Composite adaptive attitude control for combined spacecraft with inertia uncertainties

This paper examines the attitude control problem of the combined spacecraft subject to inertia uncertainties. A composite adaptive finite-time control scheme with guaranteed parameter convergence is proposed to address this challenging problem, in the absence of persistent excitation. As a stepping...

Full description

Saved in:
Bibliographic Details
Published inAerospace science and technology Vol. 131; p. 107984
Main Authors Xu, Yiqi, Hu, Qinglei, Shao, Xiaodong
Format Journal Article
LanguageEnglish
Published Elsevier Masson SAS 01.12.2022
Subjects
Online AccessGet full text
ISSN1270-9638
1626-3219
DOI10.1016/j.ast.2022.107984

Cover

Abstract This paper examines the attitude control problem of the combined spacecraft subject to inertia uncertainties. A composite adaptive finite-time control scheme with guaranteed parameter convergence is proposed to address this challenging problem, in the absence of persistent excitation. As a stepping stone, the attitude dynamics of the combined spacecraft is first established with explicit consideration of the center-of-mass variation and thruster reconfiguration. Then, a composite adaptive finite-time controller is developed based on a constructive time-varying sliding manifold, and in particular, the concurrent learning technique is used in conjunction with the dynamic regressor extension and mixing procedure to achieve parameter convergence under finite excitation that is strictly weaker than the persistent excitation. Lyapunov stability analysis shows that the derived adaptive controller can simultaneously guarantee finite-time convergence of the attitude tracking and parameter estimation errors; moreover, its robustness against inertia variations and external disturbances is also analyzed. Finally, a set of numerical simulations under ideal and practical scenarios are performed to validate the effectiveness and outperformance of the proposed method.
AbstractList This paper examines the attitude control problem of the combined spacecraft subject to inertia uncertainties. A composite adaptive finite-time control scheme with guaranteed parameter convergence is proposed to address this challenging problem, in the absence of persistent excitation. As a stepping stone, the attitude dynamics of the combined spacecraft is first established with explicit consideration of the center-of-mass variation and thruster reconfiguration. Then, a composite adaptive finite-time controller is developed based on a constructive time-varying sliding manifold, and in particular, the concurrent learning technique is used in conjunction with the dynamic regressor extension and mixing procedure to achieve parameter convergence under finite excitation that is strictly weaker than the persistent excitation. Lyapunov stability analysis shows that the derived adaptive controller can simultaneously guarantee finite-time convergence of the attitude tracking and parameter estimation errors; moreover, its robustness against inertia variations and external disturbances is also analyzed. Finally, a set of numerical simulations under ideal and practical scenarios are performed to validate the effectiveness and outperformance of the proposed method.
ArticleNumber 107984
Author Hu, Qinglei
Shao, Xiaodong
Xu, Yiqi
Author_xml – sequence: 1
  givenname: Yiqi
  surname: Xu
  fullname: Xu, Yiqi
  organization: School of Automation Science and Electrical Engineering, Beihang University, Beijing 100191, China
– sequence: 2
  givenname: Qinglei
  surname: Hu
  fullname: Hu, Qinglei
  email: huql_buaa@buaa.edu.cn
  organization: School of Automation Science and Electrical Engineering, Beihang University, Beijing 100191, China
– sequence: 3
  givenname: Xiaodong
  orcidid: 0000-0003-2640-5594
  surname: Shao
  fullname: Shao, Xiaodong
  email: xdshao_sasee@buaa.edu.cn
  organization: School of Aeronautic Science and Engineering, Beihang University, Beijing 100191, China
BookMark eNp9kE1LAzEQhoNUsK3-AG_7B7Ym2ewXnqT4BQUv6jVkJxOc0m5Kklb896bUk4ee5pmBZ-B9Z2wy-hEZuxV8Ibho7tYLE9NCcinz3vadumBT0cimrKToJ5lly8u-qborNotxzTmXvZJT9rn0252PlLAw1uwSHTKkRGlvsQA_puA3hfMh83agEW0RdwYQgnGp-Kb0VeRjSGSK_QgZDI2JMF6zS2c2EW_-5px9PD2-L1_K1dvz6_JhVYLs21Q6kIimBl43jhsUOICyrXOqs65yUFvTdH0zOOy5kA4GqcAqpWoFhg8wQDVn4vQXgo8xoNO7QFsTfrTg-liMXutcjD4Wo0_FZKf95wAlk-gY1tDmrHl_MjFHOhAGHYEw57YUEJK2ns7Yv11Lg5s
CitedBy_id crossref_primary_10_1016_j_actaastro_2024_11_014
crossref_primary_10_1016_j_actaastro_2025_03_007
crossref_primary_10_1016_j_ast_2024_108875
crossref_primary_10_1016_j_ast_2023_108688
crossref_primary_10_1017_aer_2023_78
crossref_primary_10_1016_j_ast_2023_108796
crossref_primary_10_1007_s40815_023_01661_4
crossref_primary_10_1007_s40997_024_00820_8
crossref_primary_10_1109_TAES_2023_3341058
Cites_doi 10.1109/TAC.2011.2159419
10.1016/j.ast.2021.106746
10.2514/2.4837
10.2514/1.46866
10.1016/j.paerosci.2020.100678
10.2514/1.33308
10.1016/j.ast.2020.106310
10.2514/1.35188
10.2514/1.31158
10.1109/TAES.2017.2729978
10.2514/2.4415
10.1016/j.ast.2020.106331
10.1016/j.actaastro.2018.11.008
10.1016/j.ast.2021.106560
10.1016/j.ast.2020.106380
10.1109/TAC.2017.2737324
10.1109/TAC.2019.2911863
10.1002/acs.2297
10.1016/j.ast.2017.09.044
10.1016/0309-1708(91)90056-T
10.2514/1.G000457
10.1016/j.ast.2016.02.006
10.1109/TCST.2021.3076439
10.1016/j.cja.2018.12.015
ContentType Journal Article
Copyright 2022 Elsevier Masson SAS
Copyright_xml – notice: 2022 Elsevier Masson SAS
DBID AAYXX
CITATION
DOI 10.1016/j.ast.2022.107984
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1626-3219
ExternalDocumentID 10_1016_j_ast_2022_107984
S1270963822006587
GroupedDBID --K
--M
.~1
0R~
1B1
1~.
1~5
23M
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
ABJNI
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFS
ACNNM
ACRLP
ADBBV
ADEZE
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHJVU
AHPGS
AI.
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SST
SSZ
T5K
T9H
VH1
XPP
ZMT
~G-
AATTM
AAXKI
AAYWO
AAYXX
ACLOT
ACVFH
ADCNI
AEIPS
AEUPX
AFJKZ
AFPUW
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
ID FETCH-LOGICAL-c297t-fc2eea5c056f0ae1ebc4d7ff48df3fc5da6896bfe9012fcb24cd44454ca0bcbc3
IEDL.DBID .~1
ISSN 1270-9638
IngestDate Wed Oct 01 02:04:56 EDT 2025
Thu Apr 24 22:58:24 EDT 2025
Fri Feb 23 02:39:37 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Combined spacecraft
Concurrent learning
Finite-time control
Dynamic regressor extension and mixing
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c297t-fc2eea5c056f0ae1ebc4d7ff48df3fc5da6896bfe9012fcb24cd44454ca0bcbc3
ORCID 0000-0003-2640-5594
ParticipantIDs crossref_primary_10_1016_j_ast_2022_107984
crossref_citationtrail_10_1016_j_ast_2022_107984
elsevier_sciencedirect_doi_10_1016_j_ast_2022_107984
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate December 2022
2022-12-00
PublicationDateYYYYMMDD 2022-12-01
PublicationDate_xml – month: 12
  year: 2022
  text: December 2022
PublicationDecade 2020
PublicationTitle Aerospace science and technology
PublicationYear 2022
Publisher Elsevier Masson SAS
Publisher_xml – name: Elsevier Masson SAS
References Shao, Hu, Shi, Yi (br0180) 2022; 30
G. Chowdhary, E. Johnson, Concurrent learning for convergence in adaptive control without persistency of excitation, in: 49th IEEE Conference on Decision and Control, Atlanta, USA, pp. 3674–3679.
Chowdhary, Johnson (br0120) 2011; 34
Costic, Dawson, Queiroz, Kapila (br0260) 2001; 24
Chowdhary, Yucelen, Mühlegg, Johnson (br0130) 2012; 27
Seo, Akella (br0270) 2008; 31
Hu, Shao, Chen (br0210) 2018; 54
Yu, Ye, Sun (br0230) 2021; 111
Johann (br0080) 1991; 14
Cho, Shin, Kim, Tsourdos (br0160) 2018; 63
Hu, Xiao, Wang (br0070) 2019; 32
Ma, Dang, Pham (br0020) 2008; 31
Wu, Zhang, Wu (br0220) 2021; 108
Ni, Liu, Wu, Wu (br0060) 2019; 163
Kamalapurkar, Walters, Dixon (br0150) 2013
Zhao, Duan (br0190) 2019; 43
Thakur, Srikant, Akella (br0050) 2015; 38
Mühlegg, Chowdhary, Johnson (br0140) 2012
Korotina, Aranovskiy, Ushirobira, Vedyakov (br0280) 2020
Guo, Zhang, Li, Song, Wang, Liu (br0240) 2021; 109
Lee, Shin, Tsourdos (br0170) 2019; 64
Liu, Yang, Yan (br0090) 2020; 107
Zhang, Dai, Wu, Xiao, Li, Wang (br0250) 2021; 114
Song, Buck, Agrawal (br0300) 1999; 22
Huang, Wang, Meng, Zhang, Liu (br0030) 2016; 51
Chang, Huang, Lu, Zhang, Meng, Liu (br0040) 2017; 71
Cai, Liao, Song (br0290) 2008; 31
Du, Li, Qian (br0200) 2011; 56
Li, She (br0010) 2021; 120
Mühlegg (10.1016/j.ast.2022.107984_br0140) 2012
Costic (10.1016/j.ast.2022.107984_br0260) 2001; 24
Hu (10.1016/j.ast.2022.107984_br0070) 2019; 32
Thakur (10.1016/j.ast.2022.107984_br0050) 2015; 38
Huang (10.1016/j.ast.2022.107984_br0030) 2016; 51
Zhao (10.1016/j.ast.2022.107984_br0190) 2019; 43
Hu (10.1016/j.ast.2022.107984_br0210) 2018; 54
Seo (10.1016/j.ast.2022.107984_br0270) 2008; 31
Ma (10.1016/j.ast.2022.107984_br0020) 2008; 31
Chowdhary (10.1016/j.ast.2022.107984_br0130) 2012; 27
Yu (10.1016/j.ast.2022.107984_br0230) 2021; 111
Shao (10.1016/j.ast.2022.107984_br0180) 2022; 30
Zhang (10.1016/j.ast.2022.107984_br0250) 2021; 114
Song (10.1016/j.ast.2022.107984_br0300) 1999; 22
Korotina (10.1016/j.ast.2022.107984_br0280) 2020
Liu (10.1016/j.ast.2022.107984_br0090) 2020; 107
Chowdhary (10.1016/j.ast.2022.107984_br0120) 2011; 34
Lee (10.1016/j.ast.2022.107984_br0170) 2019; 64
Li (10.1016/j.ast.2022.107984_br0010) 2021; 120
Cai (10.1016/j.ast.2022.107984_br0290) 2008; 31
10.1016/j.ast.2022.107984_br0110
Ni (10.1016/j.ast.2022.107984_br0060) 2019; 163
Johann (10.1016/j.ast.2022.107984_br0080) 1991; 14
Wu (10.1016/j.ast.2022.107984_br0220) 2021; 108
Du (10.1016/j.ast.2022.107984_br0200) 2011; 56
Guo (10.1016/j.ast.2022.107984_br0240) 2021; 109
Kamalapurkar (10.1016/j.ast.2022.107984_br0150) 2013
Chang (10.1016/j.ast.2022.107984_br0040) 2017; 71
Cho (10.1016/j.ast.2022.107984_br0160) 2018; 63
References_xml – volume: 51
  start-page: 171
  year: 2016
  end-page: 180
  ident: br0030
  article-title: Attitude takeover control for post-capture of target spacecraft using space robot
  publication-title: Aerosp. Sci. Technol.
– volume: 108
  year: 2021
  ident: br0220
  article-title: Preassigned finite-time attitude control for spacecraft based on time-varying barrier Lyapunov functions
  publication-title: Aerosp. Sci. Technol.
– volume: 31
  start-page: 1761
  year: 2008
  end-page: 1771
  ident: br0020
  article-title: On-orbit identification of inertia properties of spacecraft using a robotic arm
  publication-title: J. Guid. Control Dyn.
– volume: 107
  year: 2020
  ident: br0090
  article-title: Spacecraft attitude tracking for space debris removal using adaptive fuzzy sliding mode control
  publication-title: Aerosp. Sci. Technol.
– volume: 27
  start-page: 280
  year: 2012
  end-page: 321
  ident: br0130
  article-title: Concurrent learning adaptive control of linear systems with exponentially convergent bounds
  publication-title: Int. J. Adapt. Control Signal Process.
– reference: G. Chowdhary, E. Johnson, Concurrent learning for convergence in adaptive control without persistency of excitation, in: 49th IEEE Conference on Decision and Control, Atlanta, USA, pp. 3674–3679.
– volume: 120
  year: 2021
  ident: br0010
  article-title: Recent advances in contact dynamics and post-capture control for combined spacecraft
  publication-title: Prog. Aerosp. Sci.
– start-page: 1
  year: 2012
  end-page: 13
  ident: br0140
  article-title: Concurrent learning adaptive control of linear systems with noisy measurements
  publication-title: AIAA Guidance, Navigation, and Control Conference
– volume: 54
  start-page: 2
  year: 2018
  end-page: 17
  ident: br0210
  article-title: Robust fault-tolerant tracking control for spacecraft proximity operations using time-varying sliding mode
  publication-title: IEEE Trans. Aerosp. Electron. Syst.
– volume: 111
  year: 2021
  ident: br0230
  article-title: Finite-time resilient attitude coordination control for multiple rigid spacecraft with communication link faults
  publication-title: Aerosp. Sci. Technol.
– start-page: 6256
  year: 2013
  end-page: 6261
  ident: br0150
  article-title: Concurrent learning-based approximate optimal regulation
  publication-title: 52nd IEEE Conference on Decision and Control
– volume: 30
  start-page: 779
  year: 2022
  end-page: 794
  ident: br0180
  article-title: Data-driven immersion and invariance adaptive attitude control for rigid bodies with double-level state constraints
  publication-title: IEEE Trans. Control Syst. Technol.
– start-page: 53
  year: 2020
  end-page: 58
  ident: br0280
  article-title: On parameter tuning and convergence properties of the DREM procedure
  publication-title: European Control Conference
– volume: 32
  start-page: 674
  year: 2019
  end-page: 687
  ident: br0070
  article-title: Adaptive fault-tolerant attitude tracking control for spacecraft with time-varying inertia uncertainties
  publication-title: Chin. J. Aeronaut.
– volume: 71
  start-page: 464
  year: 2017
  end-page: 474
  ident: br0040
  article-title: Inertia parameters identification for cellular space robot through interaction
  publication-title: Aerosp. Sci. Technol.
– volume: 24
  start-page: 1214
  year: 2001
  end-page: 1222
  ident: br0260
  article-title: Quaternion-based adaptive attitude tracking controller without velocity measurements
  publication-title: J. Guid. Control Dyn.
– volume: 64
  start-page: 5164
  year: 2019
  end-page: 5170
  ident: br0170
  article-title: Concurrent learning adaptive control with directional forgetting
  publication-title: IEEE Trans. Autom. Control
– volume: 31
  start-page: 1456
  year: 2008
  end-page: 1463
  ident: br0290
  article-title: Indirect robust adaptive fault-tolerant control for attitude tracking of spacecraft
  publication-title: J. Guid. Control Dyn.
– volume: 63
  start-page: 811
  year: 2018
  end-page: 818
  ident: br0160
  article-title: Composite model reference adaptive control with parameter convergence under finite excitation
  publication-title: IEEE Trans. Autom. Control
– volume: 34
  start-page: 592
  year: 2011
  end-page: 607
  ident: br0120
  article-title: Theory and flight-test validation of a concurrent-learning adaptive controller
  publication-title: J. Guid. Control Dyn.
– volume: 109
  year: 2021
  ident: br0240
  article-title: Finite-time control for autonomous rendezvous and docking under safe constraint
  publication-title: Aerosp. Sci. Technol.
– volume: 14
  start-page: 98
  year: 1991
  end-page: 103
  ident: br0080
  article-title: Parameter identification by model reference adaptive systems
  publication-title: Adv. Water Resour.
– volume: 43
  start-page: 1
  year: 2019
  end-page: 11
  ident: br0190
  article-title: Finite-time concurrent learning adaptive control for spacecraft with inertia parameter identification
  publication-title: J. Guid. Control Dyn.
– volume: 22
  start-page: 433
  year: 1999
  end-page: 440
  ident: br0300
  article-title: Spacecraft vibration reduction using pulse-width pulse-frequency modulated input shaper
  publication-title: J. Guid. Control Dyn.
– volume: 38
  start-page: 41
  year: 2015
  end-page: 52
  ident: br0050
  article-title: Adaptive attitude-tracking control of spacecraft with uncertain time-varying inertia parameters
  publication-title: J. Guid. Control Dyn.
– volume: 114
  year: 2021
  ident: br0250
  article-title: Neural-networks and event-based fault-tolerant control for spacecraft attitude stabilization
  publication-title: Aerosp. Sci. Technol.
– volume: 31
  start-page: 884
  year: 2008
  end-page: 891
  ident: br0270
  article-title: High-performance spacecraft adaptive attitude-tracking control through attracting-manifold design
  publication-title: J. Guid. Control Dyn.
– volume: 56
  start-page: 2711
  year: 2011
  end-page: 2717
  ident: br0200
  article-title: Finite-time attitude tracking control of spacecraft with application to attitude synchronization
  publication-title: IEEE Trans. Autom. Control
– volume: 163
  start-page: 157
  year: 2019
  end-page: 167
  ident: br0060
  article-title: Time-varying state-space model identification of an on-orbit rigid-flexible coupling spacecraft using an improved predictor-based recursive subspace algorithm
  publication-title: Acta Astronaut.
– volume: 56
  start-page: 2711
  issue: 11
  year: 2011
  ident: 10.1016/j.ast.2022.107984_br0200
  article-title: Finite-time attitude tracking control of spacecraft with application to attitude synchronization
  publication-title: IEEE Trans. Autom. Control
  doi: 10.1109/TAC.2011.2159419
– volume: 114
  year: 2021
  ident: 10.1016/j.ast.2022.107984_br0250
  article-title: Neural-networks and event-based fault-tolerant control for spacecraft attitude stabilization
  publication-title: Aerosp. Sci. Technol.
  doi: 10.1016/j.ast.2021.106746
– volume: 24
  start-page: 1214
  issue: 6
  year: 2001
  ident: 10.1016/j.ast.2022.107984_br0260
  article-title: Quaternion-based adaptive attitude tracking controller without velocity measurements
  publication-title: J. Guid. Control Dyn.
  doi: 10.2514/2.4837
– volume: 34
  start-page: 592
  issue: 2
  year: 2011
  ident: 10.1016/j.ast.2022.107984_br0120
  article-title: Theory and flight-test validation of a concurrent-learning adaptive controller
  publication-title: J. Guid. Control Dyn.
  doi: 10.2514/1.46866
– volume: 120
  year: 2021
  ident: 10.1016/j.ast.2022.107984_br0010
  article-title: Recent advances in contact dynamics and post-capture control for combined spacecraft
  publication-title: Prog. Aerosp. Sci.
  doi: 10.1016/j.paerosci.2020.100678
– volume: 31
  start-page: 884
  issue: 4
  year: 2008
  ident: 10.1016/j.ast.2022.107984_br0270
  article-title: High-performance spacecraft adaptive attitude-tracking control through attracting-manifold design
  publication-title: J. Guid. Control Dyn.
  doi: 10.2514/1.33308
– volume: 107
  year: 2020
  ident: 10.1016/j.ast.2022.107984_br0090
  article-title: Spacecraft attitude tracking for space debris removal using adaptive fuzzy sliding mode control
  publication-title: Aerosp. Sci. Technol.
  doi: 10.1016/j.ast.2020.106310
– start-page: 6256
  year: 2013
  ident: 10.1016/j.ast.2022.107984_br0150
  article-title: Concurrent learning-based approximate optimal regulation
– volume: 31
  start-page: 1761
  issue: 6
  year: 2008
  ident: 10.1016/j.ast.2022.107984_br0020
  article-title: On-orbit identification of inertia properties of spacecraft using a robotic arm
  publication-title: J. Guid. Control Dyn.
  doi: 10.2514/1.35188
– volume: 31
  start-page: 1456
  issue: 5
  year: 2008
  ident: 10.1016/j.ast.2022.107984_br0290
  article-title: Indirect robust adaptive fault-tolerant control for attitude tracking of spacecraft
  publication-title: J. Guid. Control Dyn.
  doi: 10.2514/1.31158
– volume: 54
  start-page: 2
  issue: 1
  year: 2018
  ident: 10.1016/j.ast.2022.107984_br0210
  article-title: Robust fault-tolerant tracking control for spacecraft proximity operations using time-varying sliding mode
  publication-title: IEEE Trans. Aerosp. Electron. Syst.
  doi: 10.1109/TAES.2017.2729978
– ident: 10.1016/j.ast.2022.107984_br0110
– volume: 22
  start-page: 433
  issue: 3
  year: 1999
  ident: 10.1016/j.ast.2022.107984_br0300
  article-title: Spacecraft vibration reduction using pulse-width pulse-frequency modulated input shaper
  publication-title: J. Guid. Control Dyn.
  doi: 10.2514/2.4415
– volume: 108
  year: 2021
  ident: 10.1016/j.ast.2022.107984_br0220
  article-title: Preassigned finite-time attitude control for spacecraft based on time-varying barrier Lyapunov functions
  publication-title: Aerosp. Sci. Technol.
  doi: 10.1016/j.ast.2020.106331
– volume: 163
  start-page: 157
  year: 2019
  ident: 10.1016/j.ast.2022.107984_br0060
  article-title: Time-varying state-space model identification of an on-orbit rigid-flexible coupling spacecraft using an improved predictor-based recursive subspace algorithm
  publication-title: Acta Astronaut.
  doi: 10.1016/j.actaastro.2018.11.008
– volume: 111
  year: 2021
  ident: 10.1016/j.ast.2022.107984_br0230
  article-title: Finite-time resilient attitude coordination control for multiple rigid spacecraft with communication link faults
  publication-title: Aerosp. Sci. Technol.
  doi: 10.1016/j.ast.2021.106560
– volume: 109
  year: 2021
  ident: 10.1016/j.ast.2022.107984_br0240
  article-title: Finite-time control for autonomous rendezvous and docking under safe constraint
  publication-title: Aerosp. Sci. Technol.
  doi: 10.1016/j.ast.2020.106380
– volume: 63
  start-page: 811
  issue: 3
  year: 2018
  ident: 10.1016/j.ast.2022.107984_br0160
  article-title: Composite model reference adaptive control with parameter convergence under finite excitation
  publication-title: IEEE Trans. Autom. Control
  doi: 10.1109/TAC.2017.2737324
– volume: 43
  start-page: 1
  issue: 3
  year: 2019
  ident: 10.1016/j.ast.2022.107984_br0190
  article-title: Finite-time concurrent learning adaptive control for spacecraft with inertia parameter identification
  publication-title: J. Guid. Control Dyn.
– volume: 64
  start-page: 5164
  issue: 12
  year: 2019
  ident: 10.1016/j.ast.2022.107984_br0170
  article-title: Concurrent learning adaptive control with directional forgetting
  publication-title: IEEE Trans. Autom. Control
  doi: 10.1109/TAC.2019.2911863
– volume: 27
  start-page: 280
  issue: 4
  year: 2012
  ident: 10.1016/j.ast.2022.107984_br0130
  article-title: Concurrent learning adaptive control of linear systems with exponentially convergent bounds
  publication-title: Int. J. Adapt. Control Signal Process.
  doi: 10.1002/acs.2297
– start-page: 1
  year: 2012
  ident: 10.1016/j.ast.2022.107984_br0140
  article-title: Concurrent learning adaptive control of linear systems with noisy measurements
– volume: 71
  start-page: 464
  year: 2017
  ident: 10.1016/j.ast.2022.107984_br0040
  article-title: Inertia parameters identification for cellular space robot through interaction
  publication-title: Aerosp. Sci. Technol.
  doi: 10.1016/j.ast.2017.09.044
– volume: 14
  start-page: 98
  issue: 2
  year: 1991
  ident: 10.1016/j.ast.2022.107984_br0080
  article-title: Parameter identification by model reference adaptive systems
  publication-title: Adv. Water Resour.
  doi: 10.1016/0309-1708(91)90056-T
– volume: 38
  start-page: 41
  issue: 1
  year: 2015
  ident: 10.1016/j.ast.2022.107984_br0050
  article-title: Adaptive attitude-tracking control of spacecraft with uncertain time-varying inertia parameters
  publication-title: J. Guid. Control Dyn.
  doi: 10.2514/1.G000457
– start-page: 53
  year: 2020
  ident: 10.1016/j.ast.2022.107984_br0280
  article-title: On parameter tuning and convergence properties of the DREM procedure
– volume: 51
  start-page: 171
  year: 2016
  ident: 10.1016/j.ast.2022.107984_br0030
  article-title: Attitude takeover control for post-capture of target spacecraft using space robot
  publication-title: Aerosp. Sci. Technol.
  doi: 10.1016/j.ast.2016.02.006
– volume: 30
  start-page: 779
  issue: 2
  year: 2022
  ident: 10.1016/j.ast.2022.107984_br0180
  article-title: Data-driven immersion and invariance adaptive attitude control for rigid bodies with double-level state constraints
  publication-title: IEEE Trans. Control Syst. Technol.
  doi: 10.1109/TCST.2021.3076439
– volume: 32
  start-page: 674
  issue: 3
  year: 2019
  ident: 10.1016/j.ast.2022.107984_br0070
  article-title: Adaptive fault-tolerant attitude tracking control for spacecraft with time-varying inertia uncertainties
  publication-title: Chin. J. Aeronaut.
  doi: 10.1016/j.cja.2018.12.015
SSID ssj0002942
Score 2.3910978
Snippet This paper examines the attitude control problem of the combined spacecraft subject to inertia uncertainties. A composite adaptive finite-time control scheme...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 107984
SubjectTerms Combined spacecraft
Concurrent learning
Dynamic regressor extension and mixing
Finite-time control
Title Composite adaptive attitude control for combined spacecraft with inertia uncertainties
URI https://dx.doi.org/10.1016/j.ast.2022.107984
Volume 131
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1626-3219
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002942
  issn: 1270-9638
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier ScienceDirect
  customDbUrl:
  eissn: 1626-3219
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002942
  issn: 1270-9638
  databaseCode: .~1
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier ScienceDirect Complete Freedom Collection
  customDbUrl:
  eissn: 1626-3219
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002942
  issn: 1270-9638
  databaseCode: ACRLP
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals [SCFCJ]
  customDbUrl:
  eissn: 1626-3219
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002942
  issn: 1270-9638
  databaseCode: AIKHN
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1626-3219
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002942
  issn: 1270-9638
  databaseCode: AKRWK
  dateStart: 19970101
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEA6lXvQgPrE-Sg6ehLW7abKbHEuxVMVetNLbkidUtBZdr_52Z_ahFdSDt82SwPAxmZnd-WaGkFPluRQapwZwYSMuFI90P0uiTAkhU5M5WZaL3UzS8ZRfzcSsRYZNLQzSKmvbX9n00lrXb3o1mr3lfN67xZwpqg9jpR_FinLs_gU6ff7-RfNgqhygg5sj3N1kNkuOl35FOiVjsM6U5D_7phV_M9oim3WgSAeVLNuk5Rc7ZGOlfeAuucfLjKQrT7XTSzRcVBeY-3ee1hx0CkEpPD_BB7B3FMyHhThRh4LiD1iKlX9wxSk4t4oagO1V98h0dHE3HEf1nITIMpUVUbDMey0sxDIh1j7xxnKXhcClC_1ghdOpVKkJHnw_C9Ywbh3nXHCrY2ON7e-T9uJ54Q8IZbHUTFiQRSY8GKQaYnuXFEAE8ZLQIXGDUG7rJuI4y-Ixb9hiDzmAmiOoeQVqh5x9HllWHTT-2swb2PNvapCDhf_92OH_jh2RdVxV7JRj0i5e3vwJxBiF6ZZK1CVrg8vr8eQD_WXSHg
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JTsMwEB2V9gAcEKsoqw-ckKImrp3lWFWglC4XWtRb5Di2VASlgvD_zGSpigQcuGXxSNaT_WaSeZ4BuImMCKWirgFCakfISDiqG3hOEEkZ-mmQhcVxsfHEj2fiYS7nDejXZ2FIVllxf8npBVtXTzoVmp3VYtF5pJwpLR_OCz8abEFLSOTkJrR6g2E8WRMyj4oeOjTeIYM6uVnIvNQHKSo5x_sgCsXP7mnD5dzvw14VK7JeOZ0DaJjlIexuVBA8gifaz6S7MkxlakXcxVRO6f_MsEqGzjAuxetX_AY2GUMG0RgqKpsz-gfL6PAf7nKG_q1UB1CF1WOY3d9N-7FTtUpwNI-C3LGaG6OkxnDGusp4JtUiC6wVYWa7VstM-WHkp9ag--dWp1zoTAiESys31anunkBz-bY0p8C4GyouNc4l9IRNSW1IFV58BBGn59k2uDVCia7qiFM7i5ekFow9JwhqQqAmJahtuF2brMoiGn8NFjXsybeVkCDJ_2529j-za9iOp-NRMhpMhuewQ29KscoFNPP3T3OJIUeeXlVL6gssvNTJ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Composite+adaptive+attitude+control+for+combined+spacecraft+with+inertia+uncertainties&rft.jtitle=Aerospace+science+and+technology&rft.au=Xu%2C+Yiqi&rft.au=Hu%2C+Qinglei&rft.au=Shao%2C+Xiaodong&rft.date=2022-12-01&rft.pub=Elsevier+Masson+SAS&rft.issn=1270-9638&rft.eissn=1626-3219&rft.volume=131&rft_id=info:doi/10.1016%2Fj.ast.2022.107984&rft.externalDocID=S1270963822006587
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1270-9638&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1270-9638&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1270-9638&client=summon