.cja.2018.12.015 |
ContentType | Journal Article |
Copyright | 2022 Elsevier Masson SAS |
Copyright_xml | – notice: 2022 Elsevier Masson SAS |
DBID | AAYXX CITATION |
DOI | 10.1016/j.ast.2022.107984 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1626-3219 |
ExternalDocumentID | 10_1016_j_ast_2022_107984 S1270963822006587 |
GroupedDBID | --K --M .~1 0R~ 1B1 1~. 1~5 23M 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO ABJNI ABMAC ABXDB ABYKQ ACDAQ ACGFS ACNNM ACRLP ADBBV ADEZE ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHJVU AHPGS AI. AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q GBLVA HVGLF HZ~ IHE J1W JJJVA KOM M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SDF SDG SDP SES SEW SPC SPCBC SST SSZ T5K T9H VH1 XPP ZMT ~G- AATTM AAXKI AAYWO AAYXX ACLOT ACVFH ADCNI AEIPS AEUPX AFJKZ AFPUW AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD |
ID | FETCH-LOGICAL-c297t-fc2eea5c056f0ae1ebc4d7ff48df3fc5da6896bfe9012fcb24cd44454ca0bcbc3 |
IEDL.DBID | .~1 |
ISSN | 1270-9638 |
IngestDate | Wed Oct 01 02:04:56 EDT 2025 Thu Apr 24 22:58:24 EDT 2025 Fri Feb 23 02:39:37 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Combined spacecraft Concurrent learning Finite-time control Dynamic regressor extension and mixing |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c297t-fc2eea5c056f0ae1ebc4d7ff48df3fc5da6896bfe9012fcb24cd44454ca0bcbc3 |
ORCID | 0000-0003-2640-5594 |
ParticipantIDs | crossref_primary_10_1016_j_ast_2022_107984 crossref_citationtrail_10_1016_j_ast_2022_107984 elsevier_sciencedirect_doi_10_1016_j_ast_2022_107984 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | December 2022 2022-12-00 |
PublicationDateYYYYMMDD | 2022-12-01 |
PublicationDate_xml | – month: 12 year: 2022 text: December 2022 |
PublicationDecade | 2020 |
PublicationTitle | Aerospace science and technology |
PublicationYear | 2022 |
Publisher | Elsevier Masson SAS |
Publisher_xml | – name: Elsevier Masson SAS |
References | Shao, Hu, Shi, Yi (br0180) 2022; 30 G. Chowdhary, E. Johnson, Concurrent learning for convergence in adaptive control without persistency of excitation, in: 49th IEEE Conference on Decision and Control, Atlanta, USA, pp. 3674–3679. Chowdhary, Johnson (br0120) 2011; 34 Costic, Dawson, Queiroz, Kapila (br0260) 2001; 24 Chowdhary, Yucelen, Mühlegg, Johnson (br0130) 2012; 27 Seo, Akella (br0270) 2008; 31 Hu, Shao, Chen (br0210) 2018; 54 Yu, Ye, Sun (br0230) 2021; 111 Johann (br0080) 1991; 14 Cho, Shin, Kim, Tsourdos (br0160) 2018; 63 Hu, Xiao, Wang (br0070) 2019; 32 Ma, Dang, Pham (br0020) 2008; 31 Wu, Zhang, Wu (br0220) 2021; 108 Ni, Liu, Wu, Wu (br0060) 2019; 163 Kamalapurkar, Walters, Dixon (br0150) 2013 Zhao, Duan (br0190) 2019; 43 Thakur, Srikant, Akella (br0050) 2015; 38 Mühlegg, Chowdhary, Johnson (br0140) 2012 Korotina, Aranovskiy, Ushirobira, Vedyakov (br0280) 2020 Guo, Zhang, Li, Song, Wang, Liu (br0240) 2021; 109 Lee, Shin, Tsourdos (br0170) 2019; 64 Liu, Yang, Yan (br0090) 2020; 107 Zhang, Dai, Wu, Xiao, Li, Wang (br0250) 2021; 114 Song, Buck, Agrawal (br0300) 1999; 22 Huang, Wang, Meng, Zhang, Liu (br0030) 2016; 51 Chang, Huang, Lu, Zhang, Meng, Liu (br0040) 2017; 71 Cai, Liao, Song (br0290) 2008; 31 Du, Li, Qian (br0200) 2011; 56 Li, She (br0010) 2021; 120 Mühlegg (10.1016/j.ast.2022.107984_br0140) 2012 Costic (10.1016/j.ast.2022.107984_br0260) 2001; 24 Hu (10.1016/j.ast.2022.107984_br0070) 2019; 32 Thakur (10.1016/j.ast.2022.107984_br0050) 2015; 38 Huang (10.1016/j.ast.2022.107984_br0030) 2016; 51 Zhao (10.1016/j.ast.2022.107984_br0190) 2019; 43 Hu (10.1016/j.ast.2022.107984_br0210) 2018; 54 Seo (10.1016/j.ast.2022.107984_br0270) 2008; 31 Ma (10.1016/j.ast.2022.107984_br0020) 2008; 31 Chowdhary (10.1016/j.ast.2022.107984_br0130) 2012; 27 Yu (10.1016/j.ast.2022.107984_br0230) 2021; 111 Shao (10.1016/j.ast.2022.107984_br0180) 2022; 30 Zhang (10.1016/j.ast.2022.107984_br0250) 2021; 114 Song (10.1016/j.ast.2022.107984_br0300) 1999; 22 Korotina (10.1016/j.ast.2022.107984_br0280) 2020 Liu (10.1016/j.ast.2022.107984_br0090) 2020; 107 Chowdhary (10.1016/j.ast.2022.107984_br0120) 2011; 34 Lee (10.1016/j.ast.2022.107984_br0170) 2019; 64 Li (10.1016/j.ast.2022.107984_br0010) 2021; 120 Cai (10.1016/j.ast.2022.107984_br0290) 2008; 31 10.1016/j.ast.2022.107984_br0110 Ni (10.1016/j.ast.2022.107984_br0060) 2019; 163 Johann (10.1016/j.ast.2022.107984_br0080) 1991; 14 Wu (10.1016/j.ast.2022.107984_br0220) 2021; 108 Du (10.1016/j.ast.2022.107984_br0200) 2011; 56 Guo (10.1016/j.ast.2022.107984_br0240) 2021; 109 Kamalapurkar (10.1016/j.ast.2022.107984_br0150) 2013 Chang (10.1016/j.ast.2022.107984_br0040) 2017; 71 Cho (10.1016/j.ast.2022.107984_br0160) 2018; 63 |
References_xml | – volume: 51 start-page: 171 year: 2016 end-page: 180 ident: br0030 article-title: Attitude takeover control for post-capture of target spacecraft using space robot publication-title: Aerosp. Sci. Technol. – volume: 108 year: 2021 ident: br0220 article-title: Preassigned finite-time attitude control for spacecraft based on time-varying barrier Lyapunov functions publication-title: Aerosp. Sci. Technol. – volume: 31 start-page: 1761 year: 2008 end-page: 1771 ident: br0020 article-title: On-orbit identification of inertia properties of spacecraft using a robotic arm publication-title: J. Guid. Control Dyn. – volume: 107 year: 2020 ident: br0090 article-title: Spacecraft attitude tracking for space debris removal using adaptive fuzzy sliding mode control publication-title: Aerosp. Sci. Technol. – volume: 27 start-page: 280 year: 2012 end-page: 321 ident: br0130 article-title: Concurrent learning adaptive control of linear systems with exponentially convergent bounds publication-title: Int. J. Adapt. Control Signal Process. – reference: G. Chowdhary, E. Johnson, Concurrent learning for convergence in adaptive control without persistency of excitation, in: 49th IEEE Conference on Decision and Control, Atlanta, USA, pp. 3674–3679. – volume: 120 year: 2021 ident: br0010 article-title: Recent advances in contact dynamics and post-capture control for combined spacecraft publication-title: Prog. Aerosp. Sci. – start-page: 1 year: 2012 end-page: 13 ident: br0140 article-title: Concurrent learning adaptive control of linear systems with noisy measurements publication-title: AIAA Guidance, Navigation, and Control Conference – volume: 54 start-page: 2 year: 2018 end-page: 17 ident: br0210 article-title: Robust fault-tolerant tracking control for spacecraft proximity operations using time-varying sliding mode publication-title: IEEE Trans. Aerosp. Electron. Syst. – volume: 111 year: 2021 ident: br0230 article-title: Finite-time resilient attitude coordination control for multiple rigid spacecraft with communication link faults publication-title: Aerosp. Sci. Technol. – start-page: 6256 year: 2013 end-page: 6261 ident: br0150 article-title: Concurrent learning-based approximate optimal regulation publication-title: 52nd IEEE Conference on Decision and Control – volume: 30 start-page: 779 year: 2022 end-page: 794 ident: br0180 article-title: Data-driven immersion and invariance adaptive attitude control for rigid bodies with double-level state constraints publication-title: IEEE Trans. Control Syst. Technol. – start-page: 53 year: 2020 end-page: 58 ident: br0280 article-title: On parameter tuning and convergence properties of the DREM procedure publication-title: European Control Conference – volume: 32 start-page: 674 year: 2019 end-page: 687 ident: br0070 article-title: Adaptive fault-tolerant attitude tracking control for spacecraft with time-varying inertia uncertainties publication-title: Chin. J. Aeronaut. – volume: 71 start-page: 464 year: 2017 end-page: 474 ident: br0040 article-title: Inertia parameters identification for cellular space robot through interaction publication-title: Aerosp. Sci. Technol. – volume: 24 start-page: 1214 year: 2001 end-page: 1222 ident: br0260 article-title: Quaternion-based adaptive attitude tracking controller without velocity measurements publication-title: J. Guid. Control Dyn. – volume: 64 start-page: 5164 year: 2019 end-page: 5170 ident: br0170 article-title: Concurrent learning adaptive control with directional forgetting publication-title: IEEE Trans. Autom. Control – volume: 31 start-page: 1456 year: 2008 end-page: 1463 ident: br0290 article-title: Indirect robust adaptive fault-tolerant control for attitude tracking of spacecraft publication-title: J. Guid. Control Dyn. – volume: 63 start-page: 811 year: 2018 end-page: 818 ident: br0160 article-title: Composite model reference adaptive control with parameter convergence under finite excitation publication-title: IEEE Trans. Autom. Control – volume: 34 start-page: 592 year: 2011 end-page: 607 ident: br0120 article-title: Theory and flight-test validation of a concurrent-learning adaptive controller publication-title: J. Guid. Control Dyn. – volume: 109 year: 2021 ident: br0240 article-title: Finite-time control for autonomous rendezvous and docking under safe constraint publication-title: Aerosp. Sci. Technol. – volume: 14 start-page: 98 year: 1991 end-page: 103 ident: br0080 article-title: Parameter identification by model reference adaptive systems publication-title: Adv. Water Resour. – volume: 43 start-page: 1 year: 2019 end-page: 11 ident: br0190 article-title: Finite-time concurrent learning adaptive control for spacecraft with inertia parameter identification publication-title: J. Guid. Control Dyn. – volume: 22 start-page: 433 year: 1999 end-page: 440 ident: br0300 article-title: Spacecraft vibration reduction using pulse-width pulse-frequency modulated input shaper publication-title: J. Guid. Control Dyn. – volume: 38 start-page: 41 year: 2015 end-page: 52 ident: br0050 article-title: Adaptive attitude-tracking control of spacecraft with uncertain time-varying inertia parameters publication-title: J. Guid. Control Dyn. – volume: 114 year: 2021 ident: br0250 article-title: Neural-networks and event-based fault-tolerant control for spacecraft attitude stabilization publication-title: Aerosp. Sci. Technol. – volume: 31 start-page: 884 year: 2008 end-page: 891 ident: br0270 article-title: High-performance spacecraft adaptive attitude-tracking control through attracting-manifold design publication-title: J. Guid. Control Dyn. – volume: 56 start-page: 2711 year: 2011 end-page: 2717 ident: br0200 article-title: Finite-time attitude tracking control of spacecraft with application to attitude synchronization publication-title: IEEE Trans. Autom. Control – volume: 163 start-page: 157 year: 2019 end-page: 167 ident: br0060 article-title: Time-varying state-space model identification of an on-orbit rigid-flexible coupling spacecraft using an improved predictor-based recursive subspace algorithm publication-title: Acta Astronaut. – volume: 56 start-page: 2711 issue: 11 year: 2011 ident: 10.1016/j.ast.2022.107984_br0200 article-title: Finite-time attitude tracking control of spacecraft with application to attitude synchronization publication-title: IEEE Trans. Autom. Control doi: 10.1109/TAC.2011.2159419 – volume: 114 year: 2021 ident: 10.1016/j.ast.2022.107984_br0250 article-title: Neural-networks and event-based fault-tolerant control for spacecraft attitude stabilization publication-title: Aerosp. Sci. Technol. doi: 10.1016/j.ast.2021.106746 – volume: 24 start-page: 1214 issue: 6 year: 2001 ident: 10.1016/j.ast.2022.107984_br0260 article-title: Quaternion-based adaptive attitude tracking controller without velocity measurements publication-title: J. Guid. Control Dyn. doi: 10.2514/2.4837 – volume: 34 start-page: 592 issue: 2 year: 2011 ident: 10.1016/j.ast.2022.107984_br0120 article-title: Theory and flight-test validation of a concurrent-learning adaptive controller publication-title: J. Guid. Control Dyn. doi: 10.2514/1.46866 – volume: 120 year: 2021 ident: 10.1016/j.ast.2022.107984_br0010 article-title: Recent advances in contact dynamics and post-capture control for combined spacecraft publication-title: Prog. Aerosp. Sci. doi: 10.1016/j.paerosci.2020.100678 – volume: 31 start-page: 884 issue: 4 year: 2008 ident: 10.1016/j.ast.2022.107984_br0270 article-title: High-performance spacecraft adaptive attitude-tracking control through attracting-manifold design publication-title: J. Guid. Control Dyn. doi: 10.2514/1.33308 – volume: 107 year: 2020 ident: 10.1016/j.ast.2022.107984_br0090 article-title: Spacecraft attitude tracking for space debris removal using adaptive fuzzy sliding mode control publication-title: Aerosp. Sci. Technol. doi: 10.1016/j.ast.2020.106310 – start-page: 6256 year: 2013 ident: 10.1016/j.ast.2022.107984_br0150 article-title: Concurrent learning-based approximate optimal regulation – volume: 31 start-page: 1761 issue: 6 year: 2008 ident: 10.1016/j.ast.2022.107984_br0020 article-title: On-orbit identification of inertia properties of spacecraft using a robotic arm publication-title: J. Guid. Control Dyn. doi: 10.2514/1.35188 – volume: 31 start-page: 1456 issue: 5 year: 2008 ident: 10.1016/j.ast.2022.107984_br0290 article-title: Indirect robust adaptive fault-tolerant control for attitude tracking of spacecraft publication-title: J. Guid. Control Dyn. doi: 10.2514/1.31158 – volume: 54 start-page: 2 issue: 1 year: 2018 ident: 10.1016/j.ast.2022.107984_br0210 article-title: Robust fault-tolerant tracking control for spacecraft proximity operations using time-varying sliding mode publication-title: IEEE Trans. Aerosp. Electron. Syst. doi: 10.1109/TAES.2017.2729978 – ident: 10.1016/j.ast.2022.107984_br0110 – volume: 22 start-page: 433 issue: 3 year: 1999 ident: 10.1016/j.ast.2022.107984_br0300 article-title: Spacecraft vibration reduction using pulse-width pulse-frequency modulated input shaper publication-title: J. Guid. Control Dyn. doi: 10.2514/2.4415 – volume: 108 year: 2021 ident: 10.1016/j.ast.2022.107984_br0220 article-title: Preassigned finite-time attitude control for spacecraft based on time-varying barrier Lyapunov functions publication-title: Aerosp. Sci. Technol. doi: 10.1016/j.ast.2020.106331 – volume: 163 start-page: 157 year: 2019 ident: 10.1016/j.ast.2022.107984_br0060 article-title: Time-varying state-space model identification of an on-orbit rigid-flexible coupling spacecraft using an improved predictor-based recursive subspace algorithm publication-title: Acta Astronaut. doi: 10.1016/j.actaastro.2018.11.008 – volume: 111 year: 2021 ident: 10.1016/j.ast.2022.107984_br0230 article-title: Finite-time resilient attitude coordination control for multiple rigid spacecraft with communication link faults publication-title: Aerosp. Sci. Technol. doi: 10.1016/j.ast.2021.106560 – volume: 109 year: 2021 ident: 10.1016/j.ast.2022.107984_br0240 article-title: Finite-time control for autonomous rendezvous and docking under safe constraint publication-title: Aerosp. Sci. Technol. doi: 10.1016/j.ast.2020.106380 – volume: 63 start-page: 811 issue: 3 year: 2018 ident: 10.1016/j.ast.2022.107984_br0160 article-title: Composite model reference adaptive control with parameter convergence under finite excitation publication-title: IEEE Trans. Autom. Control doi: 10.1109/TAC.2017.2737324 – volume: 43 start-page: 1 issue: 3 year: 2019 ident: 10.1016/j.ast.2022.107984_br0190 article-title: Finite-time concurrent learning adaptive control for spacecraft with inertia parameter identification publication-title: J. Guid. Control Dyn. – volume: 64 start-page: 5164 issue: 12 year: 2019 ident: 10.1016/j.ast.2022.107984_br0170 article-title: Concurrent learning adaptive control with directional forgetting publication-title: IEEE Trans. Autom. Control doi: 10.1109/TAC.2019.2911863 – volume: 27 start-page: 280 issue: 4 year: 2012 ident: 10.1016/j.ast.2022.107984_br0130 article-title: Concurrent learning adaptive control of linear systems with exponentially convergent bounds publication-title: Int. J. Adapt. Control Signal Process. doi: 10.1002/acs.2297 – start-page: 1 year: 2012 ident: 10.1016/j.ast.2022.107984_br0140 article-title: Concurrent learning adaptive control of linear systems with noisy measurements – volume: 71 start-page: 464 year: 2017 ident: 10.1016/j.ast.2022.107984_br0040 article-title: Inertia parameters identification for cellular space robot through interaction publication-title: Aerosp. Sci. Technol. doi: 10.1016/j.ast.2017.09.044 – volume: 14 start-page: 98 issue: 2 year: 1991 ident: 10.1016/j.ast.2022.107984_br0080 article-title: Parameter identification by model reference adaptive systems publication-title: Adv. Water Resour. doi: 10.1016/0309-1708(91)90056-T – volume: 38 start-page: 41 issue: 1 year: 2015 ident: 10.1016/j.ast.2022.107984_br0050 article-title: Adaptive attitude-tracking control of spacecraft with uncertain time-varying inertia parameters publication-title: J. Guid. Control Dyn. doi: 10.2514/1.G000457 – start-page: 53 year: 2020 ident: 10.1016/j.ast.2022.107984_br0280 article-title: On parameter tuning and convergence properties of the DREM procedure – volume: 51 start-page: 171 year: 2016 ident: 10.1016/j.ast.2022.107984_br0030 article-title: Attitude takeover control for post-capture of target spacecraft using space robot publication-title: Aerosp. Sci. Technol. doi: 10.1016/j.ast.2016.02.006 – volume: 30 start-page: 779 issue: 2 year: 2022 ident: 10.1016/j.ast.2022.107984_br0180 article-title: Data-driven immersion and invariance adaptive attitude control for rigid bodies with double-level state constraints publication-title: IEEE Trans. Control Syst. Technol. doi: 10.1109/TCST.2021.3076439 – volume: 32 start-page: 674 issue: 3 year: 2019 ident: 10.1016/j.ast.2022.107984_br0070 article-title: Adaptive fault-tolerant attitude tracking control for spacecraft with time-varying inertia uncertainties publication-title: Chin. J. Aeronaut. doi: 10.1016/j.cja.2018.12.015 |
SSID | ssj0002942 |
Score | 2.3910978 |
Snippet | This paper examines the attitude control problem of the combined spacecraft subject to inertia uncertainties. A composite adaptive finite-time control scheme... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 107984 |
SubjectTerms | Combined spacecraft Concurrent learning Dynamic regressor extension and mixing Finite-time control |
Title | Composite adaptive attitude control for combined spacecraft with inertia uncertainties |
URI | https://dx.doi.org/10.1016/j.ast.2022.107984 |
Volume | 131 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1626-3219 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002942 issn: 1270-9638 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier ScienceDirect customDbUrl: eissn: 1626-3219 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002942 issn: 1270-9638 databaseCode: .~1 dateStart: 19970101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier ScienceDirect Complete Freedom Collection customDbUrl: eissn: 1626-3219 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002942 issn: 1270-9638 databaseCode: ACRLP dateStart: 19970101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals [SCFCJ] customDbUrl: eissn: 1626-3219 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002942 issn: 1270-9638 databaseCode: AIKHN dateStart: 19970101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1626-3219 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002942 issn: 1270-9638 databaseCode: AKRWK dateStart: 19970101 isFulltext: true providerName: Library Specific Holdings |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEA6lXvQgPrE-Sg6ehLW7abKbHEuxVMVetNLbkidUtBZdr_52Z_ahFdSDt82SwPAxmZnd-WaGkFPluRQapwZwYSMuFI90P0uiTAkhU5M5WZaL3UzS8ZRfzcSsRYZNLQzSKmvbX9n00lrXb3o1mr3lfN67xZwpqg9jpR_FinLs_gU6ff7-RfNgqhygg5sj3N1kNkuOl35FOiVjsM6U5D_7phV_M9oim3WgSAeVLNuk5Rc7ZGOlfeAuucfLjKQrT7XTSzRcVBeY-3ee1hx0CkEpPD_BB7B3FMyHhThRh4LiD1iKlX9wxSk4t4oagO1V98h0dHE3HEf1nITIMpUVUbDMey0sxDIh1j7xxnKXhcClC_1ghdOpVKkJHnw_C9Ywbh3nXHCrY2ON7e-T9uJ54Q8IZbHUTFiQRSY8GKQaYnuXFEAE8ZLQIXGDUG7rJuI4y-Ixb9hiDzmAmiOoeQVqh5x9HllWHTT-2swb2PNvapCDhf_92OH_jh2RdVxV7JRj0i5e3vwJxBiF6ZZK1CVrg8vr8eQD_WXSHg |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JTsMwEB2V9gAcEKsoqw-ckKImrp3lWFWglC4XWtRb5Di2VASlgvD_zGSpigQcuGXxSNaT_WaSeZ4BuImMCKWirgFCakfISDiqG3hOEEkZ-mmQhcVxsfHEj2fiYS7nDejXZ2FIVllxf8npBVtXTzoVmp3VYtF5pJwpLR_OCz8abEFLSOTkJrR6g2E8WRMyj4oeOjTeIYM6uVnIvNQHKSo5x_sgCsXP7mnD5dzvw14VK7JeOZ0DaJjlIexuVBA8gifaz6S7MkxlakXcxVRO6f_MsEqGzjAuxetX_AY2GUMG0RgqKpsz-gfL6PAf7nKG_q1UB1CF1WOY3d9N-7FTtUpwNI-C3LGaG6OkxnDGusp4JtUiC6wVYWa7VstM-WHkp9ag--dWp1zoTAiESys31anunkBz-bY0p8C4GyouNc4l9IRNSW1IFV58BBGn59k2uDVCia7qiFM7i5ekFow9JwhqQqAmJahtuF2brMoiGn8NFjXsybeVkCDJ_2529j-za9iOp-NRMhpMhuewQ29KscoFNPP3T3OJIUeeXlVL6gssvNTJ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Composite+adaptive+attitude+control+for+combined+spacecraft+with+inertia+uncertainties&rft.jtitle=Aerospace+science+and+technology&rft.au=Xu%2C+Yiqi&rft.au=Hu%2C+Qinglei&rft.au=Shao%2C+Xiaodong&rft.date=2022-12-01&rft.pub=Elsevier+Masson+SAS&rft.issn=1270-9638&rft.eissn=1626-3219&rft.volume=131&rft_id=info:doi/10.1016%2Fj.ast.2022.107984&rft.externalDocID=S1270963822006587 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1270-9638&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1270-9638&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1270-9638&client=summon |