Automated artifact elimination of physiological signals using a deep belief network: An application for continuously measured arterial blood pressure waveforms
•The deep belief network (DBN) model excels at artifact classification in pulse waveforms.•The DBN allows rapid detection and elimination of artifacts in physiological signals.•Various types of artifacts in arterial blood pressure can be detected by the DBN. Artifacts in physiological signals acquir...
        Saved in:
      
    
          | Published in | Information sciences Vol. 456; pp. 145 - 158 | 
|---|---|
| Main Authors | , , , , , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
            Elsevier Inc
    
        01.08.2018
     | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 0020-0255 1872-6291  | 
| DOI | 10.1016/j.ins.2018.05.018 | 
Cover
| Abstract | •The deep belief network (DBN) model excels at artifact classification in pulse waveforms.•The DBN allows rapid detection and elimination of artifacts in physiological signals.•Various types of artifacts in arterial blood pressure can be detected by the DBN.
Artifacts in physiological signals acquired during intensive care have the potential to be recognized as critical pathological events and lead to misdiagnosis or mismanagement. Manual artifact removal necessitates significant labor-time intensity and is subject to inter- and intra-observer variability. Various methods have been proposed to automate the task; however, the methods are yet to be validated, possibly due to the diversity of artifact types. Deep belief networks (DBNs) have been shown to be capable of learning generative and discriminative feature extraction models, hence suitable for classifying signals with multiple features. This study proposed a DBN-based model for artifact elimination in pulse waveform signals, which incorporates pulse segmentation, pressure normalization and decision models using DBN, and applied the model to artifact removal in monitoring arterial blood pressure (ABP). When compared with a widely used ABP artifact removal algorithm (signal abnormality index; SAI), the DBN model exhibited significantly higher classification performance (net prediction of optimal DBN = 95.9%, SAI = 84.7%). In particular, DBN exhibited greater sensitivity than SAI for identifying various types of artifacts (motion = 93.6%, biological = 95.4%, cuff inflation = 89.1%, transducer flushing = 97%). The proposed model could significantly enhance the quality of signal analysis, hence may be beneficial for use in continuous patient monitoring in clinical practice. | 
    
|---|---|
| AbstractList | •The deep belief network (DBN) model excels at artifact classification in pulse waveforms.•The DBN allows rapid detection and elimination of artifacts in physiological signals.•Various types of artifacts in arterial blood pressure can be detected by the DBN.
Artifacts in physiological signals acquired during intensive care have the potential to be recognized as critical pathological events and lead to misdiagnosis or mismanagement. Manual artifact removal necessitates significant labor-time intensity and is subject to inter- and intra-observer variability. Various methods have been proposed to automate the task; however, the methods are yet to be validated, possibly due to the diversity of artifact types. Deep belief networks (DBNs) have been shown to be capable of learning generative and discriminative feature extraction models, hence suitable for classifying signals with multiple features. This study proposed a DBN-based model for artifact elimination in pulse waveform signals, which incorporates pulse segmentation, pressure normalization and decision models using DBN, and applied the model to artifact removal in monitoring arterial blood pressure (ABP). When compared with a widely used ABP artifact removal algorithm (signal abnormality index; SAI), the DBN model exhibited significantly higher classification performance (net prediction of optimal DBN = 95.9%, SAI = 84.7%). In particular, DBN exhibited greater sensitivity than SAI for identifying various types of artifacts (motion = 93.6%, biological = 95.4%, cuff inflation = 89.1%, transducer flushing = 97%). The proposed model could significantly enhance the quality of signal analysis, hence may be beneficial for use in continuous patient monitoring in clinical practice. | 
    
| Author | Lee, Seung-Bo Kim, Dong-Joo Kim, Hakseung Song, Eun-Suk Huh, Hyub Son, Yunsik Czosnyka, Marek  | 
    
| Author_xml | – sequence: 1 givenname: Yunsik surname: Son fullname: Son, Yunsik organization: Department of Brain and Cognitive Engineering, Korea University, Seoul, South Korea – sequence: 2 givenname: Seung-Bo surname: Lee fullname: Lee, Seung-Bo organization: Department of Brain and Cognitive Engineering, Korea University, Seoul, South Korea – sequence: 3 givenname: Hakseung surname: Kim fullname: Kim, Hakseung organization: Department of Brain and Cognitive Engineering, Korea University, Seoul, South Korea – sequence: 4 givenname: Eun-Suk surname: Song fullname: Song, Eun-Suk organization: Department of Brain and Cognitive Engineering, Korea University, Seoul, South Korea – sequence: 5 givenname: Hyub surname: Huh fullname: Huh, Hyub organization: Department of Anesthesiology and Pain Medicine, Korea University Medical Center, Seoul, South Korea – sequence: 6 givenname: Marek surname: Czosnyka fullname: Czosnyka, Marek organization: Division of Neurosurgery, Addenbrooke's Hospital, University of Cambridge, Cambridge, United Kingdom Institute of Electronic Systems, Warsaw University of Technology, Warsaw, Poland – sequence: 7 givenname: Dong-Joo orcidid: 0000-0002-0988-2236 surname: Kim fullname: Kim, Dong-Joo email: dongjookim@korea.ac.kr organization: Department of Brain and Cognitive Engineering, Korea University, Seoul, South Korea  | 
    
| BookMark | eNp9kMFu2zAQRIkiBeq4_YDe-ANSSNqipORkBE1awEAu6ZmgyKW7rkQKJJXAX9NfLR331ENOcxi8md25Jlc-eCDkK2c1Z1zeHGv0qRaMdzVr6iIfyIp3raik6PkVWTEmWMVE03wi1ykdGWPbVsoV-bNbcph0Bkt1zOi0yRRGnNDrjMHT4Oj865QwjOGARo804cHrMdEloT9QTS3ATIeCgKMe8muIv2_pzlM9z2MB3kJciNQEn9EvYUnjiU6g0xIvnRCxxA5jCJbOEdLZoK_6BQo1pc_koyt18OWfrsnPh2_P99-r_dPjj_vdvjKib3MFg5FNb7bSwpb32mremWZrnOg0CHBs03WtbqEzG2O5lFabXg6MC-nMIFo2bNakveSaGFKK4JTB_HZ9jhpHxZk676yOquyszjsr1qgiheT_kXPEScfTu8zdhYHy0gtCVMkgeAMWI5isbMB36L8YR56s | 
    
| CitedBy_id | crossref_primary_10_3171_2019_2_JNS182260 crossref_primary_10_1016_j_ins_2020_08_053 crossref_primary_10_1016_j_cie_2020_106427 crossref_primary_10_1007_s42979_023_01959_y crossref_primary_10_1038_s41598_022_19101_y crossref_primary_10_1016_j_engappai_2019_103378 crossref_primary_10_1109_ACCESS_2020_3041498 crossref_primary_10_1097_CCE_0000000000000814 crossref_primary_10_1038_s41598_022_22566_6 crossref_primary_10_1109_ACCESS_2020_3003059 crossref_primary_10_3340_jkns_2023_0195  | 
    
| Cites_doi | 10.1186/s13054-014-0644-4 10.1016/j.jemermed.2013.04.022 10.1054/jelc.2001.28876 10.1007/s12630-012-9754-0 10.1109/TITB.2012.2188536 10.1109/TBME.2015.2512278 10.1007/s00134-002-1235-4 10.1088/0967-3334/37/8/1340 10.1016/j.cmpb.2014.09.002 10.2165/11311830-000000000-00000 10.4037/ccn2002.22.2.60 10.1109/TBME.2013.2240452 10.1109/TBME.2016.2602283 10.1002/sim.1099 10.1109/TBME.2012.2225427 10.1561/2200000006 10.1109/TIP.2011.2175741 10.1109/TASL.2012.2229986 10.1016/j.jneumeth.2012.05.017 10.1109/TBME.2005.855725 10.1162/neco.2008.04-07-510 10.1186/1475-925X-8-13 10.3390/s150614142 10.1016/j.bspc.2009.06.002 10.1109/TIM.2014.2317296 10.1007/s001340050767 10.1111/j.1751-7176.2008.04746.x 10.1109/MSP.2010.939038 10.1109/TASL.2011.2134090 10.1161/01.CIR.102.11.1337 10.1152/japplphysiol.01488.2005 10.1093/bja/aes300 10.1007/BF02347553  | 
    
| ContentType | Journal Article | 
    
| Copyright | 2018 | 
    
| Copyright_xml | – notice: 2018 | 
    
| DBID | AAYXX CITATION  | 
    
| DOI | 10.1016/j.ins.2018.05.018 | 
    
| DatabaseName | CrossRef | 
    
| DatabaseTitle | CrossRef | 
    
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Engineering Library & Information Science  | 
    
| EISSN | 1872-6291 | 
    
| EndPage | 158 | 
    
| ExternalDocumentID | 10_1016_j_ins_2018_05_018 S0020025518303736  | 
    
| GroupedDBID | --K --M --Z -~X .DC .~1 0R~ 1B1 1OL 1RT 1~. 1~5 29I 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN 9JO AAAKF AAAKG AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AARIN AAXUO AAYFN ABAOU ABBOA ABEFU ABFNM ABJNI ABMAC ABTAH ABUCO ABXDB ABYKQ ACAZW ACDAQ ACGFS ACNNM ACRLP ACZNC ADBBV ADEZE ADGUI ADJOM ADMUD ADTZH AEBSH AECPX AEKER AENEX AFFNX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIGVJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD APLSM ARUGR ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ HAMUX HLZ HVGLF HZ~ H~9 IHE J1W JJJVA KOM LG9 LY1 M41 MHUIS MO0 MS~ N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SBC SDF SDG SDP SDS SES SEW SPC SPCBC SSB SSD SST SSV SSW SSZ T5K TN5 TWZ UHS WH7 WUQ XPP YYP ZMT ZY4 ~02 ~G- 77I AATTM AAXKI AAYWO AAYXX ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO ADVLN AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD  | 
    
| ID | FETCH-LOGICAL-c297t-ebc659c46de419ada18c54cf28ae2ef03887a7e8c3cd166dac96b0126fcb270b3 | 
    
| IEDL.DBID | .~1 | 
    
| ISSN | 0020-0255 | 
    
| IngestDate | Wed Oct 01 04:53:58 EDT 2025 Thu Apr 24 23:01:33 EDT 2025 Fri Feb 23 02:33:55 EST 2024  | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Keywords | Artifacts Computer-assisted Signal processing Neural networks (computer) Arterial pressure Physiologic Monitoring  | 
    
| Language | English | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c297t-ebc659c46de419ada18c54cf28ae2ef03887a7e8c3cd166dac96b0126fcb270b3 | 
    
| ORCID | 0000-0002-0988-2236 | 
    
| PageCount | 14 | 
    
| ParticipantIDs | crossref_citationtrail_10_1016_j_ins_2018_05_018 crossref_primary_10_1016_j_ins_2018_05_018 elsevier_sciencedirect_doi_10_1016_j_ins_2018_05_018  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | August 2018 2018-08-00  | 
    
| PublicationDateYYYYMMDD | 2018-08-01 | 
    
| PublicationDate_xml | – month: 08 year: 2018 text: August 2018  | 
    
| PublicationDecade | 2010 | 
    
| PublicationTitle | Information sciences | 
    
| PublicationYear | 2018 | 
    
| Publisher | Elsevier Inc | 
    
| Publisher_xml | – name: Elsevier Inc | 
    
| References | Aboy, McNames, Thong, Tsunami, Ellenby, Goldstein (bib0002) 2005; 52 Le Roux, Bengio (bib0021) 2008; 20 Lim, Ng, Jassim, Redmond, Zilany, Avolio, Lim, Tan, Lovell (bib0027) 2015; 15 Nichols, Denardo, Wilkinson, McEniery, Cockcroft, O'Rourke (bib0033) 2008; 10 Taji, Chan, Shirmohammadi (bib0043) 2017 Sweeney, McLoone, Ward (bib0041) 2013; 60 Patel, Menon, Tebbs, Hawker, Hutchinson, Kirkpatrick (bib0034) 2002; 28 Kool, van Waes, Bijker, Peelen, van Wolfswinkel, de Graaff, van Klei (bib0017) 2012; 59 Kim, Lee, Son, Czosnyka, Kim (bib0016) 2017 Imhoff, Bauer, Gather, Löhlein (bib0014) 1998; 24 Guillén-Rondon, Robinson (bib0012) 2016 Jindal (bib0015) 2016 Sweeney, Ward, McLoone (bib0042) 2012; 16 Li, Mark, Clifford (bib0025) 2009; 8 Sadr, Huvanandana, Nguyen, Kalra, McEwan, de Chazal (bib0037) 2016; 37 Caicedo, Van Huffel (bib0006) 2010 Xu, Schuckers (bib0046) 2001; 34 Huanhuan, Yue (bib0013) 2014 Pizov, Eden, Bystritski, Kalina, Tamir, Gelman (bib0035) 2012; 109 Walter (bib0045) 2002; 21 Mohamed, Dahl, Hinton (bib0031) 2009 Dahl, Yu, Deng, Acero (bib0009) 2012; 20 Choi, Park, Lee (bib0008) 2007 Movahedi, Coyle, Sejdić (bib0032) 2017 Larochelle, Bengio (bib0018) 2008 Zong, Moody, Mark (bib0050) 2004; 42 Lawhern, Hairston, McDowell, Westerfield, Robbins (bib0019) 2012; 208 Lu, Mukkamala (bib0028) 2006; 101 Li, Clifford (bib0024) 2008 Volpe (bib0044) 2010; 17 McKinley, Levine (bib0030) 1998; 45 Chisolm-Straker, Cherkas (bib0007) 2013; 45 McGhee, Bridges (bib0029) 2002; 22 Sun, Reisner, Mark (bib0040) 2006 Abdelazez, Quesnel, Chan, Yang (bib0001) 2017; 64 Li, Rajagopalan, Clifford (bib0026) 2014; 117 Romagnoli, Ricci, Quattrone, Tofani, Tujjar, Villa, Romano, De Gaudio (bib0036) 2014; 18 Yu, Deng (bib0047) 2011; 28 Zhang, Wu (bib0049) 2013; 21 Behar, Oster, Li, Clifford (bib0003) 2013; 60 Lee, Jeong, Kim, Czosnyka, Kim (bib0022) 2016; 63 Glorot, Bengio (bib0011) 2010 Li, Dong, Vai (bib0023) 2010; 5 Lazarevic, Ertöz, Kumar, Ozgur, Srivastava (bib0020) 2003 Zhang, Liu, Wu, Liu, Gao (bib0048) 2010 Srikureja, Darbar, Reeder (bib0039) 2000; 102 Bernard, Tarabalka, Angulo, Chanussot, Benediktsson (bib0005) 2012; 21 Sörnmo, Laguna (bib0038) 2005 Fraser, Chan, Green, MacIsaac (bib0010) 2014; 63 Bengio (bib0004) 2009; 2 Lazarevic (10.1016/j.ins.2018.05.018_bib0020) 2003 Yu (10.1016/j.ins.2018.05.018_bib0047) 2011; 28 Aboy (10.1016/j.ins.2018.05.018_bib0002) 2005; 52 Fraser (10.1016/j.ins.2018.05.018_bib0010) 2014; 63 Taji (10.1016/j.ins.2018.05.018_bib0043) 2017 Choi (10.1016/j.ins.2018.05.018_bib0008) 2007 Larochelle (10.1016/j.ins.2018.05.018_bib0018) 2008 Sörnmo (10.1016/j.ins.2018.05.018_bib0038) 2005 Walter (10.1016/j.ins.2018.05.018_bib0045) 2002; 21 Xu (10.1016/j.ins.2018.05.018_bib0046) 2001; 34 Guillén-Rondon (10.1016/j.ins.2018.05.018_bib0012) 2016 Imhoff (10.1016/j.ins.2018.05.018_bib0014) 1998; 24 Sweeney (10.1016/j.ins.2018.05.018_bib0041) 2013; 60 Kim (10.1016/j.ins.2018.05.018_bib0016) 2017 Abdelazez (10.1016/j.ins.2018.05.018_bib0001) 2017; 64 Dahl (10.1016/j.ins.2018.05.018_bib0009) 2012; 20 Patel (10.1016/j.ins.2018.05.018_bib0034) 2002; 28 Glorot (10.1016/j.ins.2018.05.018_bib0011) 2010 Pizov (10.1016/j.ins.2018.05.018_bib0035) 2012; 109 Bernard (10.1016/j.ins.2018.05.018_bib0005) 2012; 21 Li (10.1016/j.ins.2018.05.018_bib0026) 2014; 117 Bengio (10.1016/j.ins.2018.05.018_bib0004) 2009; 2 Li (10.1016/j.ins.2018.05.018_bib0024) 2008 Lim (10.1016/j.ins.2018.05.018_bib0027) 2015; 15 Volpe (10.1016/j.ins.2018.05.018_bib0044) 2010; 17 Sadr (10.1016/j.ins.2018.05.018_bib0037) 2016; 37 Le Roux (10.1016/j.ins.2018.05.018_bib0021) 2008; 20 Zong (10.1016/j.ins.2018.05.018_bib0050) 2004; 42 Caicedo (10.1016/j.ins.2018.05.018_bib0006) 2010 Jindal (10.1016/j.ins.2018.05.018_bib0015) 2016 Li (10.1016/j.ins.2018.05.018_bib0025) 2009; 8 Kool (10.1016/j.ins.2018.05.018_bib0017) 2012; 59 Mohamed (10.1016/j.ins.2018.05.018_bib0031) 2009 Sweeney (10.1016/j.ins.2018.05.018_bib0042) 2012; 16 Li (10.1016/j.ins.2018.05.018_bib0023) 2010; 5 Lawhern (10.1016/j.ins.2018.05.018_bib0019) 2012; 208 Srikureja (10.1016/j.ins.2018.05.018_bib0039) 2000; 102 Huanhuan (10.1016/j.ins.2018.05.018_bib0013) 2014 Sun (10.1016/j.ins.2018.05.018_bib0040) 2006 Movahedi (10.1016/j.ins.2018.05.018_bib0032) 2017 Romagnoli (10.1016/j.ins.2018.05.018_bib0036) 2014; 18 Chisolm-Straker (10.1016/j.ins.2018.05.018_bib0007) 2013; 45 Lee (10.1016/j.ins.2018.05.018_bib0022) 2016; 63 Behar (10.1016/j.ins.2018.05.018_bib0003) 2013; 60 McGhee (10.1016/j.ins.2018.05.018_bib0029) 2002; 22 Lu (10.1016/j.ins.2018.05.018_bib0028) 2006; 101 Zhang (10.1016/j.ins.2018.05.018_bib0048) 2010 Zhang (10.1016/j.ins.2018.05.018_bib0049) 2013; 21 Nichols (10.1016/j.ins.2018.05.018_bib0033) 2008; 10 McKinley (10.1016/j.ins.2018.05.018_bib0030) 1998; 45  | 
    
| References_xml | – volume: 17 start-page: 73 year: 2010 end-page: 102 ident: bib0044 article-title: Cardiovascular prevention in subjects with impaired fasting glucose or impaired glucose tolerance publication-title: High Blood Press. Cardiovasc. Prev. – volume: 24 start-page: 1305 year: 1998 end-page: 1314 ident: bib0014 article-title: Statistical pattern detection in univariate time series of intensive care on-line monitoring data publication-title: Intens. Care Med. – start-page: 155 year: 2016 end-page: 158 ident: bib0012 article-title: Deep brain stimulation signal classification using deep belief networks publication-title: 2016 International Conference on Computational Science and Computational Intelligence (CSCI) – volume: 18 start-page: 644 year: 2014 ident: bib0036 article-title: Accuracy of invasive arterial pressure monitoring in cardiovascular patients: an observational study publication-title: Crit. Care – volume: 28 start-page: 145 year: 2011 end-page: 154 ident: bib0047 article-title: Deep learning and its applications to signal and information processing [exploratory DSP] publication-title: IEEE Signal Process. Mag. – volume: 34 start-page: 205 year: 2001 end-page: 210 ident: bib0046 article-title: CHIME Study Group, Automatic detection of artifacts in heart period data publication-title: J. Electrocardiol. – start-page: 536 year: 2008 end-page: 543 ident: bib0018 article-title: Classification using discriminative restricted Boltzmann machines publication-title: Proceedings of the 25th International Conference on Machine Learning – volume: 59 start-page: 833 year: 2012 end-page: 841 ident: bib0017 article-title: Artifacts in research data obtained from an anesthesia information and management system publication-title: Can. J. Anesth. – volume: 16 start-page: 488 year: 2012 end-page: 500 ident: bib0042 article-title: Artifact removal in physiological signals—practices and possibilities publication-title: IEEE Trans. Inf. Technol. Biomed. – volume: 101 start-page: 598 year: 2006 end-page: 608 ident: bib0028 article-title: Continuous cardiac output monitoring in humans by invasive and noninvasive peripheral blood pressure waveform analysis publication-title: J. Appl. Physiol. – volume: 60 start-page: 1660 year: 2013 end-page: 1666 ident: bib0003 article-title: ECG signal quality during arrhythmia and its application to false alarm reduction publication-title: IEEE Trans. Biomed. Eng. – volume: 21 start-page: 697 year: 2013 end-page: 710 ident: bib0049 article-title: Deep belief networks based voice activity detection publication-title: IEEE Trans. Audio Speech Lang. Process – volume: 2 start-page: 1 year: 2009 end-page: 127 ident: bib0004 article-title: Learning deep architectures for AI publication-title: Found. Trends Mach. Learn. – volume: 20 start-page: 1631 year: 2008 end-page: 1649 ident: bib0021 article-title: Representational power of restricted Boltzmann machines and deep belief networks publication-title: Neural Comput – volume: 22 start-page: 60 year: 2002 end-page: 79 ident: bib0029 article-title: Monitoring arterial blood pressure: what you may not know publication-title: Crit. Care Nurse – volume: 21 start-page: 1237 year: 2002 end-page: 1256 ident: bib0045 article-title: Properties of the summary receiver operating characteristic (SROC) curve for diagnostic test data publication-title: Stat. Med. – volume: 117 start-page: 435 year: 2014 end-page: 447 ident: bib0026 article-title: A machine learning approach to multi-level ECG signal quality classification publication-title: Comput. Methods Programs Biomed. – volume: 45 start-page: 341 year: 2013 end-page: 344 ident: bib0007 article-title: Altered and unstable: wet beriberi, a clinical review publication-title: J. Emerg. Med. – volume: 15 start-page: 14142 year: 2015 end-page: 14161 ident: bib0027 article-title: Improved measurement of blood pressure by extraction of characteristic features from the cuff oscillometric waveform publication-title: Sensors – start-page: 25 year: 2003 end-page: 36 ident: bib0020 article-title: A comparative study of anomaly detection schemes in network intrusion detection, In: publication-title: Society for Industrial and Applied Mathematics International Conference on Data Mining – start-page: 13 year: 2006 end-page: 16 ident: bib0040 article-title: A signal abnormality index for arterial blood pressure waveforms publication-title: Computers Cardiology – volume: 37 start-page: 1340 year: 2016 ident: bib0037 article-title: Reducing false arrhythmia alarms in the ICU using multimodal signals and robust QRS detection publication-title: Physiol. Meas. – volume: 63 start-page: 2169 year: 2016 end-page: 2176 ident: bib0022 article-title: Morphological feature extraction from a continuous intracranial pressure pulse via a peak clustering algorithm publication-title: IEEE Trans. Biomed. Eng. – volume: 5 start-page: 76 year: 2010 end-page: 81 ident: bib0023 article-title: On an automatic delineator for arterial blood pressure waveforms publication-title: Biomed. Signal Process. Control – volume: 208 start-page: 181 year: 2012 end-page: 189 ident: bib0019 article-title: Detection and classification of subject-generated artifacts in EEG signals using autoregressive models publication-title: J. Neurosci. Methods – volume: 52 start-page: 1662 year: 2005 end-page: 1670 ident: bib0002 article-title: An automatic beat detection algorithm for pressure signals publication-title: IEEE Trans. Biomed. Eng. – volume: 8 start-page: 13 year: 2009 ident: bib0025 article-title: Artificial arterial blood pressure artifact models and an evaluation of a robust blood pressure and heart rate estimator publication-title: Biomed. Eng. Online – volume: 28 start-page: 547 year: 2002 end-page: 553 ident: bib0034 article-title: Specialist neurocritical care and outcome from head injury publication-title: Intens. Care Med. – start-page: 1 year: 2010 end-page: 4 ident: bib0048 article-title: A novel feature extraction method for signal quality assessment of arterial blood pressure for monitoring cerebral autoregulation publication-title: 2010 4th International Conference on Bioinformatics and Biomedical Engineering (iCBBE) – volume: 20 start-page: 30 year: 2012 end-page: 42 ident: bib0009 article-title: Context-dependent pre-trained deep neural networks for large-vocabulary speech recognition publication-title: IEEE Trans. Audio Speech Lang. Process. – volume: 60 start-page: 97 year: 2013 end-page: 105 ident: bib0041 article-title: The use of ensemble empirical mode decomposition with canonical correlation analysis as a novel artifact removal technique publication-title: IEEE Trans. Biomed. Eng. – start-page: 7 year: 2014 end-page: 12 ident: bib0013 article-title: Classification of electrocardiogram signals with deep belief networks publication-title: 2014 IEEE 17th International Conference on Computational Science and Engineering (CSE) – start-page: 36 year: 2016 end-page: 37 ident: bib0015 article-title: Integrating mobile and cloud for PPG signal selection to monitor heart rate during intensive physical exercise publication-title: Proceedings of the International Conference on Mobile Software Engineering and Systems – start-page: 1 year: 2017 end-page: 8 ident: bib0043 article-title: False alarm reduction in atrial fibrillation detection using deep belief networks publication-title: IEEE T. Instrum. Meas. – year: 2017 ident: bib0032 article-title: Deep belief networks for electroencephalography: a review of recent contributions and future outlooks publication-title: IEEE J. Biomed. Health Inform. – volume: 45 start-page: 1049 year: 1998 end-page: 1060 ident: bib0030 article-title: Cubic spline interpolation publication-title: College Redwoods – volume: 21 start-page: 2008 year: 2012 end-page: 2021 ident: bib0005 article-title: Spectral–spatial classification of hyperspectral data based on a stochastic minimum spanning forest approach publication-title: IEEE Trans. Image Process. – volume: 10 start-page: 295 year: 2008 end-page: 303 ident: bib0033 article-title: Effects of arterial stiffness, pulse wave velocity, and wave reflections on the central aortic pressure waveform publication-title: J. Clin. Hypertens. (Greenwich) – start-page: 249 year: 2010 end-page: 256 ident: bib0011 article-title: Understanding the difficulty of training deep feedforward neural networks publication-title: Proceedings of the Thirteenth International Conference on Artificial Intelligence and Statistics – volume: 64 start-page: 1318 year: 2017 end-page: 1325 ident: bib0001 article-title: Signal quality analysis of ambulatory electrocardiograms to gate false myocardial ischemia alarms publication-title: IEEE Trans. Biomed. Eng. – volume: 109 start-page: 911 year: 2012 end-page: 918 ident: bib0035 article-title: Hypotension during gradual blood loss: waveform variables response and absence of tachycardia publication-title: Br. J. Anaesth. – volume: 42 start-page: 698 year: 2004 end-page: 706 ident: bib0050 article-title: Reduction of false arterial blood pressure alarms using signal quality assessement and relationships between the electrocardiogram and arterial blood pressure publication-title: Med. Biol. Eng. Comput. – volume: 102 start-page: 1337 year: 2000 end-page: 1338 ident: bib0039 article-title: Tremor-induced ECG artifact mimicking ventricular tachycardia publication-title: Circulation – start-page: 988 year: 2010 end-page: 991 ident: bib0006 article-title: Weighted LS-SVM for function estimation applied to artifact removal in bio-signal processing publication-title: Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC) – year: 2017 ident: bib0016 article-title: Hemodynamic instability and cardiovascular events after traumatic brain injury predict outcome after artifact removal with deep belief network analysis publication-title: J. Neurosurg. Anesthesiol. – year: 2005 ident: bib0038 article-title: Bioelectrical Signal Processing in Cardiac and Neurological Applications – start-page: 2185 year: 2008 end-page: 2187 ident: bib0024 article-title: Suppress false Arrhythmia alarms of ICU monitors using heart rate estimation based on combined arterial blood pressure and ECG analysis, publication-title: The 2nd International Conference on Bioinformatics and Biomedical Engineering – start-page: 39 year: 2009 ident: bib0031 article-title: Deep belief networks for phone recognition publication-title: Neural Information Processing Systems Workshop on Deep Learning for Speech Recognition and Related Applications – start-page: 3285 year: 2007 end-page: 3287 ident: bib0008 article-title: Motion artifact reduction in blood pressure signals using adaptive digital filter with a capacitive sensor publication-title: 29th Annual International Conference of the IEEE Engineering in Medicine and Biology Society – volume: 63 start-page: 2919 year: 2014 end-page: 2930 ident: bib0010 article-title: Automated biosignal quality analysis for electromyography using a one-class support vector machine publication-title: IEEE Trans. Instrum. Meas. – volume: 18 start-page: 644 year: 2014 ident: 10.1016/j.ins.2018.05.018_bib0036 article-title: Accuracy of invasive arterial pressure monitoring in cardiovascular patients: an observational study publication-title: Crit. Care doi: 10.1186/s13054-014-0644-4 – year: 2017 ident: 10.1016/j.ins.2018.05.018_bib0016 article-title: Hemodynamic instability and cardiovascular events after traumatic brain injury predict outcome after artifact removal with deep belief network analysis publication-title: J. Neurosurg. Anesthesiol. – start-page: 3285 year: 2007 ident: 10.1016/j.ins.2018.05.018_bib0008 article-title: Motion artifact reduction in blood pressure signals using adaptive digital filter with a capacitive sensor – volume: 45 start-page: 341 year: 2013 ident: 10.1016/j.ins.2018.05.018_bib0007 article-title: Altered and unstable: wet beriberi, a clinical review publication-title: J. Emerg. Med. doi: 10.1016/j.jemermed.2013.04.022 – volume: 34 start-page: 205 year: 2001 ident: 10.1016/j.ins.2018.05.018_bib0046 article-title: CHIME Study Group, Automatic detection of artifacts in heart period data publication-title: J. Electrocardiol. doi: 10.1054/jelc.2001.28876 – start-page: 155 year: 2016 ident: 10.1016/j.ins.2018.05.018_bib0012 article-title: Deep brain stimulation signal classification using deep belief networks – year: 2017 ident: 10.1016/j.ins.2018.05.018_bib0032 article-title: Deep belief networks for electroencephalography: a review of recent contributions and future outlooks publication-title: IEEE J. Biomed. Health Inform. – volume: 59 start-page: 833 year: 2012 ident: 10.1016/j.ins.2018.05.018_bib0017 article-title: Artifacts in research data obtained from an anesthesia information and management system publication-title: Can. J. Anesth. doi: 10.1007/s12630-012-9754-0 – year: 2005 ident: 10.1016/j.ins.2018.05.018_bib0038 – volume: 16 start-page: 488 year: 2012 ident: 10.1016/j.ins.2018.05.018_bib0042 article-title: Artifact removal in physiological signals—practices and possibilities publication-title: IEEE Trans. Inf. Technol. Biomed. doi: 10.1109/TITB.2012.2188536 – volume: 63 start-page: 2169 year: 2016 ident: 10.1016/j.ins.2018.05.018_bib0022 article-title: Morphological feature extraction from a continuous intracranial pressure pulse via a peak clustering algorithm publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2015.2512278 – volume: 28 start-page: 547 year: 2002 ident: 10.1016/j.ins.2018.05.018_bib0034 article-title: Specialist neurocritical care and outcome from head injury publication-title: Intens. Care Med. doi: 10.1007/s00134-002-1235-4 – volume: 37 start-page: 1340 year: 2016 ident: 10.1016/j.ins.2018.05.018_bib0037 article-title: Reducing false arrhythmia alarms in the ICU using multimodal signals and robust QRS detection publication-title: Physiol. Meas. doi: 10.1088/0967-3334/37/8/1340 – volume: 117 start-page: 435 year: 2014 ident: 10.1016/j.ins.2018.05.018_bib0026 article-title: A machine learning approach to multi-level ECG signal quality classification publication-title: Comput. Methods Programs Biomed. doi: 10.1016/j.cmpb.2014.09.002 – volume: 17 start-page: 73 year: 2010 ident: 10.1016/j.ins.2018.05.018_bib0044 article-title: Cardiovascular prevention in subjects with impaired fasting glucose or impaired glucose tolerance publication-title: High Blood Press. Cardiovasc. Prev. doi: 10.2165/11311830-000000000-00000 – volume: 22 start-page: 60 year: 2002 ident: 10.1016/j.ins.2018.05.018_bib0029 article-title: Monitoring arterial blood pressure: what you may not know publication-title: Crit. Care Nurse doi: 10.4037/ccn2002.22.2.60 – start-page: 13 year: 2006 ident: 10.1016/j.ins.2018.05.018_bib0040 article-title: A signal abnormality index for arterial blood pressure waveforms publication-title: Computers Cardiology – volume: 60 start-page: 1660 year: 2013 ident: 10.1016/j.ins.2018.05.018_bib0003 article-title: ECG signal quality during arrhythmia and its application to false alarm reduction publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2013.2240452 – volume: 64 start-page: 1318 year: 2017 ident: 10.1016/j.ins.2018.05.018_bib0001 article-title: Signal quality analysis of ambulatory electrocardiograms to gate false myocardial ischemia alarms publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2016.2602283 – start-page: 1 year: 2010 ident: 10.1016/j.ins.2018.05.018_bib0048 article-title: A novel feature extraction method for signal quality assessment of arterial blood pressure for monitoring cerebral autoregulation – volume: 45 start-page: 1049 year: 1998 ident: 10.1016/j.ins.2018.05.018_bib0030 article-title: Cubic spline interpolation publication-title: College Redwoods – start-page: 1 year: 2017 ident: 10.1016/j.ins.2018.05.018_bib0043 article-title: False alarm reduction in atrial fibrillation detection using deep belief networks publication-title: IEEE T. Instrum. Meas. – volume: 21 start-page: 1237 year: 2002 ident: 10.1016/j.ins.2018.05.018_bib0045 article-title: Properties of the summary receiver operating characteristic (SROC) curve for diagnostic test data publication-title: Stat. Med. doi: 10.1002/sim.1099 – start-page: 7 year: 2014 ident: 10.1016/j.ins.2018.05.018_bib0013 article-title: Classification of electrocardiogram signals with deep belief networks – volume: 60 start-page: 97 year: 2013 ident: 10.1016/j.ins.2018.05.018_bib0041 article-title: The use of ensemble empirical mode decomposition with canonical correlation analysis as a novel artifact removal technique publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2012.2225427 – volume: 2 start-page: 1 year: 2009 ident: 10.1016/j.ins.2018.05.018_bib0004 article-title: Learning deep architectures for AI publication-title: Found. Trends Mach. Learn. doi: 10.1561/2200000006 – volume: 21 start-page: 2008 year: 2012 ident: 10.1016/j.ins.2018.05.018_bib0005 article-title: Spectral–spatial classification of hyperspectral data based on a stochastic minimum spanning forest approach publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2011.2175741 – volume: 21 start-page: 697 year: 2013 ident: 10.1016/j.ins.2018.05.018_bib0049 article-title: Deep belief networks based voice activity detection publication-title: IEEE Trans. Audio Speech Lang. Process doi: 10.1109/TASL.2012.2229986 – volume: 208 start-page: 181 year: 2012 ident: 10.1016/j.ins.2018.05.018_bib0019 article-title: Detection and classification of subject-generated artifacts in EEG signals using autoregressive models publication-title: J. Neurosci. Methods doi: 10.1016/j.jneumeth.2012.05.017 – start-page: 36 year: 2016 ident: 10.1016/j.ins.2018.05.018_bib0015 article-title: Integrating mobile and cloud for PPG signal selection to monitor heart rate during intensive physical exercise – volume: 52 start-page: 1662 year: 2005 ident: 10.1016/j.ins.2018.05.018_bib0002 article-title: An automatic beat detection algorithm for pressure signals publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2005.855725 – volume: 20 start-page: 1631 year: 2008 ident: 10.1016/j.ins.2018.05.018_bib0021 article-title: Representational power of restricted Boltzmann machines and deep belief networks publication-title: Neural Comput doi: 10.1162/neco.2008.04-07-510 – start-page: 536 year: 2008 ident: 10.1016/j.ins.2018.05.018_bib0018 article-title: Classification using discriminative restricted Boltzmann machines – volume: 8 start-page: 13 year: 2009 ident: 10.1016/j.ins.2018.05.018_bib0025 article-title: Artificial arterial blood pressure artifact models and an evaluation of a robust blood pressure and heart rate estimator publication-title: Biomed. Eng. Online doi: 10.1186/1475-925X-8-13 – start-page: 2185 year: 2008 ident: 10.1016/j.ins.2018.05.018_bib0024 article-title: Suppress false Arrhythmia alarms of ICU monitors using heart rate estimation based on combined arterial blood pressure and ECG analysis, – volume: 15 start-page: 14142 year: 2015 ident: 10.1016/j.ins.2018.05.018_bib0027 article-title: Improved measurement of blood pressure by extraction of characteristic features from the cuff oscillometric waveform publication-title: Sensors doi: 10.3390/s150614142 – start-page: 39 year: 2009 ident: 10.1016/j.ins.2018.05.018_bib0031 article-title: Deep belief networks for phone recognition – volume: 5 start-page: 76 year: 2010 ident: 10.1016/j.ins.2018.05.018_bib0023 article-title: On an automatic delineator for arterial blood pressure waveforms publication-title: Biomed. Signal Process. Control doi: 10.1016/j.bspc.2009.06.002 – volume: 63 start-page: 2919 year: 2014 ident: 10.1016/j.ins.2018.05.018_bib0010 article-title: Automated biosignal quality analysis for electromyography using a one-class support vector machine publication-title: IEEE Trans. Instrum. Meas. doi: 10.1109/TIM.2014.2317296 – volume: 24 start-page: 1305 year: 1998 ident: 10.1016/j.ins.2018.05.018_bib0014 article-title: Statistical pattern detection in univariate time series of intensive care on-line monitoring data publication-title: Intens. Care Med. doi: 10.1007/s001340050767 – start-page: 25 year: 2003 ident: 10.1016/j.ins.2018.05.018_bib0020 article-title: A comparative study of anomaly detection schemes in network intrusion detection, In: – volume: 10 start-page: 295 year: 2008 ident: 10.1016/j.ins.2018.05.018_bib0033 article-title: Effects of arterial stiffness, pulse wave velocity, and wave reflections on the central aortic pressure waveform publication-title: J. Clin. Hypertens. (Greenwich) doi: 10.1111/j.1751-7176.2008.04746.x – volume: 28 start-page: 145 year: 2011 ident: 10.1016/j.ins.2018.05.018_bib0047 article-title: Deep learning and its applications to signal and information processing [exploratory DSP] publication-title: IEEE Signal Process. Mag. doi: 10.1109/MSP.2010.939038 – volume: 20 start-page: 30 year: 2012 ident: 10.1016/j.ins.2018.05.018_bib0009 article-title: Context-dependent pre-trained deep neural networks for large-vocabulary speech recognition publication-title: IEEE Trans. Audio Speech Lang. Process. doi: 10.1109/TASL.2011.2134090 – volume: 102 start-page: 1337 year: 2000 ident: 10.1016/j.ins.2018.05.018_bib0039 article-title: Tremor-induced ECG artifact mimicking ventricular tachycardia publication-title: Circulation doi: 10.1161/01.CIR.102.11.1337 – start-page: 249 year: 2010 ident: 10.1016/j.ins.2018.05.018_bib0011 article-title: Understanding the difficulty of training deep feedforward neural networks – volume: 101 start-page: 598 year: 2006 ident: 10.1016/j.ins.2018.05.018_bib0028 article-title: Continuous cardiac output monitoring in humans by invasive and noninvasive peripheral blood pressure waveform analysis publication-title: J. Appl. Physiol. doi: 10.1152/japplphysiol.01488.2005 – volume: 109 start-page: 911 year: 2012 ident: 10.1016/j.ins.2018.05.018_bib0035 article-title: Hypotension during gradual blood loss: waveform variables response and absence of tachycardia publication-title: Br. J. Anaesth. doi: 10.1093/bja/aes300 – start-page: 988 year: 2010 ident: 10.1016/j.ins.2018.05.018_bib0006 article-title: Weighted LS-SVM for function estimation applied to artifact removal in bio-signal processing – volume: 42 start-page: 698 year: 2004 ident: 10.1016/j.ins.2018.05.018_bib0050 article-title: Reduction of false arterial blood pressure alarms using signal quality assessement and relationships between the electrocardiogram and arterial blood pressure publication-title: Med. Biol. Eng. Comput. doi: 10.1007/BF02347553  | 
    
| SSID | ssj0004766 | 
    
| Score | 2.363657 | 
    
| Snippet | •The deep belief network (DBN) model excels at artifact classification in pulse waveforms.•The DBN allows rapid detection and elimination of artifacts in... | 
    
| SourceID | crossref elsevier  | 
    
| SourceType | Enrichment Source Index Database Publisher  | 
    
| StartPage | 145 | 
    
| SubjectTerms | Arterial pressure Computer-assisted Monitoring Neural networks (computer) Physiologic Signal processing  | 
    
| Title | Automated artifact elimination of physiological signals using a deep belief network: An application for continuously measured arterial blood pressure waveforms | 
    
| URI | https://dx.doi.org/10.1016/j.ins.2018.05.018 | 
    
| Volume | 456 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1872-6291 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0004766 issn: 0020-0255 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals [SCFCJ] customDbUrl: eissn: 1872-6291 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0004766 issn: 0020-0255 databaseCode: AIKHN dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: ScienceDirect (Elsevier) customDbUrl: eissn: 1872-6291 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0004766 issn: 0020-0255 databaseCode: .~1 dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: ScienceDirect Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1872-6291 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0004766 issn: 0020-0255 databaseCode: ACRLP dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1872-6291 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0004766 issn: 0020-0255 databaseCode: AKRWK dateStart: 19681201 isFulltext: true providerName: Library Specific Holdings  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NjtMwELZWywUOq2UB7Q9dzQFxQAobJ46dcKsqqgLSnqi0t8ieTFBXJa22LYgLr8Kr4nEcKBJw2FMUx6M4nsnM2P5mRogXCsmg9-sTlKQSJUtMKrQysVK2RmNuKxcAstd6Nlfvb4qbAzEZYmEYVhl1f6_Tg7aOLVdxNq_WiwXH-GbBI_ZCmeYm57TbShmuYvD6-2-YhzL9eSUvk7j3cLIZMF6LjjN2y7JP3ln-3Tbt2ZvpsTiKjiKM-7E8FgfUnYhHe-kDT8QoBh3AS4hRRTzLEH_XJ-LHeLdd-UZqgD-JYxiAlqGMV-i4aiFsbAz6DxjM4cURGAz_CSw0RGtwnoRa6Hq8-BsYd7B36g3-vcB490W3W-02y2_wud91DO8M4g0BHA8BcesfwFf7hXi0m6diPn37cTJLYkGGBLPKbBNyqIsKlW5Iyco21rO2UNhmpaWMWk4sY6yhEnNspNaNxUo7bwF1iy4zqcuficNu1dGpgNYvLLPM5sbJSklUFlXhUu05RCZLGzwT6cCKGmO2ci6asawHWNpt7blXM_fqtKj95Uy8-kWy7lN1_K-zGvhb_yFvtTcl_yY7vx_ZhXjIdz1w8Lk43N7taOSdma27DNJ6KR6M332YXf8EfDv4-A | 
    
| linkProvider | Elsevier | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6VcoAeUCmgPmiZA-KAFBo7jp1wW1VUC5SeWqk3y544aNGSXbW7rbjwV_pXsR2nLBL0wCmS7ZEfM5kZ29-MAV4Lcoq8X58RcyITrKKsJsMyw1irJBWmthEgeyrH5-LTRXmxBkdDLEyAVSbd3-v0qK1TyWFazcP5ZBJifHn0iL1Q5oUq5AN4KEquwg7s3c_fOA-h-gvLsE8KzYerzQjymnQhZTer-uyd1d-N04rBOd6EJ8lTxFE_mKew5rot2FjJH7gF-ynqAN9gCisKy4zpf30Gt6PlYuYLXYNhTiGIAd00vuMVG85ajCcbgwLEgObw8ogBDf8VDTbOzdF6Etdi1wPG3-Oow5Vrb_T9YgC8T7rlbHk1_YHf-2PH2GeUb4zoeIyQW1-BN-bahdFePYfz4w9nR-MsvciQEa_VInOWZFmTkI0TrDaN8bwtBbW8Mo67NmSWUUa5igpqmJSNoVpabwJlS5ar3BYvYL2bdW4bsPU7S85NoSyrBSNhSJQ2l55DTvG8oR3IB1ZoSunKw6sZUz3g0r5pzz0duKfzUvvPDry9I5n3uTruaywG_uo_BE57W_Jvst3_I3sFj8ZnX070ycfTz3vwONT0KMKXsL64XLp979ks7EGU3F82qfqN | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Automated+artifact+elimination+of+physiological+signals+using+a+deep+belief+network%3A+An+application+for+continuously+measured+arterial+blood+pressure+waveforms&rft.jtitle=Information+sciences&rft.au=Son%2C+Yunsik&rft.au=Lee%2C+Seung-Bo&rft.au=Kim%2C+Hakseung&rft.au=Song%2C+Eun-Suk&rft.date=2018-08-01&rft.issn=0020-0255&rft.volume=456&rft.spage=145&rft.epage=158&rft_id=info:doi/10.1016%2Fj.ins.2018.05.018&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_ins_2018_05_018 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0020-0255&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0020-0255&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0020-0255&client=summon |