Upconversion nanoparticles: Recent strategies and mechanism based applications

Upconversion nanoparticles (UCNPs) doped with lanthanides can convert near-infrared excitation into UV and visible emissions. Because of their relatively high emission efficiency, UCNPs are appealing materials for use in a variety of sectors. UCNPs are known for low auto-fluorescence, excellent chem...

Full description

Saved in:
Bibliographic Details
Published inJournal of rare earths Vol. 40; no. 9; pp. 1343 - 1359
Main Authors Dubey, Neha, Chandra, Sudeshna
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.09.2022
Subjects
Online AccessGet full text
ISSN1002-0721
DOI10.1016/j.jre.2022.04.015

Cover

Abstract Upconversion nanoparticles (UCNPs) doped with lanthanides can convert near-infrared excitation into UV and visible emissions. Because of their relatively high emission efficiency, UCNPs are appealing materials for use in a variety of sectors. UCNPs are known for low auto-fluorescence, excellent chemical and thermal photo-stability, deep tissue penetration, exceptional biocompatibility, low toxicity, color purity, and ease of surface functionalization. In this review, we explain a few recent strategies to boost the efficiency and luminescence of upconversion nanoparticles and minimize quenching by fabricating them as core/shell, nanofibers, or heavily doped lanthanides. Applications of UCNPs in drug delivery, Photodynamic therapy (PDT), biosensors, bioimaging, and optogenetics are also discussed along with their mechanism of action. Our motivation for this review is to understand the working mechanism of UCNPs and their applications in various fields. [Display omitted]
AbstractList Upconversion nanoparticles (UCNPs) doped with lanthanides can convert near-infrared excitation into UV and visible emissions. Because of their relatively high emission efficiency, UCNPs are appealing materials for use in a variety of sectors. UCNPs are known for low auto-fluorescence, excellent chemical and thermal photo-stability, deep tissue penetration, exceptional biocompatibility, low toxicity, color purity, and ease of surface functionalization. In this review, we explain a few recent strategies to boost the efficiency and luminescence of upconversion nanoparticles and minimize quenching by fabricating them as core/shell, nanofibers, or heavily doped lanthanides. Applications of UCNPs in drug delivery, Photodynamic therapy (PDT), biosensors, bioimaging, and optogenetics are also discussed along with their mechanism of action. Our motivation for this review is to understand the working mechanism of UCNPs and their applications in various fields. [Display omitted]
Author Dubey, Neha
Chandra, Sudeshna
Author_xml – sequence: 1
  givenname: Neha
  surname: Dubey
  fullname: Dubey, Neha
– sequence: 2
  givenname: Sudeshna
  orcidid: 0000-0002-6565-9776
  surname: Chandra
  fullname: Chandra, Sudeshna
  email: sudeshna.chandra@nmims.edu, sudeshna.chandra@nmims.edu
BookMark eNp9kMtOwzAQRb0oEm3hA9jlBxLGzsMNrFDFS6pAQmVtTSYTcJU6kW1V4u8JlBWLru7qXN17FmLmBsdCXEnIJMjqepftPGcKlMqgyECWMzGXACoFreS5WISwA8h1WcNcvLyPNLgD-2AHlzh0w4g-Wuo53CRvTOxiEqLHyB-WQ4KuTfZMn-hs2CcNBm4THMfeEsapIFyIsw77wJd_uRTbh_vt-indvD4-r-82Kalax7RDbDpUHZeUF7luKmg7roq6Kus6L3WJhFW7ktUqZ2yAUGqUpVxVLUiSWuVLoY-15IcQPHeGbPxdME21vZFgfkyYnZlMmB8TBgozmZhI-Y8cvd2j_zrJ3B4Znh4dLHsTyLIjbq1niqYd7An6G3UEfJA
CitedBy_id crossref_primary_10_1016_j_jece_2024_114790
crossref_primary_10_1039_D4EN01052C
crossref_primary_10_2147_IJN_S414586
crossref_primary_10_1002_adma_202308844
crossref_primary_10_1186_s12951_024_02957_9
crossref_primary_10_1016_j_saa_2024_125347
crossref_primary_10_1016_j_desal_2023_117090
crossref_primary_10_3390_pharmaceutics15051346
crossref_primary_10_1016_j_jphotochemrev_2024_100665
crossref_primary_10_1039_D3MH01330H
crossref_primary_10_3390_bios14030116
crossref_primary_10_1039_D4SE01047G
crossref_primary_10_1002_bio_70019
crossref_primary_10_1186_s40580_024_00462_1
crossref_primary_10_1016_j_talanta_2023_124892
crossref_primary_10_1021_acsaom_4c00334
crossref_primary_10_1007_s41664_023_00273_z
crossref_primary_10_1016_j_apmt_2025_102649
crossref_primary_10_1021_acsanm_4c04307
crossref_primary_10_1016_j_aca_2024_343428
crossref_primary_10_3390_molecules28145604
crossref_primary_10_1016_j_ceramint_2024_08_105
crossref_primary_10_1002_smtd_202400671
crossref_primary_10_1016_j_ceramint_2024_12_550
crossref_primary_10_1016_j_molstruc_2024_140555
crossref_primary_10_1039_D4NR04880F
crossref_primary_10_1039_D3TC04611G
crossref_primary_10_1021_acsaom_4c00049
crossref_primary_10_3390_ijms23169003
crossref_primary_10_3390_molecules29174177
crossref_primary_10_3390_nano14080685
crossref_primary_10_1186_s40712_024_00187_3
crossref_primary_10_1016_j_foodcont_2022_109444
crossref_primary_10_1002_adfm_202407535
crossref_primary_10_1016_j_jlumin_2023_120306
crossref_primary_10_1016_j_optmat_2023_114682
crossref_primary_10_3390_ph17060663
crossref_primary_10_1016_j_bios_2024_116274
crossref_primary_10_1039_D2MA01040B
crossref_primary_10_1016_j_jre_2024_06_043
crossref_primary_10_1016_j_rio_2024_100656
crossref_primary_10_1002_adsu_202200503
crossref_primary_10_1002_advs_202405640
crossref_primary_10_1039_D3NR06472G
crossref_primary_10_1016_j_ccr_2022_214862
crossref_primary_10_1051_matecconf_202338603005
crossref_primary_10_1016_j_jre_2023_03_011
crossref_primary_10_1021_acs_nanolett_4c01534
crossref_primary_10_1002_advs_202305308
crossref_primary_10_1016_j_jre_2022_11_014
crossref_primary_10_1515_ijmr_2023_0372
crossref_primary_10_1016_j_jre_2022_08_006
crossref_primary_10_1039_D4NJ02687J
Cites_doi 10.1039/b909164e
10.1002/adfm.201100193
10.2174/1389557517666170308112147
10.1038/nm.2554
10.1364/OME.6.000270
10.1039/C7TC03251J
10.1039/c2nr31570j
10.1038/nmat3804
10.1021/acsnano.7b06395
10.1016/j.foodchem.2018.02.148
10.1002/polb.10015
10.1039/C8TC05087B
10.1021/nn402399m
10.1021/acs.analchem.0c01969
10.1002/anie.201703600
10.1002/anie.201005159
10.1016/j.biomaterials.2017.07.017
10.1016/j.polymer.2007.08.002
10.1002/ange.201906380
10.1021/ja209793b
10.1038/nnano.2014.29
10.1038/86684
10.1073/pnas.1114551109
10.1016/j.actbio.2021.08.035
10.1002/ppsc.201600010
10.1073/pnas.1936192100
10.1021/acsnano.5b06383
10.1016/j.nano.2009.11.004
10.1021/ja4075002
10.1038/nrc1894
10.1016/j.bios.2016.10.029
10.1016/j.biomaterials.2007.10.051
10.1039/c0nr01018a
10.1016/j.ab.2018.08.002
10.1016/j.biomaterials.2019.01.042
10.1016/j.actbio.2019.11.048
10.1002/anie.200501907
10.1021/cr020357g
10.1039/C9SC01615E
10.1039/c0nr00253d
10.1039/C6TC00163G
10.1039/C6PY01082B
10.1039/C4CC07489K
10.1016/j.neures.2005.10.009
10.1021/bm050314k
10.1021/acs.jpcc.9b07176
10.1002/adfm.200900234
10.1021/ma060142z
10.1039/b9nr00397e
10.1016/j.jlumin.2005.04.003
10.1016/j.biomaterials.2014.10.066
10.1016/j.trechm.2020.01.008
10.1039/C8NR05552A
10.1021/cr400478f
10.1021/acsabm.0c01019
10.1039/c2nr32204h
10.1038/s41467-018-04813-5
10.3390/ijms221810130
10.1046/j.1365-2818.2002.01074.x
10.1021/ja3003638
10.1016/S1572-1000(05)00030-X
10.1016/bs.mcb.2018.09.009
10.1103/PhysRev.106.874
10.1021/acsami.9b16237
10.1021/la502753e
10.3389/fbioe.2016.00047
10.1016/j.jre.2021.01.014
10.1016/j.jphotobiol.2009.04.001
10.1021/ja047107x
10.1002/anie.201612142
10.1039/C5CC02508G
10.3390/nano7120411
10.1038/nbt1037
10.1002/tcr.201600121
10.1016/j.jallcom.2016.08.142
10.1016/j.revip.2018.100026
10.1039/D0CC05878E
10.1002/adfm.201702592
10.1016/j.biomaterials.2014.03.042
10.1016/j.pdpdt.2021.102616
10.1139/v08-029
10.1021/nl403383w
10.1039/D0NA00404A
10.1007/s12274-013-0358-y
10.1021/jacs.7b00223
10.1021/acs.chemmater.6b03598
10.1038/srep08252
10.1002/anie.201403408
10.1002/adma.200402046
10.1021/acsami.5b12075
10.1039/C6NR07687D
10.1039/D0QM00910E
10.1039/C4CS00151F
10.3322/caac.20114
10.1038/nbt.2993
10.1177/153303460500400308
10.1002/jbm.a.36912
10.1021/nn505051d
10.1002/anie.201907605
10.1126/science.1195929
10.1021/cr400425h
10.7150/thno.5284
10.1021/jp9003399
10.1364/OME.6.001161
10.1039/b809132n
10.1038/nature05744
10.1021/acsnano.7b00944
10.1039/D0RA07466G
10.1146/annurev-neuro-061010-113817
10.1039/C5TB00646E
10.1002/adfm.201600464
10.1007/s00604-019-3659-3
10.1126/science.aaq1144
10.1016/j.biomaterials.2017.06.008
10.1016/j.msec.2014.03.056
10.1021/acs.jpcc.8b09371
10.1039/C1CS15187H
10.1007/s12272-020-01208-3
10.1007/s10853-017-0809-z
10.1021/acsnano.5b00641
10.1126/science.1127344
10.1002/smll.201701155
10.7150/thno.5137
10.1039/b108586g
10.1016/j.mseb.2020.114674
10.1021/acs.accounts.9b00453
10.1021/cm970412f
10.1021/am403100t
10.1006/exnr.2000.7408
10.1039/C5NR08618C
10.1155/2013/891515
10.1039/C2NR32835F
10.1038/srep16533
10.1038/nmeth.1512
10.1016/j.biotechadv.2012.04.009
10.1016/j.cej.2018.05.112
10.1039/c0jm01617a
10.1016/j.jlumin.2013.06.050
10.1016/j.bios.2019.111403
10.7150/thno.15914
10.1021/am503288d
10.1039/C4NR05697C
10.1039/c2nr30389b
10.1021/acs.nanolett.6b05331
10.1002/lpor.201500013
10.1016/j.bios.2016.02.001
10.1021/acs.nanolett.8b00634
10.1016/j.nantod.2019.02.009
10.1002/anie.201506346
10.1021/nn302972r
ContentType Journal Article
Copyright 2022 Chinese Society of Rare Earths
Copyright_xml – notice: 2022 Chinese Society of Rare Earths
DBID AAYXX
CITATION
DOI 10.1016/j.jre.2022.04.015
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EndPage 1359
ExternalDocumentID 10_1016_j_jre_2022_04_015
S1002072122001120
GroupedDBID --K
--M
-SB
-S~
.~1
0R~
1B1
1~.
1~5
4.4
457
4G.
5GY
5VR
5VS
5XA
5XC
7-5
71M
8P~
92H
92I
AABNK
AABXZ
AACTN
AAEDT
AAEDW
AAEPC
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARLI
AATTM
AAXKI
AAXUO
ABJNI
ABMAC
ABWVN
ABXDB
ABXRA
ACDAQ
ACGFS
ACNNM
ACRLP
ACRPL
ADBBV
ADECG
ADEZE
ADMUD
ADNMO
AEBSH
AEIPS
AEKER
AENEX
AEZYN
AFJKZ
AFRZQ
AFTJW
AFUIB
AFZHZ
AGHFR
AGUBO
AGYEJ
AIEXJ
AIKHN
AITUG
AJSZI
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
AXJTR
BKOJK
BLXMC
BNPGV
CAJEB
CCEZO
CDRFL
CHBEP
CS3
CW9
DU5
EBS
EFJIC
EJD
EO9
EP2
EP3
FA0
FDB
FIRID
FLBIZ
FNPLU
FYGXN
GBLVA
HZ~
J1W
KOM
M41
MAGPM
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
PC.
Q--
Q38
ROL
SDC
SDF
SDG
SES
SPC
SPCBC
SSH
SSK
SSM
SSZ
T5K
TCJ
TGT
U1G
U5L
~02
~G-
AAYWO
AAYXX
ACLOT
ACVFH
ADCNI
AEUPX
AFPUW
AIGII
AIIUN
AKBMS
AKYEP
APXCP
CITATION
EFKBS
EFLBG
~HD
ID FETCH-LOGICAL-c297t-faabfa2fe5c3437b60dfe64965993575aca6d81683eab0ca17a15186d01c1723
IEDL.DBID .~1
ISSN 1002-0721
IngestDate Wed Oct 01 01:49:12 EDT 2025
Thu Apr 24 23:00:39 EDT 2025
Sun Apr 06 06:53:24 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 9
Keywords Optical imaging
Applications
Rare earths
Mechanism
Luminescence
Upconversion nanoparticles
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c297t-faabfa2fe5c3437b60dfe64965993575aca6d81683eab0ca17a15186d01c1723
ORCID 0000-0002-6565-9776
PageCount 17
ParticipantIDs crossref_citationtrail_10_1016_j_jre_2022_04_015
crossref_primary_10_1016_j_jre_2022_04_015
elsevier_sciencedirect_doi_10_1016_j_jre_2022_04_015
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate September 2022
2022-09-00
PublicationDateYYYYMMDD 2022-09-01
PublicationDate_xml – month: 09
  year: 2022
  text: September 2022
PublicationDecade 2020
PublicationTitle Journal of rare earths
PublicationYear 2022
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Haase, Schäfer (bib154) 2011; 50
Lin, Zhao, Wang, Liu, Duan, Chen (bib14) 2012; 30
Fenno, Yizhar, Deisseroth (bib150) 2011; 34
Zheng, Wang, Pan, Liang, Ji, Zhao (bib160) 2017; 11
Reddy, Prabhakar, Arppe, Rosenholm, Krishnan (bib82) 2017; 52
Nagel, Szellas, Huhn, Kateriya, Adeishvili, Berthold (bib153) 2003; 100
Chen, Liu, Li, Ju, Gao, Zhou (bib136) 2015; 39
Pan, Wang, Yu, Huang, Hao, Zhang (bib162) 2019; 199
Chen, Shen, Ohulchanskyy, Patel, Kutikov, Li (bib19) 2012; 6
Auzel (bib16) 2004; 104
Zhao, Hu, Ma, Jiang, Tang, Ji (bib92) 2017; 27
Chatterjee, Rufaihah, Zhang (bib142) 2008; 29
Khodadadi, Alijani, Montazeri, Esmaeilizadeh, Sadeghi-Soureh, Pilehvar-Soltanahmadi (bib44) 2020; 108
Tangboriboon (bib83) 2019
Bhalla, Chiang, Shen (bib122) 2018; 148
Wang, Sheng, Zhu, Li, Wu, Zhang (bib34) 2021; 5
Sun, Mundoor, Ribot, Singh, Smalyukh, Nagpal (bib73) 2014; 14
Zhang, Chen, Xie, Li, Chen, Chao (bib72) 2019; 131
Liu, Zhang, Wang, Song (bib132) 2019; 141
Gu, Li, Ren, Li, Han (bib106) 2019; 374
Sun, Ding, Tao, You, Hua, Wang (bib124) 2018; 257
Xu, Yang, Sun, Bi, Liu, Yang (bib8) 2017; 11
Fan, Liu, Zhang (bib23) 2019; 25
Bankiewicz, Eberling, Kohutnicka, Jagust, Pivirotto, Bringas (bib84) 2000; 164
Kar, Patra (bib26) 2012; 4
Ding, Chen, Ma, Dai, Li, Ji (bib35) 2016; 4
Lee, Lin, Lee, Park (bib89) 2017; 7
Zhang, Li, Ju, Li, Zhang, Xu (bib51) 2018; 349
Buchner, Ngoensawat, Schenck, Fenzl, Wongkaew, Matlock-Colangelo (bib49) 2017; 5
Lai, Shah, Zhang, Yang, Lee (bib103) 2015; 9
Chatterjee, Rufaihah, Zhang (bib135) 2008; 29
Liu, Yang, Feng, Li (bib144) 2012; 134
Wu, Zhang, Takle, Bilsel, Li, Lee (bib152) 2016; 10
Wen, Zhou, Zheng, Bednarkiewicz, Liu, Jin (bib57) 2018; 9
Xie, Peng, Huang, You (bib31) 2013; 4
González-Béjar, Francés-Soriano, Pérez-Prieto (bib140) 2016; 4
Kim, Achermann, Balet, Hollingsworth, Klimov (bib25) 2005; 127
Dou, Chen, Liu, Dong, Yu, Wang (bib146) 2022; 40
Wang, Tu, Zhao, Sun, Kong, Zhang (bib28) 2009; 113
Koombhongse, Liu, Reneker (bib47) 2001; 39
Gargas, Chan, Ostrowski, Aloni, Virginia, Altoe (bib100) 2014; 9
Hussain (bib126) 2009
Linet, Yao, Zhang, Fang, Zhang, Zhang (bib163) 2021; 135
Zeng, Su, Li, Yan, Li (bib10) 2005; 17
Johnson, He, Diao, Chan, Dai, Almutairi (bib54) 2017; 139
Castano, Mroz, Hamblin (bib110) 2006; 6
Hou, Li, Ma, Li, Cheng, Peng (bib41) 2011; 21
Liu, Zhang, Liu, Chen, Lin, Li (bib94) 2017; 139
(bib105) 2010
Chen, Kong, Liu, Lu, Li, Qiao (bib61) 2017; 56
Guo, Qian, Idris, Zhang (bib115) 2010; 6
Li, Zhang, Huang, Yang, Zhao, El-Banna (bib15) 2016; 6
Zhang, Zhang, Peng, Cong, Qian (bib45) 2016; 33
Dai, Yu, Zhou, Zhang, Wang, Hu (bib53) 2006; 117
Ishizuka, Kakuda, Araki, Yawo (bib149) 2006; 54
Shi, Wang, Zhang, Ma, Gao, Liu (bib87) 2014; 35
Chen, Wang (bib62) 2018; 10
Ritchie (bib74) 1957; 106
Hughes, Freeman, Lamb, Pollet, Smith, Lawrence (bib161) 2015; 54
Punjabi, Wu, Tokatli-Apollon, El-Rifai, Lee, Zhang (bib60) 2014; 8
Cheng, Tu, Zheng, Chen (bib17) 2020; 56
Yan, Boyer, Branda, Zhao (bib95) 2011; 133
Bogdan, Vetrone, Roy, Capobianco (bib137) 2010; 20
Hososhima, Yuasa, Ishizuka, Hoque, Yamashita, Yamanaka (bib156) 2015; 5
Li, Bai, Wang, Lin, Sun (bib116) 2020; 10
Juan, Cheng, Shi, Liu, Mao (bib68) 2015; 3
Chen, Weitemier, Zeng, He, Wang, Tao (bib157) 2018; 359
Li, Wen, Liu, Wang, Zhan, He (bib104) 2016; 6
Castano, Demidova, Hamblin (bib119) 2005; 2
Chien, Chou, Wang, Hung, Liau, Chao (bib91) 2013; 7
Dou, Rengaramchandran, Selvan, Paulmurugan, Zhang (bib113) 2015; 5
Wisser, Fischer, Siefe, Alivisatos, Salleo, Dionne (bib22) 2018; 18
Zhao, Hu, Ma, Jiang, Tang, Ji (bib93) 2017; 27
Arrenberg, Stainier, Baier, Huisken (bib147) 2010; 330
Srinivasan, Ranganathan, DeRosa, Murari (bib125) 2018; 559
Bednarkiewicz, Chan, Prorok (bib70) 2020; 2
Pehlivan, Torabfam, Kurt, Ow-Yang, Hildebrandt (bib123) 2019; 186
Chen, Qiu, Prasad, Chen (bib3) 2014; 114
Dong, Gao, Han, Wang, Qi, Yan (bib75) 2019; 4
Oleinick, Morris, Belichenko (bib111) 2002; 1
Li, Qin, Zhao, Aidilibike, Chen, Liu (bib32) 2016; 6
He, Krippes, Ritz, Chen, Best, Butt (bib101) 2015; 51
Ai, Lyu, Zhang, Tang, Mu, Liu (bib164) 2017; 56
Manurung, Wiranto, Hermida (bib9) 2018; 367
Ma, Xu, Wang, Zhou, Liu, Zhao (bib63) 2017; 17
Yang, Liu, Liu, Xing (bib96) 2013; 5
Hu, Chen, Li, Ouyang, Zhao (bib128) 2016; 80
Jin, Wang, Lin, Jin, Zhang, Cui (bib129) 2017; 90
Feng, He, Liu, Yang, Gai, Yang (bib4) 2016; 28
Wang, Yan, Huo, Wang, Zeng, Bao (bib11) 2005; 44
Chilakamarthi, Giribabu (bib118) 2017; 17
Chen, Chen, Zang, Wang, Tang, Han (bib97) 2015; 51
Damasco, Chen, Shao, Ågren, Huang, Song (bib58) 2014; 6
Weissleder (bib85) 2001; 19
(bib143) 2017
Chen, Wang (bib52) 2019; 53
Chen, D'Amario, Gee, Duong, Shimoni, Valenzuela (bib21) 2020; 102
Chen, Zheng, Huang, Tu, Zhou, Huang (bib71) 2015; 7
Bruegmann, Malan, Hesse, Beiert, Fuegemann, Fleischmann (bib148) 2010; 7
Xu, Zhu, Chen, Wang, Tao, Xu (bib76) 2013; 6
Guo, Song, Lei, He, You, Lin (bib130) 2019; 58
Betzig, Patterson, Sougrat, Lindwasser, Olenych (bib6) 2006; 313
Huang (bib141) 2017; 690
Chen, Wang (bib1) 2020; 2
Boyer, Van Veggel (bib29) 2010; 2
Wang, Cheng, Liu (bib114) 2013; 3
Huang, Skripka, Zaroubi, Findlay, Vetrone, Skinner (bib43) 2020; 3
Chen, Guan, Wang, Ji, Gong, Wang (bib127) 2014; 30
Robertson, Hawkins, Abrahamse (bib108) 2009; 96
Vetrone, Naccache, Mahalingam, Morgan, Capobianco (bib33) 2009; 19
Naumova, Modo, Moore, Murry, Frank (bib139) 2014; 32
Dyck, Van Veggel, Demopoulos (bib59) 2013; 5
Wang, Deng, MacDonald, Chen, Yuan, Wang (bib65) 2014; 13
Li, Liu, Alonso, Li, Zhang (bib86) 2012; 4
Mahraz, Sahar, Ghoshal, Dousti (bib55) 2013; 144
Zhang, Wang, Brauner, Liewald, Kay, Watzke (bib151) 2007; 446
Han, Deng, Xie, Liu (bib24) 2014; 53
Yan, Boyer, Branda, Zhao (bib102) 2011; 133
Feng, Sun, Yan, Ag (bib77) 2009; 29
Xue, Ding, Rong, Ma, Pan, Wu (bib79) 2017; 13
Shen, Cheng, Gu, Ni, Gao, Su (bib64) 2017; 9
Li, Tan, Wang, Li, Zhang, Zhao (bib145) 2020; 142
Dexter, Schulman (bib56) 1954; 22
Medeiros, Mattoso, Offeman, Wood, Orts (bib48) 2008; 86
Zhan, Zhang, Zhao, Liu, He (bib78) 2015; 9
Zhou, Liu, Feng, Sun, Li (bib2) 2015; 115
Chen, Ohulchanskyy, Law, Ågren, Prasad (bib30) 2011; 3
Morris (bib99) 2006; 39
Wang, Meijerink (bib66) 2018; 122
Dou, Guo, Ye (bib12) 2014; 45
Deisseroth K., Anikeeva P., et al. Upconversion of light for use in optogenetic methods. U.S. Patent. 2019.
Meng, Wu, Zhang (bib69) 2018; 6
Mitsunaga, Ogawa, Kosaka, Rosenblum, Peter (bib133) 2011; 17
Wang, Liu (bib18) 2009; 38
Bao, Luu, Zhao, Fong, May, Jiang (bib46) 2012; 4
Bestvater, Spiess, Stobrawa, Hacker, Feurer, Porwol (bib88) 2022; 208
Liu, Wang, Qin, Feng (bib121) 2021; 22
Li, Jia, Ren, Shi, Liu (bib131) 2019; 29
Zhou, Liu, Li (bib155) 2012; 41
Che, Lakshmi, Martin, Fisher, Ruoff (bib39) 1998; 10
Jia, Xu, Dong, He, Zhong, Yang (bib120) 2019; 10
Yu, Yan, Yu, Jia, Pan, He (bib50) 2016; 8
Shaner, Campbell, Steinbach, Giepmans, Palmer (bib7) 2004; 22
Michael, Qing, John, Matthew (bib90) 2015; 51
Song, Chi, Li, Wang, Li, Liu (bib112) 2019; 11
Zheng (bib109) 2005; 4
Jayakumar, Idris, Zhang (bib20) 2012; 109
Sun, Bi, Wang, Sun, Li, Song (bib5) 2020; 261
Sun, Peng, Feng, Li (bib138) 2018; 3
Patrizia, Kristian, Keith, Thomas, Albert (bib107) 2011; 61
Chen, Peng, Ju, Wang (bib36) 2015; 44
Yin, Zhou, Xu, Cui, Chen, Wang (bib81) 2016; 8
Hu, Shao, Dong, Jiang (bib37) 2019; 123
Zhang, Venugopal, Huang, Lim, Ramakrishna (bib38) 2005; 6
Bertrand, Gohy (bib98) 2017; 8
Lu, Yang, Ding, Zhu (bib67) 2016; 26
Yin, Zhang, Sun, Yan (bib13) 2010; 2
Xie, Gao, Deng, Sun, Xu, Liu (bib27) 2013; 135
Le, Youn (bib134) 2020; 43
Pilehvar-Soltanahmadi, Dadashpour, Mohajeri, Fattahi, Sheervalilou, Zarghami (bib40) 2018; 18
Wang, Lin, Chen, Chen, Xu, Zhang (bib158) 2017; 142
Zhang, Lu, Cai, Song, Jiang, Min (bib80) 2020; 92
Güleryüz, Ünal, Gülsoy (bib117) 2021
Han, Reneker, Yarin (bib42) 2007; 48
Feng (10.1016/j.jre.2022.04.015_bib4) 2016; 28
Koombhongse (10.1016/j.jre.2022.04.015_bib47) 2001; 39
Wang (10.1016/j.jre.2022.04.015_bib158) 2017; 142
Dyck (10.1016/j.jre.2022.04.015_bib59) 2013; 5
Shen (10.1016/j.jre.2022.04.015_bib64) 2017; 9
Cheng (10.1016/j.jre.2022.04.015_bib17) 2020; 56
Sun (10.1016/j.jre.2022.04.015_bib124) 2018; 257
Bogdan (10.1016/j.jre.2022.04.015_bib137) 2010; 20
Ding (10.1016/j.jre.2022.04.015_bib35) 2016; 4
Gu (10.1016/j.jre.2022.04.015_bib106) 2019; 374
Li (10.1016/j.jre.2022.04.015_bib116) 2020; 10
Fenno (10.1016/j.jre.2022.04.015_bib150) 2011; 34
Dou (10.1016/j.jre.2022.04.015_bib146) 2022; 40
Zhang (10.1016/j.jre.2022.04.015_bib45) 2016; 33
Arrenberg (10.1016/j.jre.2022.04.015_bib147) 2010; 330
Naumova (10.1016/j.jre.2022.04.015_bib139) 2014; 32
Yin (10.1016/j.jre.2022.04.015_bib13) 2010; 2
Huang (10.1016/j.jre.2022.04.015_bib43) 2020; 3
Zhang (10.1016/j.jre.2022.04.015_bib72) 2019; 131
Chen (10.1016/j.jre.2022.04.015_bib52) 2019; 53
Yang (10.1016/j.jre.2022.04.015_bib96) 2013; 5
Lin (10.1016/j.jre.2022.04.015_bib14) 2012; 30
Chen (10.1016/j.jre.2022.04.015_bib62) 2018; 10
Jin (10.1016/j.jre.2022.04.015_bib129) 2017; 90
Shi (10.1016/j.jre.2022.04.015_bib87) 2014; 35
Fan (10.1016/j.jre.2022.04.015_bib23) 2019; 25
Liu (10.1016/j.jre.2022.04.015_bib132) 2019; 141
Chatterjee (10.1016/j.jre.2022.04.015_bib135) 2008; 29
Chatterjee (10.1016/j.jre.2022.04.015_bib142) 2008; 29
Han (10.1016/j.jre.2022.04.015_bib24) 2014; 53
Han (10.1016/j.jre.2022.04.015_bib42) 2007; 48
Xie (10.1016/j.jre.2022.04.015_bib31) 2013; 4
Song (10.1016/j.jre.2022.04.015_bib112) 2019; 11
Ritchie (10.1016/j.jre.2022.04.015_bib74) 1957; 106
Betzig (10.1016/j.jre.2022.04.015_bib6) 2006; 313
Hu (10.1016/j.jre.2022.04.015_bib128) 2016; 80
Buchner (10.1016/j.jre.2022.04.015_bib49) 2017; 5
Morris (10.1016/j.jre.2022.04.015_bib99) 2006; 39
Wang (10.1016/j.jre.2022.04.015_bib11) 2005; 44
Srinivasan (10.1016/j.jre.2022.04.015_bib125) 2018; 559
Yin (10.1016/j.jre.2022.04.015_bib81) 2016; 8
Dong (10.1016/j.jre.2022.04.015_bib75) 2019; 4
Chen (10.1016/j.jre.2022.04.015_bib157) 2018; 359
He (10.1016/j.jre.2022.04.015_bib101) 2015; 51
Juan (10.1016/j.jre.2022.04.015_bib68) 2015; 3
(10.1016/j.jre.2022.04.015_bib105) 2010
Zhan (10.1016/j.jre.2022.04.015_bib78) 2015; 9
Kim (10.1016/j.jre.2022.04.015_bib25) 2005; 127
Wang (10.1016/j.jre.2022.04.015_bib114) 2013; 3
Haase (10.1016/j.jre.2022.04.015_bib154) 2011; 50
Gargas (10.1016/j.jre.2022.04.015_bib100) 2014; 9
Sun (10.1016/j.jre.2022.04.015_bib5) 2020; 261
Chen (10.1016/j.jre.2022.04.015_bib1) 2020; 2
Patrizia (10.1016/j.jre.2022.04.015_bib107) 2011; 61
Zhang (10.1016/j.jre.2022.04.015_bib51) 2018; 349
Bertrand (10.1016/j.jre.2022.04.015_bib98) 2017; 8
Mahraz (10.1016/j.jre.2022.04.015_bib55) 2013; 144
Punjabi (10.1016/j.jre.2022.04.015_bib60) 2014; 8
Guo (10.1016/j.jre.2022.04.015_bib115) 2010; 6
Sun (10.1016/j.jre.2022.04.015_bib138) 2018; 3
Wang (10.1016/j.jre.2022.04.015_bib65) 2014; 13
Zhang (10.1016/j.jre.2022.04.015_bib80) 2020; 92
Zhang (10.1016/j.jre.2022.04.015_bib38) 2005; 6
Chen (10.1016/j.jre.2022.04.015_bib30) 2011; 3
Mitsunaga (10.1016/j.jre.2022.04.015_bib133) 2011; 17
Huang (10.1016/j.jre.2022.04.015_bib141) 2017; 690
Wisser (10.1016/j.jre.2022.04.015_bib22) 2018; 18
Medeiros (10.1016/j.jre.2022.04.015_bib48) 2008; 86
Liu (10.1016/j.jre.2022.04.015_bib144) 2012; 134
Feng (10.1016/j.jre.2022.04.015_bib77) 2009; 29
Castano (10.1016/j.jre.2022.04.015_bib110) 2006; 6
Zhou (10.1016/j.jre.2022.04.015_bib2) 2015; 115
Yu (10.1016/j.jre.2022.04.015_bib50) 2016; 8
Guo (10.1016/j.jre.2022.04.015_bib130) 2019; 58
Damasco (10.1016/j.jre.2022.04.015_bib58) 2014; 6
Tangboriboon (10.1016/j.jre.2022.04.015_bib83) 2019
Li (10.1016/j.jre.2022.04.015_bib131) 2019; 29
Khodadadi (10.1016/j.jre.2022.04.015_bib44) 2020; 108
Hughes (10.1016/j.jre.2022.04.015_bib161) 2015; 54
Manurung (10.1016/j.jre.2022.04.015_bib9) 2018; 367
Jayakumar (10.1016/j.jre.2022.04.015_bib20) 2012; 109
Le (10.1016/j.jre.2022.04.015_bib134) 2020; 43
Boyer (10.1016/j.jre.2022.04.015_bib29) 2010; 2
Li (10.1016/j.jre.2022.04.015_bib86) 2012; 4
Sun (10.1016/j.jre.2022.04.015_bib73) 2014; 14
Li (10.1016/j.jre.2022.04.015_bib145) 2020; 142
Xie (10.1016/j.jre.2022.04.015_bib27) 2013; 135
Yan (10.1016/j.jre.2022.04.015_bib95) 2011; 133
Chen (10.1016/j.jre.2022.04.015_bib21) 2020; 102
Dai (10.1016/j.jre.2022.04.015_bib53) 2006; 117
Castano (10.1016/j.jre.2022.04.015_bib119) 2005; 2
Robertson (10.1016/j.jre.2022.04.015_bib108) 2009; 96
Pan (10.1016/j.jre.2022.04.015_bib162) 2019; 199
Wang (10.1016/j.jre.2022.04.015_bib66) 2018; 122
Ishizuka (10.1016/j.jre.2022.04.015_bib149) 2006; 54
Johnson (10.1016/j.jre.2022.04.015_bib54) 2017; 139
Lai (10.1016/j.jre.2022.04.015_bib103) 2015; 9
Bruegmann (10.1016/j.jre.2022.04.015_bib148) 2010; 7
Bhalla (10.1016/j.jre.2022.04.015_bib122) 2018; 148
Vetrone (10.1016/j.jre.2022.04.015_bib33) 2009; 19
Lu (10.1016/j.jre.2022.04.015_bib67) 2016; 26
Pehlivan (10.1016/j.jre.2022.04.015_bib123) 2019; 186
Hussain (10.1016/j.jre.2022.04.015_bib126) 2009
Auzel (10.1016/j.jre.2022.04.015_bib16) 2004; 104
Dou (10.1016/j.jre.2022.04.015_bib12) 2014; 45
Pilehvar-Soltanahmadi (10.1016/j.jre.2022.04.015_bib40) 2018; 18
Reddy (10.1016/j.jre.2022.04.015_bib82) 2017; 52
Dexter (10.1016/j.jre.2022.04.015_bib56) 1954; 22
Bednarkiewicz (10.1016/j.jre.2022.04.015_bib70) 2020; 2
Xu (10.1016/j.jre.2022.04.015_bib8) 2017; 11
Xue (10.1016/j.jre.2022.04.015_bib79) 2017; 13
Kar (10.1016/j.jre.2022.04.015_bib26) 2012; 4
Jia (10.1016/j.jre.2022.04.015_bib120) 2019; 10
Bestvater (10.1016/j.jre.2022.04.015_bib88) 2022; 208
Linet (10.1016/j.jre.2022.04.015_bib163) 2021; 135
Ma (10.1016/j.jre.2022.04.015_bib63) 2017; 17
Weissleder (10.1016/j.jre.2022.04.015_bib85) 2001; 19
Zhang (10.1016/j.jre.2022.04.015_bib151) 2007; 446
Shaner (10.1016/j.jre.2022.04.015_bib7) 2004; 22
Zheng (10.1016/j.jre.2022.04.015_bib109) 2005; 4
Chen (10.1016/j.jre.2022.04.015_bib19) 2012; 6
Zeng (10.1016/j.jre.2022.04.015_bib10) 2005; 17
Hou (10.1016/j.jre.2022.04.015_bib41) 2011; 21
Meng (10.1016/j.jre.2022.04.015_bib69) 2018; 6
Zhao (10.1016/j.jre.2022.04.015_bib93) 2017; 27
Chilakamarthi (10.1016/j.jre.2022.04.015_bib118) 2017; 17
Hu (10.1016/j.jre.2022.04.015_bib37) 2019; 123
Ai (10.1016/j.jre.2022.04.015_bib164) 2017; 56
Chien (10.1016/j.jre.2022.04.015_bib91) 2013; 7
Che (10.1016/j.jre.2022.04.015_bib39) 1998; 10
Michael (10.1016/j.jre.2022.04.015_bib90) 2015; 51
Li (10.1016/j.jre.2022.04.015_bib32) 2016; 6
Chen (10.1016/j.jre.2022.04.015_bib36) 2015; 44
Oleinick (10.1016/j.jre.2022.04.015_bib111) 2002; 1
Hososhima (10.1016/j.jre.2022.04.015_bib156) 2015; 5
Wang (10.1016/j.jre.2022.04.015_bib34) 2021; 5
Wang (10.1016/j.jre.2022.04.015_bib18) 2009; 38
10.1016/j.jre.2022.04.015_bib159
Wen (10.1016/j.jre.2022.04.015_bib57) 2018; 9
Bao (10.1016/j.jre.2022.04.015_bib46) 2012; 4
Li (10.1016/j.jre.2022.04.015_bib104) 2016; 6
Dou (10.1016/j.jre.2022.04.015_bib113) 2015; 5
Xu (10.1016/j.jre.2022.04.015_bib76) 2013; 6
Güleryüz (10.1016/j.jre.2022.04.015_bib117) 2021
Chen (10.1016/j.jre.2022.04.015_bib136) 2015; 39
González-Béjar (10.1016/j.jre.2022.04.015_bib140) 2016; 4
Zhou (10.1016/j.jre.2022.04.015_bib155) 2012; 41
Li (10.1016/j.jre.2022.04.015_bib15) 2016; 6
Yan (10.1016/j.jre.2022.04.015_bib102) 2011; 133
Lee (10.1016/j.jre.2022.04.015_bib89) 2017; 7
Zhao (10.1016/j.jre.2022.04.015_bib92) 2017; 27
Chen (10.1016/j.jre.2022.04.015_bib97) 2015; 51
Liu (10.1016/j.jre.2022.04.015_bib94) 2017; 139
Wang (10.1016/j.jre.2022.04.015_bib28) 2009; 113
Chen (10.1016/j.jre.2022.04.015_bib61) 2017; 56
Wu (10.1016/j.jre.2022.04.015_bib152) 2016; 10
Zheng (10.1016/j.jre.2022.04.015_bib160) 2017; 11
Chen (10.1016/j.jre.2022.04.015_bib127) 2014; 30
Chen (10.1016/j.jre.2022.04.015_bib71) 2015; 7
Bankiewicz (10.1016/j.jre.2022.04.015_bib84) 2000; 164
(10.1016/j.jre.2022.04.015_bib143) 2017
Chen (10.1016/j.jre.2022.04.015_bib3) 2014; 114
Liu (10.1016/j.jre.2022.04.015_bib121) 2021; 22
Nagel (10.1016/j.jre.2022.04.015_bib153) 2003; 100
References_xml – volume: 38
  start-page: 976
  year: 2009
  ident: bib18
  article-title: Recent advances in the chemistry of lanthanide-doped upconversion nanocrystals
  publication-title: Chem Soc Rev
– volume: 44
  start-page: 6054
  year: 2005
  ident: bib11
  article-title: Fluorescence resonant energy transfer biosensor based on upconversion-luminescent nanoparticles
  publication-title: Angew Chem Int Ed
– volume: 53
  start-page: 358
  year: 2019
  ident: bib52
  article-title: Combating concentration quenching in upconversion nanoparticles
  publication-title: Acc Chem Res
– volume: 45
  start-page: 635
  year: 2014
  ident: bib12
  article-title: Near-infrared upconversion nanoparticles for bio-applications
  publication-title: Mater Sci Eng, C
– volume: 108
  start-page: 1444
  year: 2020
  ident: bib44
  article-title: Recent advances in electrospun nanofiber-mediated drug delivery strategies for localized cancer chemotherapy
  publication-title: J Biomed Mater Res
– volume: 142
  start-page: 136
  year: 2017
  ident: bib158
  article-title: Tetherless near-infrared control of brain activity in behaving animals using fully implantable upconversion micro devices
  publication-title: Biomater
– volume: 5
  start-page: 9712
  year: 2017
  ident: bib49
  article-title: Embedded nanolamps in electrospun nanofibers enabling online monitoring and ratiometric measurements
  publication-title: J Mater Chem C
– volume: 6
  start-page: 535
  year: 2006
  ident: bib110
  article-title: Photodynamic therapy and anti-tumour immunity
  publication-title: Nat Rev Cancer
– year: 2009
  ident: bib126
  article-title: An introduction to fluorescence resonance energy transfer (FRET)
– volume: 29
  start-page: 937
  year: 2008
  ident: bib135
  article-title: Upconversion fluorescence imaging of cells and small animals using lanthanide doped nanocrystals
  publication-title: Biomater
– volume: 5
  start-page: 231
  year: 2013
  ident: bib96
  article-title: NIR light controlled photorelease of siRNA and its targeted intracellular delivery based on upconversion nanoparticles
  publication-title: Nanoscale
– volume: 8
  start-page: 2944
  year: 2016
  ident: bib50
  article-title: Patterned, highly stretchable and conductive nanofibrous PANI/PVDF strain sensors based on electrospinning and
  publication-title: Nanoscale
– volume: 7
  start-page: 411
  year: 2017
  ident: bib89
  article-title: Lanthanide-doped nanoparticles for diagnostic sensing
  publication-title: Nanomaterials
– volume: 40
  start-page: 193
  year: 2022
  ident: bib146
  article-title: Decorating rare-earth fluoride upconversion nanoparticles on AuNRs@ Ag core–shell structure for NIR light-mediated photothermal therapy and bioimaging
  publication-title: J Rare Earths
– volume: 135
  start-page: 1
  year: 2021
  ident: bib163
  article-title: Applications of upconversion nanoparticles in cellular optogenetics
  publication-title: Acta Biomater
– volume: 51
  start-page: 9193
  year: 2015
  ident: bib97
  article-title: NIR light controlled release of caged hydrogen sulfide based on upconversion nanoparticles
  publication-title: Chem Commun
– volume: 4
  start-page: 891515
  year: 2013
  ident: bib31
  article-title: Core-shell structure in doped inorganic nanoparticles: approaches for optimizing luminescence properties
  publication-title: J Nanomater
– volume: 104
  start-page: 139
  year: 2004
  ident: bib16
  article-title: Upconversion and anti-Stokes processes with f and d ions in solids
  publication-title: Chem Rev
– volume: 3
  year: 2011
  ident: bib30
  article-title: Monodisperse NaYbF
  publication-title: Nanoscale
– volume: 330
  start-page: 971
  year: 2010
  ident: bib147
  article-title: Optogenetic control of cardiac function
  publication-title: Science
– volume: 6
  start-page: 486
  year: 2010
  ident: bib115
  article-title: Singlet oxygen-induced apoptosis of cancer cells using upconversion fluorescent nanoparticles as a carrier of photosensitizer
  publication-title: Nanomed Nanotechnol Biol Med
– volume: 199
  start-page: 22
  year: 2019
  ident: bib162
  article-title: Near-infrared light remotely up-regulate autophagy with spatiotemporal precision
  publication-title: Biomaterials
– volume: 5
  start-page: 1
  year: 2015
  ident: bib113
  article-title: Coreshell upconversion nanoparticle–semiconductor heterostructures for photodynamic therapy
  publication-title: Sci Rep
– volume: 6
  start-page: 1161
  year: 2016
  ident: bib104
  article-title: Yb
  publication-title: Opt Mater Express
– volume: 3
  start-page: 5769
  year: 2015
  ident: bib68
  article-title: Poly-(allylamine hydrochloride)-coated but not poly (acrylic acid)-coated upconversion nanoparticles induce autophagy and apoptosis in human blood cancer cells
  publication-title: J Mater Chem B
– volume: 9
  start-page: 479
  year: 2015
  ident: bib78
  article-title: Tens of thousands-fold upconversion luminescence enhancement induced by a single gold nanorod
  publication-title: Laser Photon Rev
– volume: 90
  start-page: 525
  year: 2017
  ident: bib129
  article-title: Upconversion nanoparticles based FRET aptasensor for rapid and ultrasenstive bacteria detection
  publication-title: Biosens Bioelectron
– volume: 21
  start-page: 2356
  year: 2011
  ident: bib41
  article-title: Electrospinning preparation and frug-felivery properties of an up-conversion luminescent porous NaYF
  publication-title: Adv Func Mater
– volume: 9
  start-page: 1
  year: 2018
  ident: bib57
  article-title: Advances in highly doped upconversion nanoparticles
  publication-title: Nat Commun
– volume: 22
  start-page: 1567
  year: 2004
  ident: bib7
  article-title: Improved monomeric red, orange and yellow fluorescent proteins derived from
  publication-title: Nat Biotechnol
– volume: 100
  start-page: 13940
  year: 2003
  ident: bib153
  article-title: Channelrhodopsin-2, a directly light-gated cation-selective membrane channel
  publication-title: Proc Natl Acad Sci
– volume: 4
  start-page: 283
  year: 2005
  ident: bib109
  article-title: A review of progress in clinical photodynamic therapy
  publication-title: Technol Cancer Res Treat
– volume: 29
  start-page: 937
  year: 2008
  ident: bib142
  article-title: Upconversion fuorescence imaging of cells and small animals using lanthanide doped nanocrystals
  publication-title: Biomaters
– year: 2021
  ident: bib117
  article-title: Near infrared light activated upconversion nanoparticles (ucnp) based photodynamic therapy of prostate cancers: an
  publication-title: Photodiagnosis Photodyn Ther
– volume: 26
  start-page: 4778
  year: 2016
  ident: bib67
  article-title: Highly emissive Nd
  publication-title: Adv Funct Mater
– volume: 139
  start-page: 151
  year: 2017
  ident: bib94
  article-title: A NIR-controlled cage mimicking system for hydrophobic drug-mediated cancer therapy
  publication-title: Biomater
– volume: 2
  start-page: 1
  year: 2005
  ident: bib119
  article-title: Mechanisms in photodynamic therapy: Part two-cellular signaling, cell metabolism and modes of cell death
  publication-title: Photodiagnosis Photodyn Ther
– volume: 261
  year: 2020
  ident: bib5
  article-title: Upconversion luminescence enhancement of β-NaYF
  publication-title: Mater Sci. Eng., B
– volume: 3
  start-page: 7219
  year: 2020
  ident: bib43
  article-title: Electrospun upconverting nanofibrous hybrids with smart NIR-light-controlled drug release for wound dressing
  publication-title: ACS Appl Bio Mater
– volume: 39
  start-page: 15
  year: 2015
  ident: bib136
  article-title: Upconversion nanoprobes for efficiently
  publication-title: Biomater
– volume: 102
  start-page: 384
  year: 2020
  ident: bib21
  article-title: Dispersion stability and biocompatibility of four ligand-exchanged NaYF
  publication-title: Acta Biomaterialia
– volume: 164
  start-page: 2
  year: 2000
  ident: bib84
  article-title: Convection-enhanced delivery of AAV vector in parkinsonian monkeys;
  publication-title: Exp Neurol
– volume: 142
  year: 2020
  ident: bib145
  article-title: Temporal multiplexed
  publication-title: J Am Chem Soc
– volume: 20
  start-page: 7543
  year: 2010
  ident: bib137
  article-title: Carbohydrate-coated lanthanide-doped upconverting nanoparticles for lectin recognition
  publication-title: J Mater Chem
– volume: 61
  start-page: 250
  year: 2011
  ident: bib107
  article-title: Photodynamic therapy of cancer
  publication-title: CA A Cancer J Clin
– volume: 359
  start-page: 679
  year: 2018
  ident: bib157
  article-title: Near-infrared deep brain stimulation
  publication-title: Science
– volume: 131
  start-page: 12245
  year: 2019
  ident: bib72
  article-title: Boosting luminance energy transfer efficiency in upconversion nanoparticles with an energy-concentrating zone
  publication-title: Angew Chem
– volume: 19
  start-page: 316
  year: 2001
  ident: bib85
  article-title: A clearer vision for
  publication-title: Nat Biotechnol
– volume: 6
  start-page: 8280
  year: 2012
  ident: bib19
  article-title: (α-NaYbF
  publication-title: ACS Nano
– volume: 44
  start-page: 1318
  year: 2015
  ident: bib36
  article-title: Photon upconversion in core–shell nanoparticles
  publication-title: Chem Soc Rev
– start-page: 343
  year: 2017
  ident: bib143
  publication-title: Phosphors, up conversion nano particles, quantum dots and their applications
– volume: 92
  start-page: 11795
  year: 2020
  ident: bib80
  article-title: Plasmonic modulation of the upconversion luminescence based on gold nanorods for designing a new strategy of sensing microRNAs
  publication-title: Anal Chem
– volume: 7
  start-page: 8516
  year: 2013
  ident: bib91
  article-title: Near-infrared light photo controlled targeting, bioimaging, and chemotherapy with caged upconversion nanoparticles
  publication-title: ACS Nano
– volume: 374
  start-page: 863
  year: 2019
  ident: bib106
  article-title: Rare-earth-doped upconversion nanocrystals embedded mesoporous silica nanoparticles for multiple microRNA detection
  publication-title: J Chem Eng
– volume: 349
  start-page: 554
  year: 2018
  ident: bib51
  article-title: Flexible inorganic core-shell nanofibers endowed with tunable multicolor upconversion fluorescence for simultaneous monitoring dual drug delivery
  publication-title: Chem Eng J
– volume: 39
  start-page: 4633
  year: 2006
  ident: bib99
  article-title: Toward photo controlled release using light-dissociable block copolymer micelles
  publication-title: Macromol
– volume: 2
  start-page: 1417
  year: 2010
  ident: bib29
  article-title: Absolute quantum yield measurements of colloidal NaYF
  publication-title: Nanoscale
– year: 2010
  ident: bib105
  publication-title: Photodynamic therapy: methods and protocols
– volume: 56
  start-page: 3031
  year: 2017
  ident: bib164
  article-title: Remote regulation of membrane channel activity by site-specific localization of lanthanide-doped upconversion nanocrystals
  publication-title: Angew Chem Int Ed
– volume: 6
  start-page: 795
  year: 2013
  ident: bib76
  article-title: A novel strategy for improving upconversion luminescence of NaYF
  publication-title: Nano Res
– volume: 122
  start-page: 26298
  year: 2018
  ident: bib66
  article-title: Concentration quenching in upconversion nanocrystals
  publication-title: J Phys Chem C
– volume: 34
  start-page: 389
  year: 2011
  ident: bib150
  article-title: The development and application of optogenetics
  publication-title: Annu Rev Neurosci
– volume: 5
  start-page: 1743
  year: 2021
  ident: bib34
  article-title: Spectral engineering of lanthanide-doped upconversion nanoparticles and their biosensing applications
  publication-title: Mater Chem Front
– volume: 27
  year: 2017
  ident: bib92
  article-title: Photo-induced charge-variable conjugated polyelectrolyte brushes encapsulating upconversion nanoparticles for promoted siRNA release and collaborative photodynamic therapy under NIR light irradiation
  publication-title: Adv Funct Mater
– volume: 43
  start-page: 134
  year: 2020
  ident: bib134
  article-title: Emerging NIR light-responsive delivery systems based on lanthanide-doped upconverting nanoparticles
  publication-title: Arch Pharm Res
– volume: 54
  start-page: 85
  year: 2006
  ident: bib149
  article-title: Kinetic evaluation of photosensitivity in genetically engineered neurons expressing green algae light-gated channels
  publication-title: Neurosci Res
– volume: 18
  start-page: 2689
  year: 2018
  ident: bib22
  article-title: Improving quantum yield of upconverting nanoparticles in aqueous media
  publication-title: Nano Lett
– volume: 257
  start-page: 289
  year: 2018
  ident: bib124
  article-title: Development of an upconversion fluorescence DNA probe for the detection of acetamiprid by magnetic nanoparticles separation
  publication-title: Food Chem
– volume: 48
  start-page: 6064
  year: 2007
  ident: bib42
  article-title: Buckling of jets in electrospinning
  publication-title: Polymer
– volume: 186
  start-page: 1
  year: 2019
  ident: bib123
  article-title: Aptamer and nanomaterial based FRET biosensors: a review on recent advances (2014–2019)
  publication-title: Microchim Acta
– volume: 30
  start-page: 13085
  year: 2014
  ident: bib127
  article-title: Turn-on detection of a cancer marker based on near-infrared luminescence energy transfer from NaYF
  publication-title: Langmuir
– volume: 28
  start-page: 7935
  year: 2016
  ident: bib4
  article-title: g-C
  publication-title: Chem Mater
– volume: 17
  start-page: 2858
  year: 2017
  ident: bib63
  article-title: Optimal sensitizer concentration in single upconversion nanocrystals
  publication-title: Nano Lett
– volume: 29
  year: 2019
  ident: bib131
  article-title: A versatile photoinduced electron transfer-based upconversion fluorescent biosensing platform for the detection of disease biomarkers and nerve agent
  publication-title: Adv Funct Mater
– volume: 123
  start-page: 22674
  year: 2019
  ident: bib37
  article-title: Energy loss mechanism of upconversion core/shell nanocrystals
  publication-title: J Phys Chem C
– volume: 53
  start-page: 11702
  year: 2014
  ident: bib24
  article-title: Enhancing luminescence in lanthanide-doped upconversion nanoparticles
  publication-title: Angew Chem Int Ed
– volume: 148
  start-page: 203
  year: 2018
  ident: bib122
  article-title: Cell biology at the interface of nanobiosensors and microfluidics
  publication-title: Methods Cell Biol
– volume: 14
  start-page: 101
  year: 2014
  ident: bib73
  article-title: Plasmon-enhanced energy transfer for improved upconversion of infrared radiation in doped-lanthanide nanocrystals
  publication-title: Nano Lett
– volume: 86
  start-page: 590
  year: 2008
  ident: bib48
  article-title: Effect of relative humidity on the morphology of electrospun polymer fibers
  publication-title: Can J Chem
– volume: 6
  start-page: 13884
  year: 2014
  ident: bib58
  article-title: Size-tunable and monodisperse Tm
  publication-title: ACS Appl Mater Interfaces
– volume: 6
  start-page: 13101
  year: 2018
  ident: bib69
  article-title: External current-controlled dynamic display by integrating upconversion micro-disks with power density-dependent color into NIR luminescent diodes
  publication-title: J Mater Chem C
– volume: 141
  year: 2019
  ident: bib132
  article-title: Peptide-functionalized upconversion nanoparticles-based FRET sensing platform for Caspase-9 activity detection
  publication-title: Biosens Bioelectron
– volume: 4
  year: 2019
  ident: bib75
  article-title: Plasmon-enhanced upconversion photoluminescence: mechanism and application
  publication-title: Rev Phys
– volume: 29
  start-page: 4393
  year: 2009
  ident: bib77
  article-title: Nanowires enhanced upconversion emission of NaYF
  publication-title: Chem Commun
– volume: 13
  start-page: 157
  year: 2014
  ident: bib65
  article-title: Enhancing multiphoton upconversion through energy clustering at sublattice level
  publication-title: Nat Mater
– volume: 8
  start-page: 11667
  year: 2016
  ident: bib81
  article-title: Plasmon-enhanced upconversion luminescence on vertically aligned gold nanorod monolayer supercrystals
  publication-title: ACS Appl Mater Interfaces
– volume: 109
  start-page: 8483
  year: 2012
  ident: bib20
  article-title: Remote activation of biomolecules in deep tissues using near-infrared-to-UV upconversion nano transducers
  publication-title: Proc Natl Acad Sci
– volume: 10
  start-page: 38416
  year: 2020
  ident: bib116
  article-title: Semiconductor ZnO based photosensitizer core–shell upconversion nanoparticle heterojunction for photodynamic therapy
  publication-title: RSC Adv
– volume: 1
  start-page: 1
  year: 2002
  ident: bib111
  article-title: The role of apoptosis in response to photodynamic therapy: what, where, why, and how
  publication-title: Photochem Photobiol Sci
– volume: 9
  start-page: 300
  year: 2014
  ident: bib100
  article-title: Engineering bright sub-10-nm upconverting nanocrystals for single-molecule imaging
  publication-title: Nat Nanotechnol
– volume: 56
  start-page: 10383
  year: 2017
  ident: bib61
  article-title: Crystalline hollow microrods for site-selective enhancement of nonlinear photoluminescence
  publication-title: Angew Chem Int Ed
– volume: 8
  start-page: 10621
  year: 2014
  ident: bib60
  article-title: Amplifying the red-emission of upconverting nanoparticles for biocompatible clinically used prodrug-induced photodynamic therapy
  publication-title: ACS Nano
– volume: 58
  start-page: 12195
  year: 2019
  ident: bib130
  article-title: Direct detection of circulating tumor cells in whole blood using time-resolved luminescent lanthanide nanoprobes
  publication-title: Angew Chem Int Ed
– volume: 115
  start-page: 395
  year: 2015
  ident: bib2
  article-title: Upconversion luminescent materials: advances and applications
  publication-title: Chem Rev
– volume: 50
  start-page: 5808
  year: 2011
  ident: bib154
  article-title: Upconverting nanoparticles
  publication-title: Angew Chem Int Ed
– volume: 4
  start-page: 7369
  year: 2012
  ident: bib46
  article-title: Upconversion polymeric nanofibers containing lanthanide-doped nanoparticles via electrospinning
  publication-title: Nanoscale
– volume: 5
  start-page: 1
  year: 2015
  ident: bib156
  article-title: Near-infrared (NIR) up-conversion optogenetics
  publication-title: Sci Rep
– volume: 367
  year: 2018
  ident: bib9
  article-title: Synthesis and characterization of monodisperse core-shell lanthanide upconversion nanoparticles NaYF
  publication-title: Mater Sci Eng, B
– volume: 35
  start-page: 5847
  year: 2014
  ident: bib87
  article-title: A tumor-targeting near-infrared laser-triggered drug delivery system based on GO@Ag nanoparticles for chemo-photothermal therapy and X-ray imaging
  publication-title: Biomaterials
– volume: 8
  start-page: 52
  year: 2017
  ident: bib98
  article-title: Photo-responsive polymers: synthesis and applications
  publication-title: Polym Chem
– volume: 96
  start-page: 1
  year: 2009
  ident: bib108
  article-title: Photodynamic therapy (PDT): a short review on cellular mechanisms and cancer research applications for PDT
  publication-title: J Photochem Photobiol B Biol
– volume: 17
  start-page: 775
  year: 2017
  ident: bib118
  article-title: Photodynamic therapy: past, present and future
  publication-title: Chem Rec
– volume: 22
  start-page: 1063
  year: 1954
  ident: bib56
  article-title: Theory of concentration quenching in inorganic phosphors
  publication-title: J Chem Phys
– volume: 117
  start-page: 39
  year: 2006
  ident: bib53
  article-title: Concentration quenching in erbium-doped tellurite glasses
  publication-title: J Lumin
– volume: 5
  start-page: 11661
  year: 2013
  ident: bib59
  article-title: Size-dependent maximization of upconversion efficiency of citrate-stabilized β-phase NaYF
  publication-title: ACS Appl Mater Interfaces
– volume: 9
  start-page: 1964
  year: 2017
  ident: bib64
  article-title: Revisiting the optimized doping ratio in core/shell nanostructured upconversion particles
  publication-title: Nanoscale
– volume: 51
  start-page: 477
  year: 2015
  ident: bib90
  article-title: Near-infrared light- mediated release of doxorubicin using upconversion nanoparticles
  publication-title: Chem Commun
– volume: 4
  start-page: 47
  year: 2016
  ident: bib140
  article-title: Upconversion nanoparticles for bioimaging and regenerative medicine
  publication-title: Front Bioeng Biotechnol
– volume: 10
  start-page: 260
  year: 1998
  ident: bib39
  article-title: Chemical vapor deposition based synthesis of carbon nanotubes and nanofibers using a template method
  publication-title: Chem Mater
– volume: 6
  start-page: 2583
  year: 2005
  ident: bib38
  article-title: Characterization of the surface biocompatibility of the electrospun PCL-collagen nanofibers using fibroblasts
  publication-title: Biomacromolecules
– volume: 41
  start-page: 1323
  year: 2012
  ident: bib155
  article-title: Upconversion nanophosphors for small-animal imaging
  publication-title: Chem Soc Rev
– volume: 2
  start-page: 4863
  year: 2020
  ident: bib70
  article-title: Enhancing FRET biosensing beyond 10 nm with photon avalanche nanoparticles
  publication-title: Nanoscale Adv
– volume: 133
  start-page: 19714
  year: 2011
  ident: bib95
  article-title: Near-infrared light-triggered dissociation of block copolymer micelles using upconverting nanoparticles
  publication-title: J Am Chem Soc
– volume: 690
  start-page: 356
  year: 2017
  ident: bib141
  article-title: Broadband dye-sensitized upconversion: a promising new platform for future solar upconverter design
  publication-title: J Alloys Compd
– volume: 6
  start-page: 2380
  year: 2016
  ident: bib15
  article-title: Nanoscale “fluorescent stone”: luminescent calcium fluoride nanoparticles as theranostic platforms
  publication-title: Theranostics
– volume: 25
  start-page: 68
  year: 2019
  ident: bib23
  article-title: Exploiting lanthanide-doped upconversion nanoparticles with core/shell structures
  publication-title: Nano Today
– volume: 127
  start-page: 544
  year: 2005
  ident: bib25
  article-title: Synthesis and characterization of Co/CdSe core/shell nanocomposites: bifunctional magnetic-optical nanocrystals
  publication-title: J Am Chem Soc
– volume: 54
  start-page: 12064
  year: 2015
  ident: bib161
  article-title: Optogenetic apoptosis: light-triggered cell death
  publication-title: Angew Chem Int Ed
– volume: 2
  start-page: 427
  year: 2020
  ident: bib1
  article-title: Emerging frontiers of upconversion nanoparticles
  publication-title: Trends Chem
– volume: 133
  start-page: 19714
  year: 2011
  ident: bib102
  article-title: Near-infrared light-triggered dissociation of block copolymer micelles using upconverting nanoparticles
  publication-title: J Am Chem Soc
– volume: 135
  start-page: 12608
  year: 2013
  ident: bib27
  article-title: Mechanistic investigation of photon upconversion in Nd
  publication-title: J Am Chem Soc
– volume: 17
  start-page: 2119
  year: 2005
  ident: bib10
  article-title: Synthesis and upconversion luminescence of hexagonal-phase NaYF
  publication-title: Adv Mater
– volume: 22
  start-page: 10130
  year: 2021
  ident: bib121
  article-title: Advances in the genetically engineered killerred for photodynamic therapy applications
  publication-title: Int J Mol Sci
– volume: 10
  start-page: 1060
  year: 2016
  ident: bib152
  article-title: Dye-sensitized core/active shell upconversion nanoparticles for optogenetics and bioimaging applications
  publication-title: ACS Nano
– volume: 6
  start-page: 270
  year: 2016
  ident: bib32
  article-title: Tunable green to red upconversion fluorescence of water-soluble hexagonal-phase core-shell CaF
  publication-title: Opt Mater Express
– volume: 11
  start-page: 41100
  year: 2019
  ident: bib112
  article-title: Upconversion system with quantum dots as sensitizer: improved photoluminescence and PDT efficiency
  publication-title: ACS Appl Mater Interfaces
– volume: 3
  start-page: 346
  year: 2018
  ident: bib138
  article-title: Upconversion nanophosphors NaLuF
  publication-title: Theranostic
– volume: 114
  start-page: 5161
  year: 2014
  ident: bib3
  article-title: Upconversion nanoparticles: design, nanochemistry, and applications in theranostics
  publication-title: Chem Rev
– volume: 106
  start-page: 874
  year: 1957
  ident: bib74
  article-title: Plasma losses by fast electrons in thin films
  publication-title: Phys Rev
– volume: 10
  start-page: 19898
  year: 2018
  ident: bib62
  article-title: NaYbF
  publication-title: Nanoscale
– volume: 11
  start-page: 11898
  year: 2017
  ident: bib160
  article-title: Near-infrared light triggered upconversion optogenetic nanosystem for cancer therapy
  publication-title: ACS Nano
– volume: 313
  start-page: 1642
  year: 2006
  ident: bib6
  article-title: Imaging intracellular fluorescent proteins at nanometer resolution
  publication-title: Science
– volume: 32
  start-page: 804
  year: 2014
  ident: bib139
  article-title: Clinical imaging in regenerative medicine
  publication-title: Nat Biotechnol
– volume: 51
  start-page: 431
  year: 2015
  ident: bib101
  article-title: Ultralow-intensity near-infrared light induces drug delivery by upconverting nanoparticles
  publication-title: Chem Commun
– volume: 56
  start-page: 15118
  year: 2020
  ident: bib17
  article-title: Energy transfer designing in lanthanide-doped upconversion nanoparticles
  publication-title: Chem Commun
– volume: 10
  start-page: 8618
  year: 2019
  ident: bib120
  article-title: Mesoporous cerium oxide-coated upconversion nanoparticles for tumor-responsive chemo-photodynamic therapy and bioimaging
  publication-title: Chem Sci
– volume: 27
  year: 2017
  ident: bib93
  article-title: Photo-induced charge-variable conjugated polyelectrolyte brushes encapsulating upconversion nanoparticles for promoted siRNA release and collaborative photodynamic therapy under NIR light irradiation
  publication-title: Adv Funct Mater
– reference: Deisseroth K., Anikeeva P., et al. Upconversion of light for use in optogenetic methods. U.S. Patent. 2019.
– volume: 208
  start-page: 108
  year: 2022
  ident: bib88
  article-title: Two-photon fluorescence absorption and emission spectra of dyes relevant for cell imaging
  publication-title: J Microsc
– volume: 33
  start-page: 248
  year: 2016
  ident: bib45
  article-title: Near-infrared photocatalytic upconversion nanoparticles/TiO
  publication-title: Part Part Syst Char
– volume: 134
  start-page: 5390
  year: 2012
  ident: bib144
  article-title: Blue-emissive upconversion nanoparticles for low-power-excited bioimaging
  publication-title: J Am Chem Soc
– volume: 446
  start-page: 633
  year: 2007
  ident: bib151
  article-title: Multimodal fast optical interrogation of neural circuitry
  publication-title: Nat
– volume: 52
  start-page: 5738
  year: 2017
  ident: bib82
  article-title: Microwave-assisted one-step synthesis of acetate-capped NaYF
  publication-title: J Mater Sci
– volume: 39
  start-page: 2598
  year: 2001
  ident: bib47
  article-title: Flat polymer ribbons and other shapes by electrospinning
  publication-title: J Polym Sci, Part B: Polym Phys
– volume: 7
  start-page: 4274
  year: 2015
  ident: bib71
  article-title: Lanthanide-doped luminescent nano-bioprobes for the detection of tumor markers
  publication-title: Nanoscale
– volume: 3
  start-page: 317
  year: 2013
  ident: bib114
  article-title: Upconversion nanoparticles for photodynamic therapy and other cancer therapeutics
  publication-title: Theranostics
– volume: 2
  start-page: 953
  year: 2010
  ident: bib13
  article-title: Colloidal synthesis and blue based multicolor upconversion emissions of size and composition controlled monodisperse hexagonal NaYF
  publication-title: Nanoscale
– volume: 144
  start-page: 139
  year: 2013
  ident: bib55
  article-title: Concentration dependent luminescence quenching of Er
  publication-title: J Lumin
– start-page: 451
  year: 2019
  ident: bib83
  article-title: Carbon and carbon nanotube drug delivery and its characterization, properties, and applications
  publication-title: Nanocarriers for drug delivery
– volume: 113
  start-page: 7164
  year: 2009
  ident: bib28
  article-title: Upconversion luminescence of β-NaYF
  publication-title: J Phys Chem A
– volume: 13
  year: 2017
  ident: bib79
  article-title: Tuning plasmonic enhancement of single nanocrystal upconversion luminescence by varying gold nanorod diameter
  publication-title: Small
– volume: 4
  start-page: 6065
  year: 2012
  ident: bib86
  article-title: Upconversion nanoparticles for sensitive and in-depth detection of Cu
  publication-title: Nanoscale
– volume: 17
  start-page: 1685
  year: 2011
  ident: bib133
  article-title: Cancer cell–selective
  publication-title: Nat Med
– volume: 19
  start-page: 2924
  year: 2009
  ident: bib33
  article-title: The active-core/active-shell approach: a strategy to enhance the upconversion luminescence in lanthanide-doped nanoparticles
  publication-title: Adv Funct Mater
– volume: 139
  start-page: 3275
  year: 2017
  ident: bib54
  article-title: Direct evidence for coupled surface and concentration quenching dynamics in lanthanide-doped nanocrystals
  publication-title: J Am Chem Soc
– volume: 80
  start-page: 398
  year: 2016
  ident: bib128
  article-title: Fabricating a novel label-free aptasensor for acetamiprid by fluorescence resonance energy transfer between NH
  publication-title: Biosens Bioelectron
– volume: 11
  start-page: 4133
  year: 2017
  ident: bib8
  article-title: Highly emissive dye-sensitized upconversion nanostructure for dual-photosensitizer photodynamic therapy and bioimaging
  publication-title: ACS Nano
– volume: 7
  start-page: 897
  year: 2010
  ident: bib148
  article-title: Optogenetic control of heart muscle
  publication-title: Nat Methods
– volume: 30
  start-page: 1551
  year: 2012
  ident: bib14
  article-title: Recent advances in synthesis and surface modification of lanthanide-doped upconversion nanoparticles for biomedical applications
  publication-title: Biotechnol Adv
– volume: 559
  start-page: 17
  year: 2018
  ident: bib125
  article-title: Label-free aptasensors based on fluorescent screening assays for the detection of
  publication-title: Anal Biochem
– volume: 9
  start-page: 5234
  year: 2015
  ident: bib103
  article-title: Real-time monitoring of ATP-responsive drug release using mesoporous-silica-coated multicolor upconversion nanoparticles
  publication-title: ACS Nano
– volume: 18
  start-page: 414
  year: 2018
  ident: bib40
  article-title: An overview on application of natural substances incorporated with electrospun nanofibrous scaffolds to development of innovative wound dressings
  publication-title: Mini Rev Med Chem
– volume: 4
  start-page: 3608
  year: 2012
  ident: bib26
  article-title: Impacts of core–shell structures on properties of lanthanide-based nanocrystals: crystal phase, lattice strain, downconversion, upconversion and energy transfer
  publication-title: Nanoscale
– volume: 4
  start-page: 2432
  year: 2016
  ident: bib35
  article-title: Highly enhanced upconversion luminescence in lanthanide-doped active-core/luminescent-shell/active-shell nanoarchitectures
  publication-title: J Mater Chem C
– volume: 29
  start-page: 4393
  year: 2009
  ident: 10.1016/j.jre.2022.04.015_bib77
  article-title: Nanowires enhanced upconversion emission of NaYF4:Yb,Er nanocrystals via a direct assembly method
  publication-title: Chem Commun
  doi: 10.1039/b909164e
– volume: 367
  year: 2018
  ident: 10.1016/j.jre.2022.04.015_bib9
  article-title: Synthesis and characterization of monodisperse core-shell lanthanide upconversion nanoparticles NaYF4:Yb,Tm/SiO2
  publication-title: Mater Sci Eng, B
– volume: 21
  start-page: 2356
  year: 2011
  ident: 10.1016/j.jre.2022.04.015_bib41
  article-title: Electrospinning preparation and frug-felivery properties of an up-conversion luminescent porous NaYF4:Yb3+, Er3+@ silica fiber nanocomposite
  publication-title: Adv Func Mater
  doi: 10.1002/adfm.201100193
– volume: 18
  start-page: 414
  year: 2018
  ident: 10.1016/j.jre.2022.04.015_bib40
  article-title: An overview on application of natural substances incorporated with electrospun nanofibrous scaffolds to development of innovative wound dressings
  publication-title: Mini Rev Med Chem
  doi: 10.2174/1389557517666170308112147
– volume: 17
  start-page: 1685
  year: 2011
  ident: 10.1016/j.jre.2022.04.015_bib133
  article-title: Cancer cell–selective in vivo near infrared photoimmunotherapy targeting specific membrane molecules
  publication-title: Nat Med
  doi: 10.1038/nm.2554
– volume: 6
  start-page: 270
  year: 2016
  ident: 10.1016/j.jre.2022.04.015_bib32
  article-title: Tunable green to red upconversion fluorescence of water-soluble hexagonal-phase core-shell CaF2@NaYF4 nanocrystals
  publication-title: Opt Mater Express
  doi: 10.1364/OME.6.000270
– volume: 5
  start-page: 9712
  year: 2017
  ident: 10.1016/j.jre.2022.04.015_bib49
  article-title: Embedded nanolamps in electrospun nanofibers enabling online monitoring and ratiometric measurements
  publication-title: J Mater Chem C
  doi: 10.1039/C7TC03251J
– volume: 4
  start-page: 6065
  year: 2012
  ident: 10.1016/j.jre.2022.04.015_bib86
  article-title: Upconversion nanoparticles for sensitive and in-depth detection of Cu2+ ions
  publication-title: Nanoscale
  doi: 10.1039/c2nr31570j
– volume: 13
  start-page: 157
  year: 2014
  ident: 10.1016/j.jre.2022.04.015_bib65
  article-title: Enhancing multiphoton upconversion through energy clustering at sublattice level
  publication-title: Nat Mater
  doi: 10.1038/nmat3804
– volume: 11
  start-page: 11898
  year: 2017
  ident: 10.1016/j.jre.2022.04.015_bib160
  article-title: Near-infrared light triggered upconversion optogenetic nanosystem for cancer therapy
  publication-title: ACS Nano
  doi: 10.1021/acsnano.7b06395
– volume: 257
  start-page: 289
  year: 2018
  ident: 10.1016/j.jre.2022.04.015_bib124
  article-title: Development of an upconversion fluorescence DNA probe for the detection of acetamiprid by magnetic nanoparticles separation
  publication-title: Food Chem
  doi: 10.1016/j.foodchem.2018.02.148
– volume: 39
  start-page: 2598
  year: 2001
  ident: 10.1016/j.jre.2022.04.015_bib47
  article-title: Flat polymer ribbons and other shapes by electrospinning
  publication-title: J Polym Sci, Part B: Polym Phys
  doi: 10.1002/polb.10015
– volume: 6
  start-page: 13101
  year: 2018
  ident: 10.1016/j.jre.2022.04.015_bib69
  article-title: External current-controlled dynamic display by integrating upconversion micro-disks with power density-dependent color into NIR luminescent diodes
  publication-title: J Mater Chem C
  doi: 10.1039/C8TC05087B
– volume: 7
  start-page: 8516
  year: 2013
  ident: 10.1016/j.jre.2022.04.015_bib91
  article-title: Near-infrared light photo controlled targeting, bioimaging, and chemotherapy with caged upconversion nanoparticles in vitro and in vivo
  publication-title: ACS Nano
  doi: 10.1021/nn402399m
– volume: 92
  start-page: 11795
  year: 2020
  ident: 10.1016/j.jre.2022.04.015_bib80
  article-title: Plasmonic modulation of the upconversion luminescence based on gold nanorods for designing a new strategy of sensing microRNAs
  publication-title: Anal Chem
  doi: 10.1021/acs.analchem.0c01969
– volume: 56
  start-page: 10383
  year: 2017
  ident: 10.1016/j.jre.2022.04.015_bib61
  article-title: Crystalline hollow microrods for site-selective enhancement of nonlinear photoluminescence
  publication-title: Angew Chem Int Ed
  doi: 10.1002/anie.201703600
– volume: 50
  start-page: 5808
  year: 2011
  ident: 10.1016/j.jre.2022.04.015_bib154
  article-title: Upconverting nanoparticles
  publication-title: Angew Chem Int Ed
  doi: 10.1002/anie.201005159
– volume: 142
  start-page: 136
  year: 2017
  ident: 10.1016/j.jre.2022.04.015_bib158
  article-title: Tetherless near-infrared control of brain activity in behaving animals using fully implantable upconversion micro devices
  publication-title: Biomater
  doi: 10.1016/j.biomaterials.2017.07.017
– volume: 48
  start-page: 6064
  year: 2007
  ident: 10.1016/j.jre.2022.04.015_bib42
  article-title: Buckling of jets in electrospinning
  publication-title: Polymer
  doi: 10.1016/j.polymer.2007.08.002
– volume: 131
  start-page: 12245
  year: 2019
  ident: 10.1016/j.jre.2022.04.015_bib72
  article-title: Boosting luminance energy transfer efficiency in upconversion nanoparticles with an energy-concentrating zone
  publication-title: Angew Chem
  doi: 10.1002/ange.201906380
– volume: 133
  start-page: 19714
  year: 2011
  ident: 10.1016/j.jre.2022.04.015_bib95
  article-title: Near-infrared light-triggered dissociation of block copolymer micelles using upconverting nanoparticles
  publication-title: J Am Chem Soc
  doi: 10.1021/ja209793b
– volume: 9
  start-page: 300
  year: 2014
  ident: 10.1016/j.jre.2022.04.015_bib100
  article-title: Engineering bright sub-10-nm upconverting nanocrystals for single-molecule imaging
  publication-title: Nat Nanotechnol
  doi: 10.1038/nnano.2014.29
– volume: 19
  start-page: 316
  year: 2001
  ident: 10.1016/j.jre.2022.04.015_bib85
  article-title: A clearer vision for in vivo imaging
  publication-title: Nat Biotechnol
  doi: 10.1038/86684
– volume: 109
  start-page: 8483
  year: 2012
  ident: 10.1016/j.jre.2022.04.015_bib20
  article-title: Remote activation of biomolecules in deep tissues using near-infrared-to-UV upconversion nano transducers
  publication-title: Proc Natl Acad Sci
  doi: 10.1073/pnas.1114551109
– volume: 135
  start-page: 1
  year: 2021
  ident: 10.1016/j.jre.2022.04.015_bib163
  article-title: Applications of upconversion nanoparticles in cellular optogenetics
  publication-title: Acta Biomater
  doi: 10.1016/j.actbio.2021.08.035
– volume: 33
  start-page: 248
  year: 2016
  ident: 10.1016/j.jre.2022.04.015_bib45
  article-title: Near-infrared photocatalytic upconversion nanoparticles/TiO2 nanofibers assembled in large scale by electrospinning
  publication-title: Part Part Syst Char
  doi: 10.1002/ppsc.201600010
– volume: 100
  start-page: 13940
  year: 2003
  ident: 10.1016/j.jre.2022.04.015_bib153
  article-title: Channelrhodopsin-2, a directly light-gated cation-selective membrane channel
  publication-title: Proc Natl Acad Sci
  doi: 10.1073/pnas.1936192100
– volume: 142
  year: 2020
  ident: 10.1016/j.jre.2022.04.015_bib145
  article-title: Temporal multiplexed in vivo upconversion imaging
  publication-title: J Am Chem Soc
– volume: 10
  start-page: 1060
  year: 2016
  ident: 10.1016/j.jre.2022.04.015_bib152
  article-title: Dye-sensitized core/active shell upconversion nanoparticles for optogenetics and bioimaging applications
  publication-title: ACS Nano
  doi: 10.1021/acsnano.5b06383
– volume: 133
  start-page: 19714
  year: 2011
  ident: 10.1016/j.jre.2022.04.015_bib102
  article-title: Near-infrared light-triggered dissociation of block copolymer micelles using upconverting nanoparticles
  publication-title: J Am Chem Soc
  doi: 10.1021/ja209793b
– volume: 6
  start-page: 486
  year: 2010
  ident: 10.1016/j.jre.2022.04.015_bib115
  article-title: Singlet oxygen-induced apoptosis of cancer cells using upconversion fluorescent nanoparticles as a carrier of photosensitizer
  publication-title: Nanomed Nanotechnol Biol Med
  doi: 10.1016/j.nano.2009.11.004
– volume: 135
  start-page: 12608
  year: 2013
  ident: 10.1016/j.jre.2022.04.015_bib27
  article-title: Mechanistic investigation of photon upconversion in Nd3+-sensitized core–shell nanoparticles
  publication-title: J Am Chem Soc
  doi: 10.1021/ja4075002
– volume: 6
  start-page: 535
  year: 2006
  ident: 10.1016/j.jre.2022.04.015_bib110
  article-title: Photodynamic therapy and anti-tumour immunity
  publication-title: Nat Rev Cancer
  doi: 10.1038/nrc1894
– volume: 90
  start-page: 525
  year: 2017
  ident: 10.1016/j.jre.2022.04.015_bib129
  article-title: Upconversion nanoparticles based FRET aptasensor for rapid and ultrasenstive bacteria detection
  publication-title: Biosens Bioelectron
  doi: 10.1016/j.bios.2016.10.029
– volume: 29
  start-page: 937
  year: 2008
  ident: 10.1016/j.jre.2022.04.015_bib142
  article-title: Upconversion fuorescence imaging of cells and small animals using lanthanide doped nanocrystals
  publication-title: Biomaters
  doi: 10.1016/j.biomaterials.2007.10.051
– volume: 3
  year: 2011
  ident: 10.1016/j.jre.2022.04.015_bib30
  article-title: Monodisperse NaYbF4:Tm3+/NaGdF4 core/shell nanocrystals with near-infrared to near-infrared upconversion photoluminescence and magnetic resonance properties
  publication-title: Nanoscale
  doi: 10.1039/c0nr01018a
– volume: 559
  start-page: 17
  year: 2018
  ident: 10.1016/j.jre.2022.04.015_bib125
  article-title: Label-free aptasensors based on fluorescent screening assays for the detection of Salmonella typhimurium
  publication-title: Anal Biochem
  doi: 10.1016/j.ab.2018.08.002
– volume: 199
  start-page: 22
  year: 2019
  ident: 10.1016/j.jre.2022.04.015_bib162
  article-title: Near-infrared light remotely up-regulate autophagy with spatiotemporal precision via upconversion optogenetic nanosystem
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2019.01.042
– volume: 102
  start-page: 384
  year: 2020
  ident: 10.1016/j.jre.2022.04.015_bib21
  article-title: Dispersion stability and biocompatibility of four ligand-exchanged NaYF4: Yb, Er upconversion nanoparticles
  publication-title: Acta Biomaterialia
  doi: 10.1016/j.actbio.2019.11.048
– volume: 44
  start-page: 6054
  year: 2005
  ident: 10.1016/j.jre.2022.04.015_bib11
  article-title: Fluorescence resonant energy transfer biosensor based on upconversion-luminescent nanoparticles
  publication-title: Angew Chem Int Ed
  doi: 10.1002/anie.200501907
– volume: 104
  start-page: 139
  year: 2004
  ident: 10.1016/j.jre.2022.04.015_bib16
  article-title: Upconversion and anti-Stokes processes with f and d ions in solids
  publication-title: Chem Rev
  doi: 10.1021/cr020357g
– volume: 10
  start-page: 8618
  year: 2019
  ident: 10.1016/j.jre.2022.04.015_bib120
  article-title: Mesoporous cerium oxide-coated upconversion nanoparticles for tumor-responsive chemo-photodynamic therapy and bioimaging
  publication-title: Chem Sci
  doi: 10.1039/C9SC01615E
– volume: 2
  start-page: 1417
  year: 2010
  ident: 10.1016/j.jre.2022.04.015_bib29
  article-title: Absolute quantum yield measurements of colloidal NaYF4: Er3+, Yb3+ upconverting nanoparticles
  publication-title: Nanoscale
  doi: 10.1039/c0nr00253d
– volume: 4
  start-page: 2432
  year: 2016
  ident: 10.1016/j.jre.2022.04.015_bib35
  article-title: Highly enhanced upconversion luminescence in lanthanide-doped active-core/luminescent-shell/active-shell nanoarchitectures
  publication-title: J Mater Chem C
  doi: 10.1039/C6TC00163G
– volume: 8
  start-page: 52
  year: 2017
  ident: 10.1016/j.jre.2022.04.015_bib98
  article-title: Photo-responsive polymers: synthesis and applications
  publication-title: Polym Chem
  doi: 10.1039/C6PY01082B
– volume: 51
  start-page: 431
  year: 2015
  ident: 10.1016/j.jre.2022.04.015_bib101
  article-title: Ultralow-intensity near-infrared light induces drug delivery by upconverting nanoparticles
  publication-title: Chem Commun
  doi: 10.1039/C4CC07489K
– volume: 54
  start-page: 85
  year: 2006
  ident: 10.1016/j.jre.2022.04.015_bib149
  article-title: Kinetic evaluation of photosensitivity in genetically engineered neurons expressing green algae light-gated channels
  publication-title: Neurosci Res
  doi: 10.1016/j.neures.2005.10.009
– volume: 6
  start-page: 2583
  year: 2005
  ident: 10.1016/j.jre.2022.04.015_bib38
  article-title: Characterization of the surface biocompatibility of the electrospun PCL-collagen nanofibers using fibroblasts
  publication-title: Biomacromolecules
  doi: 10.1021/bm050314k
– ident: 10.1016/j.jre.2022.04.015_bib159
– volume: 123
  start-page: 22674
  year: 2019
  ident: 10.1016/j.jre.2022.04.015_bib37
  article-title: Energy loss mechanism of upconversion core/shell nanocrystals
  publication-title: J Phys Chem C
  doi: 10.1021/acs.jpcc.9b07176
– volume: 19
  start-page: 2924
  year: 2009
  ident: 10.1016/j.jre.2022.04.015_bib33
  article-title: The active-core/active-shell approach: a strategy to enhance the upconversion luminescence in lanthanide-doped nanoparticles
  publication-title: Adv Funct Mater
  doi: 10.1002/adfm.200900234
– volume: 39
  start-page: 4633
  year: 2006
  ident: 10.1016/j.jre.2022.04.015_bib99
  article-title: Toward photo controlled release using light-dissociable block copolymer micelles
  publication-title: Macromol
  doi: 10.1021/ma060142z
– start-page: 451
  year: 2019
  ident: 10.1016/j.jre.2022.04.015_bib83
  article-title: Carbon and carbon nanotube drug delivery and its characterization, properties, and applications
– volume: 2
  start-page: 953
  year: 2010
  ident: 10.1016/j.jre.2022.04.015_bib13
  article-title: Colloidal synthesis and blue based multicolor upconversion emissions of size and composition controlled monodisperse hexagonal NaYF4: Yb , Tm nanocrystals
  publication-title: Nanoscale
  doi: 10.1039/b9nr00397e
– volume: 117
  start-page: 39
  year: 2006
  ident: 10.1016/j.jre.2022.04.015_bib53
  article-title: Concentration quenching in erbium-doped tellurite glasses
  publication-title: J Lumin
  doi: 10.1016/j.jlumin.2005.04.003
– volume: 39
  start-page: 15
  year: 2015
  ident: 10.1016/j.jre.2022.04.015_bib136
  article-title: Upconversion nanoprobes for efficiently in vitro imaging reactive oxygen species and in vivo diagnosing rheumatoid arthritis
  publication-title: Biomater
  doi: 10.1016/j.biomaterials.2014.10.066
– volume: 2
  start-page: 427
  year: 2020
  ident: 10.1016/j.jre.2022.04.015_bib1
  article-title: Emerging frontiers of upconversion nanoparticles
  publication-title: Trends Chem
  doi: 10.1016/j.trechm.2020.01.008
– volume: 10
  start-page: 19898
  year: 2018
  ident: 10.1016/j.jre.2022.04.015_bib62
  article-title: NaYbF4@CaF2 core–satellite upconversion nanoparticles: one-pot synthesis and sensitive detection of glutathione
  publication-title: Nanoscale
  doi: 10.1039/C8NR05552A
– volume: 115
  start-page: 395
  year: 2015
  ident: 10.1016/j.jre.2022.04.015_bib2
  article-title: Upconversion luminescent materials: advances and applications
  publication-title: Chem Rev
  doi: 10.1021/cr400478f
– volume: 3
  start-page: 7219
  year: 2020
  ident: 10.1016/j.jre.2022.04.015_bib43
  article-title: Electrospun upconverting nanofibrous hybrids with smart NIR-light-controlled drug release for wound dressing
  publication-title: ACS Appl Bio Mater
  doi: 10.1021/acsabm.0c01019
– volume: 4
  start-page: 7369
  year: 2012
  ident: 10.1016/j.jre.2022.04.015_bib46
  article-title: Upconversion polymeric nanofibers containing lanthanide-doped nanoparticles via electrospinning
  publication-title: Nanoscale
  doi: 10.1039/c2nr32204h
– volume: 9
  start-page: 1
  year: 2018
  ident: 10.1016/j.jre.2022.04.015_bib57
  article-title: Advances in highly doped upconversion nanoparticles
  publication-title: Nat Commun
  doi: 10.1038/s41467-018-04813-5
– volume: 22
  start-page: 10130
  year: 2021
  ident: 10.1016/j.jre.2022.04.015_bib121
  article-title: Advances in the genetically engineered killerred for photodynamic therapy applications
  publication-title: Int J Mol Sci
  doi: 10.3390/ijms221810130
– volume: 208
  start-page: 108
  year: 2022
  ident: 10.1016/j.jre.2022.04.015_bib88
  article-title: Two-photon fluorescence absorption and emission spectra of dyes relevant for cell imaging
  publication-title: J Microsc
  doi: 10.1046/j.1365-2818.2002.01074.x
– volume: 134
  start-page: 5390
  year: 2012
  ident: 10.1016/j.jre.2022.04.015_bib144
  article-title: Blue-emissive upconversion nanoparticles for low-power-excited bioimaging in vivo
  publication-title: J Am Chem Soc
  doi: 10.1021/ja3003638
– volume: 2
  start-page: 1
  issue: 1
  year: 2005
  ident: 10.1016/j.jre.2022.04.015_bib119
  article-title: Mechanisms in photodynamic therapy: Part two-cellular signaling, cell metabolism and modes of cell death
  publication-title: Photodiagnosis Photodyn Ther
  doi: 10.1016/S1572-1000(05)00030-X
– volume: 148
  start-page: 203
  year: 2018
  ident: 10.1016/j.jre.2022.04.015_bib122
  article-title: Cell biology at the interface of nanobiosensors and microfluidics
  publication-title: Methods Cell Biol
  doi: 10.1016/bs.mcb.2018.09.009
– volume: 106
  start-page: 874
  year: 1957
  ident: 10.1016/j.jre.2022.04.015_bib74
  article-title: Plasma losses by fast electrons in thin films
  publication-title: Phys Rev
  doi: 10.1103/PhysRev.106.874
– volume: 11
  start-page: 41100
  year: 2019
  ident: 10.1016/j.jre.2022.04.015_bib112
  article-title: Upconversion system with quantum dots as sensitizer: improved photoluminescence and PDT efficiency
  publication-title: ACS Appl Mater Interfaces
  doi: 10.1021/acsami.9b16237
– volume: 30
  start-page: 13085
  year: 2014
  ident: 10.1016/j.jre.2022.04.015_bib127
  article-title: Turn-on detection of a cancer marker based on near-infrared luminescence energy transfer from NaYF4:Yb,Tm/NaGdF4 core–shell upconverting nanoparticles to gold nanorods
  publication-title: Langmuir
  doi: 10.1021/la502753e
– volume: 4
  start-page: 47
  year: 2016
  ident: 10.1016/j.jre.2022.04.015_bib140
  article-title: Upconversion nanoparticles for bioimaging and regenerative medicine
  publication-title: Front Bioeng Biotechnol
  doi: 10.3389/fbioe.2016.00047
– volume: 40
  start-page: 193
  year: 2022
  ident: 10.1016/j.jre.2022.04.015_bib146
  article-title: Decorating rare-earth fluoride upconversion nanoparticles on AuNRs@ Ag core–shell structure for NIR light-mediated photothermal therapy and bioimaging
  publication-title: J Rare Earths
  doi: 10.1016/j.jre.2021.01.014
– year: 2010
  ident: 10.1016/j.jre.2022.04.015_bib105
– volume: 96
  start-page: 1
  year: 2009
  ident: 10.1016/j.jre.2022.04.015_bib108
  article-title: Photodynamic therapy (PDT): a short review on cellular mechanisms and cancer research applications for PDT
  publication-title: J Photochem Photobiol B Biol
  doi: 10.1016/j.jphotobiol.2009.04.001
– volume: 127
  start-page: 544
  year: 2005
  ident: 10.1016/j.jre.2022.04.015_bib25
  article-title: Synthesis and characterization of Co/CdSe core/shell nanocomposites: bifunctional magnetic-optical nanocrystals
  publication-title: J Am Chem Soc
  doi: 10.1021/ja047107x
– volume: 56
  start-page: 3031
  year: 2017
  ident: 10.1016/j.jre.2022.04.015_bib164
  article-title: Remote regulation of membrane channel activity by site-specific localization of lanthanide-doped upconversion nanocrystals
  publication-title: Angew Chem Int Ed
  doi: 10.1002/anie.201612142
– volume: 51
  start-page: 9193
  year: 2015
  ident: 10.1016/j.jre.2022.04.015_bib97
  article-title: NIR light controlled release of caged hydrogen sulfide based on upconversion nanoparticles
  publication-title: Chem Commun
  doi: 10.1039/C5CC02508G
– volume: 7
  start-page: 411
  year: 2017
  ident: 10.1016/j.jre.2022.04.015_bib89
  article-title: Lanthanide-doped nanoparticles for diagnostic sensing
  publication-title: Nanomaterials
  doi: 10.3390/nano7120411
– volume: 374
  start-page: 863
  year: 2019
  ident: 10.1016/j.jre.2022.04.015_bib106
  article-title: Rare-earth-doped upconversion nanocrystals embedded mesoporous silica nanoparticles for multiple microRNA detection
  publication-title: J Chem Eng
– volume: 22
  start-page: 1567
  year: 2004
  ident: 10.1016/j.jre.2022.04.015_bib7
  article-title: Improved monomeric red, orange and yellow fluorescent proteins derived from Discosoma sp. red fluorescent protein
  publication-title: Nat Biotechnol
  doi: 10.1038/nbt1037
– volume: 17
  start-page: 775
  year: 2017
  ident: 10.1016/j.jre.2022.04.015_bib118
  article-title: Photodynamic therapy: past, present and future
  publication-title: Chem Rec
  doi: 10.1002/tcr.201600121
– volume: 29
  year: 2019
  ident: 10.1016/j.jre.2022.04.015_bib131
  article-title: A versatile photoinduced electron transfer-based upconversion fluorescent biosensing platform for the detection of disease biomarkers and nerve agent
  publication-title: Adv Funct Mater
– volume: 690
  start-page: 356
  year: 2017
  ident: 10.1016/j.jre.2022.04.015_bib141
  article-title: Broadband dye-sensitized upconversion: a promising new platform for future solar upconverter design
  publication-title: J Alloys Compd
  doi: 10.1016/j.jallcom.2016.08.142
– volume: 4
  year: 2019
  ident: 10.1016/j.jre.2022.04.015_bib75
  article-title: Plasmon-enhanced upconversion photoluminescence: mechanism and application
  publication-title: Rev Phys
  doi: 10.1016/j.revip.2018.100026
– volume: 56
  start-page: 15118
  year: 2020
  ident: 10.1016/j.jre.2022.04.015_bib17
  article-title: Energy transfer designing in lanthanide-doped upconversion nanoparticles
  publication-title: Chem Commun
  doi: 10.1039/D0CC05878E
– volume: 27
  year: 2017
  ident: 10.1016/j.jre.2022.04.015_bib93
  article-title: Photo-induced charge-variable conjugated polyelectrolyte brushes encapsulating upconversion nanoparticles for promoted siRNA release and collaborative photodynamic therapy under NIR light irradiation
  publication-title: Adv Funct Mater
  doi: 10.1002/adfm.201702592
– volume: 35
  start-page: 5847
  year: 2014
  ident: 10.1016/j.jre.2022.04.015_bib87
  article-title: A tumor-targeting near-infrared laser-triggered drug delivery system based on GO@Ag nanoparticles for chemo-photothermal therapy and X-ray imaging
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2014.03.042
– year: 2021
  ident: 10.1016/j.jre.2022.04.015_bib117
  article-title: Near infrared light activated upconversion nanoparticles (ucnp) based photodynamic therapy of prostate cancers: an in vitro study
  publication-title: Photodiagnosis Photodyn Ther
  doi: 10.1016/j.pdpdt.2021.102616
– volume: 86
  start-page: 590
  year: 2008
  ident: 10.1016/j.jre.2022.04.015_bib48
  article-title: Effect of relative humidity on the morphology of electrospun polymer fibers
  publication-title: Can J Chem
  doi: 10.1139/v08-029
– volume: 27
  year: 2017
  ident: 10.1016/j.jre.2022.04.015_bib92
  article-title: Photo-induced charge-variable conjugated polyelectrolyte brushes encapsulating upconversion nanoparticles for promoted siRNA release and collaborative photodynamic therapy under NIR light irradiation
  publication-title: Adv Funct Mater
  doi: 10.1002/adfm.201702592
– volume: 14
  start-page: 101
  year: 2014
  ident: 10.1016/j.jre.2022.04.015_bib73
  article-title: Plasmon-enhanced energy transfer for improved upconversion of infrared radiation in doped-lanthanide nanocrystals
  publication-title: Nano Lett
  doi: 10.1021/nl403383w
– volume: 2
  start-page: 4863
  year: 2020
  ident: 10.1016/j.jre.2022.04.015_bib70
  article-title: Enhancing FRET biosensing beyond 10 nm with photon avalanche nanoparticles
  publication-title: Nanoscale Adv
  doi: 10.1039/D0NA00404A
– volume: 6
  start-page: 795
  year: 2013
  ident: 10.1016/j.jre.2022.04.015_bib76
  article-title: A novel strategy for improving upconversion luminescence of NaYF4: Yb, Er nanocrystals by coupling with hybrids of silver plasmon nanostructures and poly (methyl methacrylate) photonic crystals
  publication-title: Nano Res
  doi: 10.1007/s12274-013-0358-y
– volume: 139
  start-page: 3275
  year: 2017
  ident: 10.1016/j.jre.2022.04.015_bib54
  article-title: Direct evidence for coupled surface and concentration quenching dynamics in lanthanide-doped nanocrystals
  publication-title: J Am Chem Soc
  doi: 10.1021/jacs.7b00223
– volume: 28
  start-page: 7935
  year: 2016
  ident: 10.1016/j.jre.2022.04.015_bib4
  article-title: g-C3N4 coated upconversion nanoparticles for 808 nm near-infrared light-triggered phototherapy and multiple imaging
  publication-title: Chem Mater
  doi: 10.1021/acs.chemmater.6b03598
– volume: 5
  start-page: 1
  year: 2015
  ident: 10.1016/j.jre.2022.04.015_bib113
  article-title: Coreshell upconversion nanoparticle–semiconductor heterostructures for photodynamic therapy
  publication-title: Sci Rep
  doi: 10.1038/srep08252
– volume: 53
  start-page: 11702
  year: 2014
  ident: 10.1016/j.jre.2022.04.015_bib24
  article-title: Enhancing luminescence in lanthanide-doped upconversion nanoparticles
  publication-title: Angew Chem Int Ed
  doi: 10.1002/anie.201403408
– volume: 17
  start-page: 2119
  year: 2005
  ident: 10.1016/j.jre.2022.04.015_bib10
  article-title: Synthesis and upconversion luminescence of hexagonal-phase NaYF4: Yb3+, Er3+ phosphors of controlled size and morphology
  publication-title: Adv Mater
  doi: 10.1002/adma.200402046
– volume: 8
  start-page: 11667
  year: 2016
  ident: 10.1016/j.jre.2022.04.015_bib81
  article-title: Plasmon-enhanced upconversion luminescence on vertically aligned gold nanorod monolayer supercrystals
  publication-title: ACS Appl Mater Interfaces
  doi: 10.1021/acsami.5b12075
– volume: 9
  start-page: 1964
  year: 2017
  ident: 10.1016/j.jre.2022.04.015_bib64
  article-title: Revisiting the optimized doping ratio in core/shell nanostructured upconversion particles
  publication-title: Nanoscale
  doi: 10.1039/C6NR07687D
– volume: 5
  start-page: 1743
  year: 2021
  ident: 10.1016/j.jre.2022.04.015_bib34
  article-title: Spectral engineering of lanthanide-doped upconversion nanoparticles and their biosensing applications
  publication-title: Mater Chem Front
  doi: 10.1039/D0QM00910E
– volume: 44
  start-page: 1318
  year: 2015
  ident: 10.1016/j.jre.2022.04.015_bib36
  article-title: Photon upconversion in core–shell nanoparticles
  publication-title: Chem Soc Rev
  doi: 10.1039/C4CS00151F
– volume: 61
  start-page: 250
  year: 2011
  ident: 10.1016/j.jre.2022.04.015_bib107
  article-title: Photodynamic therapy of cancer
  publication-title: CA A Cancer J Clin
  doi: 10.3322/caac.20114
– volume: 32
  start-page: 804
  year: 2014
  ident: 10.1016/j.jre.2022.04.015_bib139
  article-title: Clinical imaging in regenerative medicine
  publication-title: Nat Biotechnol
  doi: 10.1038/nbt.2993
– volume: 4
  start-page: 283
  year: 2005
  ident: 10.1016/j.jre.2022.04.015_bib109
  article-title: A review of progress in clinical photodynamic therapy
  publication-title: Technol Cancer Res Treat
  doi: 10.1177/153303460500400308
– volume: 108
  start-page: 1444
  year: 2020
  ident: 10.1016/j.jre.2022.04.015_bib44
  article-title: Recent advances in electrospun nanofiber-mediated drug delivery strategies for localized cancer chemotherapy
  publication-title: J Biomed Mater Res
  doi: 10.1002/jbm.a.36912
– volume: 8
  start-page: 10621
  year: 2014
  ident: 10.1016/j.jre.2022.04.015_bib60
  article-title: Amplifying the red-emission of upconverting nanoparticles for biocompatible clinically used prodrug-induced photodynamic therapy
  publication-title: ACS Nano
  doi: 10.1021/nn505051d
– volume: 58
  start-page: 12195
  year: 2019
  ident: 10.1016/j.jre.2022.04.015_bib130
  article-title: Direct detection of circulating tumor cells in whole blood using time-resolved luminescent lanthanide nanoprobes
  publication-title: Angew Chem Int Ed
  doi: 10.1002/anie.201907605
– volume: 330
  start-page: 971
  year: 2010
  ident: 10.1016/j.jre.2022.04.015_bib147
  article-title: Optogenetic control of cardiac function
  publication-title: Science
  doi: 10.1126/science.1195929
– volume: 114
  start-page: 5161
  year: 2014
  ident: 10.1016/j.jre.2022.04.015_bib3
  article-title: Upconversion nanoparticles: design, nanochemistry, and applications in theranostics
  publication-title: Chem Rev
  doi: 10.1021/cr400425h
– volume: 3
  start-page: 317
  year: 2013
  ident: 10.1016/j.jre.2022.04.015_bib114
  article-title: Upconversion nanoparticles for photodynamic therapy and other cancer therapeutics
  publication-title: Theranostics
  doi: 10.7150/thno.5284
– volume: 113
  start-page: 7164
  year: 2009
  ident: 10.1016/j.jre.2022.04.015_bib28
  article-title: Upconversion luminescence of β-NaYF4:Yb3+, Er3+@β-NaYF4 core/shell nanoparticles: excitation power density and surface dependence
  publication-title: J Phys Chem A
  doi: 10.1021/jp9003399
– volume: 6
  start-page: 1161
  year: 2016
  ident: 10.1016/j.jre.2022.04.015_bib104
  article-title: Yb3+-enhanced UCNP@SiO2 nanocomposites for consecutive imaging, photothermal-controlled drug delivery and cancer therapy
  publication-title: Opt Mater Express
  doi: 10.1364/OME.6.001161
– volume: 38
  start-page: 976
  year: 2009
  ident: 10.1016/j.jre.2022.04.015_bib18
  article-title: Recent advances in the chemistry of lanthanide-doped upconversion nanocrystals
  publication-title: Chem Soc Rev
  doi: 10.1039/b809132n
– volume: 446
  start-page: 633
  year: 2007
  ident: 10.1016/j.jre.2022.04.015_bib151
  article-title: Multimodal fast optical interrogation of neural circuitry
  publication-title: Nat
  doi: 10.1038/nature05744
– volume: 11
  start-page: 4133
  year: 2017
  ident: 10.1016/j.jre.2022.04.015_bib8
  article-title: Highly emissive dye-sensitized upconversion nanostructure for dual-photosensitizer photodynamic therapy and bioimaging
  publication-title: ACS Nano
  doi: 10.1021/acsnano.7b00944
– volume: 10
  start-page: 38416
  year: 2020
  ident: 10.1016/j.jre.2022.04.015_bib116
  article-title: Semiconductor ZnO based photosensitizer core–shell upconversion nanoparticle heterojunction for photodynamic therapy
  publication-title: RSC Adv
  doi: 10.1039/D0RA07466G
– volume: 29
  start-page: 937
  year: 2008
  ident: 10.1016/j.jre.2022.04.015_bib135
  article-title: Upconversion fluorescence imaging of cells and small animals using lanthanide doped nanocrystals
  publication-title: Biomater
  doi: 10.1016/j.biomaterials.2007.10.051
– year: 2009
  ident: 10.1016/j.jre.2022.04.015_bib126
– volume: 34
  start-page: 389
  year: 2011
  ident: 10.1016/j.jre.2022.04.015_bib150
  article-title: The development and application of optogenetics
  publication-title: Annu Rev Neurosci
  doi: 10.1146/annurev-neuro-061010-113817
– volume: 22
  start-page: 1063
  year: 1954
  ident: 10.1016/j.jre.2022.04.015_bib56
  article-title: Theory of concentration quenching in inorganic phosphors
  publication-title: J Chem Phys
– volume: 3
  start-page: 5769
  year: 2015
  ident: 10.1016/j.jre.2022.04.015_bib68
  article-title: Poly-(allylamine hydrochloride)-coated but not poly (acrylic acid)-coated upconversion nanoparticles induce autophagy and apoptosis in human blood cancer cells
  publication-title: J Mater Chem B
  doi: 10.1039/C5TB00646E
– volume: 26
  start-page: 4778
  year: 2016
  ident: 10.1016/j.jre.2022.04.015_bib67
  article-title: Highly emissive Nd3+-sensitized multilayered upconversion nanoparticles for efficient 795 nm operated photodynamic therapy
  publication-title: Adv Funct Mater
  doi: 10.1002/adfm.201600464
– volume: 186
  start-page: 1
  year: 2019
  ident: 10.1016/j.jre.2022.04.015_bib123
  article-title: Aptamer and nanomaterial based FRET biosensors: a review on recent advances (2014–2019)
  publication-title: Microchim Acta
  doi: 10.1007/s00604-019-3659-3
– volume: 359
  start-page: 679
  year: 2018
  ident: 10.1016/j.jre.2022.04.015_bib157
  article-title: Near-infrared deep brain stimulation via upconversion nanoparticle-mediated optogenetics
  publication-title: Science
  doi: 10.1126/science.aaq1144
– volume: 139
  start-page: 151
  year: 2017
  ident: 10.1016/j.jre.2022.04.015_bib94
  article-title: A NIR-controlled cage mimicking system for hydrophobic drug-mediated cancer therapy
  publication-title: Biomater
  doi: 10.1016/j.biomaterials.2017.06.008
– volume: 45
  start-page: 635
  year: 2014
  ident: 10.1016/j.jre.2022.04.015_bib12
  article-title: Near-infrared upconversion nanoparticles for bio-applications
  publication-title: Mater Sci Eng, C
  doi: 10.1016/j.msec.2014.03.056
– volume: 122
  start-page: 26298
  year: 2018
  ident: 10.1016/j.jre.2022.04.015_bib66
  article-title: Concentration quenching in upconversion nanocrystals
  publication-title: J Phys Chem C
  doi: 10.1021/acs.jpcc.8b09371
– volume: 41
  start-page: 1323
  year: 2012
  ident: 10.1016/j.jre.2022.04.015_bib155
  article-title: Upconversion nanophosphors for small-animal imaging
  publication-title: Chem Soc Rev
  doi: 10.1039/C1CS15187H
– volume: 43
  start-page: 134
  year: 2020
  ident: 10.1016/j.jre.2022.04.015_bib134
  article-title: Emerging NIR light-responsive delivery systems based on lanthanide-doped upconverting nanoparticles
  publication-title: Arch Pharm Res
  doi: 10.1007/s12272-020-01208-3
– volume: 52
  start-page: 5738
  year: 2017
  ident: 10.1016/j.jre.2022.04.015_bib82
  article-title: Microwave-assisted one-step synthesis of acetate-capped NaYF4:Yb/Er upconversion nanocrystals and their application in bioimaging
  publication-title: J Mater Sci
  doi: 10.1007/s10853-017-0809-z
– volume: 9
  start-page: 5234
  year: 2015
  ident: 10.1016/j.jre.2022.04.015_bib103
  article-title: Real-time monitoring of ATP-responsive drug release using mesoporous-silica-coated multicolor upconversion nanoparticles
  publication-title: ACS Nano
  doi: 10.1021/acsnano.5b00641
– volume: 313
  start-page: 1642
  year: 2006
  ident: 10.1016/j.jre.2022.04.015_bib6
  article-title: Imaging intracellular fluorescent proteins at nanometer resolution
  publication-title: Science
  doi: 10.1126/science.1127344
– volume: 13
  year: 2017
  ident: 10.1016/j.jre.2022.04.015_bib79
  article-title: Tuning plasmonic enhancement of single nanocrystal upconversion luminescence by varying gold nanorod diameter
  publication-title: Small
  doi: 10.1002/smll.201701155
– volume: 3
  start-page: 346
  year: 2018
  ident: 10.1016/j.jre.2022.04.015_bib138
  article-title: Upconversion nanophosphors NaLuF4: Yb, Tm for lymphatic imaging in vivo by real-time upconversion luminescence imaging under ambient light and high-resolution X-ray CT
  publication-title: Theranostic
  doi: 10.7150/thno.5137
– volume: 1
  start-page: 1
  year: 2002
  ident: 10.1016/j.jre.2022.04.015_bib111
  article-title: The role of apoptosis in response to photodynamic therapy: what, where, why, and how
  publication-title: Photochem Photobiol Sci
  doi: 10.1039/b108586g
– volume: 261
  year: 2020
  ident: 10.1016/j.jre.2022.04.015_bib5
  article-title: Upconversion luminescence enhancement of β-NaYF4:Er3+/Ho3+ by introducing Ca2+ and multicolor tuning by 980 nm pulse excited
  publication-title: Mater Sci. Eng., B
  doi: 10.1016/j.mseb.2020.114674
– volume: 53
  start-page: 358
  year: 2019
  ident: 10.1016/j.jre.2022.04.015_bib52
  article-title: Combating concentration quenching in upconversion nanoparticles
  publication-title: Acc Chem Res
  doi: 10.1021/acs.accounts.9b00453
– volume: 10
  start-page: 260
  year: 1998
  ident: 10.1016/j.jre.2022.04.015_bib39
  article-title: Chemical vapor deposition based synthesis of carbon nanotubes and nanofibers using a template method
  publication-title: Chem Mater
  doi: 10.1021/cm970412f
– volume: 5
  start-page: 11661
  year: 2013
  ident: 10.1016/j.jre.2022.04.015_bib59
  article-title: Size-dependent maximization of upconversion efficiency of citrate-stabilized β-phase NaYF4:Yb3+, Er3+ crystals via annealing
  publication-title: ACS Appl Mater Interfaces
  doi: 10.1021/am403100t
– volume: 164
  start-page: 2
  year: 2000
  ident: 10.1016/j.jre.2022.04.015_bib84
  article-title: Convection-enhanced delivery of AAV vector in parkinsonian monkeys; in vivo detection of gene expression and restoration of dopaminergic function using pro-drug approach
  publication-title: Exp Neurol
  doi: 10.1006/exnr.2000.7408
– volume: 8
  start-page: 2944
  year: 2016
  ident: 10.1016/j.jre.2022.04.015_bib50
  article-title: Patterned, highly stretchable and conductive nanofibrous PANI/PVDF strain sensors based on electrospinning and in situ polymerization
  publication-title: Nanoscale
  doi: 10.1039/C5NR08618C
– volume: 4
  start-page: 891515
  year: 2013
  ident: 10.1016/j.jre.2022.04.015_bib31
  article-title: Core-shell structure in doped inorganic nanoparticles: approaches for optimizing luminescence properties
  publication-title: J Nanomater
  doi: 10.1155/2013/891515
– volume: 5
  start-page: 231
  year: 2013
  ident: 10.1016/j.jre.2022.04.015_bib96
  article-title: NIR light controlled photorelease of siRNA and its targeted intracellular delivery based on upconversion nanoparticles
  publication-title: Nanoscale
  doi: 10.1039/C2NR32835F
– volume: 5
  start-page: 1
  year: 2015
  ident: 10.1016/j.jre.2022.04.015_bib156
  article-title: Near-infrared (NIR) up-conversion optogenetics
  publication-title: Sci Rep
  doi: 10.1038/srep16533
– volume: 7
  start-page: 897
  year: 2010
  ident: 10.1016/j.jre.2022.04.015_bib148
  article-title: Optogenetic control of heart muscle in vitro and in vivo
  publication-title: Nat Methods
  doi: 10.1038/nmeth.1512
– volume: 30
  start-page: 1551
  year: 2012
  ident: 10.1016/j.jre.2022.04.015_bib14
  article-title: Recent advances in synthesis and surface modification of lanthanide-doped upconversion nanoparticles for biomedical applications
  publication-title: Biotechnol Adv
  doi: 10.1016/j.biotechadv.2012.04.009
– volume: 349
  start-page: 554
  year: 2018
  ident: 10.1016/j.jre.2022.04.015_bib51
  article-title: Flexible inorganic core-shell nanofibers endowed with tunable multicolor upconversion fluorescence for simultaneous monitoring dual drug delivery
  publication-title: Chem Eng J
  doi: 10.1016/j.cej.2018.05.112
– volume: 51
  start-page: 477
  year: 2015
  ident: 10.1016/j.jre.2022.04.015_bib90
  article-title: Near-infrared light- mediated release of doxorubicin using upconversion nanoparticles
  publication-title: Chem Commun
– volume: 20
  start-page: 7543
  year: 2010
  ident: 10.1016/j.jre.2022.04.015_bib137
  article-title: Carbohydrate-coated lanthanide-doped upconverting nanoparticles for lectin recognition
  publication-title: J Mater Chem
  doi: 10.1039/c0jm01617a
– start-page: 343
  year: 2017
  ident: 10.1016/j.jre.2022.04.015_bib143
– volume: 144
  start-page: 139
  year: 2013
  ident: 10.1016/j.jre.2022.04.015_bib55
  article-title: Concentration dependent luminescence quenching of Er3+-doped zinc boro-tellurite glass
  publication-title: J Lumin
  doi: 10.1016/j.jlumin.2013.06.050
– volume: 141
  year: 2019
  ident: 10.1016/j.jre.2022.04.015_bib132
  article-title: Peptide-functionalized upconversion nanoparticles-based FRET sensing platform for Caspase-9 activity detection in vitro and in vivo
  publication-title: Biosens Bioelectron
  doi: 10.1016/j.bios.2019.111403
– volume: 6
  start-page: 2380
  year: 2016
  ident: 10.1016/j.jre.2022.04.015_bib15
  article-title: Nanoscale “fluorescent stone”: luminescent calcium fluoride nanoparticles as theranostic platforms
  publication-title: Theranostics
  doi: 10.7150/thno.15914
– volume: 6
  start-page: 13884
  year: 2014
  ident: 10.1016/j.jre.2022.04.015_bib58
  article-title: Size-tunable and monodisperse Tm3+/Gd3+-doped hexagonal NaYbF4 nanoparticles with engineered efficient near infrared-to-near infrared upconversion for in vivo-imaging
  publication-title: ACS Appl Mater Interfaces
  doi: 10.1021/am503288d
– volume: 7
  start-page: 4274
  year: 2015
  ident: 10.1016/j.jre.2022.04.015_bib71
  article-title: Lanthanide-doped luminescent nano-bioprobes for the detection of tumor markers
  publication-title: Nanoscale
  doi: 10.1039/C4NR05697C
– volume: 4
  start-page: 3608
  year: 2012
  ident: 10.1016/j.jre.2022.04.015_bib26
  article-title: Impacts of core–shell structures on properties of lanthanide-based nanocrystals: crystal phase, lattice strain, downconversion, upconversion and energy transfer
  publication-title: Nanoscale
  doi: 10.1039/c2nr30389b
– volume: 17
  start-page: 2858
  year: 2017
  ident: 10.1016/j.jre.2022.04.015_bib63
  article-title: Optimal sensitizer concentration in single upconversion nanocrystals
  publication-title: Nano Lett
  doi: 10.1021/acs.nanolett.6b05331
– volume: 9
  start-page: 479
  year: 2015
  ident: 10.1016/j.jre.2022.04.015_bib78
  article-title: Tens of thousands-fold upconversion luminescence enhancement induced by a single gold nanorod
  publication-title: Laser Photon Rev
  doi: 10.1002/lpor.201500013
– volume: 80
  start-page: 398
  year: 2016
  ident: 10.1016/j.jre.2022.04.015_bib128
  article-title: Fabricating a novel label-free aptasensor for acetamiprid by fluorescence resonance energy transfer between NH2-NaYF4:Yb,Ho@SiO2 and Au nanoparticles
  publication-title: Biosens Bioelectron
  doi: 10.1016/j.bios.2016.02.001
– volume: 18
  start-page: 2689
  year: 2018
  ident: 10.1016/j.jre.2022.04.015_bib22
  article-title: Improving quantum yield of upconverting nanoparticles in aqueous media via emission sensitization
  publication-title: Nano Lett
  doi: 10.1021/acs.nanolett.8b00634
– volume: 25
  start-page: 68
  year: 2019
  ident: 10.1016/j.jre.2022.04.015_bib23
  article-title: Exploiting lanthanide-doped upconversion nanoparticles with core/shell structures
  publication-title: Nano Today
  doi: 10.1016/j.nantod.2019.02.009
– volume: 54
  start-page: 12064
  year: 2015
  ident: 10.1016/j.jre.2022.04.015_bib161
  article-title: Optogenetic apoptosis: light-triggered cell death
  publication-title: Angew Chem Int Ed
  doi: 10.1002/anie.201506346
– volume: 6
  start-page: 8280
  year: 2012
  ident: 10.1016/j.jre.2022.04.015_bib19
  article-title: (α-NaYbF4:Tm3+)/CaF2 core/shell nanoparticles with efficient near-infrared to near-infrared upconversion for high-contrast deep-tissue bioimaging
  publication-title: ACS Nano
  doi: 10.1021/nn302972r
SSID ssj0037590
Score 2.5215297
SecondaryResourceType review_article
Snippet Upconversion nanoparticles (UCNPs) doped with lanthanides can convert near-infrared excitation into UV and visible emissions. Because of their relatively high...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 1343
SubjectTerms Applications
Luminescence
Mechanism
Optical imaging
Rare earths
Upconversion nanoparticles
Title Upconversion nanoparticles: Recent strategies and mechanism based applications
URI https://dx.doi.org/10.1016/j.jre.2022.04.015
Volume 40
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  issn: 1002-0721
  databaseCode: GBLVA
  dateStart: 20110101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: true
  ssIdentifier: ssj0037590
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier ScienceDirect Freedom Collection
  issn: 1002-0721
  databaseCode: AIKHN
  dateStart: 20060201
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: true
  ssIdentifier: ssj0037590
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Complete Freedom Collection [SCCMFC]
  issn: 1002-0721
  databaseCode: ACRLP
  dateStart: 20060201
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: true
  ssIdentifier: ssj0037590
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection
  issn: 1002-0721
  databaseCode: .~1
  dateStart: 20060201
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: true
  ssIdentifier: ssj0037590
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  issn: 1002-0721
  databaseCode: AKRWK
  dateStart: 20060201
  customDbUrl:
  isFulltext: true
  mediaType: online
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0037590
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwED5VMMCCeIryqDwwIYWmTuykbFVFVUB0oZW6WZfEkVrRULVh5bdzl0dVJGBgTOSLorN999n-_B3ADYHuDk0E7YQakXer0In4xrKVNJmkShOLvFB8GenhxH-aqmkD-vVdGKZVVrG_jOlFtK7etCtvtpezWfuVxUNZ3UsyLagjed3O6l80pu8-NzQPL1DdUpGAmbbUuj7ZLDhe8xUrZUpZqJ1yZdyfctNWvhkcwkEFFEWv_JcjaNjsGPb6dX22ExhNlgVlvNjvEhlmtPytWG73gtAgZROxzmslCIFZIhaW7_nO1gvBySsR26fXpzAePIz7Q6eqjuDEshvkTooYpShTq2LP94JIu0lqdSH_3vUIhGGMOuGqGp7FyI2xEyBl91Anbicm1OKdwU72ntlzEAljREVTNw20HyuF6KJWVoX0RVRh2AS3douJK-VwLmDxZmqK2NyQJw170ri-IU824XZjsixlM_5q7Ne-Nt_63lBY_93s4n9ml7DPTyVP7Ap28tWHvSZgkUetYuS0YLf3-DwcfQFnUs0A
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb4JAEN0YPdhL08_0u3voqQkRgV2wN2NqsCqXauJtM8CSaCo1Sv9_Z4BtbNL20CswhMyyM29337xh7AFBdxcngrQCCUC7VWDFVLGsHZxMjshSDbRQnEYynHsvC7FosIGphSFaZR37q5heRuv6Sqf2ZmezXHZeSTyU1L0cogV1HVy3tzyBMbnJWv3ROIxMQHZ90atECYhsiwbmcLOkea22JJbpOKXgKTXH_Sk97aWc4RE7rLEi71efc8waOj9h7YFp0XbKovmmZI2XW148hxxXwDXR7YkjIMSEwneFEYPgkKd8ranUd7lbc8pfKd8_wD5js-HzbBBadYMEK3F6fmFlAHEGTqZF4nquH0s7zbQsFeB7LuIwSECm1FjD1RDbCXR9wAQfyNTuJghc3HPWzN9zfcF4SjBR4OzNfOklQgDYIIUWAb4RRBBcMtu4RSW1eDj1sHhThiW2UuhJRZ5UtqfQk5fs8ctkUyln_PWwZ3ytvg2_wsj-u9nV_8zuWTucTSdqMorG1-yA7lS0sRvWLLYf-hZxRhHf1f_RJ3Hfz6s
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Upconversion+nanoparticles%3A+Recent+strategies+and+mechanism+based+applications&rft.jtitle=Journal+of+rare+earths&rft.au=Dubey%2C+Neha&rft.au=Chandra%2C+Sudeshna&rft.date=2022-09-01&rft.pub=Elsevier+B.V&rft.issn=1002-0721&rft.volume=40&rft.issue=9&rft.spage=1343&rft.epage=1359&rft_id=info:doi/10.1016%2Fj.jre.2022.04.015&rft.externalDocID=S1002072122001120
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1002-0721&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1002-0721&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1002-0721&client=summon