Empirical Mode Decomposition articulation feature extraction on Parkinson’s Diadochokinesia

Empirical Mode Decomposition (EMD) was designed to analyze nonlinear and non-stationary signals. EMD voice analysis had been applied to Parkinson’s sustained vowels, but very limited studies have been done on highly dynamic Diadochokinesia (DDK) utterances. This paper applies the EMD’s dyadic filter...

Full description

Saved in:
Bibliographic Details
Published inComputer speech & language Vol. 72; p. 101322
Main Authors Rueda, Alice, Vásquez-Correa, Juan Camilo, Orozco-Arroyave, Juan Rafael, Nöth, Elmar, Krishnan, Sridhar
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.03.2022
Subjects
Online AccessGet full text
ISSN0885-2308
1095-8363
DOI10.1016/j.csl.2021.101322

Cover

Abstract Empirical Mode Decomposition (EMD) was designed to analyze nonlinear and non-stationary signals. EMD voice analysis had been applied to Parkinson’s sustained vowels, but very limited studies have been done on highly dynamic Diadochokinesia (DDK) utterances. This paper applies the EMD’s dyadic filterbank characteristics to extract DDK features and an in-depth study on the efficacy of two segmentation strategies. The EMD analysis on DDK looks at the spectrum characteristics of Intrinsic Mode Functions (IMF) and the handling of mode mixing conditions. DDK recordings of Healthy Control (HC) subjects and patients with Parkinson’s disease (PD) were segmented using various fixed frame sizes compared to dynamic segmentation based on/pa-ta-ka/ triad length, and also the signal envelope as a whole. An overlapping windowing of 2/3 was used in the fixed frame size segmentation to augment and to capture the redundant and transition information. No overlapping was used in the/pa-ta-ka/ triad segmentation. For the fixed frame size segmentation, we found that there is a region of consistency. Within this region, the IMF center frequencies and bandwidths maintained the same but varied outside the region. The segmentation comparisons used a basic set of EMD features with and without DeltaEMD features that capture segment-to-segment deviations. Using the basic EMD dyadic features, fixed frame size segmentation out-performed/pa-ta-ka/ triad segmentation. When DeltaEMD features were added to provide segment deviation information,/pa-ta-ka/ triad out-performed fixed frame segmentation. Additional segment-magnitude amplification factor and segment length were found to improve the performance of the/pa-ta-ka/ triad segmentation. With the added features,/pa-ta-ka/ triad out-performed the others and had an improved accuracy of 78%. Additional features have also increased the envelope discrimination to 76%. The results also indicated the potentials of using voice envelopes for PD analysis. [Display omitted] •Parkinson’s Diadochokinesia/pa-ta-ka/ utterance is studied.•EMD dyadic characteristic is applied to extract articulation of DDK and dynamic of the signal envelopes.•Proposed EMD and DeltaEMD dyadic features to capture the articulation of nonlinear and non-stationary DDK utterance.•Fixed frame size and/pa-ta-ka/ triad segmentation strategies are compared.
AbstractList Empirical Mode Decomposition (EMD) was designed to analyze nonlinear and non-stationary signals. EMD voice analysis had been applied to Parkinson’s sustained vowels, but very limited studies have been done on highly dynamic Diadochokinesia (DDK) utterances. This paper applies the EMD’s dyadic filterbank characteristics to extract DDK features and an in-depth study on the efficacy of two segmentation strategies. The EMD analysis on DDK looks at the spectrum characteristics of Intrinsic Mode Functions (IMF) and the handling of mode mixing conditions. DDK recordings of Healthy Control (HC) subjects and patients with Parkinson’s disease (PD) were segmented using various fixed frame sizes compared to dynamic segmentation based on/pa-ta-ka/ triad length, and also the signal envelope as a whole. An overlapping windowing of 2/3 was used in the fixed frame size segmentation to augment and to capture the redundant and transition information. No overlapping was used in the/pa-ta-ka/ triad segmentation. For the fixed frame size segmentation, we found that there is a region of consistency. Within this region, the IMF center frequencies and bandwidths maintained the same but varied outside the region. The segmentation comparisons used a basic set of EMD features with and without DeltaEMD features that capture segment-to-segment deviations. Using the basic EMD dyadic features, fixed frame size segmentation out-performed/pa-ta-ka/ triad segmentation. When DeltaEMD features were added to provide segment deviation information,/pa-ta-ka/ triad out-performed fixed frame segmentation. Additional segment-magnitude amplification factor and segment length were found to improve the performance of the/pa-ta-ka/ triad segmentation. With the added features,/pa-ta-ka/ triad out-performed the others and had an improved accuracy of 78%. Additional features have also increased the envelope discrimination to 76%. The results also indicated the potentials of using voice envelopes for PD analysis. [Display omitted] •Parkinson’s Diadochokinesia/pa-ta-ka/ utterance is studied.•EMD dyadic characteristic is applied to extract articulation of DDK and dynamic of the signal envelopes.•Proposed EMD and DeltaEMD dyadic features to capture the articulation of nonlinear and non-stationary DDK utterance.•Fixed frame size and/pa-ta-ka/ triad segmentation strategies are compared.
ArticleNumber 101322
Author Vásquez-Correa, Juan Camilo
Rueda, Alice
Krishnan, Sridhar
Nöth, Elmar
Orozco-Arroyave, Juan Rafael
Author_xml – sequence: 1
  givenname: Alice
  orcidid: 0000-0002-9977-9653
  surname: Rueda
  fullname: Rueda, Alice
  email: arueda@ryerson.ca
  organization: Department of Electrical and Computer Engineering, Ryerson University, Canada M5B 2K3
– sequence: 2
  givenname: Juan Camilo
  orcidid: 0000-0003-4946-9232
  surname: Vásquez-Correa
  fullname: Vásquez-Correa, Juan Camilo
  email: jcamilo.vasquez@udea.edu.co
  organization: Pattern Recognition Lab, Friedrich-Alexander-University Erlangen–Nuremberg, Germany
– sequence: 3
  givenname: Juan Rafael
  orcidid: 0000-0002-8507-0782
  surname: Orozco-Arroyave
  fullname: Orozco-Arroyave, Juan Rafael
  email: rafael.orozco@udea.edu.co
  organization: Pattern Recognition Lab, Friedrich-Alexander-University Erlangen–Nuremberg, Germany
– sequence: 4
  givenname: Elmar
  orcidid: 0000-0002-3396-555X
  surname: Nöth
  fullname: Nöth, Elmar
  email: elmar.noeth@fau.de
  organization: Pattern Recognition Lab, Friedrich-Alexander-University Erlangen–Nuremberg, Germany
– sequence: 5
  givenname: Sridhar
  orcidid: 0000-0002-4659-564X
  surname: Krishnan
  fullname: Krishnan, Sridhar
  email: krishnan@ryerson.ca
  organization: Department of Electrical and Computer Engineering, Ryerson University, Canada M5B 2K3
BookMark eNp9kE1KA0EQhRuJYBI9gLu5wMT-nR9cSRJ_IKILXUrTU1ONHSfToXsiuvMaXs-TOElcuQgUFO_BV7x6IzJofYuEnDM6YZRlF8sJxGbCKWdbLTg_IkNGS5UWIhMDMqRFoVIuaHFCRjEuKaWZkvmQvMxXaxccmCa59zUmMwS_WvvoOufbxITOwaYxO2HRdJuACX50wcDO6ufRhDfXRt_-fH3HZOZM7eHV9xZGZ07JsTVNxLO_PSbP1_On6W26eLi5m14tUuBl3qVoa85LAGmqrGJMGEmpKVEoZhhXUikroKqYtIzVCrK6soW0nEvOLRd5Vokxyfd3IfgYA1oNrtul7qO6RjOqty3ppe5b0tuW9L6lnmT_yHVwKxM-DzKXewb7l94dBh3BYQtYu4DQ6dq7A_QvxgKEpg
CitedBy_id crossref_primary_10_1016_j_eswa_2024_125401
crossref_primary_10_1016_j_engappai_2023_107494
crossref_primary_10_1016_j_specom_2023_103011
crossref_primary_10_1590_1982_0216_20232564723
crossref_primary_10_1016_j_cmpb_2023_107840
crossref_primary_10_1590_1982_0216_20232564723s
Cites_doi 10.1186/1475-925X-6-23
10.1121/1.3514381
10.1016/j.bbe.2020.12.009
10.1371/journal.pone.0189583
10.1093/brain/awz111
10.1016/S0140-6736(14)61393-3
10.1016/j.bbe.2019.05.005
10.1007/978-3-030-00353-1_20
10.1016/j.eswa.2017.04.012
10.1016/j.bspc.2020.102050
10.1016/0165-1684(94)90169-4
10.1016/S1474-4422(18)30295-3
10.1016/S1474-4422(18)30196-0
10.1016/j.clinph.2020.02.005
10.1016/j.specom.2020.07.005
10.1109/TNSRE.2018.2851787
10.1016/j.jcomdis.2018.08.002
10.1098/rspa.1998.0193
10.1016/j.dsp.2020.102779
10.1002/mds.26424
10.1016/S0021-9924(99)00004-0
10.1109/TSP.2007.906771
10.1121/10.0000581
10.1007/s00702-010-0390-y
10.1080/00207454.2018.1450253
10.1007/s12559-017-9497-x
10.1016/j.specom.2016.12.004
10.1002/mds.23680
10.1063/1.166078
10.1109/LSP.2003.821662
10.1016/j.eswa.2012.11.017
10.1002/mds.27362
10.1155/1999/327643
ContentType Journal Article
Copyright 2021 Elsevier Ltd
Copyright_xml – notice: 2021 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.csl.2021.101322
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 1095-8363
ExternalDocumentID 10_1016_j_csl_2021_101322
S0885230821001170
GrantInformation_xml – fundername: Marie Sklodowska-Curie Grant, European
  grantid: 766287
– fundername: CODI Grant, Colombia
  grantid: PRG2017-15530
– fundername: Natural Sciences and Engineering Research Council of Canada (NSERC) Agency
  funderid: http://dx.doi.org/10.13039/501100000038
GroupedDBID --K
--M
.DC
.~1
0R~
1B1
1RT
1~.
1~5
29F
4.4
457
4G.
5GY
5VS
6J9
7-5
71M
8P~
9JN
9JO
AACTN
AADFP
AAEDT
AAEDW
AAFJI
AAGJA
AAGUQ
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABBOA
ABFNM
ABFRF
ABJNI
ABMAC
ABMMH
ABOYX
ABTAH
ABXDB
ABYKQ
ACDAQ
ACGFS
ACNNM
ACRLP
ACXNI
ACZNC
ADBBV
ADEZE
ADFGL
ADJOM
ADMUD
ADTZH
AEBSH
AECPX
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AFYLN
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AKYCK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOMHK
AOUOD
ASPBG
AVARZ
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CAG
COF
CS3
DM4
DU5
EBS
EFBJH
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
G8K
GBLVA
GBOLZ
HLZ
HMW
HMY
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LG5
LX9
M3U
M3X
M41
MO0
MVM
N9A
O-L
O9-
OAUVE
OKEIE
OZT
P-8
P-9
P2P
PC.
PRBVW
Q38
R2-
RIG
ROL
RPZ
SBC
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SPS
SSB
SSO
SSS
SST
SSV
SSY
SSZ
T5K
TN5
UHS
WUQ
XFK
XPP
YK3
ZMT
ZY4
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABWVN
ACRPL
ACVFH
ADCNI
ADMHG
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
ID FETCH-LOGICAL-c297t-efd229cc4ab6b113a400a9e351a125455f3cbb14f11d5c6dbf84f22422f2376b3
IEDL.DBID AIKHN
ISSN 0885-2308
IngestDate Thu Apr 24 23:03:35 EDT 2025
Tue Jul 01 00:18:35 EDT 2025
Fri Feb 23 02:40:19 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Feature extraction
Segmentation
pa-ta-ka/ articulation
Parkinson’s disease
EMD dyadic characteristic
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c297t-efd229cc4ab6b113a400a9e351a125455f3cbb14f11d5c6dbf84f22422f2376b3
ORCID 0000-0002-9977-9653
0000-0002-8507-0782
0000-0003-4946-9232
0000-0002-3396-555X
0000-0002-4659-564X
ParticipantIDs crossref_citationtrail_10_1016_j_csl_2021_101322
crossref_primary_10_1016_j_csl_2021_101322
elsevier_sciencedirect_doi_10_1016_j_csl_2021_101322
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate March 2022
2022-03-00
PublicationDateYYYYMMDD 2022-03-01
PublicationDate_xml – month: 03
  year: 2022
  text: March 2022
PublicationDecade 2020
PublicationTitle Computer speech & language
PublicationYear 2022
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Herzel (b12) 1995; 1
Rojas (b33) 2013; 40
Rusz (b37) 2011; 26
Skodda (b41) 2010; 117
Karlsson (b20) 2020; 147
Kalia, Lang (b17) 2015; 386
Tsanas, A., et al., 2010. New nonlinear markers and insights into speech signal degradation for effective tracking of Parkinson’s disease symptom severity. In: International Symposium on Nonlinear Theory and Its Applications, pp. 457–460.
Arias-Vergara (b3) 2020; 104
Orozco-Arroyave, Arias-Londoño (b26) 2013; vol. 7911
Vásquez-Correa (b49) 2019
Argüello-Vélez (b1) 2020; vol. 12284 LNAI
Orozco-Arroyave (b25) 2016
Huang (b15) 1998; 454
Moro-Velazquez (b24) 2020
Rusz (b38) 2011; 129
Potamianos, Maragos (b31) 1994; 37
Karan (b19) 2020; 40
Sun (b43) 2018; 128
Kent (b21) 1999; 32
Flandrin (b7) 2004; 11
Postuma (b29) 2015; 30
Hlavnička (b13) 2020
Tsanas (b45) 2012
Vasquez-Correa (b50) 2020; 122
Zhang (b51) 2021; 41
Postuma (b30) 2018; 33
Darley (b4) 1975
Rueda, Krishnan (b35) 2018; 10
Rueda (b36) 2019
Little (b23) 2007; 6
Rilling, Flandrin (b32) 2008; 56
Orozco-Arroyave, J.R., et al., 2014. New Spanish speech corpus database for the analysis of people suffering from Parkinson’s disease. In: Proceedings of the Ninth International Conference on Language Resources and Evaluation, LREC’14, pp. 342–347.
Goetz (b11) 2008; 1
Godino-Llorente (b10) 2017; 12
Karan (b18) 2020; 61
Flandrin (b8) 2005; vol. 5
Rueda, Krishnan (b34) 2017
Ho (b14) 1999; 11
GDB2016 PD Collaborators (b9) 2018; 17
Arias-Vergara (b2) 2017; 9
Little (b22) 2006; vol. 2
Rusz (b39) 2018; 26
Vásquez-Correa (b47) 2018; 76
Duffy (b5) 2012
Parra-Gallego (b28) 2018; vol. 916
Smekal (b42) 2015
Travieso (b44) 2017; 82
Fereshtehnejad (b6) 2019; 142
Iranzo (b16) 2018; 17
Vásquez-Correa (b48) 2019; vol. 11896 LNCS
Sharma (b40) 2017; 88
Vásquez-Correa (10.1016/j.csl.2021.101322_b47) 2018; 76
Sun (10.1016/j.csl.2021.101322_b43) 2018; 128
Rusz (10.1016/j.csl.2021.101322_b38) 2011; 129
Kalia (10.1016/j.csl.2021.101322_b17) 2015; 386
Rusz (10.1016/j.csl.2021.101322_b37) 2011; 26
Iranzo (10.1016/j.csl.2021.101322_b16) 2018; 17
Godino-Llorente (10.1016/j.csl.2021.101322_b10) 2017; 12
Huang (10.1016/j.csl.2021.101322_b15) 1998; 454
Rueda (10.1016/j.csl.2021.101322_b36) 2019
Vásquez-Correa (10.1016/j.csl.2021.101322_b48) 2019; vol. 11896 LNCS
10.1016/j.csl.2021.101322_b27
Little (10.1016/j.csl.2021.101322_b22) 2006; vol. 2
Potamianos (10.1016/j.csl.2021.101322_b31) 1994; 37
Vasquez-Correa (10.1016/j.csl.2021.101322_b50) 2020; 122
Orozco-Arroyave (10.1016/j.csl.2021.101322_b26) 2013; vol. 7911
Rilling (10.1016/j.csl.2021.101322_b32) 2008; 56
Smekal (10.1016/j.csl.2021.101322_b42) 2015
Postuma (10.1016/j.csl.2021.101322_b29) 2015; 30
Flandrin (10.1016/j.csl.2021.101322_b7) 2004; 11
Tsanas (10.1016/j.csl.2021.101322_b45) 2012
Vásquez-Correa (10.1016/j.csl.2021.101322_b49) 2019
Rojas (10.1016/j.csl.2021.101322_b33) 2013; 40
Argüello-Vélez (10.1016/j.csl.2021.101322_b1) 2020; vol. 12284 LNAI
Postuma (10.1016/j.csl.2021.101322_b30) 2018; 33
Karlsson (10.1016/j.csl.2021.101322_b20) 2020; 147
Little (10.1016/j.csl.2021.101322_b23) 2007; 6
Rueda (10.1016/j.csl.2021.101322_b35) 2018; 10
Travieso (10.1016/j.csl.2021.101322_b44) 2017; 82
Zhang (10.1016/j.csl.2021.101322_b51) 2021; 41
10.1016/j.csl.2021.101322_b46
Karan (10.1016/j.csl.2021.101322_b19) 2020; 40
Rusz (10.1016/j.csl.2021.101322_b39) 2018; 26
Moro-Velazquez (10.1016/j.csl.2021.101322_b24) 2020
Arias-Vergara (10.1016/j.csl.2021.101322_b2) 2017; 9
Parra-Gallego (10.1016/j.csl.2021.101322_b28) 2018; vol. 916
Rueda (10.1016/j.csl.2021.101322_b34) 2017
Ho (10.1016/j.csl.2021.101322_b14) 1999; 11
GDB2016 PD Collaborators (10.1016/j.csl.2021.101322_b9) 2018; 17
Arias-Vergara (10.1016/j.csl.2021.101322_b3) 2020; 104
Goetz (10.1016/j.csl.2021.101322_b11) 2008; 1
Skodda (10.1016/j.csl.2021.101322_b41) 2010; 117
Fereshtehnejad (10.1016/j.csl.2021.101322_b6) 2019; 142
Sharma (10.1016/j.csl.2021.101322_b40) 2017; 88
Karan (10.1016/j.csl.2021.101322_b18) 2020; 61
Kent (10.1016/j.csl.2021.101322_b21) 1999; 32
Flandrin (10.1016/j.csl.2021.101322_b8) 2005; vol. 5
Duffy (10.1016/j.csl.2021.101322_b5) 2012
Orozco-Arroyave (10.1016/j.csl.2021.101322_b25) 2016
Darley (10.1016/j.csl.2021.101322_b4) 1975
Hlavnička (10.1016/j.csl.2021.101322_b13) 2020
Herzel (10.1016/j.csl.2021.101322_b12) 1995; 1
References_xml – volume: 33
  start-page: 1601
  year: 2018
  end-page: 1608
  ident: b30
  article-title: Validation of the MDS clinical diagnostic criteria for Parkinson’s disease
  publication-title: Mov. Disorders
– volume: 386
  start-page: 896
  year: 2015
  end-page: 912
  ident: b17
  article-title: Parkinson’s disease
  publication-title: Lancet
– volume: 61
  year: 2020
  ident: b18
  article-title: Hilbert spectrum analysis for automatic detection and evaluation of Parkinson’s speech
  publication-title: Biomed. Signal Process. Control
– volume: 37
  start-page: 95
  year: 1994
  end-page: 120
  ident: b31
  article-title: A comparison of the energy operator and the Hilbert transform approach to signal and speech demodulation
  publication-title: Signal Process.
– volume: 17
  start-page: 939
  year: 2018
  end-page: 953
  ident: b9
  article-title: Global, regional, and national burden of Parkinson’s disease, 1990–2016: a systematic analysis for the Global Burden of Disease Study 2016
  publication-title: Lancet
– volume: 11
  start-page: 112
  year: 2004
  end-page: 114
  ident: b7
  article-title: Empirical mode decomposition as a filter bank
  publication-title: IEEE Signal Process. Lett.
– volume: 17
  start-page: 574
  year: 2018
  end-page: 576
  ident: b16
  article-title: Dissecting premotor Parkinson’s disease with multimodality neuroimaging
  publication-title: Lancet Neurol.
– volume: 142
  start-page: 2051
  year: 2019
  end-page: 2067
  ident: b6
  article-title: Evolution of prodromal Parkinson’s disease and dementia with Lewy bodies: a prospective study
  publication-title: Brain
– start-page: 261
  year: 2012
  ident: b45
  article-title: Accurate Telemonitoring of Parkinson’s Disease Symptom Severity Using Nonlinear Speech Signal Processing and Statistical Machine Learning
– volume: vol. 12284 LNAI
  start-page: 303
  year: 2020
  end-page: 311
  ident: b1
  article-title: Acoustic characteristics of VOT in plosive consonants produced by Parkinson’s patients
  publication-title: Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
– volume: 6
  start-page: 23
  year: 2007
  ident: b23
  article-title: Exploiting nonlinear recurrence and fractal scaling properties for voice disorder detection
  publication-title: BioMed. Eng. OnLine
– volume: 1
  start-page: 30
  year: 1995
  end-page: 34
  ident: b12
  article-title: Nonlinear dynamics of the voice: Signal analysis and biomechanical modeling
  publication-title: Chaos
– start-page: 549
  year: 2019
  end-page: 553
  ident: b49
  article-title: Phonet: A tool based on gated recurrent neural networks to extract phonological posteriors from speech
  publication-title: Proceedings of the Annual Conference of the International Speech Communication Association
– volume: 117
  start-page: 605
  year: 2010
  end-page: 612
  ident: b41
  article-title: Instability of syllable repetition as a model for impaired motor processing: is Parkinson’s disease a “rhythm disorder”?
  publication-title: J. Neural Transm.
– volume: 76
  start-page: 21
  year: 2018
  end-page: 36
  ident: b47
  article-title: Towards an automatic evaluation of the dysarthria level of patients with Parkinson’s disease
  publication-title: J. Commun. Disord.
– volume: 40
  start-page: 249
  year: 2020
  end-page: 264
  ident: b19
  article-title: Parkinson disease prediction using intrinsic mode function based features from speech signal
  publication-title: Biocybern. Biomed. Eng.
– start-page: 3048
  year: 2019
  end-page: 3052
  ident: b36
  article-title: Feature representation of pathophysiology of Parkinsonian dysarthria
  publication-title: Proceedings of the Annual Conference of the International Speech Communication Association
– start-page: 1
  year: 2015
  end-page: 4
  ident: b42
  article-title: Analysis of phonation in patients with Parkinson’s disease using empirical mode decomposition
  publication-title: International Symposium on Signals, Circuits and Systems
– volume: 10
  start-page: 1840007, 1
  year: 2018
  end-page: 24
  ident: b35
  article-title: Clustering Parkinson’s and age-related voice impairment signal features for unsupervised learning
  publication-title: Adv. Data Sci. Adapt. Anal.
– volume: 1
  start-page: 1
  year: 2008
  end-page: 31
  ident: b11
  article-title: MDS-UPDRS: The MDS-sponsored revision of the unified Parkinson’s disease rating scale
  publication-title: Mov. Disorders
– volume: 454
  start-page: 903
  year: 1998
  end-page: 995
  ident: b15
  article-title: The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis
  publication-title: Proc. R. Soc. A
– reference: Orozco-Arroyave, J.R., et al., 2014. New Spanish speech corpus database for the analysis of people suffering from Parkinson’s disease. In: Proceedings of the Ninth International Conference on Language Resources and Evaluation, LREC’14, pp. 342–347.
– volume: 129
  start-page: 350
  year: 2011
  end-page: 367
  ident: b38
  article-title: Quantitative acoustic measurements for characterization of speech and voice disorders in early untreated Parkinson’s disease
  publication-title: J. Acoust. Soc. Am.
– volume: 128
  start-page: 975
  year: 2018
  end-page: 986
  ident: b43
  article-title: A feature extraction method for adaptive DBS using an improved EMD
  publication-title: Int. J. Neurosci.
– volume: 147
  start-page: 839
  year: 2020
  end-page: 851
  ident: b20
  article-title: Assessment of speech impairment in patients with Parkinson’s disease from acoustic quantifications of oral diadochokinetic sequences
  publication-title: J. Acoust. Soc. Am.
– volume: 11
  start-page: 131
  year: 1999
  end-page: 137
  ident: b14
  article-title: Speech impairment in a large sample of patients with Parkinson’s disease
  publication-title: Behav. Neurol.
– volume: 26
  start-page: 1951
  year: 2011
  end-page: 1952
  ident: b37
  article-title: Acoustic assessment of voice and speech disorders in Parkinson’s disease through quick vocal test
  publication-title: Mov. Disorders
– volume: vol. 7911
  start-page: 112
  year: 2013
  end-page: 119
  ident: b26
  article-title: Analysis of speech from people with Parkinson’s disease through nonlinear dynamics
  publication-title: Advances in Nonlinear Speech Processing
– volume: 9
  start-page: 713
  year: 2017
  end-page: 748
  ident: b2
  article-title: Parkinson’s disease and aging: analysis of their effect in phonation and articulation of speech
  publication-title: Cogn. Comput.
– volume: 40
  start-page: 2756
  year: 2013
  end-page: 2766
  ident: b33
  article-title: Application of Empirical Mode Decomposition (EMD) on DaTSCAN SPECT images to explore Parkinson Disease
  publication-title: Expert Syst. Appl.
– volume: 56
  start-page: 85
  year: 2008
  end-page: 95
  ident: b32
  article-title: One or two frequencies? The Empirical Mode Decomposition answers
  publication-title: IEEE Trans. Signal Process.
– start-page: 1155
  year: 2020
  end-page: 1159
  ident: b24
  article-title: Using X-Vectors to automatically detect Parkinson’s disease from speech
  publication-title: ICASSP 2020 - 2020 IEEE International Conference on Acoustics, Speech and Signal Processing
– volume: 26
  start-page: 1495
  year: 2018
  end-page: 1507
  ident: b39
  article-title: Smartphone allows capture of speech abnormalities associated with high risk of developing Parkinson’s disease
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
– start-page: 2308
  year: 2017
  end-page: 2311
  ident: b34
  article-title: Feature analysis of dysphonia speech for monitoring Parkinson’s disease
  publication-title: Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society
– volume: vol. 11896 LNCS
  start-page: 688
  year: 2019
  end-page: 696
  ident: b48
  article-title: Articulation and Empirical Mode Decomposition features in diadochokinetic exercises for the speech assessment of Parkinson’s disease patients
  publication-title: Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
– volume: vol. 916
  start-page: 223
  year: 2018
  end-page: 230
  ident: b28
  article-title: Automatic intelligibility assessment of Parkinson’s disease with diadochokinetic exercises
  publication-title: Communications in Computer and Information Science
– volume: 32
  start-page: 141
  year: 1999
  end-page: 186
  ident: b21
  article-title: Acoustic studies of dysarthric speech: methods, progress, and potential
  publication-title: J. Commun. Disord.
– volume: 12
  start-page: 1
  year: 2017
  end-page: 35
  ident: b10
  article-title: Towards the identification of idiopathic Parkinson’s disease from the speech. New articulatory kinetic biomarkers
  publication-title: PLoS One
– year: 2016
  ident: b25
  article-title: Analysis of Speech of People with Parkinson’s Disease
– year: 1975
  ident: b4
  article-title: Motor Speech Disorders
– year: 2012
  ident: b5
  article-title: Motor Speech Disorders: Substrates, Differential Diagnosis, and Management
– volume: 88
  start-page: 39
  year: 2017
  end-page: 64
  ident: b40
  article-title: Empirical Mode Decomposition for adaptive AM-FM analysis of speech: A review
  publication-title: Speech Commun.
– volume: 122
  start-page: 56
  year: 2020
  end-page: 67
  ident: b50
  article-title: Parallel representation learning for the classification of pathological speech: Studies on Parkinson’s disease and cleft lip and palate
  publication-title: Speech Commun.
– volume: 41
  start-page: 127
  year: 2021
  end-page: 141
  ident: b51
  article-title: Parkinson disease detection using energy direction features based on EMD from voice signal
  publication-title: Biocybern. Biomed. Eng.
– volume: 30
  start-page: 1591
  year: 2015
  end-page: 1599
  ident: b29
  article-title: MDS clinical diagnostic criteria for Parkinson’s disease
  publication-title: Mov. Disorders
– volume: 82
  start-page: 184
  year: 2017
  end-page: 195
  ident: b44
  article-title: Detection of different voice diseases based on the nonlinear characterization of speech signals
  publication-title: Expert Syst. Appl.
– year: 2020
  ident: b13
  article-title: Characterizing vocal tremor in progressive neurological diseases via automated acoustic analyses
  publication-title: Clin. Neurophysiol.
– volume: vol. 2
  start-page: 1080
  year: 2006
  end-page: 1083
  ident: b22
  article-title: Nonlinear, biophysically-informed speech pathology detection
  publication-title: 2006 IEEE International Conference on Acoustics Speech and Signal Processing Proceedings
– reference: Tsanas, A., et al., 2010. New nonlinear markers and insights into speech signal degradation for effective tracking of Parkinson’s disease symptom severity. In: International Symposium on Nonlinear Theory and Its Applications, pp. 457–460.
– volume: vol. 5
  start-page: 57
  year: 2005
  end-page: 74
  ident: b8
  article-title: EMD equivalent filter banks, from interpretation to applications
  publication-title: Hilbert-Huang Transform and Its Applications
– volume: 104
  year: 2020
  ident: b3
  article-title: Automatic detection of Voice Onset Time in voiceless plosives using gated recurrent units
  publication-title: Digit. Signal Process.
– volume: 6
  start-page: 23
  issue: 1
  year: 2007
  ident: 10.1016/j.csl.2021.101322_b23
  article-title: Exploiting nonlinear recurrence and fractal scaling properties for voice disorder detection
  publication-title: BioMed. Eng. OnLine
  doi: 10.1186/1475-925X-6-23
– volume: 129
  start-page: 350
  issue: 1
  year: 2011
  ident: 10.1016/j.csl.2021.101322_b38
  article-title: Quantitative acoustic measurements for characterization of speech and voice disorders in early untreated Parkinson’s disease
  publication-title: J. Acoust. Soc. Am.
  doi: 10.1121/1.3514381
– year: 2012
  ident: 10.1016/j.csl.2021.101322_b5
– volume: 41
  start-page: 127
  issue: 1
  year: 2021
  ident: 10.1016/j.csl.2021.101322_b51
  article-title: Parkinson disease detection using energy direction features based on EMD from voice signal
  publication-title: Biocybern. Biomed. Eng.
  doi: 10.1016/j.bbe.2020.12.009
– volume: 12
  start-page: 1
  issue: 12
  year: 2017
  ident: 10.1016/j.csl.2021.101322_b10
  article-title: Towards the identification of idiopathic Parkinson’s disease from the speech. New articulatory kinetic biomarkers
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0189583
– volume: 142
  start-page: 2051
  issue: 7
  year: 2019
  ident: 10.1016/j.csl.2021.101322_b6
  article-title: Evolution of prodromal Parkinson’s disease and dementia with Lewy bodies: a prospective study
  publication-title: Brain
  doi: 10.1093/brain/awz111
– volume: 386
  start-page: 896
  issue: 9996
  year: 2015
  ident: 10.1016/j.csl.2021.101322_b17
  article-title: Parkinson’s disease
  publication-title: Lancet
  doi: 10.1016/S0140-6736(14)61393-3
– start-page: 2308
  year: 2017
  ident: 10.1016/j.csl.2021.101322_b34
  article-title: Feature analysis of dysphonia speech for monitoring Parkinson’s disease
– volume: vol. 12284 LNAI
  start-page: 303
  year: 2020
  ident: 10.1016/j.csl.2021.101322_b1
  article-title: Acoustic characteristics of VOT in plosive consonants produced by Parkinson’s patients
– volume: 10
  start-page: 1840007, 1
  issue: 02
  year: 2018
  ident: 10.1016/j.csl.2021.101322_b35
  article-title: Clustering Parkinson’s and age-related voice impairment signal features for unsupervised learning
  publication-title: Adv. Data Sci. Adapt. Anal.
– year: 2016
  ident: 10.1016/j.csl.2021.101322_b25
– volume: 40
  start-page: 249
  issue: 1
  year: 2020
  ident: 10.1016/j.csl.2021.101322_b19
  article-title: Parkinson disease prediction using intrinsic mode function based features from speech signal
  publication-title: Biocybern. Biomed. Eng.
  doi: 10.1016/j.bbe.2019.05.005
– ident: 10.1016/j.csl.2021.101322_b27
– volume: vol. 7911
  start-page: 112
  year: 2013
  ident: 10.1016/j.csl.2021.101322_b26
  article-title: Analysis of speech from people with Parkinson’s disease through nonlinear dynamics
– volume: vol. 916
  start-page: 223
  year: 2018
  ident: 10.1016/j.csl.2021.101322_b28
  article-title: Automatic intelligibility assessment of Parkinson’s disease with diadochokinetic exercises
  doi: 10.1007/978-3-030-00353-1_20
– start-page: 1
  year: 2015
  ident: 10.1016/j.csl.2021.101322_b42
  article-title: Analysis of phonation in patients with Parkinson’s disease using empirical mode decomposition
– volume: 82
  start-page: 184
  year: 2017
  ident: 10.1016/j.csl.2021.101322_b44
  article-title: Detection of different voice diseases based on the nonlinear characterization of speech signals
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2017.04.012
– volume: 61
  year: 2020
  ident: 10.1016/j.csl.2021.101322_b18
  article-title: Hilbert spectrum analysis for automatic detection and evaluation of Parkinson’s speech
  publication-title: Biomed. Signal Process. Control
  doi: 10.1016/j.bspc.2020.102050
– volume: 37
  start-page: 95
  issue: 1
  year: 1994
  ident: 10.1016/j.csl.2021.101322_b31
  article-title: A comparison of the energy operator and the Hilbert transform approach to signal and speech demodulation
  publication-title: Signal Process.
  doi: 10.1016/0165-1684(94)90169-4
– year: 1975
  ident: 10.1016/j.csl.2021.101322_b4
– volume: 17
  start-page: 939
  year: 2018
  ident: 10.1016/j.csl.2021.101322_b9
  article-title: Global, regional, and national burden of Parkinson’s disease, 1990–2016: a systematic analysis for the Global Burden of Disease Study 2016
  publication-title: Lancet
  doi: 10.1016/S1474-4422(18)30295-3
– volume: 17
  start-page: 574
  issue: July
  year: 2018
  ident: 10.1016/j.csl.2021.101322_b16
  article-title: Dissecting premotor Parkinson’s disease with multimodality neuroimaging
  publication-title: Lancet Neurol.
  doi: 10.1016/S1474-4422(18)30196-0
– year: 2020
  ident: 10.1016/j.csl.2021.101322_b13
  article-title: Characterizing vocal tremor in progressive neurological diseases via automated acoustic analyses
  publication-title: Clin. Neurophysiol.
  doi: 10.1016/j.clinph.2020.02.005
– volume: 122
  start-page: 56
  issue: December 2019
  year: 2020
  ident: 10.1016/j.csl.2021.101322_b50
  article-title: Parallel representation learning for the classification of pathological speech: Studies on Parkinson’s disease and cleft lip and palate
  publication-title: Speech Commun.
  doi: 10.1016/j.specom.2020.07.005
– start-page: 1155
  year: 2020
  ident: 10.1016/j.csl.2021.101322_b24
  article-title: Using X-Vectors to automatically detect Parkinson’s disease from speech
– start-page: 3048
  year: 2019
  ident: 10.1016/j.csl.2021.101322_b36
  article-title: Feature representation of pathophysiology of Parkinsonian dysarthria
– volume: 26
  start-page: 1495
  issue: 8
  year: 2018
  ident: 10.1016/j.csl.2021.101322_b39
  article-title: Smartphone allows capture of speech abnormalities associated with high risk of developing Parkinson’s disease
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
  doi: 10.1109/TNSRE.2018.2851787
– volume: 76
  start-page: 21
  year: 2018
  ident: 10.1016/j.csl.2021.101322_b47
  article-title: Towards an automatic evaluation of the dysarthria level of patients with Parkinson’s disease
  publication-title: J. Commun. Disord.
  doi: 10.1016/j.jcomdis.2018.08.002
– volume: 454
  start-page: 903
  issue: 1971
  year: 1998
  ident: 10.1016/j.csl.2021.101322_b15
  article-title: The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis
  publication-title: Proc. R. Soc. A
  doi: 10.1098/rspa.1998.0193
– volume: 104
  year: 2020
  ident: 10.1016/j.csl.2021.101322_b3
  article-title: Automatic detection of Voice Onset Time in voiceless plosives using gated recurrent units
  publication-title: Digit. Signal Process.
  doi: 10.1016/j.dsp.2020.102779
– volume: 30
  start-page: 1591
  issue: 12
  year: 2015
  ident: 10.1016/j.csl.2021.101322_b29
  article-title: MDS clinical diagnostic criteria for Parkinson’s disease
  publication-title: Mov. Disorders
  doi: 10.1002/mds.26424
– start-page: 261
  year: 2012
  ident: 10.1016/j.csl.2021.101322_b45
– volume: 32
  start-page: 141
  issue: 3
  year: 1999
  ident: 10.1016/j.csl.2021.101322_b21
  article-title: Acoustic studies of dysarthric speech: methods, progress, and potential
  publication-title: J. Commun. Disord.
  doi: 10.1016/S0021-9924(99)00004-0
– volume: 56
  start-page: 85
  issue: 1
  year: 2008
  ident: 10.1016/j.csl.2021.101322_b32
  article-title: One or two frequencies? The Empirical Mode Decomposition answers
  publication-title: IEEE Trans. Signal Process.
  doi: 10.1109/TSP.2007.906771
– volume: 147
  start-page: 839
  issue: 2
  year: 2020
  ident: 10.1016/j.csl.2021.101322_b20
  article-title: Assessment of speech impairment in patients with Parkinson’s disease from acoustic quantifications of oral diadochokinetic sequences
  publication-title: J. Acoust. Soc. Am.
  doi: 10.1121/10.0000581
– volume: 117
  start-page: 605
  issue: 5
  year: 2010
  ident: 10.1016/j.csl.2021.101322_b41
  article-title: Instability of syllable repetition as a model for impaired motor processing: is Parkinson’s disease a “rhythm disorder”?
  publication-title: J. Neural Transm.
  doi: 10.1007/s00702-010-0390-y
– volume: 128
  start-page: 975
  issue: 10
  year: 2018
  ident: 10.1016/j.csl.2021.101322_b43
  article-title: A feature extraction method for adaptive DBS using an improved EMD
  publication-title: Int. J. Neurosci.
  doi: 10.1080/00207454.2018.1450253
– volume: vol. 11896 LNCS
  start-page: 688
  year: 2019
  ident: 10.1016/j.csl.2021.101322_b48
  article-title: Articulation and Empirical Mode Decomposition features in diadochokinetic exercises for the speech assessment of Parkinson’s disease patients
– volume: 9
  start-page: 713
  year: 2017
  ident: 10.1016/j.csl.2021.101322_b2
  article-title: Parkinson’s disease and aging: analysis of their effect in phonation and articulation of speech
  publication-title: Cogn. Comput.
  doi: 10.1007/s12559-017-9497-x
– volume: vol. 5
  start-page: 57
  year: 2005
  ident: 10.1016/j.csl.2021.101322_b8
  article-title: EMD equivalent filter banks, from interpretation to applications
– volume: 88
  start-page: 39
  year: 2017
  ident: 10.1016/j.csl.2021.101322_b40
  article-title: Empirical Mode Decomposition for adaptive AM-FM analysis of speech: A review
  publication-title: Speech Commun.
  doi: 10.1016/j.specom.2016.12.004
– volume: 26
  start-page: 1951
  issue: 10
  year: 2011
  ident: 10.1016/j.csl.2021.101322_b37
  article-title: Acoustic assessment of voice and speech disorders in Parkinson’s disease through quick vocal test
  publication-title: Mov. Disorders
  doi: 10.1002/mds.23680
– volume: 1
  start-page: 30
  issue: 5
  year: 1995
  ident: 10.1016/j.csl.2021.101322_b12
  article-title: Nonlinear dynamics of the voice: Signal analysis and biomechanical modeling
  publication-title: Chaos
  doi: 10.1063/1.166078
– start-page: 549
  year: 2019
  ident: 10.1016/j.csl.2021.101322_b49
  article-title: Phonet: A tool based on gated recurrent neural networks to extract phonological posteriors from speech
– volume: 11
  start-page: 112
  issue: 2
  year: 2004
  ident: 10.1016/j.csl.2021.101322_b7
  article-title: Empirical mode decomposition as a filter bank
  publication-title: IEEE Signal Process. Lett.
  doi: 10.1109/LSP.2003.821662
– volume: 40
  start-page: 2756
  issue: 7
  year: 2013
  ident: 10.1016/j.csl.2021.101322_b33
  article-title: Application of Empirical Mode Decomposition (EMD) on DaTSCAN SPECT images to explore Parkinson Disease
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2012.11.017
– volume: 33
  start-page: 1601
  issue: 10
  year: 2018
  ident: 10.1016/j.csl.2021.101322_b30
  article-title: Validation of the MDS clinical diagnostic criteria for Parkinson’s disease
  publication-title: Mov. Disorders
  doi: 10.1002/mds.27362
– volume: 1
  start-page: 1
  issue: 414
  year: 2008
  ident: 10.1016/j.csl.2021.101322_b11
  article-title: MDS-UPDRS: The MDS-sponsored revision of the unified Parkinson’s disease rating scale
  publication-title: Mov. Disorders
– volume: 11
  start-page: 131
  issue: 3
  year: 1999
  ident: 10.1016/j.csl.2021.101322_b14
  article-title: Speech impairment in a large sample of patients with Parkinson’s disease
  publication-title: Behav. Neurol.
  doi: 10.1155/1999/327643
– ident: 10.1016/j.csl.2021.101322_b46
– volume: vol. 2
  start-page: 1080
  year: 2006
  ident: 10.1016/j.csl.2021.101322_b22
  article-title: Nonlinear, biophysically-informed speech pathology detection
SSID ssj0006547
Score 2.3426173
Snippet Empirical Mode Decomposition (EMD) was designed to analyze nonlinear and non-stationary signals. EMD voice analysis had been applied to Parkinson’s sustained...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 101322
SubjectTerms EMD dyadic characteristic
Feature extraction
pa-ta-ka/ articulation
Parkinson’s disease
Segmentation
Title Empirical Mode Decomposition articulation feature extraction on Parkinson’s Diadochokinesia
URI https://dx.doi.org/10.1016/j.csl.2021.101322
Volume 72
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEB50vejBx6r4XHLwJMRtXrvtUdRlVfSiwl6kJNkU6mNddL2Kf8O_5y9xkqaioB6EXlo60E6Sb6bNN98A7EhMibsysVS5RFGcFI5qZjll2krdTQslha9GPjvv9K_kyUANpuCgroXxtMqI_RWmB7SOV9rRm-1xWbYvcH34X5opZ0HYDL_bZzhG-7QBM_vHp_3zT0D2_XWrZFJRb1Bvbgaal33yGxCc-XPB-c_h6UvI6S3CfMwVyX71OEsw5UZNWKj7MJC4LJsw90VUcBmuj-7HZRD-IL7RGTl0njYeuVkkvFts2UUKF2Q9CQL0Y1XgQPDwhdChJuz99e2JHJbaa4g_3Hp-fKlX4Kp3dHnQp7GJArU8606oK4acZxY9bzqGMaFx0erMCcU05jZSqUJYY5gsGBsq2xmaIpUFxnXOC0-YMWIVGqOHkVsD4nSK-OhEJgVmLQk3rpswjWNgsjRlTq1DUvsut1Fh3De6uMtrKtlNju7Ovbvzyt3rsPtpMq7kNf66WdYDkn-bIznC_-9mG_8z24RZ7ksdAt9sCxqTx2e3jQnIxLRgeu-FteI0-wDbtdoQ
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwED5VZQAGHgXEGw9MSFFjx26SsQKqlkIXWqkLimzXkcKjrWjZ-Rv8PX4JvsSpigQMSFkS5aTkfD5f4u--D-Cc25I45L72hPGFZ4PCeJJq5lGpuQyjVPAAu5Hveo32gN8MxbACl2UvDMIqXe4vcnqerd2VuvNmfZpl9Xs7P_CXZsRoTmxmv9tXOIpaV2Gl2em2e4uEjPq6RTEpPDQoNzdzmJee4QYEo3geMPbz8rS05LS2YMPViqRZPM42VMy4BpulDgNx07IG60ukgjvwcP0yzXLiD4JCZ-TKIGzcYbNI_m5OsoukJqf1JDZBvxYNDsQe2Aid94R9vn_MyFUmkUN88oT4-EzuwqB13b9se05EwdMsDueeSUeMxdp6XjUUpYG0k1bGJhBU2tqGC5EGWinKU0pHQjdGKo14atd1xlIEzKhgD6rjydjsAzEysvnRBDEPbNXiM2VCn0o7BiqOImrEAfil7xLtGMZR6OI5KaFkj4l1d4LuTgp3H8DFwmRa0Gv8dTMvByT5FiOJTf-_mx3-z-wMVtv9u9vkttPrHsEaw7aHHHt2DNX565s5scXIXJ26YPsCAsnb9g
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Empirical+Mode+Decomposition+articulation+feature+extraction+on+Parkinson%E2%80%99s+Diadochokinesia&rft.jtitle=Computer+speech+%26+language&rft.au=Rueda%2C+Alice&rft.au=V%C3%A1squez-Correa%2C+Juan+Camilo&rft.au=Orozco-Arroyave%2C+Juan+Rafael&rft.au=N%C3%B6th%2C+Elmar&rft.date=2022-03-01&rft.pub=Elsevier+Ltd&rft.issn=0885-2308&rft.eissn=1095-8363&rft.volume=72&rft_id=info:doi/10.1016%2Fj.csl.2021.101322&rft.externalDocID=S0885230821001170
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0885-2308&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0885-2308&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0885-2308&client=summon