Upconversion nanoparticles: Recent strategies and mechanism based applications
Upconversion nanoparticles (UCNPs) doped with lanthanides can convert near-infrared excitation into UV and visible emissions. Because of their relatively high emission efficiency, UCNPs are appealing materials for use in a variety of sectors. UCNPs are known for low auto-fluorescence, excellent chem...
Saved in:
Published in | Journal of rare earths Vol. 40; no. 9; pp. 1343 - 1359 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.09.2022
|
Subjects | |
Online Access | Get full text |
ISSN | 1002-0721 |
DOI | 10.1016/j.jre.2022.04.015 |
Cover
Abstract | Upconversion nanoparticles (UCNPs) doped with lanthanides can convert near-infrared excitation into UV and visible emissions. Because of their relatively high emission efficiency, UCNPs are appealing materials for use in a variety of sectors. UCNPs are known for low auto-fluorescence, excellent chemical and thermal photo-stability, deep tissue penetration, exceptional biocompatibility, low toxicity, color purity, and ease of surface functionalization. In this review, we explain a few recent strategies to boost the efficiency and luminescence of upconversion nanoparticles and minimize quenching by fabricating them as core/shell, nanofibers, or heavily doped lanthanides. Applications of UCNPs in drug delivery, Photodynamic therapy (PDT), biosensors, bioimaging, and optogenetics are also discussed along with their mechanism of action. Our motivation for this review is to understand the working mechanism of UCNPs and their applications in various fields.
[Display omitted] |
---|---|
AbstractList | Upconversion nanoparticles (UCNPs) doped with lanthanides can convert near-infrared excitation into UV and visible emissions. Because of their relatively high emission efficiency, UCNPs are appealing materials for use in a variety of sectors. UCNPs are known for low auto-fluorescence, excellent chemical and thermal photo-stability, deep tissue penetration, exceptional biocompatibility, low toxicity, color purity, and ease of surface functionalization. In this review, we explain a few recent strategies to boost the efficiency and luminescence of upconversion nanoparticles and minimize quenching by fabricating them as core/shell, nanofibers, or heavily doped lanthanides. Applications of UCNPs in drug delivery, Photodynamic therapy (PDT), biosensors, bioimaging, and optogenetics are also discussed along with their mechanism of action. Our motivation for this review is to understand the working mechanism of UCNPs and their applications in various fields.
[Display omitted] |
Author | Dubey, Neha Chandra, Sudeshna |
Author_xml | – sequence: 1 givenname: Neha surname: Dubey fullname: Dubey, Neha – sequence: 2 givenname: Sudeshna orcidid: 0000-0002-6565-9776 surname: Chandra fullname: Chandra, Sudeshna email: sudeshna.chandra@nmims.edu, sudeshna.chandra@nmims.edu |
BookMark | eNp9kMtOwzAQRb0oEm3hA9jlBxLGzsMNrFDFS6pAQmVtTSYTcJU6kW1V4u8JlBWLru7qXN17FmLmBsdCXEnIJMjqepftPGcKlMqgyECWMzGXACoFreS5WISwA8h1WcNcvLyPNLgD-2AHlzh0w4g-Wuo53CRvTOxiEqLHyB-WQ4KuTfZMn-hs2CcNBm4THMfeEsapIFyIsw77wJd_uRTbh_vt-indvD4-r-82Kalax7RDbDpUHZeUF7luKmg7roq6Kus6L3WJhFW7ktUqZ2yAUGqUpVxVLUiSWuVLoY-15IcQPHeGbPxdME21vZFgfkyYnZlMmB8TBgozmZhI-Y8cvd2j_zrJ3B4Znh4dLHsTyLIjbq1niqYd7An6G3UEfJA |
CitedBy_id | crossref_primary_10_1016_j_jece_2024_114790 crossref_primary_10_1039_D4EN01052C crossref_primary_10_2147_IJN_S414586 crossref_primary_10_1002_adma_202308844 crossref_primary_10_1186_s12951_024_02957_9 crossref_primary_10_1016_j_saa_2024_125347 crossref_primary_10_1016_j_desal_2023_117090 crossref_primary_10_3390_pharmaceutics15051346 crossref_primary_10_1016_j_jphotochemrev_2024_100665 crossref_primary_10_1039_D3MH01330H crossref_primary_10_3390_bios14030116 crossref_primary_10_1039_D4SE01047G crossref_primary_10_1002_bio_70019 crossref_primary_10_1186_s40580_024_00462_1 crossref_primary_10_1016_j_talanta_2023_124892 crossref_primary_10_1021_acsaom_4c00334 crossref_primary_10_1007_s41664_023_00273_z crossref_primary_10_1016_j_apmt_2025_102649 crossref_primary_10_1021_acsanm_4c04307 crossref_primary_10_1016_j_aca_2024_343428 crossref_primary_10_3390_molecules28145604 crossref_primary_10_1016_j_ceramint_2024_08_105 crossref_primary_10_1002_smtd_202400671 crossref_primary_10_1016_j_ceramint_2024_12_550 crossref_primary_10_1016_j_molstruc_2024_140555 crossref_primary_10_1039_D4NR04880F crossref_primary_10_1039_D3TC04611G crossref_primary_10_1021_acsaom_4c00049 crossref_primary_10_3390_ijms23169003 crossref_primary_10_3390_molecules29174177 crossref_primary_10_3390_nano14080685 crossref_primary_10_1186_s40712_024_00187_3 crossref_primary_10_1016_j_foodcont_2022_109444 crossref_primary_10_1002_adfm_202407535 crossref_primary_10_1016_j_jlumin_2023_120306 crossref_primary_10_1016_j_optmat_2023_114682 crossref_primary_10_3390_ph17060663 crossref_primary_10_1016_j_bios_2024_116274 crossref_primary_10_1039_D2MA01040B crossref_primary_10_1016_j_jre_2024_06_043 crossref_primary_10_1016_j_rio_2024_100656 crossref_primary_10_1002_adsu_202200503 crossref_primary_10_1002_advs_202405640 crossref_primary_10_1039_D3NR06472G crossref_primary_10_1016_j_ccr_2022_214862 crossref_primary_10_1051_matecconf_202338603005 crossref_primary_10_1016_j_jre_2023_03_011 crossref_primary_10_1021_acs_nanolett_4c01534 crossref_primary_10_1002_advs_202305308 crossref_primary_10_1016_j_jre_2022_11_014 crossref_primary_10_1515_ijmr_2023_0372 crossref_primary_10_1016_j_jre_2022_08_006 crossref_primary_10_1039_D4NJ02687J |
Cites_doi | 10.1039/b909164e 10.1002/adfm.201100193 10.2174/1389557517666170308112147 10.1038/nm.2554 10.1364/OME.6.000270 10.1039/C7TC03251J 10.1039/c2nr31570j 10.1038/nmat3804 10.1021/acsnano.7b06395 10.1016/j.foodchem.2018.02.148 10.1002/polb.10015 10.1039/C8TC05087B 10.1021/nn402399m 10.1021/acs.analchem.0c01969 10.1002/anie.201703600 10.1002/anie.201005159 10.1016/j.biomaterials.2017.07.017 10.1016/j.polymer.2007.08.002 10.1002/ange.201906380 10.1021/ja209793b 10.1038/nnano.2014.29 10.1038/86684 10.1073/pnas.1114551109 10.1016/j.actbio.2021.08.035 10.1002/ppsc.201600010 10.1073/pnas.1936192100 10.1021/acsnano.5b06383 10.1016/j.nano.2009.11.004 10.1021/ja4075002 10.1038/nrc1894 10.1016/j.bios.2016.10.029 10.1016/j.biomaterials.2007.10.051 10.1039/c0nr01018a 10.1016/j.ab.2018.08.002 10.1016/j.biomaterials.2019.01.042 10.1016/j.actbio.2019.11.048 10.1002/anie.200501907 10.1021/cr020357g 10.1039/C9SC01615E 10.1039/c0nr00253d 10.1039/C6TC00163G 10.1039/C6PY01082B 10.1039/C4CC07489K 10.1016/j.neures.2005.10.009 10.1021/bm050314k 10.1021/acs.jpcc.9b07176 10.1002/adfm.200900234 10.1021/ma060142z 10.1039/b9nr00397e 10.1016/j.jlumin.2005.04.003 10.1016/j.biomaterials.2014.10.066 10.1016/j.trechm.2020.01.008 10.1039/C8NR05552A 10.1021/cr400478f 10.1021/acsabm.0c01019 10.1039/c2nr32204h 10.1038/s41467-018-04813-5 10.3390/ijms221810130 10.1046/j.1365-2818.2002.01074.x 10.1021/ja3003638 10.1016/S1572-1000(05)00030-X 10.1016/bs.mcb.2018.09.009 10.1103/PhysRev.106.874 10.1021/acsami.9b16237 10.1021/la502753e 10.3389/fbioe.2016.00047 10.1016/j.jre.2021.01.014 10.1016/j.jphotobiol.2009.04.001 10.1021/ja047107x 10.1002/anie.201612142 10.1039/C5CC02508G 10.3390/nano7120411 10.1038/nbt1037 10.1002/tcr.201600121 10.1016/j.jallcom.2016.08.142 10.1016/j.revip.2018.100026 10.1039/D0CC05878E 10.1002/adfm.201702592 10.1016/j.biomaterials.2014.03.042 10.1016/j.pdpdt.2021.102616 10.1139/v08-029 10.1021/nl403383w 10.1039/D0NA00404A 10.1007/s12274-013-0358-y 10.1021/jacs.7b00223 10.1021/acs.chemmater.6b03598 10.1038/srep08252 10.1002/anie.201403408 10.1002/adma.200402046 10.1021/acsami.5b12075 10.1039/C6NR07687D 10.1039/D0QM00910E 10.1039/C4CS00151F 10.3322/caac.20114 10.1038/nbt.2993 10.1177/153303460500400308 10.1002/jbm.a.36912 10.1021/nn505051d 10.1002/anie.201907605 10.1126/science.1195929 10.1021/cr400425h 10.7150/thno.5284 10.1021/jp9003399 10.1364/OME.6.001161 10.1039/b809132n 10.1038/nature05744 10.1021/acsnano.7b00944 10.1039/D0RA07466G 10.1146/annurev-neuro-061010-113817 10.1039/C5TB00646E 10.1002/adfm.201600464 10.1007/s00604-019-3659-3 10.1126/science.aaq1144 10.1016/j.biomaterials.2017.06.008 10.1016/j.msec.2014.03.056 10.1021/acs.jpcc.8b09371 10.1039/C1CS15187H 10.1007/s12272-020-01208-3 10.1007/s10853-017-0809-z 10.1021/acsnano.5b00641 10.1126/science.1127344 10.1002/smll.201701155 10.7150/thno.5137 10.1039/b108586g 10.1016/j.mseb.2020.114674 10.1021/acs.accounts.9b00453 10.1021/cm970412f 10.1021/am403100t 10.1006/exnr.2000.7408 10.1039/C5NR08618C 10.1155/2013/891515 10.1039/C2NR32835F 10.1038/srep16533 10.1038/nmeth.1512 10.1016/j.biotechadv.2012.04.009 10.1016/j.cej.2018.05.112 10.1039/c0jm01617a 10.1016/j.jlumin.2013.06.050 10.1016/j.bios.2019.111403 10.7150/thno.15914 10.1021/am503288d 10.1039/C4NR05697C 10.1039/c2nr30389b 10.1021/acs.nanolett.6b05331 10.1002/lpor.201500013 10.1016/j.bios.2016.02.001 10.1021/acs.nanolett.8b00634 10.1016/j.nantod.2019.02.009 10.1002/anie.201506346 10.1021/nn302972r |
ContentType | Journal Article |
Copyright | 2022 Chinese Society of Rare Earths |
Copyright_xml | – notice: 2022 Chinese Society of Rare Earths |
DBID | AAYXX CITATION |
DOI | 10.1016/j.jre.2022.04.015 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EndPage | 1359 |
ExternalDocumentID | 10_1016_j_jre_2022_04_015 S1002072122001120 |
GroupedDBID | --K --M -SB -S~ .~1 0R~ 1B1 1~. 1~5 4.4 457 4G. 5GY 5VR 5VS 5XA 5XC 7-5 71M 8P~ 92H 92I AABNK AABXZ AACTN AAEDT AAEDW AAEPC AAIKJ AAKOC AALRI AAOAW AAQFI AARLI AATTM AAXKI AAXUO ABJNI ABMAC ABWVN ABXDB ABXRA ACDAQ ACGFS ACNNM ACRLP ACRPL ADBBV ADECG ADEZE ADMUD ADNMO AEBSH AEIPS AEKER AENEX AEZYN AFJKZ AFRZQ AFTJW AFUIB AFZHZ AGHFR AGUBO AGYEJ AIEXJ AIKHN AITUG AJSZI AKRWK ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU AXJTR BKOJK BLXMC BNPGV CAJEB CCEZO CDRFL CHBEP CS3 CW9 DU5 EBS EFJIC EJD EO9 EP2 EP3 FA0 FDB FIRID FLBIZ FNPLU FYGXN GBLVA HZ~ J1W KOM M41 MAGPM MO0 N9A O-L O9- OAUVE OZT P-8 P-9 PC. Q-- Q38 ROL SDC SDF SDG SES SPC SPCBC SSH SSK SSM SSZ T5K TCJ TGT U1G U5L ~02 ~G- AAYWO AAYXX ACLOT ACVFH ADCNI AEUPX AFPUW AIGII AIIUN AKBMS AKYEP APXCP CITATION EFKBS EFLBG ~HD |
ID | FETCH-LOGICAL-c297t-faabfa2fe5c3437b60dfe64965993575aca6d81683eab0ca17a15186d01c1723 |
IEDL.DBID | .~1 |
ISSN | 1002-0721 |
IngestDate | Wed Oct 01 01:49:12 EDT 2025 Thu Apr 24 23:00:39 EDT 2025 Sun Apr 06 06:53:24 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 9 |
Keywords | Optical imaging Applications Rare earths Mechanism Luminescence Upconversion nanoparticles |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c297t-faabfa2fe5c3437b60dfe64965993575aca6d81683eab0ca17a15186d01c1723 |
ORCID | 0000-0002-6565-9776 |
PageCount | 17 |
ParticipantIDs | crossref_citationtrail_10_1016_j_jre_2022_04_015 crossref_primary_10_1016_j_jre_2022_04_015 elsevier_sciencedirect_doi_10_1016_j_jre_2022_04_015 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | September 2022 2022-09-00 |
PublicationDateYYYYMMDD | 2022-09-01 |
PublicationDate_xml | – month: 09 year: 2022 text: September 2022 |
PublicationDecade | 2020 |
PublicationTitle | Journal of rare earths |
PublicationYear | 2022 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Haase, Schäfer (bib154) 2011; 50 Lin, Zhao, Wang, Liu, Duan, Chen (bib14) 2012; 30 Fenno, Yizhar, Deisseroth (bib150) 2011; 34 Zheng, Wang, Pan, Liang, Ji, Zhao (bib160) 2017; 11 Reddy, Prabhakar, Arppe, Rosenholm, Krishnan (bib82) 2017; 52 Nagel, Szellas, Huhn, Kateriya, Adeishvili, Berthold (bib153) 2003; 100 Chen, Liu, Li, Ju, Gao, Zhou (bib136) 2015; 39 Pan, Wang, Yu, Huang, Hao, Zhang (bib162) 2019; 199 Chen, Shen, Ohulchanskyy, Patel, Kutikov, Li (bib19) 2012; 6 Auzel (bib16) 2004; 104 Zhao, Hu, Ma, Jiang, Tang, Ji (bib92) 2017; 27 Chatterjee, Rufaihah, Zhang (bib142) 2008; 29 Khodadadi, Alijani, Montazeri, Esmaeilizadeh, Sadeghi-Soureh, Pilehvar-Soltanahmadi (bib44) 2020; 108 Tangboriboon (bib83) 2019 Bhalla, Chiang, Shen (bib122) 2018; 148 Wang, Sheng, Zhu, Li, Wu, Zhang (bib34) 2021; 5 Sun, Mundoor, Ribot, Singh, Smalyukh, Nagpal (bib73) 2014; 14 Zhang, Chen, Xie, Li, Chen, Chao (bib72) 2019; 131 Liu, Zhang, Wang, Song (bib132) 2019; 141 Gu, Li, Ren, Li, Han (bib106) 2019; 374 Sun, Ding, Tao, You, Hua, Wang (bib124) 2018; 257 Xu, Yang, Sun, Bi, Liu, Yang (bib8) 2017; 11 Fan, Liu, Zhang (bib23) 2019; 25 Bankiewicz, Eberling, Kohutnicka, Jagust, Pivirotto, Bringas (bib84) 2000; 164 Kar, Patra (bib26) 2012; 4 Ding, Chen, Ma, Dai, Li, Ji (bib35) 2016; 4 Lee, Lin, Lee, Park (bib89) 2017; 7 Zhang, Li, Ju, Li, Zhang, Xu (bib51) 2018; 349 Buchner, Ngoensawat, Schenck, Fenzl, Wongkaew, Matlock-Colangelo (bib49) 2017; 5 Lai, Shah, Zhang, Yang, Lee (bib103) 2015; 9 Chatterjee, Rufaihah, Zhang (bib135) 2008; 29 Liu, Yang, Feng, Li (bib144) 2012; 134 Wu, Zhang, Takle, Bilsel, Li, Lee (bib152) 2016; 10 Wen, Zhou, Zheng, Bednarkiewicz, Liu, Jin (bib57) 2018; 9 Xie, Peng, Huang, You (bib31) 2013; 4 González-Béjar, Francés-Soriano, Pérez-Prieto (bib140) 2016; 4 Kim, Achermann, Balet, Hollingsworth, Klimov (bib25) 2005; 127 Dou, Chen, Liu, Dong, Yu, Wang (bib146) 2022; 40 Wang, Tu, Zhao, Sun, Kong, Zhang (bib28) 2009; 113 Koombhongse, Liu, Reneker (bib47) 2001; 39 Gargas, Chan, Ostrowski, Aloni, Virginia, Altoe (bib100) 2014; 9 Hussain (bib126) 2009 Linet, Yao, Zhang, Fang, Zhang, Zhang (bib163) 2021; 135 Zeng, Su, Li, Yan, Li (bib10) 2005; 17 Johnson, He, Diao, Chan, Dai, Almutairi (bib54) 2017; 139 Castano, Mroz, Hamblin (bib110) 2006; 6 Hou, Li, Ma, Li, Cheng, Peng (bib41) 2011; 21 Liu, Zhang, Liu, Chen, Lin, Li (bib94) 2017; 139 (bib105) 2010 Chen, Kong, Liu, Lu, Li, Qiao (bib61) 2017; 56 Guo, Qian, Idris, Zhang (bib115) 2010; 6 Li, Zhang, Huang, Yang, Zhao, El-Banna (bib15) 2016; 6 Zhang, Zhang, Peng, Cong, Qian (bib45) 2016; 33 Dai, Yu, Zhou, Zhang, Wang, Hu (bib53) 2006; 117 Ishizuka, Kakuda, Araki, Yawo (bib149) 2006; 54 Shi, Wang, Zhang, Ma, Gao, Liu (bib87) 2014; 35 Chen, Wang (bib62) 2018; 10 Ritchie (bib74) 1957; 106 Hughes, Freeman, Lamb, Pollet, Smith, Lawrence (bib161) 2015; 54 Punjabi, Wu, Tokatli-Apollon, El-Rifai, Lee, Zhang (bib60) 2014; 8 Cheng, Tu, Zheng, Chen (bib17) 2020; 56 Yan, Boyer, Branda, Zhao (bib95) 2011; 133 Bogdan, Vetrone, Roy, Capobianco (bib137) 2010; 20 Hososhima, Yuasa, Ishizuka, Hoque, Yamashita, Yamanaka (bib156) 2015; 5 Li, Bai, Wang, Lin, Sun (bib116) 2020; 10 Juan, Cheng, Shi, Liu, Mao (bib68) 2015; 3 Chen, Weitemier, Zeng, He, Wang, Tao (bib157) 2018; 359 Li, Wen, Liu, Wang, Zhan, He (bib104) 2016; 6 Castano, Demidova, Hamblin (bib119) 2005; 2 Chien, Chou, Wang, Hung, Liau, Chao (bib91) 2013; 7 Dou, Rengaramchandran, Selvan, Paulmurugan, Zhang (bib113) 2015; 5 Wisser, Fischer, Siefe, Alivisatos, Salleo, Dionne (bib22) 2018; 18 Zhao, Hu, Ma, Jiang, Tang, Ji (bib93) 2017; 27 Arrenberg, Stainier, Baier, Huisken (bib147) 2010; 330 Srinivasan, Ranganathan, DeRosa, Murari (bib125) 2018; 559 Bednarkiewicz, Chan, Prorok (bib70) 2020; 2 Pehlivan, Torabfam, Kurt, Ow-Yang, Hildebrandt (bib123) 2019; 186 Chen, Qiu, Prasad, Chen (bib3) 2014; 114 Dong, Gao, Han, Wang, Qi, Yan (bib75) 2019; 4 Oleinick, Morris, Belichenko (bib111) 2002; 1 Li, Qin, Zhao, Aidilibike, Chen, Liu (bib32) 2016; 6 He, Krippes, Ritz, Chen, Best, Butt (bib101) 2015; 51 Ai, Lyu, Zhang, Tang, Mu, Liu (bib164) 2017; 56 Manurung, Wiranto, Hermida (bib9) 2018; 367 Ma, Xu, Wang, Zhou, Liu, Zhao (bib63) 2017; 17 Yang, Liu, Liu, Xing (bib96) 2013; 5 Hu, Chen, Li, Ouyang, Zhao (bib128) 2016; 80 Jin, Wang, Lin, Jin, Zhang, Cui (bib129) 2017; 90 Feng, He, Liu, Yang, Gai, Yang (bib4) 2016; 28 Wang, Yan, Huo, Wang, Zeng, Bao (bib11) 2005; 44 Chilakamarthi, Giribabu (bib118) 2017; 17 Chen, Chen, Zang, Wang, Tang, Han (bib97) 2015; 51 Damasco, Chen, Shao, Ågren, Huang, Song (bib58) 2014; 6 Weissleder (bib85) 2001; 19 (bib143) 2017 Chen, Wang (bib52) 2019; 53 Chen, D'Amario, Gee, Duong, Shimoni, Valenzuela (bib21) 2020; 102 Chen, Zheng, Huang, Tu, Zhou, Huang (bib71) 2015; 7 Bruegmann, Malan, Hesse, Beiert, Fuegemann, Fleischmann (bib148) 2010; 7 Xu, Zhu, Chen, Wang, Tao, Xu (bib76) 2013; 6 Guo, Song, Lei, He, You, Lin (bib130) 2019; 58 Betzig, Patterson, Sougrat, Lindwasser, Olenych (bib6) 2006; 313 Huang (bib141) 2017; 690 Chen, Wang (bib1) 2020; 2 Boyer, Van Veggel (bib29) 2010; 2 Wang, Cheng, Liu (bib114) 2013; 3 Huang, Skripka, Zaroubi, Findlay, Vetrone, Skinner (bib43) 2020; 3 Chen, Guan, Wang, Ji, Gong, Wang (bib127) 2014; 30 Robertson, Hawkins, Abrahamse (bib108) 2009; 96 Vetrone, Naccache, Mahalingam, Morgan, Capobianco (bib33) 2009; 19 Naumova, Modo, Moore, Murry, Frank (bib139) 2014; 32 Dyck, Van Veggel, Demopoulos (bib59) 2013; 5 Wang, Deng, MacDonald, Chen, Yuan, Wang (bib65) 2014; 13 Li, Liu, Alonso, Li, Zhang (bib86) 2012; 4 Mahraz, Sahar, Ghoshal, Dousti (bib55) 2013; 144 Zhang, Wang, Brauner, Liewald, Kay, Watzke (bib151) 2007; 446 Han, Deng, Xie, Liu (bib24) 2014; 53 Yan, Boyer, Branda, Zhao (bib102) 2011; 133 Feng, Sun, Yan, Ag (bib77) 2009; 29 Xue, Ding, Rong, Ma, Pan, Wu (bib79) 2017; 13 Shen, Cheng, Gu, Ni, Gao, Su (bib64) 2017; 9 Li, Tan, Wang, Li, Zhang, Zhao (bib145) 2020; 142 Dexter, Schulman (bib56) 1954; 22 Medeiros, Mattoso, Offeman, Wood, Orts (bib48) 2008; 86 Zhan, Zhang, Zhao, Liu, He (bib78) 2015; 9 Zhou, Liu, Feng, Sun, Li (bib2) 2015; 115 Chen, Ohulchanskyy, Law, Ågren, Prasad (bib30) 2011; 3 Morris (bib99) 2006; 39 Wang, Meijerink (bib66) 2018; 122 Dou, Guo, Ye (bib12) 2014; 45 Deisseroth K., Anikeeva P., et al. Upconversion of light for use in optogenetic methods. U.S. Patent. 2019. Meng, Wu, Zhang (bib69) 2018; 6 Mitsunaga, Ogawa, Kosaka, Rosenblum, Peter (bib133) 2011; 17 Wang, Liu (bib18) 2009; 38 Bao, Luu, Zhao, Fong, May, Jiang (bib46) 2012; 4 Bestvater, Spiess, Stobrawa, Hacker, Feurer, Porwol (bib88) 2022; 208 Liu, Wang, Qin, Feng (bib121) 2021; 22 Li, Jia, Ren, Shi, Liu (bib131) 2019; 29 Zhou, Liu, Li (bib155) 2012; 41 Che, Lakshmi, Martin, Fisher, Ruoff (bib39) 1998; 10 Jia, Xu, Dong, He, Zhong, Yang (bib120) 2019; 10 Yu, Yan, Yu, Jia, Pan, He (bib50) 2016; 8 Shaner, Campbell, Steinbach, Giepmans, Palmer (bib7) 2004; 22 Michael, Qing, John, Matthew (bib90) 2015; 51 Song, Chi, Li, Wang, Li, Liu (bib112) 2019; 11 Zheng (bib109) 2005; 4 Jayakumar, Idris, Zhang (bib20) 2012; 109 Sun, Bi, Wang, Sun, Li, Song (bib5) 2020; 261 Sun, Peng, Feng, Li (bib138) 2018; 3 Patrizia, Kristian, Keith, Thomas, Albert (bib107) 2011; 61 Chen, Peng, Ju, Wang (bib36) 2015; 44 Yin, Zhou, Xu, Cui, Chen, Wang (bib81) 2016; 8 Hu, Shao, Dong, Jiang (bib37) 2019; 123 Zhang, Venugopal, Huang, Lim, Ramakrishna (bib38) 2005; 6 Bertrand, Gohy (bib98) 2017; 8 Lu, Yang, Ding, Zhu (bib67) 2016; 26 Yin, Zhang, Sun, Yan (bib13) 2010; 2 Xie, Gao, Deng, Sun, Xu, Liu (bib27) 2013; 135 Le, Youn (bib134) 2020; 43 Pilehvar-Soltanahmadi, Dadashpour, Mohajeri, Fattahi, Sheervalilou, Zarghami (bib40) 2018; 18 Wang, Lin, Chen, Chen, Xu, Zhang (bib158) 2017; 142 Zhang, Lu, Cai, Song, Jiang, Min (bib80) 2020; 92 Güleryüz, Ünal, Gülsoy (bib117) 2021 Han, Reneker, Yarin (bib42) 2007; 48 Feng (10.1016/j.jre.2022.04.015_bib4) 2016; 28 Koombhongse (10.1016/j.jre.2022.04.015_bib47) 2001; 39 Wang (10.1016/j.jre.2022.04.015_bib158) 2017; 142 Dyck (10.1016/j.jre.2022.04.015_bib59) 2013; 5 Shen (10.1016/j.jre.2022.04.015_bib64) 2017; 9 Cheng (10.1016/j.jre.2022.04.015_bib17) 2020; 56 Sun (10.1016/j.jre.2022.04.015_bib124) 2018; 257 Bogdan (10.1016/j.jre.2022.04.015_bib137) 2010; 20 Ding (10.1016/j.jre.2022.04.015_bib35) 2016; 4 Gu (10.1016/j.jre.2022.04.015_bib106) 2019; 374 Li (10.1016/j.jre.2022.04.015_bib116) 2020; 10 Fenno (10.1016/j.jre.2022.04.015_bib150) 2011; 34 Dou (10.1016/j.jre.2022.04.015_bib146) 2022; 40 Zhang (10.1016/j.jre.2022.04.015_bib45) 2016; 33 Arrenberg (10.1016/j.jre.2022.04.015_bib147) 2010; 330 Naumova (10.1016/j.jre.2022.04.015_bib139) 2014; 32 Yin (10.1016/j.jre.2022.04.015_bib13) 2010; 2 Huang (10.1016/j.jre.2022.04.015_bib43) 2020; 3 Zhang (10.1016/j.jre.2022.04.015_bib72) 2019; 131 Chen (10.1016/j.jre.2022.04.015_bib52) 2019; 53 Yang (10.1016/j.jre.2022.04.015_bib96) 2013; 5 Lin (10.1016/j.jre.2022.04.015_bib14) 2012; 30 Chen (10.1016/j.jre.2022.04.015_bib62) 2018; 10 Jin (10.1016/j.jre.2022.04.015_bib129) 2017; 90 Shi (10.1016/j.jre.2022.04.015_bib87) 2014; 35 Fan (10.1016/j.jre.2022.04.015_bib23) 2019; 25 Liu (10.1016/j.jre.2022.04.015_bib132) 2019; 141 Chatterjee (10.1016/j.jre.2022.04.015_bib135) 2008; 29 Chatterjee (10.1016/j.jre.2022.04.015_bib142) 2008; 29 Han (10.1016/j.jre.2022.04.015_bib24) 2014; 53 Han (10.1016/j.jre.2022.04.015_bib42) 2007; 48 Xie (10.1016/j.jre.2022.04.015_bib31) 2013; 4 Song (10.1016/j.jre.2022.04.015_bib112) 2019; 11 Ritchie (10.1016/j.jre.2022.04.015_bib74) 1957; 106 Betzig (10.1016/j.jre.2022.04.015_bib6) 2006; 313 Hu (10.1016/j.jre.2022.04.015_bib128) 2016; 80 Buchner (10.1016/j.jre.2022.04.015_bib49) 2017; 5 Morris (10.1016/j.jre.2022.04.015_bib99) 2006; 39 Wang (10.1016/j.jre.2022.04.015_bib11) 2005; 44 Srinivasan (10.1016/j.jre.2022.04.015_bib125) 2018; 559 Yin (10.1016/j.jre.2022.04.015_bib81) 2016; 8 Dong (10.1016/j.jre.2022.04.015_bib75) 2019; 4 Chen (10.1016/j.jre.2022.04.015_bib157) 2018; 359 He (10.1016/j.jre.2022.04.015_bib101) 2015; 51 Juan (10.1016/j.jre.2022.04.015_bib68) 2015; 3 (10.1016/j.jre.2022.04.015_bib105) 2010 Zhan (10.1016/j.jre.2022.04.015_bib78) 2015; 9 Kim (10.1016/j.jre.2022.04.015_bib25) 2005; 127 Wang (10.1016/j.jre.2022.04.015_bib114) 2013; 3 Haase (10.1016/j.jre.2022.04.015_bib154) 2011; 50 Gargas (10.1016/j.jre.2022.04.015_bib100) 2014; 9 Sun (10.1016/j.jre.2022.04.015_bib5) 2020; 261 Chen (10.1016/j.jre.2022.04.015_bib1) 2020; 2 Patrizia (10.1016/j.jre.2022.04.015_bib107) 2011; 61 Zhang (10.1016/j.jre.2022.04.015_bib51) 2018; 349 Bertrand (10.1016/j.jre.2022.04.015_bib98) 2017; 8 Mahraz (10.1016/j.jre.2022.04.015_bib55) 2013; 144 Punjabi (10.1016/j.jre.2022.04.015_bib60) 2014; 8 Guo (10.1016/j.jre.2022.04.015_bib115) 2010; 6 Sun (10.1016/j.jre.2022.04.015_bib138) 2018; 3 Wang (10.1016/j.jre.2022.04.015_bib65) 2014; 13 Zhang (10.1016/j.jre.2022.04.015_bib80) 2020; 92 Zhang (10.1016/j.jre.2022.04.015_bib38) 2005; 6 Chen (10.1016/j.jre.2022.04.015_bib30) 2011; 3 Mitsunaga (10.1016/j.jre.2022.04.015_bib133) 2011; 17 Huang (10.1016/j.jre.2022.04.015_bib141) 2017; 690 Wisser (10.1016/j.jre.2022.04.015_bib22) 2018; 18 Medeiros (10.1016/j.jre.2022.04.015_bib48) 2008; 86 Liu (10.1016/j.jre.2022.04.015_bib144) 2012; 134 Feng (10.1016/j.jre.2022.04.015_bib77) 2009; 29 Castano (10.1016/j.jre.2022.04.015_bib110) 2006; 6 Zhou (10.1016/j.jre.2022.04.015_bib2) 2015; 115 Yu (10.1016/j.jre.2022.04.015_bib50) 2016; 8 Guo (10.1016/j.jre.2022.04.015_bib130) 2019; 58 Damasco (10.1016/j.jre.2022.04.015_bib58) 2014; 6 Tangboriboon (10.1016/j.jre.2022.04.015_bib83) 2019 Li (10.1016/j.jre.2022.04.015_bib131) 2019; 29 Khodadadi (10.1016/j.jre.2022.04.015_bib44) 2020; 108 Hughes (10.1016/j.jre.2022.04.015_bib161) 2015; 54 Manurung (10.1016/j.jre.2022.04.015_bib9) 2018; 367 Jayakumar (10.1016/j.jre.2022.04.015_bib20) 2012; 109 Le (10.1016/j.jre.2022.04.015_bib134) 2020; 43 Boyer (10.1016/j.jre.2022.04.015_bib29) 2010; 2 Li (10.1016/j.jre.2022.04.015_bib86) 2012; 4 Sun (10.1016/j.jre.2022.04.015_bib73) 2014; 14 Li (10.1016/j.jre.2022.04.015_bib145) 2020; 142 Xie (10.1016/j.jre.2022.04.015_bib27) 2013; 135 Yan (10.1016/j.jre.2022.04.015_bib95) 2011; 133 Chen (10.1016/j.jre.2022.04.015_bib21) 2020; 102 Dai (10.1016/j.jre.2022.04.015_bib53) 2006; 117 Castano (10.1016/j.jre.2022.04.015_bib119) 2005; 2 Robertson (10.1016/j.jre.2022.04.015_bib108) 2009; 96 Pan (10.1016/j.jre.2022.04.015_bib162) 2019; 199 Wang (10.1016/j.jre.2022.04.015_bib66) 2018; 122 Ishizuka (10.1016/j.jre.2022.04.015_bib149) 2006; 54 Johnson (10.1016/j.jre.2022.04.015_bib54) 2017; 139 Lai (10.1016/j.jre.2022.04.015_bib103) 2015; 9 Bruegmann (10.1016/j.jre.2022.04.015_bib148) 2010; 7 Bhalla (10.1016/j.jre.2022.04.015_bib122) 2018; 148 Vetrone (10.1016/j.jre.2022.04.015_bib33) 2009; 19 Lu (10.1016/j.jre.2022.04.015_bib67) 2016; 26 Pehlivan (10.1016/j.jre.2022.04.015_bib123) 2019; 186 Hussain (10.1016/j.jre.2022.04.015_bib126) 2009 Auzel (10.1016/j.jre.2022.04.015_bib16) 2004; 104 Dou (10.1016/j.jre.2022.04.015_bib12) 2014; 45 Pilehvar-Soltanahmadi (10.1016/j.jre.2022.04.015_bib40) 2018; 18 Reddy (10.1016/j.jre.2022.04.015_bib82) 2017; 52 Dexter (10.1016/j.jre.2022.04.015_bib56) 1954; 22 Bednarkiewicz (10.1016/j.jre.2022.04.015_bib70) 2020; 2 Xu (10.1016/j.jre.2022.04.015_bib8) 2017; 11 Xue (10.1016/j.jre.2022.04.015_bib79) 2017; 13 Kar (10.1016/j.jre.2022.04.015_bib26) 2012; 4 Jia (10.1016/j.jre.2022.04.015_bib120) 2019; 10 Bestvater (10.1016/j.jre.2022.04.015_bib88) 2022; 208 Linet (10.1016/j.jre.2022.04.015_bib163) 2021; 135 Ma (10.1016/j.jre.2022.04.015_bib63) 2017; 17 Weissleder (10.1016/j.jre.2022.04.015_bib85) 2001; 19 Zhang (10.1016/j.jre.2022.04.015_bib151) 2007; 446 Shaner (10.1016/j.jre.2022.04.015_bib7) 2004; 22 Zheng (10.1016/j.jre.2022.04.015_bib109) 2005; 4 Chen (10.1016/j.jre.2022.04.015_bib19) 2012; 6 Zeng (10.1016/j.jre.2022.04.015_bib10) 2005; 17 Hou (10.1016/j.jre.2022.04.015_bib41) 2011; 21 Meng (10.1016/j.jre.2022.04.015_bib69) 2018; 6 Zhao (10.1016/j.jre.2022.04.015_bib93) 2017; 27 Chilakamarthi (10.1016/j.jre.2022.04.015_bib118) 2017; 17 Hu (10.1016/j.jre.2022.04.015_bib37) 2019; 123 Ai (10.1016/j.jre.2022.04.015_bib164) 2017; 56 Chien (10.1016/j.jre.2022.04.015_bib91) 2013; 7 Che (10.1016/j.jre.2022.04.015_bib39) 1998; 10 Michael (10.1016/j.jre.2022.04.015_bib90) 2015; 51 Li (10.1016/j.jre.2022.04.015_bib32) 2016; 6 Chen (10.1016/j.jre.2022.04.015_bib36) 2015; 44 Oleinick (10.1016/j.jre.2022.04.015_bib111) 2002; 1 Hososhima (10.1016/j.jre.2022.04.015_bib156) 2015; 5 Wang (10.1016/j.jre.2022.04.015_bib34) 2021; 5 Wang (10.1016/j.jre.2022.04.015_bib18) 2009; 38 10.1016/j.jre.2022.04.015_bib159 Wen (10.1016/j.jre.2022.04.015_bib57) 2018; 9 Bao (10.1016/j.jre.2022.04.015_bib46) 2012; 4 Li (10.1016/j.jre.2022.04.015_bib104) 2016; 6 Dou (10.1016/j.jre.2022.04.015_bib113) 2015; 5 Xu (10.1016/j.jre.2022.04.015_bib76) 2013; 6 Güleryüz (10.1016/j.jre.2022.04.015_bib117) 2021 Chen (10.1016/j.jre.2022.04.015_bib136) 2015; 39 González-Béjar (10.1016/j.jre.2022.04.015_bib140) 2016; 4 Zhou (10.1016/j.jre.2022.04.015_bib155) 2012; 41 Li (10.1016/j.jre.2022.04.015_bib15) 2016; 6 Yan (10.1016/j.jre.2022.04.015_bib102) 2011; 133 Lee (10.1016/j.jre.2022.04.015_bib89) 2017; 7 Zhao (10.1016/j.jre.2022.04.015_bib92) 2017; 27 Chen (10.1016/j.jre.2022.04.015_bib97) 2015; 51 Liu (10.1016/j.jre.2022.04.015_bib94) 2017; 139 Wang (10.1016/j.jre.2022.04.015_bib28) 2009; 113 Chen (10.1016/j.jre.2022.04.015_bib61) 2017; 56 Wu (10.1016/j.jre.2022.04.015_bib152) 2016; 10 Zheng (10.1016/j.jre.2022.04.015_bib160) 2017; 11 Chen (10.1016/j.jre.2022.04.015_bib127) 2014; 30 Chen (10.1016/j.jre.2022.04.015_bib71) 2015; 7 Bankiewicz (10.1016/j.jre.2022.04.015_bib84) 2000; 164 (10.1016/j.jre.2022.04.015_bib143) 2017 Chen (10.1016/j.jre.2022.04.015_bib3) 2014; 114 Liu (10.1016/j.jre.2022.04.015_bib121) 2021; 22 Nagel (10.1016/j.jre.2022.04.015_bib153) 2003; 100 |
References_xml | – volume: 38 start-page: 976 year: 2009 ident: bib18 article-title: Recent advances in the chemistry of lanthanide-doped upconversion nanocrystals publication-title: Chem Soc Rev – volume: 44 start-page: 6054 year: 2005 ident: bib11 article-title: Fluorescence resonant energy transfer biosensor based on upconversion-luminescent nanoparticles publication-title: Angew Chem Int Ed – volume: 53 start-page: 358 year: 2019 ident: bib52 article-title: Combating concentration quenching in upconversion nanoparticles publication-title: Acc Chem Res – volume: 45 start-page: 635 year: 2014 ident: bib12 article-title: Near-infrared upconversion nanoparticles for bio-applications publication-title: Mater Sci Eng, C – volume: 108 start-page: 1444 year: 2020 ident: bib44 article-title: Recent advances in electrospun nanofiber-mediated drug delivery strategies for localized cancer chemotherapy publication-title: J Biomed Mater Res – volume: 142 start-page: 136 year: 2017 ident: bib158 article-title: Tetherless near-infrared control of brain activity in behaving animals using fully implantable upconversion micro devices publication-title: Biomater – volume: 5 start-page: 9712 year: 2017 ident: bib49 article-title: Embedded nanolamps in electrospun nanofibers enabling online monitoring and ratiometric measurements publication-title: J Mater Chem C – volume: 6 start-page: 535 year: 2006 ident: bib110 article-title: Photodynamic therapy and anti-tumour immunity publication-title: Nat Rev Cancer – year: 2009 ident: bib126 article-title: An introduction to fluorescence resonance energy transfer (FRET) – volume: 29 start-page: 937 year: 2008 ident: bib135 article-title: Upconversion fluorescence imaging of cells and small animals using lanthanide doped nanocrystals publication-title: Biomater – volume: 5 start-page: 231 year: 2013 ident: bib96 article-title: NIR light controlled photorelease of siRNA and its targeted intracellular delivery based on upconversion nanoparticles publication-title: Nanoscale – volume: 8 start-page: 2944 year: 2016 ident: bib50 article-title: Patterned, highly stretchable and conductive nanofibrous PANI/PVDF strain sensors based on electrospinning and publication-title: Nanoscale – volume: 7 start-page: 411 year: 2017 ident: bib89 article-title: Lanthanide-doped nanoparticles for diagnostic sensing publication-title: Nanomaterials – volume: 40 start-page: 193 year: 2022 ident: bib146 article-title: Decorating rare-earth fluoride upconversion nanoparticles on AuNRs@ Ag core–shell structure for NIR light-mediated photothermal therapy and bioimaging publication-title: J Rare Earths – volume: 135 start-page: 1 year: 2021 ident: bib163 article-title: Applications of upconversion nanoparticles in cellular optogenetics publication-title: Acta Biomater – volume: 51 start-page: 9193 year: 2015 ident: bib97 article-title: NIR light controlled release of caged hydrogen sulfide based on upconversion nanoparticles publication-title: Chem Commun – volume: 4 start-page: 891515 year: 2013 ident: bib31 article-title: Core-shell structure in doped inorganic nanoparticles: approaches for optimizing luminescence properties publication-title: J Nanomater – volume: 104 start-page: 139 year: 2004 ident: bib16 article-title: Upconversion and anti-Stokes processes with f and d ions in solids publication-title: Chem Rev – volume: 3 year: 2011 ident: bib30 article-title: Monodisperse NaYbF publication-title: Nanoscale – volume: 330 start-page: 971 year: 2010 ident: bib147 article-title: Optogenetic control of cardiac function publication-title: Science – volume: 6 start-page: 486 year: 2010 ident: bib115 article-title: Singlet oxygen-induced apoptosis of cancer cells using upconversion fluorescent nanoparticles as a carrier of photosensitizer publication-title: Nanomed Nanotechnol Biol Med – volume: 199 start-page: 22 year: 2019 ident: bib162 article-title: Near-infrared light remotely up-regulate autophagy with spatiotemporal precision publication-title: Biomaterials – volume: 5 start-page: 1 year: 2015 ident: bib113 article-title: Coreshell upconversion nanoparticle–semiconductor heterostructures for photodynamic therapy publication-title: Sci Rep – volume: 6 start-page: 1161 year: 2016 ident: bib104 article-title: Yb publication-title: Opt Mater Express – volume: 3 start-page: 5769 year: 2015 ident: bib68 article-title: Poly-(allylamine hydrochloride)-coated but not poly (acrylic acid)-coated upconversion nanoparticles induce autophagy and apoptosis in human blood cancer cells publication-title: J Mater Chem B – volume: 9 start-page: 479 year: 2015 ident: bib78 article-title: Tens of thousands-fold upconversion luminescence enhancement induced by a single gold nanorod publication-title: Laser Photon Rev – volume: 90 start-page: 525 year: 2017 ident: bib129 article-title: Upconversion nanoparticles based FRET aptasensor for rapid and ultrasenstive bacteria detection publication-title: Biosens Bioelectron – volume: 21 start-page: 2356 year: 2011 ident: bib41 article-title: Electrospinning preparation and frug-felivery properties of an up-conversion luminescent porous NaYF publication-title: Adv Func Mater – volume: 9 start-page: 1 year: 2018 ident: bib57 article-title: Advances in highly doped upconversion nanoparticles publication-title: Nat Commun – volume: 22 start-page: 1567 year: 2004 ident: bib7 article-title: Improved monomeric red, orange and yellow fluorescent proteins derived from publication-title: Nat Biotechnol – volume: 100 start-page: 13940 year: 2003 ident: bib153 article-title: Channelrhodopsin-2, a directly light-gated cation-selective membrane channel publication-title: Proc Natl Acad Sci – volume: 4 start-page: 283 year: 2005 ident: bib109 article-title: A review of progress in clinical photodynamic therapy publication-title: Technol Cancer Res Treat – volume: 29 start-page: 937 year: 2008 ident: bib142 article-title: Upconversion fuorescence imaging of cells and small animals using lanthanide doped nanocrystals publication-title: Biomaters – year: 2021 ident: bib117 article-title: Near infrared light activated upconversion nanoparticles (ucnp) based photodynamic therapy of prostate cancers: an publication-title: Photodiagnosis Photodyn Ther – volume: 26 start-page: 4778 year: 2016 ident: bib67 article-title: Highly emissive Nd publication-title: Adv Funct Mater – volume: 139 start-page: 151 year: 2017 ident: bib94 article-title: A NIR-controlled cage mimicking system for hydrophobic drug-mediated cancer therapy publication-title: Biomater – volume: 2 start-page: 1 year: 2005 ident: bib119 article-title: Mechanisms in photodynamic therapy: Part two-cellular signaling, cell metabolism and modes of cell death publication-title: Photodiagnosis Photodyn Ther – volume: 261 year: 2020 ident: bib5 article-title: Upconversion luminescence enhancement of β-NaYF publication-title: Mater Sci. Eng., B – volume: 3 start-page: 7219 year: 2020 ident: bib43 article-title: Electrospun upconverting nanofibrous hybrids with smart NIR-light-controlled drug release for wound dressing publication-title: ACS Appl Bio Mater – volume: 39 start-page: 15 year: 2015 ident: bib136 article-title: Upconversion nanoprobes for efficiently publication-title: Biomater – volume: 102 start-page: 384 year: 2020 ident: bib21 article-title: Dispersion stability and biocompatibility of four ligand-exchanged NaYF publication-title: Acta Biomaterialia – volume: 164 start-page: 2 year: 2000 ident: bib84 article-title: Convection-enhanced delivery of AAV vector in parkinsonian monkeys; publication-title: Exp Neurol – volume: 142 year: 2020 ident: bib145 article-title: Temporal multiplexed publication-title: J Am Chem Soc – volume: 20 start-page: 7543 year: 2010 ident: bib137 article-title: Carbohydrate-coated lanthanide-doped upconverting nanoparticles for lectin recognition publication-title: J Mater Chem – volume: 61 start-page: 250 year: 2011 ident: bib107 article-title: Photodynamic therapy of cancer publication-title: CA A Cancer J Clin – volume: 359 start-page: 679 year: 2018 ident: bib157 article-title: Near-infrared deep brain stimulation publication-title: Science – volume: 131 start-page: 12245 year: 2019 ident: bib72 article-title: Boosting luminance energy transfer efficiency in upconversion nanoparticles with an energy-concentrating zone publication-title: Angew Chem – volume: 19 start-page: 316 year: 2001 ident: bib85 article-title: A clearer vision for publication-title: Nat Biotechnol – volume: 6 start-page: 8280 year: 2012 ident: bib19 article-title: (α-NaYbF publication-title: ACS Nano – volume: 44 start-page: 1318 year: 2015 ident: bib36 article-title: Photon upconversion in core–shell nanoparticles publication-title: Chem Soc Rev – start-page: 343 year: 2017 ident: bib143 publication-title: Phosphors, up conversion nano particles, quantum dots and their applications – volume: 92 start-page: 11795 year: 2020 ident: bib80 article-title: Plasmonic modulation of the upconversion luminescence based on gold nanorods for designing a new strategy of sensing microRNAs publication-title: Anal Chem – volume: 7 start-page: 8516 year: 2013 ident: bib91 article-title: Near-infrared light photo controlled targeting, bioimaging, and chemotherapy with caged upconversion nanoparticles publication-title: ACS Nano – volume: 374 start-page: 863 year: 2019 ident: bib106 article-title: Rare-earth-doped upconversion nanocrystals embedded mesoporous silica nanoparticles for multiple microRNA detection publication-title: J Chem Eng – volume: 349 start-page: 554 year: 2018 ident: bib51 article-title: Flexible inorganic core-shell nanofibers endowed with tunable multicolor upconversion fluorescence for simultaneous monitoring dual drug delivery publication-title: Chem Eng J – volume: 39 start-page: 4633 year: 2006 ident: bib99 article-title: Toward photo controlled release using light-dissociable block copolymer micelles publication-title: Macromol – volume: 2 start-page: 1417 year: 2010 ident: bib29 article-title: Absolute quantum yield measurements of colloidal NaYF publication-title: Nanoscale – year: 2010 ident: bib105 publication-title: Photodynamic therapy: methods and protocols – volume: 56 start-page: 3031 year: 2017 ident: bib164 article-title: Remote regulation of membrane channel activity by site-specific localization of lanthanide-doped upconversion nanocrystals publication-title: Angew Chem Int Ed – volume: 6 start-page: 795 year: 2013 ident: bib76 article-title: A novel strategy for improving upconversion luminescence of NaYF publication-title: Nano Res – volume: 122 start-page: 26298 year: 2018 ident: bib66 article-title: Concentration quenching in upconversion nanocrystals publication-title: J Phys Chem C – volume: 34 start-page: 389 year: 2011 ident: bib150 article-title: The development and application of optogenetics publication-title: Annu Rev Neurosci – volume: 5 start-page: 1743 year: 2021 ident: bib34 article-title: Spectral engineering of lanthanide-doped upconversion nanoparticles and their biosensing applications publication-title: Mater Chem Front – volume: 27 year: 2017 ident: bib92 article-title: Photo-induced charge-variable conjugated polyelectrolyte brushes encapsulating upconversion nanoparticles for promoted siRNA release and collaborative photodynamic therapy under NIR light irradiation publication-title: Adv Funct Mater – volume: 43 start-page: 134 year: 2020 ident: bib134 article-title: Emerging NIR light-responsive delivery systems based on lanthanide-doped upconverting nanoparticles publication-title: Arch Pharm Res – volume: 54 start-page: 85 year: 2006 ident: bib149 article-title: Kinetic evaluation of photosensitivity in genetically engineered neurons expressing green algae light-gated channels publication-title: Neurosci Res – volume: 18 start-page: 2689 year: 2018 ident: bib22 article-title: Improving quantum yield of upconverting nanoparticles in aqueous media publication-title: Nano Lett – volume: 257 start-page: 289 year: 2018 ident: bib124 article-title: Development of an upconversion fluorescence DNA probe for the detection of acetamiprid by magnetic nanoparticles separation publication-title: Food Chem – volume: 48 start-page: 6064 year: 2007 ident: bib42 article-title: Buckling of jets in electrospinning publication-title: Polymer – volume: 186 start-page: 1 year: 2019 ident: bib123 article-title: Aptamer and nanomaterial based FRET biosensors: a review on recent advances (2014–2019) publication-title: Microchim Acta – volume: 30 start-page: 13085 year: 2014 ident: bib127 article-title: Turn-on detection of a cancer marker based on near-infrared luminescence energy transfer from NaYF publication-title: Langmuir – volume: 28 start-page: 7935 year: 2016 ident: bib4 article-title: g-C publication-title: Chem Mater – volume: 17 start-page: 2858 year: 2017 ident: bib63 article-title: Optimal sensitizer concentration in single upconversion nanocrystals publication-title: Nano Lett – volume: 29 year: 2019 ident: bib131 article-title: A versatile photoinduced electron transfer-based upconversion fluorescent biosensing platform for the detection of disease biomarkers and nerve agent publication-title: Adv Funct Mater – volume: 123 start-page: 22674 year: 2019 ident: bib37 article-title: Energy loss mechanism of upconversion core/shell nanocrystals publication-title: J Phys Chem C – volume: 53 start-page: 11702 year: 2014 ident: bib24 article-title: Enhancing luminescence in lanthanide-doped upconversion nanoparticles publication-title: Angew Chem Int Ed – volume: 148 start-page: 203 year: 2018 ident: bib122 article-title: Cell biology at the interface of nanobiosensors and microfluidics publication-title: Methods Cell Biol – volume: 14 start-page: 101 year: 2014 ident: bib73 article-title: Plasmon-enhanced energy transfer for improved upconversion of infrared radiation in doped-lanthanide nanocrystals publication-title: Nano Lett – volume: 86 start-page: 590 year: 2008 ident: bib48 article-title: Effect of relative humidity on the morphology of electrospun polymer fibers publication-title: Can J Chem – volume: 6 start-page: 13884 year: 2014 ident: bib58 article-title: Size-tunable and monodisperse Tm publication-title: ACS Appl Mater Interfaces – volume: 6 start-page: 13101 year: 2018 ident: bib69 article-title: External current-controlled dynamic display by integrating upconversion micro-disks with power density-dependent color into NIR luminescent diodes publication-title: J Mater Chem C – volume: 141 year: 2019 ident: bib132 article-title: Peptide-functionalized upconversion nanoparticles-based FRET sensing platform for Caspase-9 activity detection publication-title: Biosens Bioelectron – volume: 4 year: 2019 ident: bib75 article-title: Plasmon-enhanced upconversion photoluminescence: mechanism and application publication-title: Rev Phys – volume: 29 start-page: 4393 year: 2009 ident: bib77 article-title: Nanowires enhanced upconversion emission of NaYF publication-title: Chem Commun – volume: 13 start-page: 157 year: 2014 ident: bib65 article-title: Enhancing multiphoton upconversion through energy clustering at sublattice level publication-title: Nat Mater – volume: 8 start-page: 11667 year: 2016 ident: bib81 article-title: Plasmon-enhanced upconversion luminescence on vertically aligned gold nanorod monolayer supercrystals publication-title: ACS Appl Mater Interfaces – volume: 109 start-page: 8483 year: 2012 ident: bib20 article-title: Remote activation of biomolecules in deep tissues using near-infrared-to-UV upconversion nano transducers publication-title: Proc Natl Acad Sci – volume: 10 start-page: 38416 year: 2020 ident: bib116 article-title: Semiconductor ZnO based photosensitizer core–shell upconversion nanoparticle heterojunction for photodynamic therapy publication-title: RSC Adv – volume: 1 start-page: 1 year: 2002 ident: bib111 article-title: The role of apoptosis in response to photodynamic therapy: what, where, why, and how publication-title: Photochem Photobiol Sci – volume: 9 start-page: 300 year: 2014 ident: bib100 article-title: Engineering bright sub-10-nm upconverting nanocrystals for single-molecule imaging publication-title: Nat Nanotechnol – volume: 56 start-page: 10383 year: 2017 ident: bib61 article-title: Crystalline hollow microrods for site-selective enhancement of nonlinear photoluminescence publication-title: Angew Chem Int Ed – volume: 8 start-page: 10621 year: 2014 ident: bib60 article-title: Amplifying the red-emission of upconverting nanoparticles for biocompatible clinically used prodrug-induced photodynamic therapy publication-title: ACS Nano – volume: 58 start-page: 12195 year: 2019 ident: bib130 article-title: Direct detection of circulating tumor cells in whole blood using time-resolved luminescent lanthanide nanoprobes publication-title: Angew Chem Int Ed – volume: 115 start-page: 395 year: 2015 ident: bib2 article-title: Upconversion luminescent materials: advances and applications publication-title: Chem Rev – volume: 50 start-page: 5808 year: 2011 ident: bib154 article-title: Upconverting nanoparticles publication-title: Angew Chem Int Ed – volume: 4 start-page: 7369 year: 2012 ident: bib46 article-title: Upconversion polymeric nanofibers containing lanthanide-doped nanoparticles via electrospinning publication-title: Nanoscale – volume: 5 start-page: 1 year: 2015 ident: bib156 article-title: Near-infrared (NIR) up-conversion optogenetics publication-title: Sci Rep – volume: 367 year: 2018 ident: bib9 article-title: Synthesis and characterization of monodisperse core-shell lanthanide upconversion nanoparticles NaYF publication-title: Mater Sci Eng, B – volume: 35 start-page: 5847 year: 2014 ident: bib87 article-title: A tumor-targeting near-infrared laser-triggered drug delivery system based on GO@Ag nanoparticles for chemo-photothermal therapy and X-ray imaging publication-title: Biomaterials – volume: 8 start-page: 52 year: 2017 ident: bib98 article-title: Photo-responsive polymers: synthesis and applications publication-title: Polym Chem – volume: 96 start-page: 1 year: 2009 ident: bib108 article-title: Photodynamic therapy (PDT): a short review on cellular mechanisms and cancer research applications for PDT publication-title: J Photochem Photobiol B Biol – volume: 17 start-page: 775 year: 2017 ident: bib118 article-title: Photodynamic therapy: past, present and future publication-title: Chem Rec – volume: 22 start-page: 1063 year: 1954 ident: bib56 article-title: Theory of concentration quenching in inorganic phosphors publication-title: J Chem Phys – volume: 117 start-page: 39 year: 2006 ident: bib53 article-title: Concentration quenching in erbium-doped tellurite glasses publication-title: J Lumin – volume: 5 start-page: 11661 year: 2013 ident: bib59 article-title: Size-dependent maximization of upconversion efficiency of citrate-stabilized β-phase NaYF publication-title: ACS Appl Mater Interfaces – volume: 9 start-page: 1964 year: 2017 ident: bib64 article-title: Revisiting the optimized doping ratio in core/shell nanostructured upconversion particles publication-title: Nanoscale – volume: 51 start-page: 477 year: 2015 ident: bib90 article-title: Near-infrared light- mediated release of doxorubicin using upconversion nanoparticles publication-title: Chem Commun – volume: 4 start-page: 47 year: 2016 ident: bib140 article-title: Upconversion nanoparticles for bioimaging and regenerative medicine publication-title: Front Bioeng Biotechnol – volume: 10 start-page: 260 year: 1998 ident: bib39 article-title: Chemical vapor deposition based synthesis of carbon nanotubes and nanofibers using a template method publication-title: Chem Mater – volume: 6 start-page: 2583 year: 2005 ident: bib38 article-title: Characterization of the surface biocompatibility of the electrospun PCL-collagen nanofibers using fibroblasts publication-title: Biomacromolecules – volume: 41 start-page: 1323 year: 2012 ident: bib155 article-title: Upconversion nanophosphors for small-animal imaging publication-title: Chem Soc Rev – volume: 2 start-page: 4863 year: 2020 ident: bib70 article-title: Enhancing FRET biosensing beyond 10 nm with photon avalanche nanoparticles publication-title: Nanoscale Adv – volume: 133 start-page: 19714 year: 2011 ident: bib95 article-title: Near-infrared light-triggered dissociation of block copolymer micelles using upconverting nanoparticles publication-title: J Am Chem Soc – volume: 690 start-page: 356 year: 2017 ident: bib141 article-title: Broadband dye-sensitized upconversion: a promising new platform for future solar upconverter design publication-title: J Alloys Compd – volume: 6 start-page: 2380 year: 2016 ident: bib15 article-title: Nanoscale “fluorescent stone”: luminescent calcium fluoride nanoparticles as theranostic platforms publication-title: Theranostics – volume: 25 start-page: 68 year: 2019 ident: bib23 article-title: Exploiting lanthanide-doped upconversion nanoparticles with core/shell structures publication-title: Nano Today – volume: 127 start-page: 544 year: 2005 ident: bib25 article-title: Synthesis and characterization of Co/CdSe core/shell nanocomposites: bifunctional magnetic-optical nanocrystals publication-title: J Am Chem Soc – volume: 54 start-page: 12064 year: 2015 ident: bib161 article-title: Optogenetic apoptosis: light-triggered cell death publication-title: Angew Chem Int Ed – volume: 2 start-page: 427 year: 2020 ident: bib1 article-title: Emerging frontiers of upconversion nanoparticles publication-title: Trends Chem – volume: 133 start-page: 19714 year: 2011 ident: bib102 article-title: Near-infrared light-triggered dissociation of block copolymer micelles using upconverting nanoparticles publication-title: J Am Chem Soc – volume: 135 start-page: 12608 year: 2013 ident: bib27 article-title: Mechanistic investigation of photon upconversion in Nd publication-title: J Am Chem Soc – volume: 17 start-page: 2119 year: 2005 ident: bib10 article-title: Synthesis and upconversion luminescence of hexagonal-phase NaYF publication-title: Adv Mater – volume: 22 start-page: 10130 year: 2021 ident: bib121 article-title: Advances in the genetically engineered killerred for photodynamic therapy applications publication-title: Int J Mol Sci – volume: 10 start-page: 1060 year: 2016 ident: bib152 article-title: Dye-sensitized core/active shell upconversion nanoparticles for optogenetics and bioimaging applications publication-title: ACS Nano – volume: 6 start-page: 270 year: 2016 ident: bib32 article-title: Tunable green to red upconversion fluorescence of water-soluble hexagonal-phase core-shell CaF publication-title: Opt Mater Express – volume: 11 start-page: 41100 year: 2019 ident: bib112 article-title: Upconversion system with quantum dots as sensitizer: improved photoluminescence and PDT efficiency publication-title: ACS Appl Mater Interfaces – volume: 3 start-page: 346 year: 2018 ident: bib138 article-title: Upconversion nanophosphors NaLuF publication-title: Theranostic – volume: 114 start-page: 5161 year: 2014 ident: bib3 article-title: Upconversion nanoparticles: design, nanochemistry, and applications in theranostics publication-title: Chem Rev – volume: 106 start-page: 874 year: 1957 ident: bib74 article-title: Plasma losses by fast electrons in thin films publication-title: Phys Rev – volume: 10 start-page: 19898 year: 2018 ident: bib62 article-title: NaYbF publication-title: Nanoscale – volume: 11 start-page: 11898 year: 2017 ident: bib160 article-title: Near-infrared light triggered upconversion optogenetic nanosystem for cancer therapy publication-title: ACS Nano – volume: 313 start-page: 1642 year: 2006 ident: bib6 article-title: Imaging intracellular fluorescent proteins at nanometer resolution publication-title: Science – volume: 32 start-page: 804 year: 2014 ident: bib139 article-title: Clinical imaging in regenerative medicine publication-title: Nat Biotechnol – volume: 51 start-page: 431 year: 2015 ident: bib101 article-title: Ultralow-intensity near-infrared light induces drug delivery by upconverting nanoparticles publication-title: Chem Commun – volume: 56 start-page: 15118 year: 2020 ident: bib17 article-title: Energy transfer designing in lanthanide-doped upconversion nanoparticles publication-title: Chem Commun – volume: 10 start-page: 8618 year: 2019 ident: bib120 article-title: Mesoporous cerium oxide-coated upconversion nanoparticles for tumor-responsive chemo-photodynamic therapy and bioimaging publication-title: Chem Sci – volume: 27 year: 2017 ident: bib93 article-title: Photo-induced charge-variable conjugated polyelectrolyte brushes encapsulating upconversion nanoparticles for promoted siRNA release and collaborative photodynamic therapy under NIR light irradiation publication-title: Adv Funct Mater – reference: Deisseroth K., Anikeeva P., et al. Upconversion of light for use in optogenetic methods. U.S. Patent. 2019. – volume: 208 start-page: 108 year: 2022 ident: bib88 article-title: Two-photon fluorescence absorption and emission spectra of dyes relevant for cell imaging publication-title: J Microsc – volume: 33 start-page: 248 year: 2016 ident: bib45 article-title: Near-infrared photocatalytic upconversion nanoparticles/TiO publication-title: Part Part Syst Char – volume: 134 start-page: 5390 year: 2012 ident: bib144 article-title: Blue-emissive upconversion nanoparticles for low-power-excited bioimaging publication-title: J Am Chem Soc – volume: 446 start-page: 633 year: 2007 ident: bib151 article-title: Multimodal fast optical interrogation of neural circuitry publication-title: Nat – volume: 52 start-page: 5738 year: 2017 ident: bib82 article-title: Microwave-assisted one-step synthesis of acetate-capped NaYF publication-title: J Mater Sci – volume: 39 start-page: 2598 year: 2001 ident: bib47 article-title: Flat polymer ribbons and other shapes by electrospinning publication-title: J Polym Sci, Part B: Polym Phys – volume: 7 start-page: 4274 year: 2015 ident: bib71 article-title: Lanthanide-doped luminescent nano-bioprobes for the detection of tumor markers publication-title: Nanoscale – volume: 3 start-page: 317 year: 2013 ident: bib114 article-title: Upconversion nanoparticles for photodynamic therapy and other cancer therapeutics publication-title: Theranostics – volume: 2 start-page: 953 year: 2010 ident: bib13 article-title: Colloidal synthesis and blue based multicolor upconversion emissions of size and composition controlled monodisperse hexagonal NaYF publication-title: Nanoscale – volume: 144 start-page: 139 year: 2013 ident: bib55 article-title: Concentration dependent luminescence quenching of Er publication-title: J Lumin – start-page: 451 year: 2019 ident: bib83 article-title: Carbon and carbon nanotube drug delivery and its characterization, properties, and applications publication-title: Nanocarriers for drug delivery – volume: 113 start-page: 7164 year: 2009 ident: bib28 article-title: Upconversion luminescence of β-NaYF publication-title: J Phys Chem A – volume: 13 year: 2017 ident: bib79 article-title: Tuning plasmonic enhancement of single nanocrystal upconversion luminescence by varying gold nanorod diameter publication-title: Small – volume: 4 start-page: 6065 year: 2012 ident: bib86 article-title: Upconversion nanoparticles for sensitive and in-depth detection of Cu publication-title: Nanoscale – volume: 17 start-page: 1685 year: 2011 ident: bib133 article-title: Cancer cell–selective publication-title: Nat Med – volume: 19 start-page: 2924 year: 2009 ident: bib33 article-title: The active-core/active-shell approach: a strategy to enhance the upconversion luminescence in lanthanide-doped nanoparticles publication-title: Adv Funct Mater – volume: 139 start-page: 3275 year: 2017 ident: bib54 article-title: Direct evidence for coupled surface and concentration quenching dynamics in lanthanide-doped nanocrystals publication-title: J Am Chem Soc – volume: 80 start-page: 398 year: 2016 ident: bib128 article-title: Fabricating a novel label-free aptasensor for acetamiprid by fluorescence resonance energy transfer between NH publication-title: Biosens Bioelectron – volume: 11 start-page: 4133 year: 2017 ident: bib8 article-title: Highly emissive dye-sensitized upconversion nanostructure for dual-photosensitizer photodynamic therapy and bioimaging publication-title: ACS Nano – volume: 7 start-page: 897 year: 2010 ident: bib148 article-title: Optogenetic control of heart muscle publication-title: Nat Methods – volume: 30 start-page: 1551 year: 2012 ident: bib14 article-title: Recent advances in synthesis and surface modification of lanthanide-doped upconversion nanoparticles for biomedical applications publication-title: Biotechnol Adv – volume: 559 start-page: 17 year: 2018 ident: bib125 article-title: Label-free aptasensors based on fluorescent screening assays for the detection of publication-title: Anal Biochem – volume: 9 start-page: 5234 year: 2015 ident: bib103 article-title: Real-time monitoring of ATP-responsive drug release using mesoporous-silica-coated multicolor upconversion nanoparticles publication-title: ACS Nano – volume: 18 start-page: 414 year: 2018 ident: bib40 article-title: An overview on application of natural substances incorporated with electrospun nanofibrous scaffolds to development of innovative wound dressings publication-title: Mini Rev Med Chem – volume: 4 start-page: 3608 year: 2012 ident: bib26 article-title: Impacts of core–shell structures on properties of lanthanide-based nanocrystals: crystal phase, lattice strain, downconversion, upconversion and energy transfer publication-title: Nanoscale – volume: 4 start-page: 2432 year: 2016 ident: bib35 article-title: Highly enhanced upconversion luminescence in lanthanide-doped active-core/luminescent-shell/active-shell nanoarchitectures publication-title: J Mater Chem C – volume: 29 start-page: 4393 year: 2009 ident: 10.1016/j.jre.2022.04.015_bib77 article-title: Nanowires enhanced upconversion emission of NaYF4:Yb,Er nanocrystals via a direct assembly method publication-title: Chem Commun doi: 10.1039/b909164e – volume: 367 year: 2018 ident: 10.1016/j.jre.2022.04.015_bib9 article-title: Synthesis and characterization of monodisperse core-shell lanthanide upconversion nanoparticles NaYF4:Yb,Tm/SiO2 publication-title: Mater Sci Eng, B – volume: 21 start-page: 2356 year: 2011 ident: 10.1016/j.jre.2022.04.015_bib41 article-title: Electrospinning preparation and frug-felivery properties of an up-conversion luminescent porous NaYF4:Yb3+, Er3+@ silica fiber nanocomposite publication-title: Adv Func Mater doi: 10.1002/adfm.201100193 – volume: 18 start-page: 414 year: 2018 ident: 10.1016/j.jre.2022.04.015_bib40 article-title: An overview on application of natural substances incorporated with electrospun nanofibrous scaffolds to development of innovative wound dressings publication-title: Mini Rev Med Chem doi: 10.2174/1389557517666170308112147 – volume: 17 start-page: 1685 year: 2011 ident: 10.1016/j.jre.2022.04.015_bib133 article-title: Cancer cell–selective in vivo near infrared photoimmunotherapy targeting specific membrane molecules publication-title: Nat Med doi: 10.1038/nm.2554 – volume: 6 start-page: 270 year: 2016 ident: 10.1016/j.jre.2022.04.015_bib32 article-title: Tunable green to red upconversion fluorescence of water-soluble hexagonal-phase core-shell CaF2@NaYF4 nanocrystals publication-title: Opt Mater Express doi: 10.1364/OME.6.000270 – volume: 5 start-page: 9712 year: 2017 ident: 10.1016/j.jre.2022.04.015_bib49 article-title: Embedded nanolamps in electrospun nanofibers enabling online monitoring and ratiometric measurements publication-title: J Mater Chem C doi: 10.1039/C7TC03251J – volume: 4 start-page: 6065 year: 2012 ident: 10.1016/j.jre.2022.04.015_bib86 article-title: Upconversion nanoparticles for sensitive and in-depth detection of Cu2+ ions publication-title: Nanoscale doi: 10.1039/c2nr31570j – volume: 13 start-page: 157 year: 2014 ident: 10.1016/j.jre.2022.04.015_bib65 article-title: Enhancing multiphoton upconversion through energy clustering at sublattice level publication-title: Nat Mater doi: 10.1038/nmat3804 – volume: 11 start-page: 11898 year: 2017 ident: 10.1016/j.jre.2022.04.015_bib160 article-title: Near-infrared light triggered upconversion optogenetic nanosystem for cancer therapy publication-title: ACS Nano doi: 10.1021/acsnano.7b06395 – volume: 257 start-page: 289 year: 2018 ident: 10.1016/j.jre.2022.04.015_bib124 article-title: Development of an upconversion fluorescence DNA probe for the detection of acetamiprid by magnetic nanoparticles separation publication-title: Food Chem doi: 10.1016/j.foodchem.2018.02.148 – volume: 39 start-page: 2598 year: 2001 ident: 10.1016/j.jre.2022.04.015_bib47 article-title: Flat polymer ribbons and other shapes by electrospinning publication-title: J Polym Sci, Part B: Polym Phys doi: 10.1002/polb.10015 – volume: 6 start-page: 13101 year: 2018 ident: 10.1016/j.jre.2022.04.015_bib69 article-title: External current-controlled dynamic display by integrating upconversion micro-disks with power density-dependent color into NIR luminescent diodes publication-title: J Mater Chem C doi: 10.1039/C8TC05087B – volume: 7 start-page: 8516 year: 2013 ident: 10.1016/j.jre.2022.04.015_bib91 article-title: Near-infrared light photo controlled targeting, bioimaging, and chemotherapy with caged upconversion nanoparticles in vitro and in vivo publication-title: ACS Nano doi: 10.1021/nn402399m – volume: 92 start-page: 11795 year: 2020 ident: 10.1016/j.jre.2022.04.015_bib80 article-title: Plasmonic modulation of the upconversion luminescence based on gold nanorods for designing a new strategy of sensing microRNAs publication-title: Anal Chem doi: 10.1021/acs.analchem.0c01969 – volume: 56 start-page: 10383 year: 2017 ident: 10.1016/j.jre.2022.04.015_bib61 article-title: Crystalline hollow microrods for site-selective enhancement of nonlinear photoluminescence publication-title: Angew Chem Int Ed doi: 10.1002/anie.201703600 – volume: 50 start-page: 5808 year: 2011 ident: 10.1016/j.jre.2022.04.015_bib154 article-title: Upconverting nanoparticles publication-title: Angew Chem Int Ed doi: 10.1002/anie.201005159 – volume: 142 start-page: 136 year: 2017 ident: 10.1016/j.jre.2022.04.015_bib158 article-title: Tetherless near-infrared control of brain activity in behaving animals using fully implantable upconversion micro devices publication-title: Biomater doi: 10.1016/j.biomaterials.2017.07.017 – volume: 48 start-page: 6064 year: 2007 ident: 10.1016/j.jre.2022.04.015_bib42 article-title: Buckling of jets in electrospinning publication-title: Polymer doi: 10.1016/j.polymer.2007.08.002 – volume: 131 start-page: 12245 year: 2019 ident: 10.1016/j.jre.2022.04.015_bib72 article-title: Boosting luminance energy transfer efficiency in upconversion nanoparticles with an energy-concentrating zone publication-title: Angew Chem doi: 10.1002/ange.201906380 – volume: 133 start-page: 19714 year: 2011 ident: 10.1016/j.jre.2022.04.015_bib95 article-title: Near-infrared light-triggered dissociation of block copolymer micelles using upconverting nanoparticles publication-title: J Am Chem Soc doi: 10.1021/ja209793b – volume: 9 start-page: 300 year: 2014 ident: 10.1016/j.jre.2022.04.015_bib100 article-title: Engineering bright sub-10-nm upconverting nanocrystals for single-molecule imaging publication-title: Nat Nanotechnol doi: 10.1038/nnano.2014.29 – volume: 19 start-page: 316 year: 2001 ident: 10.1016/j.jre.2022.04.015_bib85 article-title: A clearer vision for in vivo imaging publication-title: Nat Biotechnol doi: 10.1038/86684 – volume: 109 start-page: 8483 year: 2012 ident: 10.1016/j.jre.2022.04.015_bib20 article-title: Remote activation of biomolecules in deep tissues using near-infrared-to-UV upconversion nano transducers publication-title: Proc Natl Acad Sci doi: 10.1073/pnas.1114551109 – volume: 135 start-page: 1 year: 2021 ident: 10.1016/j.jre.2022.04.015_bib163 article-title: Applications of upconversion nanoparticles in cellular optogenetics publication-title: Acta Biomater doi: 10.1016/j.actbio.2021.08.035 – volume: 33 start-page: 248 year: 2016 ident: 10.1016/j.jre.2022.04.015_bib45 article-title: Near-infrared photocatalytic upconversion nanoparticles/TiO2 nanofibers assembled in large scale by electrospinning publication-title: Part Part Syst Char doi: 10.1002/ppsc.201600010 – volume: 100 start-page: 13940 year: 2003 ident: 10.1016/j.jre.2022.04.015_bib153 article-title: Channelrhodopsin-2, a directly light-gated cation-selective membrane channel publication-title: Proc Natl Acad Sci doi: 10.1073/pnas.1936192100 – volume: 142 year: 2020 ident: 10.1016/j.jre.2022.04.015_bib145 article-title: Temporal multiplexed in vivo upconversion imaging publication-title: J Am Chem Soc – volume: 10 start-page: 1060 year: 2016 ident: 10.1016/j.jre.2022.04.015_bib152 article-title: Dye-sensitized core/active shell upconversion nanoparticles for optogenetics and bioimaging applications publication-title: ACS Nano doi: 10.1021/acsnano.5b06383 – volume: 133 start-page: 19714 year: 2011 ident: 10.1016/j.jre.2022.04.015_bib102 article-title: Near-infrared light-triggered dissociation of block copolymer micelles using upconverting nanoparticles publication-title: J Am Chem Soc doi: 10.1021/ja209793b – volume: 6 start-page: 486 year: 2010 ident: 10.1016/j.jre.2022.04.015_bib115 article-title: Singlet oxygen-induced apoptosis of cancer cells using upconversion fluorescent nanoparticles as a carrier of photosensitizer publication-title: Nanomed Nanotechnol Biol Med doi: 10.1016/j.nano.2009.11.004 – volume: 135 start-page: 12608 year: 2013 ident: 10.1016/j.jre.2022.04.015_bib27 article-title: Mechanistic investigation of photon upconversion in Nd3+-sensitized core–shell nanoparticles publication-title: J Am Chem Soc doi: 10.1021/ja4075002 – volume: 6 start-page: 535 year: 2006 ident: 10.1016/j.jre.2022.04.015_bib110 article-title: Photodynamic therapy and anti-tumour immunity publication-title: Nat Rev Cancer doi: 10.1038/nrc1894 – volume: 90 start-page: 525 year: 2017 ident: 10.1016/j.jre.2022.04.015_bib129 article-title: Upconversion nanoparticles based FRET aptasensor for rapid and ultrasenstive bacteria detection publication-title: Biosens Bioelectron doi: 10.1016/j.bios.2016.10.029 – volume: 29 start-page: 937 year: 2008 ident: 10.1016/j.jre.2022.04.015_bib142 article-title: Upconversion fuorescence imaging of cells and small animals using lanthanide doped nanocrystals publication-title: Biomaters doi: 10.1016/j.biomaterials.2007.10.051 – volume: 3 year: 2011 ident: 10.1016/j.jre.2022.04.015_bib30 article-title: Monodisperse NaYbF4:Tm3+/NaGdF4 core/shell nanocrystals with near-infrared to near-infrared upconversion photoluminescence and magnetic resonance properties publication-title: Nanoscale doi: 10.1039/c0nr01018a – volume: 559 start-page: 17 year: 2018 ident: 10.1016/j.jre.2022.04.015_bib125 article-title: Label-free aptasensors based on fluorescent screening assays for the detection of Salmonella typhimurium publication-title: Anal Biochem doi: 10.1016/j.ab.2018.08.002 – volume: 199 start-page: 22 year: 2019 ident: 10.1016/j.jre.2022.04.015_bib162 article-title: Near-infrared light remotely up-regulate autophagy with spatiotemporal precision via upconversion optogenetic nanosystem publication-title: Biomaterials doi: 10.1016/j.biomaterials.2019.01.042 – volume: 102 start-page: 384 year: 2020 ident: 10.1016/j.jre.2022.04.015_bib21 article-title: Dispersion stability and biocompatibility of four ligand-exchanged NaYF4: Yb, Er upconversion nanoparticles publication-title: Acta Biomaterialia doi: 10.1016/j.actbio.2019.11.048 – volume: 44 start-page: 6054 year: 2005 ident: 10.1016/j.jre.2022.04.015_bib11 article-title: Fluorescence resonant energy transfer biosensor based on upconversion-luminescent nanoparticles publication-title: Angew Chem Int Ed doi: 10.1002/anie.200501907 – volume: 104 start-page: 139 year: 2004 ident: 10.1016/j.jre.2022.04.015_bib16 article-title: Upconversion and anti-Stokes processes with f and d ions in solids publication-title: Chem Rev doi: 10.1021/cr020357g – volume: 10 start-page: 8618 year: 2019 ident: 10.1016/j.jre.2022.04.015_bib120 article-title: Mesoporous cerium oxide-coated upconversion nanoparticles for tumor-responsive chemo-photodynamic therapy and bioimaging publication-title: Chem Sci doi: 10.1039/C9SC01615E – volume: 2 start-page: 1417 year: 2010 ident: 10.1016/j.jre.2022.04.015_bib29 article-title: Absolute quantum yield measurements of colloidal NaYF4: Er3+, Yb3+ upconverting nanoparticles publication-title: Nanoscale doi: 10.1039/c0nr00253d – volume: 4 start-page: 2432 year: 2016 ident: 10.1016/j.jre.2022.04.015_bib35 article-title: Highly enhanced upconversion luminescence in lanthanide-doped active-core/luminescent-shell/active-shell nanoarchitectures publication-title: J Mater Chem C doi: 10.1039/C6TC00163G – volume: 8 start-page: 52 year: 2017 ident: 10.1016/j.jre.2022.04.015_bib98 article-title: Photo-responsive polymers: synthesis and applications publication-title: Polym Chem doi: 10.1039/C6PY01082B – volume: 51 start-page: 431 year: 2015 ident: 10.1016/j.jre.2022.04.015_bib101 article-title: Ultralow-intensity near-infrared light induces drug delivery by upconverting nanoparticles publication-title: Chem Commun doi: 10.1039/C4CC07489K – volume: 54 start-page: 85 year: 2006 ident: 10.1016/j.jre.2022.04.015_bib149 article-title: Kinetic evaluation of photosensitivity in genetically engineered neurons expressing green algae light-gated channels publication-title: Neurosci Res doi: 10.1016/j.neures.2005.10.009 – volume: 6 start-page: 2583 year: 2005 ident: 10.1016/j.jre.2022.04.015_bib38 article-title: Characterization of the surface biocompatibility of the electrospun PCL-collagen nanofibers using fibroblasts publication-title: Biomacromolecules doi: 10.1021/bm050314k – ident: 10.1016/j.jre.2022.04.015_bib159 – volume: 123 start-page: 22674 year: 2019 ident: 10.1016/j.jre.2022.04.015_bib37 article-title: Energy loss mechanism of upconversion core/shell nanocrystals publication-title: J Phys Chem C doi: 10.1021/acs.jpcc.9b07176 – volume: 19 start-page: 2924 year: 2009 ident: 10.1016/j.jre.2022.04.015_bib33 article-title: The active-core/active-shell approach: a strategy to enhance the upconversion luminescence in lanthanide-doped nanoparticles publication-title: Adv Funct Mater doi: 10.1002/adfm.200900234 – volume: 39 start-page: 4633 year: 2006 ident: 10.1016/j.jre.2022.04.015_bib99 article-title: Toward photo controlled release using light-dissociable block copolymer micelles publication-title: Macromol doi: 10.1021/ma060142z – start-page: 451 year: 2019 ident: 10.1016/j.jre.2022.04.015_bib83 article-title: Carbon and carbon nanotube drug delivery and its characterization, properties, and applications – volume: 2 start-page: 953 year: 2010 ident: 10.1016/j.jre.2022.04.015_bib13 article-title: Colloidal synthesis and blue based multicolor upconversion emissions of size and composition controlled monodisperse hexagonal NaYF4: Yb , Tm nanocrystals publication-title: Nanoscale doi: 10.1039/b9nr00397e – volume: 117 start-page: 39 year: 2006 ident: 10.1016/j.jre.2022.04.015_bib53 article-title: Concentration quenching in erbium-doped tellurite glasses publication-title: J Lumin doi: 10.1016/j.jlumin.2005.04.003 – volume: 39 start-page: 15 year: 2015 ident: 10.1016/j.jre.2022.04.015_bib136 article-title: Upconversion nanoprobes for efficiently in vitro imaging reactive oxygen species and in vivo diagnosing rheumatoid arthritis publication-title: Biomater doi: 10.1016/j.biomaterials.2014.10.066 – volume: 2 start-page: 427 year: 2020 ident: 10.1016/j.jre.2022.04.015_bib1 article-title: Emerging frontiers of upconversion nanoparticles publication-title: Trends Chem doi: 10.1016/j.trechm.2020.01.008 – volume: 10 start-page: 19898 year: 2018 ident: 10.1016/j.jre.2022.04.015_bib62 article-title: NaYbF4@CaF2 core–satellite upconversion nanoparticles: one-pot synthesis and sensitive detection of glutathione publication-title: Nanoscale doi: 10.1039/C8NR05552A – volume: 115 start-page: 395 year: 2015 ident: 10.1016/j.jre.2022.04.015_bib2 article-title: Upconversion luminescent materials: advances and applications publication-title: Chem Rev doi: 10.1021/cr400478f – volume: 3 start-page: 7219 year: 2020 ident: 10.1016/j.jre.2022.04.015_bib43 article-title: Electrospun upconverting nanofibrous hybrids with smart NIR-light-controlled drug release for wound dressing publication-title: ACS Appl Bio Mater doi: 10.1021/acsabm.0c01019 – volume: 4 start-page: 7369 year: 2012 ident: 10.1016/j.jre.2022.04.015_bib46 article-title: Upconversion polymeric nanofibers containing lanthanide-doped nanoparticles via electrospinning publication-title: Nanoscale doi: 10.1039/c2nr32204h – volume: 9 start-page: 1 year: 2018 ident: 10.1016/j.jre.2022.04.015_bib57 article-title: Advances in highly doped upconversion nanoparticles publication-title: Nat Commun doi: 10.1038/s41467-018-04813-5 – volume: 22 start-page: 10130 year: 2021 ident: 10.1016/j.jre.2022.04.015_bib121 article-title: Advances in the genetically engineered killerred for photodynamic therapy applications publication-title: Int J Mol Sci doi: 10.3390/ijms221810130 – volume: 208 start-page: 108 year: 2022 ident: 10.1016/j.jre.2022.04.015_bib88 article-title: Two-photon fluorescence absorption and emission spectra of dyes relevant for cell imaging publication-title: J Microsc doi: 10.1046/j.1365-2818.2002.01074.x – volume: 134 start-page: 5390 year: 2012 ident: 10.1016/j.jre.2022.04.015_bib144 article-title: Blue-emissive upconversion nanoparticles for low-power-excited bioimaging in vivo publication-title: J Am Chem Soc doi: 10.1021/ja3003638 – volume: 2 start-page: 1 issue: 1 year: 2005 ident: 10.1016/j.jre.2022.04.015_bib119 article-title: Mechanisms in photodynamic therapy: Part two-cellular signaling, cell metabolism and modes of cell death publication-title: Photodiagnosis Photodyn Ther doi: 10.1016/S1572-1000(05)00030-X – volume: 148 start-page: 203 year: 2018 ident: 10.1016/j.jre.2022.04.015_bib122 article-title: Cell biology at the interface of nanobiosensors and microfluidics publication-title: Methods Cell Biol doi: 10.1016/bs.mcb.2018.09.009 – volume: 106 start-page: 874 year: 1957 ident: 10.1016/j.jre.2022.04.015_bib74 article-title: Plasma losses by fast electrons in thin films publication-title: Phys Rev doi: 10.1103/PhysRev.106.874 – volume: 11 start-page: 41100 year: 2019 ident: 10.1016/j.jre.2022.04.015_bib112 article-title: Upconversion system with quantum dots as sensitizer: improved photoluminescence and PDT efficiency publication-title: ACS Appl Mater Interfaces doi: 10.1021/acsami.9b16237 – volume: 30 start-page: 13085 year: 2014 ident: 10.1016/j.jre.2022.04.015_bib127 article-title: Turn-on detection of a cancer marker based on near-infrared luminescence energy transfer from NaYF4:Yb,Tm/NaGdF4 core–shell upconverting nanoparticles to gold nanorods publication-title: Langmuir doi: 10.1021/la502753e – volume: 4 start-page: 47 year: 2016 ident: 10.1016/j.jre.2022.04.015_bib140 article-title: Upconversion nanoparticles for bioimaging and regenerative medicine publication-title: Front Bioeng Biotechnol doi: 10.3389/fbioe.2016.00047 – volume: 40 start-page: 193 year: 2022 ident: 10.1016/j.jre.2022.04.015_bib146 article-title: Decorating rare-earth fluoride upconversion nanoparticles on AuNRs@ Ag core–shell structure for NIR light-mediated photothermal therapy and bioimaging publication-title: J Rare Earths doi: 10.1016/j.jre.2021.01.014 – year: 2010 ident: 10.1016/j.jre.2022.04.015_bib105 – volume: 96 start-page: 1 year: 2009 ident: 10.1016/j.jre.2022.04.015_bib108 article-title: Photodynamic therapy (PDT): a short review on cellular mechanisms and cancer research applications for PDT publication-title: J Photochem Photobiol B Biol doi: 10.1016/j.jphotobiol.2009.04.001 – volume: 127 start-page: 544 year: 2005 ident: 10.1016/j.jre.2022.04.015_bib25 article-title: Synthesis and characterization of Co/CdSe core/shell nanocomposites: bifunctional magnetic-optical nanocrystals publication-title: J Am Chem Soc doi: 10.1021/ja047107x – volume: 56 start-page: 3031 year: 2017 ident: 10.1016/j.jre.2022.04.015_bib164 article-title: Remote regulation of membrane channel activity by site-specific localization of lanthanide-doped upconversion nanocrystals publication-title: Angew Chem Int Ed doi: 10.1002/anie.201612142 – volume: 51 start-page: 9193 year: 2015 ident: 10.1016/j.jre.2022.04.015_bib97 article-title: NIR light controlled release of caged hydrogen sulfide based on upconversion nanoparticles publication-title: Chem Commun doi: 10.1039/C5CC02508G – volume: 7 start-page: 411 year: 2017 ident: 10.1016/j.jre.2022.04.015_bib89 article-title: Lanthanide-doped nanoparticles for diagnostic sensing publication-title: Nanomaterials doi: 10.3390/nano7120411 – volume: 374 start-page: 863 year: 2019 ident: 10.1016/j.jre.2022.04.015_bib106 article-title: Rare-earth-doped upconversion nanocrystals embedded mesoporous silica nanoparticles for multiple microRNA detection publication-title: J Chem Eng – volume: 22 start-page: 1567 year: 2004 ident: 10.1016/j.jre.2022.04.015_bib7 article-title: Improved monomeric red, orange and yellow fluorescent proteins derived from Discosoma sp. red fluorescent protein publication-title: Nat Biotechnol doi: 10.1038/nbt1037 – volume: 17 start-page: 775 year: 2017 ident: 10.1016/j.jre.2022.04.015_bib118 article-title: Photodynamic therapy: past, present and future publication-title: Chem Rec doi: 10.1002/tcr.201600121 – volume: 29 year: 2019 ident: 10.1016/j.jre.2022.04.015_bib131 article-title: A versatile photoinduced electron transfer-based upconversion fluorescent biosensing platform for the detection of disease biomarkers and nerve agent publication-title: Adv Funct Mater – volume: 690 start-page: 356 year: 2017 ident: 10.1016/j.jre.2022.04.015_bib141 article-title: Broadband dye-sensitized upconversion: a promising new platform for future solar upconverter design publication-title: J Alloys Compd doi: 10.1016/j.jallcom.2016.08.142 – volume: 4 year: 2019 ident: 10.1016/j.jre.2022.04.015_bib75 article-title: Plasmon-enhanced upconversion photoluminescence: mechanism and application publication-title: Rev Phys doi: 10.1016/j.revip.2018.100026 – volume: 56 start-page: 15118 year: 2020 ident: 10.1016/j.jre.2022.04.015_bib17 article-title: Energy transfer designing in lanthanide-doped upconversion nanoparticles publication-title: Chem Commun doi: 10.1039/D0CC05878E – volume: 27 year: 2017 ident: 10.1016/j.jre.2022.04.015_bib93 article-title: Photo-induced charge-variable conjugated polyelectrolyte brushes encapsulating upconversion nanoparticles for promoted siRNA release and collaborative photodynamic therapy under NIR light irradiation publication-title: Adv Funct Mater doi: 10.1002/adfm.201702592 – volume: 35 start-page: 5847 year: 2014 ident: 10.1016/j.jre.2022.04.015_bib87 article-title: A tumor-targeting near-infrared laser-triggered drug delivery system based on GO@Ag nanoparticles for chemo-photothermal therapy and X-ray imaging publication-title: Biomaterials doi: 10.1016/j.biomaterials.2014.03.042 – year: 2021 ident: 10.1016/j.jre.2022.04.015_bib117 article-title: Near infrared light activated upconversion nanoparticles (ucnp) based photodynamic therapy of prostate cancers: an in vitro study publication-title: Photodiagnosis Photodyn Ther doi: 10.1016/j.pdpdt.2021.102616 – volume: 86 start-page: 590 year: 2008 ident: 10.1016/j.jre.2022.04.015_bib48 article-title: Effect of relative humidity on the morphology of electrospun polymer fibers publication-title: Can J Chem doi: 10.1139/v08-029 – volume: 27 year: 2017 ident: 10.1016/j.jre.2022.04.015_bib92 article-title: Photo-induced charge-variable conjugated polyelectrolyte brushes encapsulating upconversion nanoparticles for promoted siRNA release and collaborative photodynamic therapy under NIR light irradiation publication-title: Adv Funct Mater doi: 10.1002/adfm.201702592 – volume: 14 start-page: 101 year: 2014 ident: 10.1016/j.jre.2022.04.015_bib73 article-title: Plasmon-enhanced energy transfer for improved upconversion of infrared radiation in doped-lanthanide nanocrystals publication-title: Nano Lett doi: 10.1021/nl403383w – volume: 2 start-page: 4863 year: 2020 ident: 10.1016/j.jre.2022.04.015_bib70 article-title: Enhancing FRET biosensing beyond 10 nm with photon avalanche nanoparticles publication-title: Nanoscale Adv doi: 10.1039/D0NA00404A – volume: 6 start-page: 795 year: 2013 ident: 10.1016/j.jre.2022.04.015_bib76 article-title: A novel strategy for improving upconversion luminescence of NaYF4: Yb, Er nanocrystals by coupling with hybrids of silver plasmon nanostructures and poly (methyl methacrylate) photonic crystals publication-title: Nano Res doi: 10.1007/s12274-013-0358-y – volume: 139 start-page: 3275 year: 2017 ident: 10.1016/j.jre.2022.04.015_bib54 article-title: Direct evidence for coupled surface and concentration quenching dynamics in lanthanide-doped nanocrystals publication-title: J Am Chem Soc doi: 10.1021/jacs.7b00223 – volume: 28 start-page: 7935 year: 2016 ident: 10.1016/j.jre.2022.04.015_bib4 article-title: g-C3N4 coated upconversion nanoparticles for 808 nm near-infrared light-triggered phototherapy and multiple imaging publication-title: Chem Mater doi: 10.1021/acs.chemmater.6b03598 – volume: 5 start-page: 1 year: 2015 ident: 10.1016/j.jre.2022.04.015_bib113 article-title: Coreshell upconversion nanoparticle–semiconductor heterostructures for photodynamic therapy publication-title: Sci Rep doi: 10.1038/srep08252 – volume: 53 start-page: 11702 year: 2014 ident: 10.1016/j.jre.2022.04.015_bib24 article-title: Enhancing luminescence in lanthanide-doped upconversion nanoparticles publication-title: Angew Chem Int Ed doi: 10.1002/anie.201403408 – volume: 17 start-page: 2119 year: 2005 ident: 10.1016/j.jre.2022.04.015_bib10 article-title: Synthesis and upconversion luminescence of hexagonal-phase NaYF4: Yb3+, Er3+ phosphors of controlled size and morphology publication-title: Adv Mater doi: 10.1002/adma.200402046 – volume: 8 start-page: 11667 year: 2016 ident: 10.1016/j.jre.2022.04.015_bib81 article-title: Plasmon-enhanced upconversion luminescence on vertically aligned gold nanorod monolayer supercrystals publication-title: ACS Appl Mater Interfaces doi: 10.1021/acsami.5b12075 – volume: 9 start-page: 1964 year: 2017 ident: 10.1016/j.jre.2022.04.015_bib64 article-title: Revisiting the optimized doping ratio in core/shell nanostructured upconversion particles publication-title: Nanoscale doi: 10.1039/C6NR07687D – volume: 5 start-page: 1743 year: 2021 ident: 10.1016/j.jre.2022.04.015_bib34 article-title: Spectral engineering of lanthanide-doped upconversion nanoparticles and their biosensing applications publication-title: Mater Chem Front doi: 10.1039/D0QM00910E – volume: 44 start-page: 1318 year: 2015 ident: 10.1016/j.jre.2022.04.015_bib36 article-title: Photon upconversion in core–shell nanoparticles publication-title: Chem Soc Rev doi: 10.1039/C4CS00151F – volume: 61 start-page: 250 year: 2011 ident: 10.1016/j.jre.2022.04.015_bib107 article-title: Photodynamic therapy of cancer publication-title: CA A Cancer J Clin doi: 10.3322/caac.20114 – volume: 32 start-page: 804 year: 2014 ident: 10.1016/j.jre.2022.04.015_bib139 article-title: Clinical imaging in regenerative medicine publication-title: Nat Biotechnol doi: 10.1038/nbt.2993 – volume: 4 start-page: 283 year: 2005 ident: 10.1016/j.jre.2022.04.015_bib109 article-title: A review of progress in clinical photodynamic therapy publication-title: Technol Cancer Res Treat doi: 10.1177/153303460500400308 – volume: 108 start-page: 1444 year: 2020 ident: 10.1016/j.jre.2022.04.015_bib44 article-title: Recent advances in electrospun nanofiber-mediated drug delivery strategies for localized cancer chemotherapy publication-title: J Biomed Mater Res doi: 10.1002/jbm.a.36912 – volume: 8 start-page: 10621 year: 2014 ident: 10.1016/j.jre.2022.04.015_bib60 article-title: Amplifying the red-emission of upconverting nanoparticles for biocompatible clinically used prodrug-induced photodynamic therapy publication-title: ACS Nano doi: 10.1021/nn505051d – volume: 58 start-page: 12195 year: 2019 ident: 10.1016/j.jre.2022.04.015_bib130 article-title: Direct detection of circulating tumor cells in whole blood using time-resolved luminescent lanthanide nanoprobes publication-title: Angew Chem Int Ed doi: 10.1002/anie.201907605 – volume: 330 start-page: 971 year: 2010 ident: 10.1016/j.jre.2022.04.015_bib147 article-title: Optogenetic control of cardiac function publication-title: Science doi: 10.1126/science.1195929 – volume: 114 start-page: 5161 year: 2014 ident: 10.1016/j.jre.2022.04.015_bib3 article-title: Upconversion nanoparticles: design, nanochemistry, and applications in theranostics publication-title: Chem Rev doi: 10.1021/cr400425h – volume: 3 start-page: 317 year: 2013 ident: 10.1016/j.jre.2022.04.015_bib114 article-title: Upconversion nanoparticles for photodynamic therapy and other cancer therapeutics publication-title: Theranostics doi: 10.7150/thno.5284 – volume: 113 start-page: 7164 year: 2009 ident: 10.1016/j.jre.2022.04.015_bib28 article-title: Upconversion luminescence of β-NaYF4:Yb3+, Er3+@β-NaYF4 core/shell nanoparticles: excitation power density and surface dependence publication-title: J Phys Chem A doi: 10.1021/jp9003399 – volume: 6 start-page: 1161 year: 2016 ident: 10.1016/j.jre.2022.04.015_bib104 article-title: Yb3+-enhanced UCNP@SiO2 nanocomposites for consecutive imaging, photothermal-controlled drug delivery and cancer therapy publication-title: Opt Mater Express doi: 10.1364/OME.6.001161 – volume: 38 start-page: 976 year: 2009 ident: 10.1016/j.jre.2022.04.015_bib18 article-title: Recent advances in the chemistry of lanthanide-doped upconversion nanocrystals publication-title: Chem Soc Rev doi: 10.1039/b809132n – volume: 446 start-page: 633 year: 2007 ident: 10.1016/j.jre.2022.04.015_bib151 article-title: Multimodal fast optical interrogation of neural circuitry publication-title: Nat doi: 10.1038/nature05744 – volume: 11 start-page: 4133 year: 2017 ident: 10.1016/j.jre.2022.04.015_bib8 article-title: Highly emissive dye-sensitized upconversion nanostructure for dual-photosensitizer photodynamic therapy and bioimaging publication-title: ACS Nano doi: 10.1021/acsnano.7b00944 – volume: 10 start-page: 38416 year: 2020 ident: 10.1016/j.jre.2022.04.015_bib116 article-title: Semiconductor ZnO based photosensitizer core–shell upconversion nanoparticle heterojunction for photodynamic therapy publication-title: RSC Adv doi: 10.1039/D0RA07466G – volume: 29 start-page: 937 year: 2008 ident: 10.1016/j.jre.2022.04.015_bib135 article-title: Upconversion fluorescence imaging of cells and small animals using lanthanide doped nanocrystals publication-title: Biomater doi: 10.1016/j.biomaterials.2007.10.051 – year: 2009 ident: 10.1016/j.jre.2022.04.015_bib126 – volume: 34 start-page: 389 year: 2011 ident: 10.1016/j.jre.2022.04.015_bib150 article-title: The development and application of optogenetics publication-title: Annu Rev Neurosci doi: 10.1146/annurev-neuro-061010-113817 – volume: 22 start-page: 1063 year: 1954 ident: 10.1016/j.jre.2022.04.015_bib56 article-title: Theory of concentration quenching in inorganic phosphors publication-title: J Chem Phys – volume: 3 start-page: 5769 year: 2015 ident: 10.1016/j.jre.2022.04.015_bib68 article-title: Poly-(allylamine hydrochloride)-coated but not poly (acrylic acid)-coated upconversion nanoparticles induce autophagy and apoptosis in human blood cancer cells publication-title: J Mater Chem B doi: 10.1039/C5TB00646E – volume: 26 start-page: 4778 year: 2016 ident: 10.1016/j.jre.2022.04.015_bib67 article-title: Highly emissive Nd3+-sensitized multilayered upconversion nanoparticles for efficient 795 nm operated photodynamic therapy publication-title: Adv Funct Mater doi: 10.1002/adfm.201600464 – volume: 186 start-page: 1 year: 2019 ident: 10.1016/j.jre.2022.04.015_bib123 article-title: Aptamer and nanomaterial based FRET biosensors: a review on recent advances (2014–2019) publication-title: Microchim Acta doi: 10.1007/s00604-019-3659-3 – volume: 359 start-page: 679 year: 2018 ident: 10.1016/j.jre.2022.04.015_bib157 article-title: Near-infrared deep brain stimulation via upconversion nanoparticle-mediated optogenetics publication-title: Science doi: 10.1126/science.aaq1144 – volume: 139 start-page: 151 year: 2017 ident: 10.1016/j.jre.2022.04.015_bib94 article-title: A NIR-controlled cage mimicking system for hydrophobic drug-mediated cancer therapy publication-title: Biomater doi: 10.1016/j.biomaterials.2017.06.008 – volume: 45 start-page: 635 year: 2014 ident: 10.1016/j.jre.2022.04.015_bib12 article-title: Near-infrared upconversion nanoparticles for bio-applications publication-title: Mater Sci Eng, C doi: 10.1016/j.msec.2014.03.056 – volume: 122 start-page: 26298 year: 2018 ident: 10.1016/j.jre.2022.04.015_bib66 article-title: Concentration quenching in upconversion nanocrystals publication-title: J Phys Chem C doi: 10.1021/acs.jpcc.8b09371 – volume: 41 start-page: 1323 year: 2012 ident: 10.1016/j.jre.2022.04.015_bib155 article-title: Upconversion nanophosphors for small-animal imaging publication-title: Chem Soc Rev doi: 10.1039/C1CS15187H – volume: 43 start-page: 134 year: 2020 ident: 10.1016/j.jre.2022.04.015_bib134 article-title: Emerging NIR light-responsive delivery systems based on lanthanide-doped upconverting nanoparticles publication-title: Arch Pharm Res doi: 10.1007/s12272-020-01208-3 – volume: 52 start-page: 5738 year: 2017 ident: 10.1016/j.jre.2022.04.015_bib82 article-title: Microwave-assisted one-step synthesis of acetate-capped NaYF4:Yb/Er upconversion nanocrystals and their application in bioimaging publication-title: J Mater Sci doi: 10.1007/s10853-017-0809-z – volume: 9 start-page: 5234 year: 2015 ident: 10.1016/j.jre.2022.04.015_bib103 article-title: Real-time monitoring of ATP-responsive drug release using mesoporous-silica-coated multicolor upconversion nanoparticles publication-title: ACS Nano doi: 10.1021/acsnano.5b00641 – volume: 313 start-page: 1642 year: 2006 ident: 10.1016/j.jre.2022.04.015_bib6 article-title: Imaging intracellular fluorescent proteins at nanometer resolution publication-title: Science doi: 10.1126/science.1127344 – volume: 13 year: 2017 ident: 10.1016/j.jre.2022.04.015_bib79 article-title: Tuning plasmonic enhancement of single nanocrystal upconversion luminescence by varying gold nanorod diameter publication-title: Small doi: 10.1002/smll.201701155 – volume: 3 start-page: 346 year: 2018 ident: 10.1016/j.jre.2022.04.015_bib138 article-title: Upconversion nanophosphors NaLuF4: Yb, Tm for lymphatic imaging in vivo by real-time upconversion luminescence imaging under ambient light and high-resolution X-ray CT publication-title: Theranostic doi: 10.7150/thno.5137 – volume: 1 start-page: 1 year: 2002 ident: 10.1016/j.jre.2022.04.015_bib111 article-title: The role of apoptosis in response to photodynamic therapy: what, where, why, and how publication-title: Photochem Photobiol Sci doi: 10.1039/b108586g – volume: 261 year: 2020 ident: 10.1016/j.jre.2022.04.015_bib5 article-title: Upconversion luminescence enhancement of β-NaYF4:Er3+/Ho3+ by introducing Ca2+ and multicolor tuning by 980 nm pulse excited publication-title: Mater Sci. Eng., B doi: 10.1016/j.mseb.2020.114674 – volume: 53 start-page: 358 year: 2019 ident: 10.1016/j.jre.2022.04.015_bib52 article-title: Combating concentration quenching in upconversion nanoparticles publication-title: Acc Chem Res doi: 10.1021/acs.accounts.9b00453 – volume: 10 start-page: 260 year: 1998 ident: 10.1016/j.jre.2022.04.015_bib39 article-title: Chemical vapor deposition based synthesis of carbon nanotubes and nanofibers using a template method publication-title: Chem Mater doi: 10.1021/cm970412f – volume: 5 start-page: 11661 year: 2013 ident: 10.1016/j.jre.2022.04.015_bib59 article-title: Size-dependent maximization of upconversion efficiency of citrate-stabilized β-phase NaYF4:Yb3+, Er3+ crystals via annealing publication-title: ACS Appl Mater Interfaces doi: 10.1021/am403100t – volume: 164 start-page: 2 year: 2000 ident: 10.1016/j.jre.2022.04.015_bib84 article-title: Convection-enhanced delivery of AAV vector in parkinsonian monkeys; in vivo detection of gene expression and restoration of dopaminergic function using pro-drug approach publication-title: Exp Neurol doi: 10.1006/exnr.2000.7408 – volume: 8 start-page: 2944 year: 2016 ident: 10.1016/j.jre.2022.04.015_bib50 article-title: Patterned, highly stretchable and conductive nanofibrous PANI/PVDF strain sensors based on electrospinning and in situ polymerization publication-title: Nanoscale doi: 10.1039/C5NR08618C – volume: 4 start-page: 891515 year: 2013 ident: 10.1016/j.jre.2022.04.015_bib31 article-title: Core-shell structure in doped inorganic nanoparticles: approaches for optimizing luminescence properties publication-title: J Nanomater doi: 10.1155/2013/891515 – volume: 5 start-page: 231 year: 2013 ident: 10.1016/j.jre.2022.04.015_bib96 article-title: NIR light controlled photorelease of siRNA and its targeted intracellular delivery based on upconversion nanoparticles publication-title: Nanoscale doi: 10.1039/C2NR32835F – volume: 5 start-page: 1 year: 2015 ident: 10.1016/j.jre.2022.04.015_bib156 article-title: Near-infrared (NIR) up-conversion optogenetics publication-title: Sci Rep doi: 10.1038/srep16533 – volume: 7 start-page: 897 year: 2010 ident: 10.1016/j.jre.2022.04.015_bib148 article-title: Optogenetic control of heart muscle in vitro and in vivo publication-title: Nat Methods doi: 10.1038/nmeth.1512 – volume: 30 start-page: 1551 year: 2012 ident: 10.1016/j.jre.2022.04.015_bib14 article-title: Recent advances in synthesis and surface modification of lanthanide-doped upconversion nanoparticles for biomedical applications publication-title: Biotechnol Adv doi: 10.1016/j.biotechadv.2012.04.009 – volume: 349 start-page: 554 year: 2018 ident: 10.1016/j.jre.2022.04.015_bib51 article-title: Flexible inorganic core-shell nanofibers endowed with tunable multicolor upconversion fluorescence for simultaneous monitoring dual drug delivery publication-title: Chem Eng J doi: 10.1016/j.cej.2018.05.112 – volume: 51 start-page: 477 year: 2015 ident: 10.1016/j.jre.2022.04.015_bib90 article-title: Near-infrared light- mediated release of doxorubicin using upconversion nanoparticles publication-title: Chem Commun – volume: 20 start-page: 7543 year: 2010 ident: 10.1016/j.jre.2022.04.015_bib137 article-title: Carbohydrate-coated lanthanide-doped upconverting nanoparticles for lectin recognition publication-title: J Mater Chem doi: 10.1039/c0jm01617a – start-page: 343 year: 2017 ident: 10.1016/j.jre.2022.04.015_bib143 – volume: 144 start-page: 139 year: 2013 ident: 10.1016/j.jre.2022.04.015_bib55 article-title: Concentration dependent luminescence quenching of Er3+-doped zinc boro-tellurite glass publication-title: J Lumin doi: 10.1016/j.jlumin.2013.06.050 – volume: 141 year: 2019 ident: 10.1016/j.jre.2022.04.015_bib132 article-title: Peptide-functionalized upconversion nanoparticles-based FRET sensing platform for Caspase-9 activity detection in vitro and in vivo publication-title: Biosens Bioelectron doi: 10.1016/j.bios.2019.111403 – volume: 6 start-page: 2380 year: 2016 ident: 10.1016/j.jre.2022.04.015_bib15 article-title: Nanoscale “fluorescent stone”: luminescent calcium fluoride nanoparticles as theranostic platforms publication-title: Theranostics doi: 10.7150/thno.15914 – volume: 6 start-page: 13884 year: 2014 ident: 10.1016/j.jre.2022.04.015_bib58 article-title: Size-tunable and monodisperse Tm3+/Gd3+-doped hexagonal NaYbF4 nanoparticles with engineered efficient near infrared-to-near infrared upconversion for in vivo-imaging publication-title: ACS Appl Mater Interfaces doi: 10.1021/am503288d – volume: 7 start-page: 4274 year: 2015 ident: 10.1016/j.jre.2022.04.015_bib71 article-title: Lanthanide-doped luminescent nano-bioprobes for the detection of tumor markers publication-title: Nanoscale doi: 10.1039/C4NR05697C – volume: 4 start-page: 3608 year: 2012 ident: 10.1016/j.jre.2022.04.015_bib26 article-title: Impacts of core–shell structures on properties of lanthanide-based nanocrystals: crystal phase, lattice strain, downconversion, upconversion and energy transfer publication-title: Nanoscale doi: 10.1039/c2nr30389b – volume: 17 start-page: 2858 year: 2017 ident: 10.1016/j.jre.2022.04.015_bib63 article-title: Optimal sensitizer concentration in single upconversion nanocrystals publication-title: Nano Lett doi: 10.1021/acs.nanolett.6b05331 – volume: 9 start-page: 479 year: 2015 ident: 10.1016/j.jre.2022.04.015_bib78 article-title: Tens of thousands-fold upconversion luminescence enhancement induced by a single gold nanorod publication-title: Laser Photon Rev doi: 10.1002/lpor.201500013 – volume: 80 start-page: 398 year: 2016 ident: 10.1016/j.jre.2022.04.015_bib128 article-title: Fabricating a novel label-free aptasensor for acetamiprid by fluorescence resonance energy transfer between NH2-NaYF4:Yb,Ho@SiO2 and Au nanoparticles publication-title: Biosens Bioelectron doi: 10.1016/j.bios.2016.02.001 – volume: 18 start-page: 2689 year: 2018 ident: 10.1016/j.jre.2022.04.015_bib22 article-title: Improving quantum yield of upconverting nanoparticles in aqueous media via emission sensitization publication-title: Nano Lett doi: 10.1021/acs.nanolett.8b00634 – volume: 25 start-page: 68 year: 2019 ident: 10.1016/j.jre.2022.04.015_bib23 article-title: Exploiting lanthanide-doped upconversion nanoparticles with core/shell structures publication-title: Nano Today doi: 10.1016/j.nantod.2019.02.009 – volume: 54 start-page: 12064 year: 2015 ident: 10.1016/j.jre.2022.04.015_bib161 article-title: Optogenetic apoptosis: light-triggered cell death publication-title: Angew Chem Int Ed doi: 10.1002/anie.201506346 – volume: 6 start-page: 8280 year: 2012 ident: 10.1016/j.jre.2022.04.015_bib19 article-title: (α-NaYbF4:Tm3+)/CaF2 core/shell nanoparticles with efficient near-infrared to near-infrared upconversion for high-contrast deep-tissue bioimaging publication-title: ACS Nano doi: 10.1021/nn302972r |
SSID | ssj0037590 |
Score | 2.5215297 |
SecondaryResourceType | review_article |
Snippet | Upconversion nanoparticles (UCNPs) doped with lanthanides can convert near-infrared excitation into UV and visible emissions. Because of their relatively high... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 1343 |
SubjectTerms | Applications Luminescence Mechanism Optical imaging Rare earths Upconversion nanoparticles |
Title | Upconversion nanoparticles: Recent strategies and mechanism based applications |
URI | https://dx.doi.org/10.1016/j.jre.2022.04.015 |
Volume | 40 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) issn: 1002-0721 databaseCode: GBLVA dateStart: 20110101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: true ssIdentifier: ssj0037590 providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier ScienceDirect Freedom Collection issn: 1002-0721 databaseCode: AIKHN dateStart: 20060201 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: true ssIdentifier: ssj0037590 providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Complete Freedom Collection [SCCMFC] issn: 1002-0721 databaseCode: ACRLP dateStart: 20060201 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: true ssIdentifier: ssj0037590 providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection issn: 1002-0721 databaseCode: .~1 dateStart: 20060201 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: true ssIdentifier: ssj0037590 providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals issn: 1002-0721 databaseCode: AKRWK dateStart: 20060201 customDbUrl: isFulltext: true mediaType: online dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0037590 providerName: Library Specific Holdings |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwED5VMMCCeIryqDwwIYWmTuykbFVFVUB0oZW6WZfEkVrRULVh5bdzl0dVJGBgTOSLorN999n-_B3ADYHuDk0E7YQakXer0In4xrKVNJmkShOLvFB8GenhxH-aqmkD-vVdGKZVVrG_jOlFtK7etCtvtpezWfuVxUNZ3UsyLagjed3O6l80pu8-NzQPL1DdUpGAmbbUuj7ZLDhe8xUrZUpZqJ1yZdyfctNWvhkcwkEFFEWv_JcjaNjsGPb6dX22ExhNlgVlvNjvEhlmtPytWG73gtAgZROxzmslCIFZIhaW7_nO1gvBySsR26fXpzAePIz7Q6eqjuDEshvkTooYpShTq2LP94JIu0lqdSH_3vUIhGGMOuGqGp7FyI2xEyBl91Anbicm1OKdwU72ntlzEAljREVTNw20HyuF6KJWVoX0RVRh2AS3douJK-VwLmDxZmqK2NyQJw170ri-IU824XZjsixlM_5q7Ne-Nt_63lBY_93s4n9ml7DPTyVP7Ap28tWHvSZgkUetYuS0YLf3-DwcfQFnUs0A |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb4JAEN0YPdhL08_0u3voqQkRgV2wN2NqsCqXauJtM8CSaCo1Sv9_Z4BtbNL20CswhMyyM29337xh7AFBdxcngrQCCUC7VWDFVLGsHZxMjshSDbRQnEYynHsvC7FosIGphSFaZR37q5heRuv6Sqf2ZmezXHZeSTyU1L0cogV1HVy3tzyBMbnJWv3ROIxMQHZ90atECYhsiwbmcLOkea22JJbpOKXgKTXH_Sk97aWc4RE7rLEi71efc8waOj9h7YFp0XbKovmmZI2XW148hxxXwDXR7YkjIMSEwneFEYPgkKd8ranUd7lbc8pfKd8_wD5js-HzbBBadYMEK3F6fmFlAHEGTqZF4nquH0s7zbQsFeB7LuIwSECm1FjD1RDbCXR9wAQfyNTuJghc3HPWzN9zfcF4SjBR4OzNfOklQgDYIIUWAb4RRBBcMtu4RSW1eDj1sHhThiW2UuhJRZ5UtqfQk5fs8ctkUyln_PWwZ3ytvg2_wsj-u9nV_8zuWTucTSdqMorG1-yA7lS0sRvWLLYf-hZxRhHf1f_RJ3Hfz6s |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Upconversion+nanoparticles%3A+Recent+strategies+and+mechanism+based+applications&rft.jtitle=Journal+of+rare+earths&rft.au=Dubey%2C+Neha&rft.au=Chandra%2C+Sudeshna&rft.date=2022-09-01&rft.pub=Elsevier+B.V&rft.issn=1002-0721&rft.volume=40&rft.issue=9&rft.spage=1343&rft.epage=1359&rft_id=info:doi/10.1016%2Fj.jre.2022.04.015&rft.externalDocID=S1002072122001120 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1002-0721&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1002-0721&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1002-0721&client=summon |