Vanishing dissipation limit to the planar rarefaction wave for the three-dimensional compressible Navier-Stokes-Fourier equations
We study the vanishing dissipation limit of the three-dimensional (3D) compressible Navier-Stokes-Fourier equations to the corresponding 3D full Euler equations. Our results are twofold. First, we prove that the 3D compressible Navier-Stokes-Fourier equations admit a family of smooth solutions that...
Saved in:
Published in | Journal of functional analysis Vol. 283; no. 2; p. 109499 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Inc
15.07.2022
|
Subjects | |
Online Access | Get full text |
ISSN | 0022-1236 1096-0783 |
DOI | 10.1016/j.jfa.2022.109499 |
Cover
Abstract | We study the vanishing dissipation limit of the three-dimensional (3D) compressible Navier-Stokes-Fourier equations to the corresponding 3D full Euler equations. Our results are twofold. First, we prove that the 3D compressible Navier-Stokes-Fourier equations admit a family of smooth solutions that converge to the planar rarefaction wave solution of the 3D compressible Euler equations with arbitrary strength. Second, we obtain a uniform convergence rate in terms of the viscosity and heat-conductivity coefficients. Due to the 3D setting the approach for the two-dimensional case could not be applied directly. Instead, the analysis of the 3D case is carried out in the original non-scaled variables, and consequently the dissipation terms are more singular. Novel ideas and techniques are developed to establish the uniform estimates. More accurate a priori assumptions with respect to the dissipation coefficients are crucially needed for the stability analysis, and some new observations on the cancellations of the physical structures for the flux terms are essentially used to justify the 3D limit. Moreover, we find that the decay rate with respect to the dissipation coefficients is determined by the nonlinear flux terms in the original variables for the 3D limit. |
---|---|
AbstractList | We study the vanishing dissipation limit of the three-dimensional (3D) compressible Navier-Stokes-Fourier equations to the corresponding 3D full Euler equations. Our results are twofold. First, we prove that the 3D compressible Navier-Stokes-Fourier equations admit a family of smooth solutions that converge to the planar rarefaction wave solution of the 3D compressible Euler equations with arbitrary strength. Second, we obtain a uniform convergence rate in terms of the viscosity and heat-conductivity coefficients. Due to the 3D setting the approach for the two-dimensional case could not be applied directly. Instead, the analysis of the 3D case is carried out in the original non-scaled variables, and consequently the dissipation terms are more singular. Novel ideas and techniques are developed to establish the uniform estimates. More accurate a priori assumptions with respect to the dissipation coefficients are crucially needed for the stability analysis, and some new observations on the cancellations of the physical structures for the flux terms are essentially used to justify the 3D limit. Moreover, we find that the decay rate with respect to the dissipation coefficients is determined by the nonlinear flux terms in the original variables for the 3D limit. |
ArticleNumber | 109499 |
Author | Wang, Yi Wang, Dehua Li, Lin-An |
Author_xml | – sequence: 1 givenname: Lin-An surname: Li fullname: Li, Lin-An email: linanli@amss.ac.cn organization: Research Center for Mathematics and Mathematics Education, Beijing Normal University at Zhuhai, 519087, PR China – sequence: 2 givenname: Dehua surname: Wang fullname: Wang, Dehua email: dwang@math.pitt.edu organization: Department of Mathematics, University of Pittsburgh, Pittsburgh, PA 15260, USA – sequence: 3 givenname: Yi orcidid: 0000-0002-5793-8142 surname: Wang fullname: Wang, Yi email: wangyi@amss.ac.cn organization: Institute of Applied Mathematics, AMSS, Chinese Academy of Sciences, Beijing 100190, PR China |
BookMark | eNp9kMtOwzAQRS1UJFrgA9j5B1LsJI0dsUKIl1TBgsfWmk4m1CWNi-0WseTPcVtWLFjNjK7OzNw7YoPe9cTYmRRjKWR1vhgvWhjnIs_TXJd1fcCGqakyoXQxYEORlEzmRXXERiEshJCyKidD9v0KvQ1z27_xxoZgVxCt63lnlzby6HicE1910IPnHjy1gDv9EzbEW-d3epx7oqyxS-pDEqHj6JYrT2ndrCP-ABtLPnuK7p1CduPWPo2cPta7U-GEHbbQBTr9rcfs5eb6-eoumz7e3l9dTjPMaxWzVqLGohAwUaqaaNBlTjVSiQhKtFrpUqOYNSJXiAo0QjGpddPMaFY2UNdtcczkfi96F0KyYlbeLsF_GSnMNkOzMClDs83Q7DNMjPrDoI27t6MH2_1LXuxJSpa2_k1ASz1SYz1hNI2z_9A_t4CSLA |
CitedBy_id | crossref_primary_10_3934_math_2025223 crossref_primary_10_1016_j_jfa_2025_110840 crossref_primary_10_1142_S0218202523500653 crossref_primary_10_1007_s00208_024_02840_w |
Cites_doi | 10.1137/15M1054572 10.1007/s002050050143 10.1007/s00205-018-1260-2 10.4310/CIS.2013.v13.n2.a5 10.1016/j.jde.2009.08.016 10.3934/krm.2019025 10.1142/S0219891615500149 10.1512/iumj.1989.38.38041 10.1016/j.physd.2019.06.004 10.1137/100814305 10.1007/s00220-006-0171-5 10.3934/krm.2010.3.685 10.1002/cpa.21537 10.1016/j.jde.2020.02.026 10.1137/18M1171059 10.1002/cpa.20332 10.1142/S0219891607001070 10.1002/cpa.3160460502 10.1137/050626478 10.1088/1361-6544/aaa10d 10.1007/s00205-021-01747-z 10.1137/120898541 10.1016/j.anihpc.2021.01.001 10.1002/cpa.3160100406 10.1007/s00222-020-01004-2 10.1007/s00220-019-03580-8 10.4007/annals.2005.161.223 10.1007/s00205-011-0450-y 10.1016/S0252-9602(08)60074-0 10.1007/s00332-018-9500-z 10.1007/s00205-017-1179-z 10.1007/s00220-019-03493-6 10.1007/BF00410614 10.4007/annals.2009.170.1417 10.1137/140999827 |
ContentType | Journal Article |
Copyright | 2022 Elsevier Inc. |
Copyright_xml | – notice: 2022 Elsevier Inc. |
DBID | AAYXX CITATION |
DOI | 10.1016/j.jfa.2022.109499 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Mathematics |
EISSN | 1096-0783 |
ExternalDocumentID | 10_1016_j_jfa_2022_109499 S0022123622001197 |
GroupedDBID | --K --M --Z -ET -~X .~1 0R~ 1B1 1RT 1~. 1~5 4.4 457 4G. 5GY 7-5 71M 8P~ 9JN AACTN AAEDW AAFTH AAIAV AAIKJ AAKOC AALRI AAOAW AASFE AAXUO ABAOU ABJNI ABMAC ABYKQ ACAZW ACDAQ ACGFS ACNCT ACRLP ADBBV ADEZE AEBSH AEKER AENEX AFKWA AFTJW AGUBO AGYEJ AHHHB AIEXJ AIGVJ AIKHN AITUG AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ARUGR AXJTR BKOJK BLXMC CS3 DM4 DU5 EBS EFBJH EFLBG EO8 EO9 EP2 EP3 FDB FEDTE FIRID FNPLU FYGXN G-Q GBLVA HVGLF IHE IXB J1W KOM LG5 M25 M41 MCRUF MHUIS MO0 N9A O-L O9- OAUVE OK1 OZT P-8 P-9 P2P PC. Q38 ROL RPZ SDF SDG SDP SES SPC SPCBC SSW T5K TN5 TWZ WH7 YQT ZMT ZU3 ~G- 186 29K 5VS 6TJ AAEDT AAQFI AAQXK AATTM AAXKI AAYWO AAYXX ABEFU ABFNM ABWVN ABXDB ACLOT ACRPL ACVFH ADCNI ADFGL ADIYS ADMUD ADNMO ADVLN ADXHL AEIPS AETEA AEUPX AEXQZ AFJKZ AFPUW AGHFR AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN CAG CITATION COF D-I EFKBS EJD FGOYB G-2 HZ~ OHT R2- SEW SSZ WUQ XOL XPP ZCG ZY4 ~HD |
ID | FETCH-LOGICAL-c297t-f1c8c330a577658a842e9ce4cca70f87848c0bd027cc7a8ca3598ddbeb4da99f3 |
IEDL.DBID | .~1 |
ISSN | 0022-1236 |
IngestDate | Thu Sep 25 00:23:27 EDT 2025 Thu Apr 24 22:53:08 EDT 2025 Fri Feb 23 02:39:48 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | Vanishing dissipation limit Decay rate 76N06 Planar rarefaction wave 35Q35 Hyperbolic wave 35Q31 Navier-Stokes-Fourier equations 35Q30 Euler equations 76N10 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c297t-f1c8c330a577658a842e9ce4cca70f87848c0bd027cc7a8ca3598ddbeb4da99f3 |
ORCID | 0000-0002-5793-8142 |
ParticipantIDs | crossref_primary_10_1016_j_jfa_2022_109499 crossref_citationtrail_10_1016_j_jfa_2022_109499 elsevier_sciencedirect_doi_10_1016_j_jfa_2022_109499 |
PublicationCentury | 2000 |
PublicationDate | 2022-07-15 |
PublicationDateYYYYMMDD | 2022-07-15 |
PublicationDate_xml | – month: 07 year: 2022 text: 2022-07-15 day: 15 |
PublicationDecade | 2020 |
PublicationTitle | Journal of functional analysis |
PublicationYear | 2022 |
Publisher | Elsevier Inc |
Publisher_xml | – name: Elsevier Inc |
References | Chiodaroli, Kreml (br0090) 2018; 31 Li, Wang, Wang (br0310) 2018; 230 Wang, Wang (br0390) 2019; 12 Chen, Glimm (br0050) 2019; 400 Matsumura, Nishida (br0360) 1980; 20 Chiodaroli, De Lellis, Kreml (br0080) 2015; 68 Chen, Perepelitsa (br0070) 2010; 63 Hoff, Liu (br0170) 1989; 38 Feireisl, Kreml (br0130) 2015; 12 Chen, Chen (br0040) 2007; 4 Lax (br0280) 1957; 10 Bardos, Titi, Wiedemann (br0010) 2019; 370 Chen, Li, Qian (br0060) 2018 Li, Wang (br0320) 2018; 50 Bianchini, Bressan (br0020) 2005; 161 Huang, Wang, Yang (br0210) 2012; 203 Li, Wang, Wang (br0300) 2020; 376 Masmoudi (br0370) 2007; 270 Feireisl, Novotný (br0150) 2021; 38 Li, Li (br0330) 2020; 269 Yu (br0420) 1999; 146 Huang, Li, Wang (br0190) 2012; 44 Huang, Jiang, Wang (br0180) 2013; 13 Kato (br0260) 1984; vol. 2 Wang (br0400) 2008; 28 Ma (br0340) 2010; 248 Constantin, Elgindi, Ignatova, Vicol (br0100) 2017; 49 De Lellis, Szekelyhidi (br0110) 2009; 170 Huang, Wang, Yang (br0200) 2010; 3 Drivas, Nguyen (br0120) 2019; 29 Lai, Xiang, Zhou (br0270) Goodman, Xin (br0160) 1992; 121 Solonnikov (br0380) 1976; vol. 6 Brezina, Chiodaroli, Kreml (br0030) 2018; 94 Kang, Vasseur (br0240) 2021; 224 Feireisl, Kreml, Vasseur (br0140) 2015; 47 Huang, Wang, Wang, Yang (br0220) 2013; 45 Li, Wang, Wang (br0290) 2022; 243 Xin (br0410) 1993; 46 Jiang, Ni, Sun (br0230) 2006; 38 Kang, Vasseur (br0250) Markfelder, Klingenberg (br0350) 2018; 227 Li (10.1016/j.jfa.2022.109499_br0300) 2020; 376 De Lellis (10.1016/j.jfa.2022.109499_br0110) 2009; 170 Lai (10.1016/j.jfa.2022.109499_br0270) Lax (10.1016/j.jfa.2022.109499_br0280) 1957; 10 Chen (10.1016/j.jfa.2022.109499_br0040) 2007; 4 Goodman (10.1016/j.jfa.2022.109499_br0160) 1992; 121 Huang (10.1016/j.jfa.2022.109499_br0200) 2010; 3 Huang (10.1016/j.jfa.2022.109499_br0210) 2012; 203 Jiang (10.1016/j.jfa.2022.109499_br0230) 2006; 38 Markfelder (10.1016/j.jfa.2022.109499_br0350) 2018; 227 Hoff (10.1016/j.jfa.2022.109499_br0170) 1989; 38 Solonnikov (10.1016/j.jfa.2022.109499_br0380) 1976; vol. 6 Constantin (10.1016/j.jfa.2022.109499_br0100) 2017; 49 Kato (10.1016/j.jfa.2022.109499_br0260) 1984; vol. 2 Huang (10.1016/j.jfa.2022.109499_br0190) 2012; 44 Masmoudi (10.1016/j.jfa.2022.109499_br0370) 2007; 270 Kang (10.1016/j.jfa.2022.109499_br0240) 2021; 224 Xin (10.1016/j.jfa.2022.109499_br0410) 1993; 46 Chiodaroli (10.1016/j.jfa.2022.109499_br0080) 2015; 68 Feireisl (10.1016/j.jfa.2022.109499_br0130) 2015; 12 Matsumura (10.1016/j.jfa.2022.109499_br0360) 1980; 20 Feireisl (10.1016/j.jfa.2022.109499_br0150) 2021; 38 Ma (10.1016/j.jfa.2022.109499_br0340) 2010; 248 Drivas (10.1016/j.jfa.2022.109499_br0120) 2019; 29 Li (10.1016/j.jfa.2022.109499_br0330) 2020; 269 Bianchini (10.1016/j.jfa.2022.109499_br0020) 2005; 161 Feireisl (10.1016/j.jfa.2022.109499_br0140) 2015; 47 Li (10.1016/j.jfa.2022.109499_br0290) 2022; 243 Wang (10.1016/j.jfa.2022.109499_br0390) 2019; 12 Chiodaroli (10.1016/j.jfa.2022.109499_br0090) 2018; 31 Chen (10.1016/j.jfa.2022.109499_br0060) Li (10.1016/j.jfa.2022.109499_br0310) 2018; 230 Kang (10.1016/j.jfa.2022.109499_br0250) Chen (10.1016/j.jfa.2022.109499_br0070) 2010; 63 Bardos (10.1016/j.jfa.2022.109499_br0010) 2019; 370 Brezina (10.1016/j.jfa.2022.109499_br0030) 2018; 94 Chen (10.1016/j.jfa.2022.109499_br0050) 2019; 400 Wang (10.1016/j.jfa.2022.109499_br0400) 2008; 28 Huang (10.1016/j.jfa.2022.109499_br0220) 2013; 45 Yu (10.1016/j.jfa.2022.109499_br0420) 1999; 146 Huang (10.1016/j.jfa.2022.109499_br0180) 2013; 13 Li (10.1016/j.jfa.2022.109499_br0320) 2018; 50 |
References_xml | – volume: 121 start-page: 235 year: 1992 end-page: 265 ident: br0160 article-title: Viscous limits for piecewise smooth solutions to systems of conservation laws publication-title: Arch. Ration. Mech. Anal. – volume: vol. 6 start-page: 128 year: 1976 end-page: 142 ident: br0380 article-title: On solvability of an initial-boundary value problem for the equations of motion of a viscous compressible fluid publication-title: Studies on Linear Operators and Function Theory – volume: 49 start-page: 1932 year: 2017 end-page: 1946 ident: br0100 article-title: Remarks on the inviscid limit for the Navier-Stokes equations for uniformly bounded velocity fields publication-title: SIAM J. Math. Anal. – volume: 38 start-page: 861 year: 1989 end-page: 915 ident: br0170 article-title: The inviscid limit for the Navier-Stokes equations of compressible, isentropic flow with shock data publication-title: Indiana Univ. Math. J. – volume: 94 start-page: 1 year: 2018 end-page: 11 ident: br0030 article-title: Contact discontinuities in multi-dimensional isentropic Euler equations publication-title: Electron. J. Differ. Equ. – volume: 63 start-page: 1469 year: 2010 end-page: 1504 ident: br0070 article-title: Vanishing viscosity limit of the Navier-Stokes equations to the Euler equations for compressible fluid flow publication-title: Commun. Pure Appl. Math. – ident: br0270 article-title: Global instability of the multi-dimensional plane shocks for the isothermal flow – ident: br0250 article-title: Well-posedness of the Riemann problem with two shocks for the isentropic Euler system in a class of vanishing physical viscosity limits – volume: 3 start-page: 685 year: 2010 end-page: 728 ident: br0200 article-title: Fluid dynamic limit to the Riemann solutions of Euler equations: I. Superposition of rarefaction waves and contact discontinuity publication-title: Kinet. Relat. Models – volume: 12 start-page: 637 year: 2019 end-page: 679 ident: br0390 article-title: Nonlinear stability of planar rarefaction wave to the three-dimensional Boltzmann equation publication-title: Kinet. Relat. Models – volume: 161 start-page: 223 year: 2005 end-page: 342 ident: br0020 article-title: Vanishing viscosity solutions of nonlinear hyperbolic systems publication-title: Ann. Math. (2) – volume: 269 start-page: 3160 year: 2020 end-page: 3195 ident: br0330 article-title: Vanishing viscosity limit to the planar rarefaction wave for the two-dimensional full compressible Navier-Stokes equations publication-title: J. Differ. Equ. – volume: 146 start-page: 275 year: 1999 end-page: 370 ident: br0420 article-title: Zero-dissipation limit of solutions with shocks for systems of conservation laws publication-title: Arch. Ration. Mech. Anal. – volume: 203 start-page: 379 year: 2012 end-page: 413 ident: br0210 article-title: Vanishing viscosity limit of the compressible Navier-Stokes equations for solutions to a Riemann problem publication-title: Arch. Ration. Mech. Anal. – volume: vol. 2 start-page: 85 year: 1984 end-page: 98 ident: br0260 article-title: Remarks on zero viscosity limit for non-stationary Navier-Stokes flows with boundary publication-title: Seminar on Nonlinear Partial Differential Equations – volume: 376 start-page: 353 year: 2020 end-page: 384 ident: br0300 article-title: Vanishing viscosity limit to the planar rarefaction wave for the two-dimensional compressible Navier-Stokes equations publication-title: Commun. Math. Phys. – volume: 243 start-page: 1019 year: 2022 end-page: 1089 ident: br0290 article-title: Wave phenomena to the three-dimensional fluid-particle model publication-title: Arch. Ration. Mech. Anal. – volume: 400 year: 2019 ident: br0050 article-title: Kolmogorov-type theory of compressible turbulence and inviscid limit of the Navier-Stokes equations in publication-title: Physica D – volume: 47 start-page: 2416 year: 2015 end-page: 2425 ident: br0140 article-title: Stability of the isentropic Riemann solutions of the full multidimensional Euler system publication-title: SIAM J. Math. Anal. – volume: 29 start-page: 709 year: 2019 end-page: 721 ident: br0120 article-title: Remarks on the emergence of weak Euler solutions in the vanishing viscosity limit publication-title: J. Nonlinear Sci. – volume: 270 start-page: 777 year: 2007 end-page: 788 ident: br0370 article-title: Remarks about the inviscid limit of the Navier-Stokes system publication-title: Commun. Math. Phys. – volume: 370 start-page: 291 year: 2019 end-page: 310 ident: br0010 article-title: Onsager's conjecture with physical boundaries and an application to the viscosity limit publication-title: Commun. Math. Phys. – volume: 44 start-page: 1742 year: 2012 end-page: 1759 ident: br0190 article-title: Zero dissipation limit to rarefaction wave with vacuum for one-dimensional compressible Navier-Stokes equations publication-title: SIAM J. Math. Anal. – volume: 10 start-page: 537 year: 1957 end-page: 566 ident: br0280 article-title: Hyperbolic systems of conservation laws, II publication-title: Commun. Pure Appl. Math. – volume: 28 start-page: 727 year: 2008 end-page: 748 ident: br0400 article-title: Zero dissipation limit of the compressible heat-conducting Navier-Stokes equations in the presence of the shock publication-title: Acta Math. Sci. Ser. B – volume: 230 start-page: 911 year: 2018 end-page: 937 ident: br0310 article-title: Stability of planar rarefaction wave to 3D full compressible Navier-Stokes equations publication-title: Arch. Ration. Mech. Anal. – volume: 248 start-page: 95 year: 2010 end-page: 110 ident: br0340 article-title: Zero dissipation limit to strong contact discontinuity for the 1-D compressible Navier-Stokes equations publication-title: J. Differ. Equ. – volume: 45 start-page: 1741 year: 2013 end-page: 1811 ident: br0220 article-title: The limit of the Boltzmann equation to the Euler equations for Riemann problems publication-title: SIAM J. Math. Anal. – volume: 20 start-page: 67 year: 1980 end-page: 104 ident: br0360 article-title: The initial value problem for the equations of motion of viscous and heat-conductive gases publication-title: J. Math. Kyoto Univ. – volume: 38 start-page: 368 year: 2006 end-page: 384 ident: br0230 article-title: Vanishing viscosity limit to rarefaction waves for the Navier-Stokes equations of one-dimensional compressible heat-conducting fluids publication-title: SIAM J. Math. Anal. – volume: 4 start-page: 105 year: 2007 end-page: 122 ident: br0040 article-title: Stability of rarefaction waves and vacuum states for the multidimensional Euler equations publication-title: J. Hyperbolic Differ. Equ. – volume: 12 start-page: 489 year: 2015 end-page: 499 ident: br0130 article-title: Uniqueness of rarefaction waves in multidimensional compressible Euler system publication-title: J. Hyperbolic Differ. Equ. – volume: 31 start-page: 1441 year: 2018 end-page: 1460 ident: br0090 article-title: Non-uniqueness of admissible weak solutions to the Riemann problem for isentropic Euler equations publication-title: Nonlinearity – volume: 46 start-page: 621 year: 1993 end-page: 665 ident: br0410 article-title: Zero dissipation limit to rarefaction waves for the one-dimensional Navier-Stokes equations of compressible isentropic gases publication-title: Commun. Pure Appl. Math. – year: 2018 ident: br0060 article-title: The inviscid limit of the Navier-Stokes equations with kinematic and Navier boundary conditions – volume: 224 start-page: 55 year: 2021 end-page: 146 ident: br0240 article-title: Uniqueness and stability of entropy shocks to the isentropic Euler system ina class of inviscid limits from a large family of Navier-Stokes systems publication-title: Invent. Math. – volume: 170 start-page: 1417 year: 2009 end-page: 1436 ident: br0110 article-title: The Euler equations as a differential inclusion publication-title: Ann. Math. (2) – volume: 13 start-page: 211 year: 2013 end-page: 246 ident: br0180 article-title: Zero dissipation limit of full compressible Navier-Stokes equations with a Riemann initial data publication-title: Commun. Inf. Syst. – volume: 68 start-page: 1157 year: 2015 end-page: 1190 ident: br0080 article-title: Global ill-posedness of the isentropic system of gas dynamics publication-title: Commun. Pure Appl. Math. – volume: 38 start-page: 1725 year: 2021 end-page: 1737 ident: br0150 article-title: Stability of planar rarefaction waves under general viscosity perturbation of the isentropic Euler system publication-title: Ann. Inst. Henri Poincaré, Anal. Non Linéaire – volume: 50 start-page: 4937 year: 2018 end-page: 4963 ident: br0320 article-title: Stability of the planar rarefaction wave to the two-dimensional compressible Navier-Stokes equations publication-title: SIAM J. Math. Anal. – volume: 227 start-page: 967 year: 2018 end-page: 994 ident: br0350 article-title: The Riemann problem for the multidimensional isentropic system of gas dynamics is ill-posed if it contains a shock publication-title: Arch. Ration. Mech. Anal. – volume: 49 start-page: 1932 year: 2017 ident: 10.1016/j.jfa.2022.109499_br0100 article-title: Remarks on the inviscid limit for the Navier-Stokes equations for uniformly bounded velocity fields publication-title: SIAM J. Math. Anal. doi: 10.1137/15M1054572 – volume: 146 start-page: 275 year: 1999 ident: 10.1016/j.jfa.2022.109499_br0420 article-title: Zero-dissipation limit of solutions with shocks for systems of conservation laws publication-title: Arch. Ration. Mech. Anal. doi: 10.1007/s002050050143 – volume: 230 start-page: 911 year: 2018 ident: 10.1016/j.jfa.2022.109499_br0310 article-title: Stability of planar rarefaction wave to 3D full compressible Navier-Stokes equations publication-title: Arch. Ration. Mech. Anal. doi: 10.1007/s00205-018-1260-2 – volume: 13 start-page: 211 year: 2013 ident: 10.1016/j.jfa.2022.109499_br0180 article-title: Zero dissipation limit of full compressible Navier-Stokes equations with a Riemann initial data publication-title: Commun. Inf. Syst. doi: 10.4310/CIS.2013.v13.n2.a5 – volume: 248 start-page: 95 year: 2010 ident: 10.1016/j.jfa.2022.109499_br0340 article-title: Zero dissipation limit to strong contact discontinuity for the 1-D compressible Navier-Stokes equations publication-title: J. Differ. Equ. doi: 10.1016/j.jde.2009.08.016 – volume: 12 start-page: 637 issue: 3 year: 2019 ident: 10.1016/j.jfa.2022.109499_br0390 article-title: Nonlinear stability of planar rarefaction wave to the three-dimensional Boltzmann equation publication-title: Kinet. Relat. Models doi: 10.3934/krm.2019025 – volume: vol. 6 start-page: 128 year: 1976 ident: 10.1016/j.jfa.2022.109499_br0380 article-title: On solvability of an initial-boundary value problem for the equations of motion of a viscous compressible fluid – volume: 12 start-page: 489 issue: 3 year: 2015 ident: 10.1016/j.jfa.2022.109499_br0130 article-title: Uniqueness of rarefaction waves in multidimensional compressible Euler system publication-title: J. Hyperbolic Differ. Equ. doi: 10.1142/S0219891615500149 – volume: 38 start-page: 861 year: 1989 ident: 10.1016/j.jfa.2022.109499_br0170 article-title: The inviscid limit for the Navier-Stokes equations of compressible, isentropic flow with shock data publication-title: Indiana Univ. Math. J. doi: 10.1512/iumj.1989.38.38041 – volume: vol. 2 start-page: 85 year: 1984 ident: 10.1016/j.jfa.2022.109499_br0260 article-title: Remarks on zero viscosity limit for non-stationary Navier-Stokes flows with boundary – volume: 400 year: 2019 ident: 10.1016/j.jfa.2022.109499_br0050 article-title: Kolmogorov-type theory of compressible turbulence and inviscid limit of the Navier-Stokes equations in R3 publication-title: Physica D doi: 10.1016/j.physd.2019.06.004 – volume: 44 start-page: 1742 year: 2012 ident: 10.1016/j.jfa.2022.109499_br0190 article-title: Zero dissipation limit to rarefaction wave with vacuum for one-dimensional compressible Navier-Stokes equations publication-title: SIAM J. Math. Anal. doi: 10.1137/100814305 – ident: 10.1016/j.jfa.2022.109499_br0250 – volume: 270 start-page: 777 year: 2007 ident: 10.1016/j.jfa.2022.109499_br0370 article-title: Remarks about the inviscid limit of the Navier-Stokes system publication-title: Commun. Math. Phys. doi: 10.1007/s00220-006-0171-5 – volume: 3 start-page: 685 year: 2010 ident: 10.1016/j.jfa.2022.109499_br0200 article-title: Fluid dynamic limit to the Riemann solutions of Euler equations: I. Superposition of rarefaction waves and contact discontinuity publication-title: Kinet. Relat. Models doi: 10.3934/krm.2010.3.685 – volume: 68 start-page: 1157 issue: 7 year: 2015 ident: 10.1016/j.jfa.2022.109499_br0080 article-title: Global ill-posedness of the isentropic system of gas dynamics publication-title: Commun. Pure Appl. Math. doi: 10.1002/cpa.21537 – ident: 10.1016/j.jfa.2022.109499_br0060 – volume: 269 start-page: 3160 year: 2020 ident: 10.1016/j.jfa.2022.109499_br0330 article-title: Vanishing viscosity limit to the planar rarefaction wave for the two-dimensional full compressible Navier-Stokes equations publication-title: J. Differ. Equ. doi: 10.1016/j.jde.2020.02.026 – volume: 50 start-page: 4937 year: 2018 ident: 10.1016/j.jfa.2022.109499_br0320 article-title: Stability of the planar rarefaction wave to the two-dimensional compressible Navier-Stokes equations publication-title: SIAM J. Math. Anal. doi: 10.1137/18M1171059 – volume: 63 start-page: 1469 year: 2010 ident: 10.1016/j.jfa.2022.109499_br0070 article-title: Vanishing viscosity limit of the Navier-Stokes equations to the Euler equations for compressible fluid flow publication-title: Commun. Pure Appl. Math. doi: 10.1002/cpa.20332 – volume: 4 start-page: 105 issue: 1 year: 2007 ident: 10.1016/j.jfa.2022.109499_br0040 article-title: Stability of rarefaction waves and vacuum states for the multidimensional Euler equations publication-title: J. Hyperbolic Differ. Equ. doi: 10.1142/S0219891607001070 – volume: 20 start-page: 67 year: 1980 ident: 10.1016/j.jfa.2022.109499_br0360 article-title: The initial value problem for the equations of motion of viscous and heat-conductive gases publication-title: J. Math. Kyoto Univ. – volume: 46 start-page: 621 year: 1993 ident: 10.1016/j.jfa.2022.109499_br0410 article-title: Zero dissipation limit to rarefaction waves for the one-dimensional Navier-Stokes equations of compressible isentropic gases publication-title: Commun. Pure Appl. Math. doi: 10.1002/cpa.3160460502 – volume: 38 start-page: 368 year: 2006 ident: 10.1016/j.jfa.2022.109499_br0230 article-title: Vanishing viscosity limit to rarefaction waves for the Navier-Stokes equations of one-dimensional compressible heat-conducting fluids publication-title: SIAM J. Math. Anal. doi: 10.1137/050626478 – volume: 31 start-page: 1441 year: 2018 ident: 10.1016/j.jfa.2022.109499_br0090 article-title: Non-uniqueness of admissible weak solutions to the Riemann problem for isentropic Euler equations publication-title: Nonlinearity doi: 10.1088/1361-6544/aaa10d – volume: 243 start-page: 1019 year: 2022 ident: 10.1016/j.jfa.2022.109499_br0290 article-title: Wave phenomena to the three-dimensional fluid-particle model publication-title: Arch. Ration. Mech. Anal. doi: 10.1007/s00205-021-01747-z – volume: 45 start-page: 1741 year: 2013 ident: 10.1016/j.jfa.2022.109499_br0220 article-title: The limit of the Boltzmann equation to the Euler equations for Riemann problems publication-title: SIAM J. Math. Anal. doi: 10.1137/120898541 – volume: 38 start-page: 1725 issue: 6 year: 2021 ident: 10.1016/j.jfa.2022.109499_br0150 article-title: Stability of planar rarefaction waves under general viscosity perturbation of the isentropic Euler system publication-title: Ann. Inst. Henri Poincaré, Anal. Non Linéaire doi: 10.1016/j.anihpc.2021.01.001 – volume: 10 start-page: 537 year: 1957 ident: 10.1016/j.jfa.2022.109499_br0280 article-title: Hyperbolic systems of conservation laws, II publication-title: Commun. Pure Appl. Math. doi: 10.1002/cpa.3160100406 – volume: 94 start-page: 1 year: 2018 ident: 10.1016/j.jfa.2022.109499_br0030 article-title: Contact discontinuities in multi-dimensional isentropic Euler equations publication-title: Electron. J. Differ. Equ. – volume: 224 start-page: 55 year: 2021 ident: 10.1016/j.jfa.2022.109499_br0240 article-title: Uniqueness and stability of entropy shocks to the isentropic Euler system ina class of inviscid limits from a large family of Navier-Stokes systems publication-title: Invent. Math. doi: 10.1007/s00222-020-01004-2 – volume: 376 start-page: 353 year: 2020 ident: 10.1016/j.jfa.2022.109499_br0300 article-title: Vanishing viscosity limit to the planar rarefaction wave for the two-dimensional compressible Navier-Stokes equations publication-title: Commun. Math. Phys. doi: 10.1007/s00220-019-03580-8 – volume: 161 start-page: 223 year: 2005 ident: 10.1016/j.jfa.2022.109499_br0020 article-title: Vanishing viscosity solutions of nonlinear hyperbolic systems publication-title: Ann. Math. (2) doi: 10.4007/annals.2005.161.223 – volume: 203 start-page: 379 year: 2012 ident: 10.1016/j.jfa.2022.109499_br0210 article-title: Vanishing viscosity limit of the compressible Navier-Stokes equations for solutions to a Riemann problem publication-title: Arch. Ration. Mech. Anal. doi: 10.1007/s00205-011-0450-y – volume: 28 start-page: 727 year: 2008 ident: 10.1016/j.jfa.2022.109499_br0400 article-title: Zero dissipation limit of the compressible heat-conducting Navier-Stokes equations in the presence of the shock publication-title: Acta Math. Sci. Ser. B doi: 10.1016/S0252-9602(08)60074-0 – volume: 29 start-page: 709 year: 2019 ident: 10.1016/j.jfa.2022.109499_br0120 article-title: Remarks on the emergence of weak Euler solutions in the vanishing viscosity limit publication-title: J. Nonlinear Sci. doi: 10.1007/s00332-018-9500-z – ident: 10.1016/j.jfa.2022.109499_br0270 – volume: 227 start-page: 967 year: 2018 ident: 10.1016/j.jfa.2022.109499_br0350 article-title: The Riemann problem for the multidimensional isentropic system of gas dynamics is ill-posed if it contains a shock publication-title: Arch. Ration. Mech. Anal. doi: 10.1007/s00205-017-1179-z – volume: 370 start-page: 291 year: 2019 ident: 10.1016/j.jfa.2022.109499_br0010 article-title: Onsager's conjecture with physical boundaries and an application to the viscosity limit publication-title: Commun. Math. Phys. doi: 10.1007/s00220-019-03493-6 – volume: 121 start-page: 235 year: 1992 ident: 10.1016/j.jfa.2022.109499_br0160 article-title: Viscous limits for piecewise smooth solutions to systems of conservation laws publication-title: Arch. Ration. Mech. Anal. doi: 10.1007/BF00410614 – volume: 170 start-page: 1417 issue: 3 year: 2009 ident: 10.1016/j.jfa.2022.109499_br0110 article-title: The Euler equations as a differential inclusion publication-title: Ann. Math. (2) doi: 10.4007/annals.2009.170.1417 – volume: 47 start-page: 2416 issue: 3 year: 2015 ident: 10.1016/j.jfa.2022.109499_br0140 article-title: Stability of the isentropic Riemann solutions of the full multidimensional Euler system publication-title: SIAM J. Math. Anal. doi: 10.1137/140999827 |
SSID | ssj0011645 |
Score | 2.4271514 |
Snippet | We study the vanishing dissipation limit of the three-dimensional (3D) compressible Navier-Stokes-Fourier equations to the corresponding 3D full Euler... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 109499 |
SubjectTerms | Decay rate Euler equations Hyperbolic wave Navier-Stokes-Fourier equations Planar rarefaction wave Vanishing dissipation limit |
Title | Vanishing dissipation limit to the planar rarefaction wave for the three-dimensional compressible Navier-Stokes-Fourier equations |
URI | https://dx.doi.org/10.1016/j.jfa.2022.109499 |
Volume | 283 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1096-0783 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0011645 issn: 0022-1236 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier ScienceDirect customDbUrl: eissn: 1096-0783 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0011645 issn: 0022-1236 databaseCode: ACRLP dateStart: 20211001 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals [SCFCJ] - NZ customDbUrl: eissn: 1096-0783 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0011645 issn: 0022-1236 databaseCode: AIKHN dateStart: 20210515 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: ScienceDirect Freedom Collection 2013 customDbUrl: eissn: 1096-0783 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0011645 issn: 0022-1236 databaseCode: .~1 dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1096-0783 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0011645 issn: 0022-1236 databaseCode: AKRWK dateStart: 19670501 isFulltext: true providerName: Library Specific Holdings |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NS8MwFA9jXvQgfuL8GDl4EuK6NG3T4xiO-bEh6mS3kqQpbJZublVvgv-5eU07FNSDp9ImgfCSvrz38nu_h9Apk-ByeSFR0hGEGcOISGl-PN9RlGsWh46EeMdg6PdH7GrsjWuoW-XCAKyy1P1WpxfauvzSKqXZmk8mkONLQe_6lNrqWZDBznyA9Z2_r2AebeMOeBVjOPSubjYLjNc0AeohSoFUiRX0rz-cTV_Om94W2iwNRdyxc9lGNZ3toI3BimV1uYs-HkVmQ0gYrtVLcDROIWcJ5zNsuuJ5KjKxwMYl1mUOA34TrxobW7Voz81aahIDx7_l58AAMi_AsTLVeChgbuQ-nz3pJenZAndYP1uC8OUeGvUuHrp9UpZUIIqGQU6StuLKdR3hBYGxPQRnVIdKM7OOgZPwgDOuHBkbX1WpQHAlgOAvjqWWLBZhmLj7qJ7NMn2AMDfercs9oTwWsJj7kmrlcyakioXvh7SBnEqYkSr5xqHsRRpVwLJpZOQfgfwjK_8GOlsNmVuyjb86s2qFom87JjKHwe_DDv837AitwxtEddveMarnixd9YsyRXDaL_dZEa53u3c0tPC-v-8NPsWji7Q |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwED5BGYAB8RTl6YEJySJ1ncQZq4qqUNqFh9gi23GlQpWWNsDMP8cXOxVIwMAa-yTr7Nz7vgM44wpdrjChWgWScmsYUaXsjxcFmgnDsyRQGO_oD6LuPb9-DB-XoF31wmBZpZf9TqaX0tp_ufDcvJiORtjjy1DuRoy56VnLsMJDK5NrsNK66nUHi2SC9QjCCjQcCarkZlnm9TRE9CHGEFeJlwiwP6inLyqnswkb3lYkLXecLVgy-Tas9xdAq_Md-HiQuYsiEcys-_poMsa2JVJMiN1KpmOZyxmxXrHxbQzkXb4ZYs3Vcr2w12lohjD_DqKDYJ15WR-rxoYMJJ6N3haTZzOnHTfjjpgXhxE-34X7zuVdu0v9VAWqWRIXdNjQQjebgQzj2JofUnBmEm24vco4GIpYcKEDlVl3VetYCi0R4y_LlFE8k0kybO5BLZ_kZh-IsA5uU4RShzzmmYgUMzoSXCqdyShKWB2Cipmp9pDjOPlinFa1ZU-p5X-K_E8d_-twviCZOryNvzbz6obSb48mtfrgd7KD_5Gdwmr3rn-T3lwNeoewhisY5G2ER1ArZq_m2FonhTrxr-8TTUXkAw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Vanishing+dissipation+limit+to+the+planar+rarefaction+wave+for+the+three-dimensional+compressible+Navier-Stokes-Fourier+equations&rft.jtitle=Journal+of+functional+analysis&rft.au=Li%2C+Lin-An&rft.au=Wang%2C+Dehua&rft.au=Wang%2C+Yi&rft.date=2022-07-15&rft.issn=0022-1236&rft.volume=283&rft.issue=2&rft.spage=109499&rft_id=info:doi/10.1016%2Fj.jfa.2022.109499&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_jfa_2022_109499 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-1236&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-1236&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-1236&client=summon |