Automated artifact elimination of physiological signals using a deep belief network: An application for continuously measured arterial blood pressure waveforms

•The deep belief network (DBN) model excels at artifact classification in pulse waveforms.•The DBN allows rapid detection and elimination of artifacts in physiological signals.•Various types of artifacts in arterial blood pressure can be detected by the DBN. Artifacts in physiological signals acquir...

Full description

Saved in:
Bibliographic Details
Published inInformation sciences Vol. 456; pp. 145 - 158
Main Authors Son, Yunsik, Lee, Seung-Bo, Kim, Hakseung, Song, Eun-Suk, Huh, Hyub, Czosnyka, Marek, Kim, Dong-Joo
Format Journal Article
LanguageEnglish
Published Elsevier Inc 01.08.2018
Subjects
Online AccessGet full text
ISSN0020-0255
1872-6291
DOI10.1016/j.ins.2018.05.018

Cover

Abstract •The deep belief network (DBN) model excels at artifact classification in pulse waveforms.•The DBN allows rapid detection and elimination of artifacts in physiological signals.•Various types of artifacts in arterial blood pressure can be detected by the DBN. Artifacts in physiological signals acquired during intensive care have the potential to be recognized as critical pathological events and lead to misdiagnosis or mismanagement. Manual artifact removal necessitates significant labor-time intensity and is subject to inter- and intra-observer variability. Various methods have been proposed to automate the task; however, the methods are yet to be validated, possibly due to the diversity of artifact types. Deep belief networks (DBNs) have been shown to be capable of learning generative and discriminative feature extraction models, hence suitable for classifying signals with multiple features. This study proposed a DBN-based model for artifact elimination in pulse waveform signals, which incorporates pulse segmentation, pressure normalization and decision models using DBN, and applied the model to artifact removal in monitoring arterial blood pressure (ABP). When compared with a widely used ABP artifact removal algorithm (signal abnormality index; SAI), the DBN model exhibited significantly higher classification performance (net prediction of optimal DBN = 95.9%, SAI = 84.7%). In particular, DBN exhibited greater sensitivity than SAI for identifying various types of artifacts (motion = 93.6%, biological = 95.4%, cuff inflation = 89.1%, transducer flushing = 97%). The proposed model could significantly enhance the quality of signal analysis, hence may be beneficial for use in continuous patient monitoring in clinical practice.
AbstractList •The deep belief network (DBN) model excels at artifact classification in pulse waveforms.•The DBN allows rapid detection and elimination of artifacts in physiological signals.•Various types of artifacts in arterial blood pressure can be detected by the DBN. Artifacts in physiological signals acquired during intensive care have the potential to be recognized as critical pathological events and lead to misdiagnosis or mismanagement. Manual artifact removal necessitates significant labor-time intensity and is subject to inter- and intra-observer variability. Various methods have been proposed to automate the task; however, the methods are yet to be validated, possibly due to the diversity of artifact types. Deep belief networks (DBNs) have been shown to be capable of learning generative and discriminative feature extraction models, hence suitable for classifying signals with multiple features. This study proposed a DBN-based model for artifact elimination in pulse waveform signals, which incorporates pulse segmentation, pressure normalization and decision models using DBN, and applied the model to artifact removal in monitoring arterial blood pressure (ABP). When compared with a widely used ABP artifact removal algorithm (signal abnormality index; SAI), the DBN model exhibited significantly higher classification performance (net prediction of optimal DBN = 95.9%, SAI = 84.7%). In particular, DBN exhibited greater sensitivity than SAI for identifying various types of artifacts (motion = 93.6%, biological = 95.4%, cuff inflation = 89.1%, transducer flushing = 97%). The proposed model could significantly enhance the quality of signal analysis, hence may be beneficial for use in continuous patient monitoring in clinical practice.
Author Lee, Seung-Bo
Kim, Dong-Joo
Kim, Hakseung
Song, Eun-Suk
Huh, Hyub
Son, Yunsik
Czosnyka, Marek
Author_xml – sequence: 1
  givenname: Yunsik
  surname: Son
  fullname: Son, Yunsik
  organization: Department of Brain and Cognitive Engineering, Korea University, Seoul, South Korea
– sequence: 2
  givenname: Seung-Bo
  surname: Lee
  fullname: Lee, Seung-Bo
  organization: Department of Brain and Cognitive Engineering, Korea University, Seoul, South Korea
– sequence: 3
  givenname: Hakseung
  surname: Kim
  fullname: Kim, Hakseung
  organization: Department of Brain and Cognitive Engineering, Korea University, Seoul, South Korea
– sequence: 4
  givenname: Eun-Suk
  surname: Song
  fullname: Song, Eun-Suk
  organization: Department of Brain and Cognitive Engineering, Korea University, Seoul, South Korea
– sequence: 5
  givenname: Hyub
  surname: Huh
  fullname: Huh, Hyub
  organization: Department of Anesthesiology and Pain Medicine, Korea University Medical Center, Seoul, South Korea
– sequence: 6
  givenname: Marek
  surname: Czosnyka
  fullname: Czosnyka, Marek
  organization: Division of Neurosurgery, Addenbrooke's Hospital, University of Cambridge, Cambridge, United Kingdom Institute of Electronic Systems, Warsaw University of Technology, Warsaw, Poland
– sequence: 7
  givenname: Dong-Joo
  orcidid: 0000-0002-0988-2236
  surname: Kim
  fullname: Kim, Dong-Joo
  email: dongjookim@korea.ac.kr
  organization: Department of Brain and Cognitive Engineering, Korea University, Seoul, South Korea
BookMark eNp9kMFu2zAQRIkiBeq4_YDe-ANSSNqipORkBE1awEAu6ZmgyKW7rkQKJJXAX9NfLR331ENOcxi8md25Jlc-eCDkK2c1Z1zeHGv0qRaMdzVr6iIfyIp3raik6PkVWTEmWMVE03wi1ykdGWPbVsoV-bNbcph0Bkt1zOi0yRRGnNDrjMHT4Oj865QwjOGARo804cHrMdEloT9QTS3ATIeCgKMe8muIv2_pzlM9z2MB3kJciNQEn9EvYUnjiU6g0xIvnRCxxA5jCJbOEdLZoK_6BQo1pc_koyt18OWfrsnPh2_P99-r_dPjj_vdvjKib3MFg5FNb7bSwpb32mremWZrnOg0CHBs03WtbqEzG2O5lFabXg6MC-nMIFo2bNakveSaGFKK4JTB_HZ9jhpHxZk676yOquyszjsr1qgiheT_kXPEScfTu8zdhYHy0gtCVMkgeAMWI5isbMB36L8YR56s
CitedBy_id crossref_primary_10_3171_2019_2_JNS182260
crossref_primary_10_1016_j_ins_2020_08_053
crossref_primary_10_1016_j_cie_2020_106427
crossref_primary_10_1007_s42979_023_01959_y
crossref_primary_10_1038_s41598_022_19101_y
crossref_primary_10_1016_j_engappai_2019_103378
crossref_primary_10_1109_ACCESS_2020_3041498
crossref_primary_10_1097_CCE_0000000000000814
crossref_primary_10_1038_s41598_022_22566_6
crossref_primary_10_1109_ACCESS_2020_3003059
crossref_primary_10_3340_jkns_2023_0195
Cites_doi 10.1186/s13054-014-0644-4
10.1016/j.jemermed.2013.04.022
10.1054/jelc.2001.28876
10.1007/s12630-012-9754-0
10.1109/TITB.2012.2188536
10.1109/TBME.2015.2512278
10.1007/s00134-002-1235-4
10.1088/0967-3334/37/8/1340
10.1016/j.cmpb.2014.09.002
10.2165/11311830-000000000-00000
10.4037/ccn2002.22.2.60
10.1109/TBME.2013.2240452
10.1109/TBME.2016.2602283
10.1002/sim.1099
10.1109/TBME.2012.2225427
10.1561/2200000006
10.1109/TIP.2011.2175741
10.1109/TASL.2012.2229986
10.1016/j.jneumeth.2012.05.017
10.1109/TBME.2005.855725
10.1162/neco.2008.04-07-510
10.1186/1475-925X-8-13
10.3390/s150614142
10.1016/j.bspc.2009.06.002
10.1109/TIM.2014.2317296
10.1007/s001340050767
10.1111/j.1751-7176.2008.04746.x
10.1109/MSP.2010.939038
10.1109/TASL.2011.2134090
10.1161/01.CIR.102.11.1337
10.1152/japplphysiol.01488.2005
10.1093/bja/aes300
10.1007/BF02347553
ContentType Journal Article
Copyright 2018
Copyright_xml – notice: 2018
DBID AAYXX
CITATION
DOI 10.1016/j.ins.2018.05.018
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Library & Information Science
EISSN 1872-6291
EndPage 158
ExternalDocumentID 10_1016_j_ins_2018_05_018
S0020025518303736
GroupedDBID --K
--M
--Z
-~X
.DC
.~1
0R~
1B1
1OL
1RT
1~.
1~5
29I
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
9JO
AAAKF
AAAKG
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARIN
AAXUO
AAYFN
ABAOU
ABBOA
ABEFU
ABFNM
ABJNI
ABMAC
ABTAH
ABUCO
ABXDB
ABYKQ
ACAZW
ACDAQ
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADGUI
ADJOM
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFFNX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIGVJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
APLSM
ARUGR
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HAMUX
HLZ
HVGLF
HZ~
H~9
IHE
J1W
JJJVA
KOM
LG9
LY1
M41
MHUIS
MO0
MS~
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SBC
SDF
SDG
SDP
SDS
SES
SEW
SPC
SPCBC
SSB
SSD
SST
SSV
SSW
SSZ
T5K
TN5
TWZ
UHS
WH7
WUQ
XPP
YYP
ZMT
ZY4
~02
~G-
77I
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
ADVLN
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
ID FETCH-LOGICAL-c297t-ebc659c46de419ada18c54cf28ae2ef03887a7e8c3cd166dac96b0126fcb270b3
IEDL.DBID .~1
ISSN 0020-0255
IngestDate Wed Oct 01 04:53:58 EDT 2025
Thu Apr 24 23:01:33 EDT 2025
Fri Feb 23 02:33:55 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Artifacts
Computer-assisted
Signal processing
Neural networks (computer)
Arterial pressure
Physiologic
Monitoring
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c297t-ebc659c46de419ada18c54cf28ae2ef03887a7e8c3cd166dac96b0126fcb270b3
ORCID 0000-0002-0988-2236
PageCount 14
ParticipantIDs crossref_citationtrail_10_1016_j_ins_2018_05_018
crossref_primary_10_1016_j_ins_2018_05_018
elsevier_sciencedirect_doi_10_1016_j_ins_2018_05_018
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate August 2018
2018-08-00
PublicationDateYYYYMMDD 2018-08-01
PublicationDate_xml – month: 08
  year: 2018
  text: August 2018
PublicationDecade 2010
PublicationTitle Information sciences
PublicationYear 2018
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References Aboy, McNames, Thong, Tsunami, Ellenby, Goldstein (bib0002) 2005; 52
Le Roux, Bengio (bib0021) 2008; 20
Lim, Ng, Jassim, Redmond, Zilany, Avolio, Lim, Tan, Lovell (bib0027) 2015; 15
Nichols, Denardo, Wilkinson, McEniery, Cockcroft, O'Rourke (bib0033) 2008; 10
Taji, Chan, Shirmohammadi (bib0043) 2017
Sweeney, McLoone, Ward (bib0041) 2013; 60
Patel, Menon, Tebbs, Hawker, Hutchinson, Kirkpatrick (bib0034) 2002; 28
Kool, van Waes, Bijker, Peelen, van Wolfswinkel, de Graaff, van Klei (bib0017) 2012; 59
Kim, Lee, Son, Czosnyka, Kim (bib0016) 2017
Imhoff, Bauer, Gather, Löhlein (bib0014) 1998; 24
Guillén-Rondon, Robinson (bib0012) 2016
Jindal (bib0015) 2016
Sweeney, Ward, McLoone (bib0042) 2012; 16
Li, Mark, Clifford (bib0025) 2009; 8
Sadr, Huvanandana, Nguyen, Kalra, McEwan, de Chazal (bib0037) 2016; 37
Caicedo, Van Huffel (bib0006) 2010
Xu, Schuckers (bib0046) 2001; 34
Huanhuan, Yue (bib0013) 2014
Pizov, Eden, Bystritski, Kalina, Tamir, Gelman (bib0035) 2012; 109
Walter (bib0045) 2002; 21
Mohamed, Dahl, Hinton (bib0031) 2009
Dahl, Yu, Deng, Acero (bib0009) 2012; 20
Choi, Park, Lee (bib0008) 2007
Movahedi, Coyle, Sejdić (bib0032) 2017
Larochelle, Bengio (bib0018) 2008
Zong, Moody, Mark (bib0050) 2004; 42
Lawhern, Hairston, McDowell, Westerfield, Robbins (bib0019) 2012; 208
Lu, Mukkamala (bib0028) 2006; 101
Li, Clifford (bib0024) 2008
Volpe (bib0044) 2010; 17
McKinley, Levine (bib0030) 1998; 45
Chisolm-Straker, Cherkas (bib0007) 2013; 45
McGhee, Bridges (bib0029) 2002; 22
Sun, Reisner, Mark (bib0040) 2006
Abdelazez, Quesnel, Chan, Yang (bib0001) 2017; 64
Li, Rajagopalan, Clifford (bib0026) 2014; 117
Romagnoli, Ricci, Quattrone, Tofani, Tujjar, Villa, Romano, De Gaudio (bib0036) 2014; 18
Yu, Deng (bib0047) 2011; 28
Zhang, Wu (bib0049) 2013; 21
Behar, Oster, Li, Clifford (bib0003) 2013; 60
Lee, Jeong, Kim, Czosnyka, Kim (bib0022) 2016; 63
Glorot, Bengio (bib0011) 2010
Li, Dong, Vai (bib0023) 2010; 5
Lazarevic, Ertöz, Kumar, Ozgur, Srivastava (bib0020) 2003
Zhang, Liu, Wu, Liu, Gao (bib0048) 2010
Srikureja, Darbar, Reeder (bib0039) 2000; 102
Bernard, Tarabalka, Angulo, Chanussot, Benediktsson (bib0005) 2012; 21
Sörnmo, Laguna (bib0038) 2005
Fraser, Chan, Green, MacIsaac (bib0010) 2014; 63
Bengio (bib0004) 2009; 2
Lazarevic (10.1016/j.ins.2018.05.018_bib0020) 2003
Yu (10.1016/j.ins.2018.05.018_bib0047) 2011; 28
Aboy (10.1016/j.ins.2018.05.018_bib0002) 2005; 52
Fraser (10.1016/j.ins.2018.05.018_bib0010) 2014; 63
Taji (10.1016/j.ins.2018.05.018_bib0043) 2017
Choi (10.1016/j.ins.2018.05.018_bib0008) 2007
Larochelle (10.1016/j.ins.2018.05.018_bib0018) 2008
Sörnmo (10.1016/j.ins.2018.05.018_bib0038) 2005
Walter (10.1016/j.ins.2018.05.018_bib0045) 2002; 21
Xu (10.1016/j.ins.2018.05.018_bib0046) 2001; 34
Guillén-Rondon (10.1016/j.ins.2018.05.018_bib0012) 2016
Imhoff (10.1016/j.ins.2018.05.018_bib0014) 1998; 24
Sweeney (10.1016/j.ins.2018.05.018_bib0041) 2013; 60
Kim (10.1016/j.ins.2018.05.018_bib0016) 2017
Abdelazez (10.1016/j.ins.2018.05.018_bib0001) 2017; 64
Dahl (10.1016/j.ins.2018.05.018_bib0009) 2012; 20
Patel (10.1016/j.ins.2018.05.018_bib0034) 2002; 28
Glorot (10.1016/j.ins.2018.05.018_bib0011) 2010
Pizov (10.1016/j.ins.2018.05.018_bib0035) 2012; 109
Bernard (10.1016/j.ins.2018.05.018_bib0005) 2012; 21
Li (10.1016/j.ins.2018.05.018_bib0026) 2014; 117
Bengio (10.1016/j.ins.2018.05.018_bib0004) 2009; 2
Li (10.1016/j.ins.2018.05.018_bib0024) 2008
Lim (10.1016/j.ins.2018.05.018_bib0027) 2015; 15
Volpe (10.1016/j.ins.2018.05.018_bib0044) 2010; 17
Sadr (10.1016/j.ins.2018.05.018_bib0037) 2016; 37
Le Roux (10.1016/j.ins.2018.05.018_bib0021) 2008; 20
Zong (10.1016/j.ins.2018.05.018_bib0050) 2004; 42
Caicedo (10.1016/j.ins.2018.05.018_bib0006) 2010
Jindal (10.1016/j.ins.2018.05.018_bib0015) 2016
Li (10.1016/j.ins.2018.05.018_bib0025) 2009; 8
Kool (10.1016/j.ins.2018.05.018_bib0017) 2012; 59
Mohamed (10.1016/j.ins.2018.05.018_bib0031) 2009
Sweeney (10.1016/j.ins.2018.05.018_bib0042) 2012; 16
Li (10.1016/j.ins.2018.05.018_bib0023) 2010; 5
Lawhern (10.1016/j.ins.2018.05.018_bib0019) 2012; 208
Srikureja (10.1016/j.ins.2018.05.018_bib0039) 2000; 102
Huanhuan (10.1016/j.ins.2018.05.018_bib0013) 2014
Sun (10.1016/j.ins.2018.05.018_bib0040) 2006
Movahedi (10.1016/j.ins.2018.05.018_bib0032) 2017
Romagnoli (10.1016/j.ins.2018.05.018_bib0036) 2014; 18
Chisolm-Straker (10.1016/j.ins.2018.05.018_bib0007) 2013; 45
Lee (10.1016/j.ins.2018.05.018_bib0022) 2016; 63
Behar (10.1016/j.ins.2018.05.018_bib0003) 2013; 60
McGhee (10.1016/j.ins.2018.05.018_bib0029) 2002; 22
Lu (10.1016/j.ins.2018.05.018_bib0028) 2006; 101
Zhang (10.1016/j.ins.2018.05.018_bib0048) 2010
Zhang (10.1016/j.ins.2018.05.018_bib0049) 2013; 21
Nichols (10.1016/j.ins.2018.05.018_bib0033) 2008; 10
McKinley (10.1016/j.ins.2018.05.018_bib0030) 1998; 45
References_xml – volume: 17
  start-page: 73
  year: 2010
  end-page: 102
  ident: bib0044
  article-title: Cardiovascular prevention in subjects with impaired fasting glucose or impaired glucose tolerance
  publication-title: High Blood Press. Cardiovasc. Prev.
– volume: 24
  start-page: 1305
  year: 1998
  end-page: 1314
  ident: bib0014
  article-title: Statistical pattern detection in univariate time series of intensive care on-line monitoring data
  publication-title: Intens. Care Med.
– start-page: 155
  year: 2016
  end-page: 158
  ident: bib0012
  article-title: Deep brain stimulation signal classification using deep belief networks
  publication-title: 2016 International Conference on Computational Science and Computational Intelligence (CSCI)
– volume: 18
  start-page: 644
  year: 2014
  ident: bib0036
  article-title: Accuracy of invasive arterial pressure monitoring in cardiovascular patients: an observational study
  publication-title: Crit. Care
– volume: 28
  start-page: 145
  year: 2011
  end-page: 154
  ident: bib0047
  article-title: Deep learning and its applications to signal and information processing [exploratory DSP]
  publication-title: IEEE Signal Process. Mag.
– volume: 34
  start-page: 205
  year: 2001
  end-page: 210
  ident: bib0046
  article-title: CHIME Study Group, Automatic detection of artifacts in heart period data
  publication-title: J. Electrocardiol.
– start-page: 536
  year: 2008
  end-page: 543
  ident: bib0018
  article-title: Classification using discriminative restricted Boltzmann machines
  publication-title: Proceedings of the 25th International Conference on Machine Learning
– volume: 59
  start-page: 833
  year: 2012
  end-page: 841
  ident: bib0017
  article-title: Artifacts in research data obtained from an anesthesia information and management system
  publication-title: Can. J. Anesth.
– volume: 16
  start-page: 488
  year: 2012
  end-page: 500
  ident: bib0042
  article-title: Artifact removal in physiological signals—practices and possibilities
  publication-title: IEEE Trans. Inf. Technol. Biomed.
– volume: 101
  start-page: 598
  year: 2006
  end-page: 608
  ident: bib0028
  article-title: Continuous cardiac output monitoring in humans by invasive and noninvasive peripheral blood pressure waveform analysis
  publication-title: J. Appl. Physiol.
– volume: 60
  start-page: 1660
  year: 2013
  end-page: 1666
  ident: bib0003
  article-title: ECG signal quality during arrhythmia and its application to false alarm reduction
  publication-title: IEEE Trans. Biomed. Eng.
– volume: 21
  start-page: 697
  year: 2013
  end-page: 710
  ident: bib0049
  article-title: Deep belief networks based voice activity detection
  publication-title: IEEE Trans. Audio Speech Lang. Process
– volume: 2
  start-page: 1
  year: 2009
  end-page: 127
  ident: bib0004
  article-title: Learning deep architectures for AI
  publication-title: Found. Trends Mach. Learn.
– volume: 20
  start-page: 1631
  year: 2008
  end-page: 1649
  ident: bib0021
  article-title: Representational power of restricted Boltzmann machines and deep belief networks
  publication-title: Neural Comput
– volume: 22
  start-page: 60
  year: 2002
  end-page: 79
  ident: bib0029
  article-title: Monitoring arterial blood pressure: what you may not know
  publication-title: Crit. Care Nurse
– volume: 21
  start-page: 1237
  year: 2002
  end-page: 1256
  ident: bib0045
  article-title: Properties of the summary receiver operating characteristic (SROC) curve for diagnostic test data
  publication-title: Stat. Med.
– volume: 117
  start-page: 435
  year: 2014
  end-page: 447
  ident: bib0026
  article-title: A machine learning approach to multi-level ECG signal quality classification
  publication-title: Comput. Methods Programs Biomed.
– volume: 45
  start-page: 341
  year: 2013
  end-page: 344
  ident: bib0007
  article-title: Altered and unstable: wet beriberi, a clinical review
  publication-title: J. Emerg. Med.
– volume: 15
  start-page: 14142
  year: 2015
  end-page: 14161
  ident: bib0027
  article-title: Improved measurement of blood pressure by extraction of characteristic features from the cuff oscillometric waveform
  publication-title: Sensors
– start-page: 25
  year: 2003
  end-page: 36
  ident: bib0020
  article-title: A comparative study of anomaly detection schemes in network intrusion detection, In:
  publication-title: Society for Industrial and Applied Mathematics International Conference on Data Mining
– start-page: 13
  year: 2006
  end-page: 16
  ident: bib0040
  article-title: A signal abnormality index for arterial blood pressure waveforms
  publication-title: Computers Cardiology
– volume: 37
  start-page: 1340
  year: 2016
  ident: bib0037
  article-title: Reducing false arrhythmia alarms in the ICU using multimodal signals and robust QRS detection
  publication-title: Physiol. Meas.
– volume: 63
  start-page: 2169
  year: 2016
  end-page: 2176
  ident: bib0022
  article-title: Morphological feature extraction from a continuous intracranial pressure pulse via a peak clustering algorithm
  publication-title: IEEE Trans. Biomed. Eng.
– volume: 5
  start-page: 76
  year: 2010
  end-page: 81
  ident: bib0023
  article-title: On an automatic delineator for arterial blood pressure waveforms
  publication-title: Biomed. Signal Process. Control
– volume: 208
  start-page: 181
  year: 2012
  end-page: 189
  ident: bib0019
  article-title: Detection and classification of subject-generated artifacts in EEG signals using autoregressive models
  publication-title: J. Neurosci. Methods
– volume: 52
  start-page: 1662
  year: 2005
  end-page: 1670
  ident: bib0002
  article-title: An automatic beat detection algorithm for pressure signals
  publication-title: IEEE Trans. Biomed. Eng.
– volume: 8
  start-page: 13
  year: 2009
  ident: bib0025
  article-title: Artificial arterial blood pressure artifact models and an evaluation of a robust blood pressure and heart rate estimator
  publication-title: Biomed. Eng. Online
– volume: 28
  start-page: 547
  year: 2002
  end-page: 553
  ident: bib0034
  article-title: Specialist neurocritical care and outcome from head injury
  publication-title: Intens. Care Med.
– start-page: 1
  year: 2010
  end-page: 4
  ident: bib0048
  article-title: A novel feature extraction method for signal quality assessment of arterial blood pressure for monitoring cerebral autoregulation
  publication-title: 2010 4th International Conference on Bioinformatics and Biomedical Engineering (iCBBE)
– volume: 20
  start-page: 30
  year: 2012
  end-page: 42
  ident: bib0009
  article-title: Context-dependent pre-trained deep neural networks for large-vocabulary speech recognition
  publication-title: IEEE Trans. Audio Speech Lang. Process.
– volume: 60
  start-page: 97
  year: 2013
  end-page: 105
  ident: bib0041
  article-title: The use of ensemble empirical mode decomposition with canonical correlation analysis as a novel artifact removal technique
  publication-title: IEEE Trans. Biomed. Eng.
– start-page: 7
  year: 2014
  end-page: 12
  ident: bib0013
  article-title: Classification of electrocardiogram signals with deep belief networks
  publication-title: 2014 IEEE 17th International Conference on Computational Science and Engineering (CSE)
– start-page: 36
  year: 2016
  end-page: 37
  ident: bib0015
  article-title: Integrating mobile and cloud for PPG signal selection to monitor heart rate during intensive physical exercise
  publication-title: Proceedings of the International Conference on Mobile Software Engineering and Systems
– start-page: 1
  year: 2017
  end-page: 8
  ident: bib0043
  article-title: False alarm reduction in atrial fibrillation detection using deep belief networks
  publication-title: IEEE T. Instrum. Meas.
– year: 2017
  ident: bib0032
  article-title: Deep belief networks for electroencephalography: a review of recent contributions and future outlooks
  publication-title: IEEE J. Biomed. Health Inform.
– volume: 45
  start-page: 1049
  year: 1998
  end-page: 1060
  ident: bib0030
  article-title: Cubic spline interpolation
  publication-title: College Redwoods
– volume: 21
  start-page: 2008
  year: 2012
  end-page: 2021
  ident: bib0005
  article-title: Spectral–spatial classification of hyperspectral data based on a stochastic minimum spanning forest approach
  publication-title: IEEE Trans. Image Process.
– volume: 10
  start-page: 295
  year: 2008
  end-page: 303
  ident: bib0033
  article-title: Effects of arterial stiffness, pulse wave velocity, and wave reflections on the central aortic pressure waveform
  publication-title: J. Clin. Hypertens. (Greenwich)
– start-page: 249
  year: 2010
  end-page: 256
  ident: bib0011
  article-title: Understanding the difficulty of training deep feedforward neural networks
  publication-title: Proceedings of the Thirteenth International Conference on Artificial Intelligence and Statistics
– volume: 64
  start-page: 1318
  year: 2017
  end-page: 1325
  ident: bib0001
  article-title: Signal quality analysis of ambulatory electrocardiograms to gate false myocardial ischemia alarms
  publication-title: IEEE Trans. Biomed. Eng.
– volume: 109
  start-page: 911
  year: 2012
  end-page: 918
  ident: bib0035
  article-title: Hypotension during gradual blood loss: waveform variables response and absence of tachycardia
  publication-title: Br. J. Anaesth.
– volume: 42
  start-page: 698
  year: 2004
  end-page: 706
  ident: bib0050
  article-title: Reduction of false arterial blood pressure alarms using signal quality assessement and relationships between the electrocardiogram and arterial blood pressure
  publication-title: Med. Biol. Eng. Comput.
– volume: 102
  start-page: 1337
  year: 2000
  end-page: 1338
  ident: bib0039
  article-title: Tremor-induced ECG artifact mimicking ventricular tachycardia
  publication-title: Circulation
– start-page: 988
  year: 2010
  end-page: 991
  ident: bib0006
  article-title: Weighted LS-SVM for function estimation applied to artifact removal in bio-signal processing
  publication-title: Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC)
– year: 2017
  ident: bib0016
  article-title: Hemodynamic instability and cardiovascular events after traumatic brain injury predict outcome after artifact removal with deep belief network analysis
  publication-title: J. Neurosurg. Anesthesiol.
– year: 2005
  ident: bib0038
  article-title: Bioelectrical Signal Processing in Cardiac and Neurological Applications
– start-page: 2185
  year: 2008
  end-page: 2187
  ident: bib0024
  article-title: Suppress false Arrhythmia alarms of ICU monitors using heart rate estimation based on combined arterial blood pressure and ECG analysis,
  publication-title: The 2nd International Conference on Bioinformatics and Biomedical Engineering
– start-page: 39
  year: 2009
  ident: bib0031
  article-title: Deep belief networks for phone recognition
  publication-title: Neural Information Processing Systems Workshop on Deep Learning for Speech Recognition and Related Applications
– start-page: 3285
  year: 2007
  end-page: 3287
  ident: bib0008
  article-title: Motion artifact reduction in blood pressure signals using adaptive digital filter with a capacitive sensor
  publication-title: 29th Annual International Conference of the IEEE Engineering in Medicine and Biology Society
– volume: 63
  start-page: 2919
  year: 2014
  end-page: 2930
  ident: bib0010
  article-title: Automated biosignal quality analysis for electromyography using a one-class support vector machine
  publication-title: IEEE Trans. Instrum. Meas.
– volume: 18
  start-page: 644
  year: 2014
  ident: 10.1016/j.ins.2018.05.018_bib0036
  article-title: Accuracy of invasive arterial pressure monitoring in cardiovascular patients: an observational study
  publication-title: Crit. Care
  doi: 10.1186/s13054-014-0644-4
– year: 2017
  ident: 10.1016/j.ins.2018.05.018_bib0016
  article-title: Hemodynamic instability and cardiovascular events after traumatic brain injury predict outcome after artifact removal with deep belief network analysis
  publication-title: J. Neurosurg. Anesthesiol.
– start-page: 3285
  year: 2007
  ident: 10.1016/j.ins.2018.05.018_bib0008
  article-title: Motion artifact reduction in blood pressure signals using adaptive digital filter with a capacitive sensor
– volume: 45
  start-page: 341
  year: 2013
  ident: 10.1016/j.ins.2018.05.018_bib0007
  article-title: Altered and unstable: wet beriberi, a clinical review
  publication-title: J. Emerg. Med.
  doi: 10.1016/j.jemermed.2013.04.022
– volume: 34
  start-page: 205
  year: 2001
  ident: 10.1016/j.ins.2018.05.018_bib0046
  article-title: CHIME Study Group, Automatic detection of artifacts in heart period data
  publication-title: J. Electrocardiol.
  doi: 10.1054/jelc.2001.28876
– start-page: 155
  year: 2016
  ident: 10.1016/j.ins.2018.05.018_bib0012
  article-title: Deep brain stimulation signal classification using deep belief networks
– year: 2017
  ident: 10.1016/j.ins.2018.05.018_bib0032
  article-title: Deep belief networks for electroencephalography: a review of recent contributions and future outlooks
  publication-title: IEEE J. Biomed. Health Inform.
– volume: 59
  start-page: 833
  year: 2012
  ident: 10.1016/j.ins.2018.05.018_bib0017
  article-title: Artifacts in research data obtained from an anesthesia information and management system
  publication-title: Can. J. Anesth.
  doi: 10.1007/s12630-012-9754-0
– year: 2005
  ident: 10.1016/j.ins.2018.05.018_bib0038
– volume: 16
  start-page: 488
  year: 2012
  ident: 10.1016/j.ins.2018.05.018_bib0042
  article-title: Artifact removal in physiological signals—practices and possibilities
  publication-title: IEEE Trans. Inf. Technol. Biomed.
  doi: 10.1109/TITB.2012.2188536
– volume: 63
  start-page: 2169
  year: 2016
  ident: 10.1016/j.ins.2018.05.018_bib0022
  article-title: Morphological feature extraction from a continuous intracranial pressure pulse via a peak clustering algorithm
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2015.2512278
– volume: 28
  start-page: 547
  year: 2002
  ident: 10.1016/j.ins.2018.05.018_bib0034
  article-title: Specialist neurocritical care and outcome from head injury
  publication-title: Intens. Care Med.
  doi: 10.1007/s00134-002-1235-4
– volume: 37
  start-page: 1340
  year: 2016
  ident: 10.1016/j.ins.2018.05.018_bib0037
  article-title: Reducing false arrhythmia alarms in the ICU using multimodal signals and robust QRS detection
  publication-title: Physiol. Meas.
  doi: 10.1088/0967-3334/37/8/1340
– volume: 117
  start-page: 435
  year: 2014
  ident: 10.1016/j.ins.2018.05.018_bib0026
  article-title: A machine learning approach to multi-level ECG signal quality classification
  publication-title: Comput. Methods Programs Biomed.
  doi: 10.1016/j.cmpb.2014.09.002
– volume: 17
  start-page: 73
  year: 2010
  ident: 10.1016/j.ins.2018.05.018_bib0044
  article-title: Cardiovascular prevention in subjects with impaired fasting glucose or impaired glucose tolerance
  publication-title: High Blood Press. Cardiovasc. Prev.
  doi: 10.2165/11311830-000000000-00000
– volume: 22
  start-page: 60
  year: 2002
  ident: 10.1016/j.ins.2018.05.018_bib0029
  article-title: Monitoring arterial blood pressure: what you may not know
  publication-title: Crit. Care Nurse
  doi: 10.4037/ccn2002.22.2.60
– start-page: 13
  year: 2006
  ident: 10.1016/j.ins.2018.05.018_bib0040
  article-title: A signal abnormality index for arterial blood pressure waveforms
  publication-title: Computers Cardiology
– volume: 60
  start-page: 1660
  year: 2013
  ident: 10.1016/j.ins.2018.05.018_bib0003
  article-title: ECG signal quality during arrhythmia and its application to false alarm reduction
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2013.2240452
– volume: 64
  start-page: 1318
  year: 2017
  ident: 10.1016/j.ins.2018.05.018_bib0001
  article-title: Signal quality analysis of ambulatory electrocardiograms to gate false myocardial ischemia alarms
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2016.2602283
– start-page: 1
  year: 2010
  ident: 10.1016/j.ins.2018.05.018_bib0048
  article-title: A novel feature extraction method for signal quality assessment of arterial blood pressure for monitoring cerebral autoregulation
– volume: 45
  start-page: 1049
  year: 1998
  ident: 10.1016/j.ins.2018.05.018_bib0030
  article-title: Cubic spline interpolation
  publication-title: College Redwoods
– start-page: 1
  year: 2017
  ident: 10.1016/j.ins.2018.05.018_bib0043
  article-title: False alarm reduction in atrial fibrillation detection using deep belief networks
  publication-title: IEEE T. Instrum. Meas.
– volume: 21
  start-page: 1237
  year: 2002
  ident: 10.1016/j.ins.2018.05.018_bib0045
  article-title: Properties of the summary receiver operating characteristic (SROC) curve for diagnostic test data
  publication-title: Stat. Med.
  doi: 10.1002/sim.1099
– start-page: 7
  year: 2014
  ident: 10.1016/j.ins.2018.05.018_bib0013
  article-title: Classification of electrocardiogram signals with deep belief networks
– volume: 60
  start-page: 97
  year: 2013
  ident: 10.1016/j.ins.2018.05.018_bib0041
  article-title: The use of ensemble empirical mode decomposition with canonical correlation analysis as a novel artifact removal technique
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2012.2225427
– volume: 2
  start-page: 1
  year: 2009
  ident: 10.1016/j.ins.2018.05.018_bib0004
  article-title: Learning deep architectures for AI
  publication-title: Found. Trends Mach. Learn.
  doi: 10.1561/2200000006
– volume: 21
  start-page: 2008
  year: 2012
  ident: 10.1016/j.ins.2018.05.018_bib0005
  article-title: Spectral–spatial classification of hyperspectral data based on a stochastic minimum spanning forest approach
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2011.2175741
– volume: 21
  start-page: 697
  year: 2013
  ident: 10.1016/j.ins.2018.05.018_bib0049
  article-title: Deep belief networks based voice activity detection
  publication-title: IEEE Trans. Audio Speech Lang. Process
  doi: 10.1109/TASL.2012.2229986
– volume: 208
  start-page: 181
  year: 2012
  ident: 10.1016/j.ins.2018.05.018_bib0019
  article-title: Detection and classification of subject-generated artifacts in EEG signals using autoregressive models
  publication-title: J. Neurosci. Methods
  doi: 10.1016/j.jneumeth.2012.05.017
– start-page: 36
  year: 2016
  ident: 10.1016/j.ins.2018.05.018_bib0015
  article-title: Integrating mobile and cloud for PPG signal selection to monitor heart rate during intensive physical exercise
– volume: 52
  start-page: 1662
  year: 2005
  ident: 10.1016/j.ins.2018.05.018_bib0002
  article-title: An automatic beat detection algorithm for pressure signals
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2005.855725
– volume: 20
  start-page: 1631
  year: 2008
  ident: 10.1016/j.ins.2018.05.018_bib0021
  article-title: Representational power of restricted Boltzmann machines and deep belief networks
  publication-title: Neural Comput
  doi: 10.1162/neco.2008.04-07-510
– start-page: 536
  year: 2008
  ident: 10.1016/j.ins.2018.05.018_bib0018
  article-title: Classification using discriminative restricted Boltzmann machines
– volume: 8
  start-page: 13
  year: 2009
  ident: 10.1016/j.ins.2018.05.018_bib0025
  article-title: Artificial arterial blood pressure artifact models and an evaluation of a robust blood pressure and heart rate estimator
  publication-title: Biomed. Eng. Online
  doi: 10.1186/1475-925X-8-13
– start-page: 2185
  year: 2008
  ident: 10.1016/j.ins.2018.05.018_bib0024
  article-title: Suppress false Arrhythmia alarms of ICU monitors using heart rate estimation based on combined arterial blood pressure and ECG analysis,
– volume: 15
  start-page: 14142
  year: 2015
  ident: 10.1016/j.ins.2018.05.018_bib0027
  article-title: Improved measurement of blood pressure by extraction of characteristic features from the cuff oscillometric waveform
  publication-title: Sensors
  doi: 10.3390/s150614142
– start-page: 39
  year: 2009
  ident: 10.1016/j.ins.2018.05.018_bib0031
  article-title: Deep belief networks for phone recognition
– volume: 5
  start-page: 76
  year: 2010
  ident: 10.1016/j.ins.2018.05.018_bib0023
  article-title: On an automatic delineator for arterial blood pressure waveforms
  publication-title: Biomed. Signal Process. Control
  doi: 10.1016/j.bspc.2009.06.002
– volume: 63
  start-page: 2919
  year: 2014
  ident: 10.1016/j.ins.2018.05.018_bib0010
  article-title: Automated biosignal quality analysis for electromyography using a one-class support vector machine
  publication-title: IEEE Trans. Instrum. Meas.
  doi: 10.1109/TIM.2014.2317296
– volume: 24
  start-page: 1305
  year: 1998
  ident: 10.1016/j.ins.2018.05.018_bib0014
  article-title: Statistical pattern detection in univariate time series of intensive care on-line monitoring data
  publication-title: Intens. Care Med.
  doi: 10.1007/s001340050767
– start-page: 25
  year: 2003
  ident: 10.1016/j.ins.2018.05.018_bib0020
  article-title: A comparative study of anomaly detection schemes in network intrusion detection, In:
– volume: 10
  start-page: 295
  year: 2008
  ident: 10.1016/j.ins.2018.05.018_bib0033
  article-title: Effects of arterial stiffness, pulse wave velocity, and wave reflections on the central aortic pressure waveform
  publication-title: J. Clin. Hypertens. (Greenwich)
  doi: 10.1111/j.1751-7176.2008.04746.x
– volume: 28
  start-page: 145
  year: 2011
  ident: 10.1016/j.ins.2018.05.018_bib0047
  article-title: Deep learning and its applications to signal and information processing [exploratory DSP]
  publication-title: IEEE Signal Process. Mag.
  doi: 10.1109/MSP.2010.939038
– volume: 20
  start-page: 30
  year: 2012
  ident: 10.1016/j.ins.2018.05.018_bib0009
  article-title: Context-dependent pre-trained deep neural networks for large-vocabulary speech recognition
  publication-title: IEEE Trans. Audio Speech Lang. Process.
  doi: 10.1109/TASL.2011.2134090
– volume: 102
  start-page: 1337
  year: 2000
  ident: 10.1016/j.ins.2018.05.018_bib0039
  article-title: Tremor-induced ECG artifact mimicking ventricular tachycardia
  publication-title: Circulation
  doi: 10.1161/01.CIR.102.11.1337
– start-page: 249
  year: 2010
  ident: 10.1016/j.ins.2018.05.018_bib0011
  article-title: Understanding the difficulty of training deep feedforward neural networks
– volume: 101
  start-page: 598
  year: 2006
  ident: 10.1016/j.ins.2018.05.018_bib0028
  article-title: Continuous cardiac output monitoring in humans by invasive and noninvasive peripheral blood pressure waveform analysis
  publication-title: J. Appl. Physiol.
  doi: 10.1152/japplphysiol.01488.2005
– volume: 109
  start-page: 911
  year: 2012
  ident: 10.1016/j.ins.2018.05.018_bib0035
  article-title: Hypotension during gradual blood loss: waveform variables response and absence of tachycardia
  publication-title: Br. J. Anaesth.
  doi: 10.1093/bja/aes300
– start-page: 988
  year: 2010
  ident: 10.1016/j.ins.2018.05.018_bib0006
  article-title: Weighted LS-SVM for function estimation applied to artifact removal in bio-signal processing
– volume: 42
  start-page: 698
  year: 2004
  ident: 10.1016/j.ins.2018.05.018_bib0050
  article-title: Reduction of false arterial blood pressure alarms using signal quality assessement and relationships between the electrocardiogram and arterial blood pressure
  publication-title: Med. Biol. Eng. Comput.
  doi: 10.1007/BF02347553
SSID ssj0004766
Score 2.363657
Snippet •The deep belief network (DBN) model excels at artifact classification in pulse waveforms.•The DBN allows rapid detection and elimination of artifacts in...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 145
SubjectTerms Arterial pressure
Computer-assisted
Monitoring
Neural networks (computer)
Physiologic
Signal processing
Title Automated artifact elimination of physiological signals using a deep belief network: An application for continuously measured arterial blood pressure waveforms
URI https://dx.doi.org/10.1016/j.ins.2018.05.018
Volume 456
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1872-6291
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004766
  issn: 0020-0255
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals [SCFCJ]
  customDbUrl:
  eissn: 1872-6291
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004766
  issn: 0020-0255
  databaseCode: AIKHN
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect (Elsevier)
  customDbUrl:
  eissn: 1872-6291
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004766
  issn: 0020-0255
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1872-6291
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004766
  issn: 0020-0255
  databaseCode: ACRLP
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1872-6291
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004766
  issn: 0020-0255
  databaseCode: AKRWK
  dateStart: 19681201
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NjtMwELZWywUOq2UB7Q9dzQFxQAobJ46dcKsqqgLSnqi0t8ieTFBXJa22LYgLr8Kr4nEcKBJw2FMUx6M4nsnM2P5mRogXCsmg9-sTlKQSJUtMKrQysVK2RmNuKxcAstd6Nlfvb4qbAzEZYmEYVhl1f6_Tg7aOLVdxNq_WiwXH-GbBI_ZCmeYm57TbShmuYvD6-2-YhzL9eSUvk7j3cLIZMF6LjjN2y7JP3ln-3Tbt2ZvpsTiKjiKM-7E8FgfUnYhHe-kDT8QoBh3AS4hRRTzLEH_XJ-LHeLdd-UZqgD-JYxiAlqGMV-i4aiFsbAz6DxjM4cURGAz_CSw0RGtwnoRa6Hq8-BsYd7B36g3-vcB490W3W-02y2_wud91DO8M4g0BHA8BcesfwFf7hXi0m6diPn37cTJLYkGGBLPKbBNyqIsKlW5Iyco21rO2UNhmpaWMWk4sY6yhEnNspNaNxUo7bwF1iy4zqcuficNu1dGpgNYvLLPM5sbJSklUFlXhUu05RCZLGzwT6cCKGmO2ci6asawHWNpt7blXM_fqtKj95Uy8-kWy7lN1_K-zGvhb_yFvtTcl_yY7vx_ZhXjIdz1w8Lk43N7taOSdma27DNJ6KR6M332YXf8EfDv4-A
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6VcoAeUCmgPmiZA-KAFBo7jp1wW1VUC5SeWqk3y544aNGSXbW7rbjwV_pXsR2nLBL0wCmS7ZEfM5kZ29-MAV4Lcoq8X58RcyITrKKsJsMyw1irJBWmthEgeyrH5-LTRXmxBkdDLEyAVSbd3-v0qK1TyWFazcP5ZBJifHn0iL1Q5oUq5AN4KEquwg7s3c_fOA-h-gvLsE8KzYerzQjymnQhZTer-uyd1d-N04rBOd6EJ8lTxFE_mKew5rot2FjJH7gF-ynqAN9gCisKy4zpf30Gt6PlYuYLXYNhTiGIAd00vuMVG85ajCcbgwLEgObw8ogBDf8VDTbOzdF6Etdi1wPG3-Oow5Vrb_T9YgC8T7rlbHk1_YHf-2PH2GeUb4zoeIyQW1-BN-bahdFePYfz4w9nR-MsvciQEa_VInOWZFmTkI0TrDaN8bwtBbW8Mo67NmSWUUa5igpqmJSNoVpabwJlS5ar3BYvYL2bdW4bsPU7S85NoSyrBSNhSJQ2l55DTvG8oR3IB1ZoSunKw6sZUz3g0r5pzz0duKfzUvvPDry9I5n3uTruaywG_uo_BE57W_Jvst3_I3sFj8ZnX070ycfTz3vwONT0KMKXsL64XLp979ks7EGU3F82qfqN
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Automated+artifact+elimination+of+physiological+signals+using+a+deep+belief+network%3A+An+application+for+continuously+measured+arterial+blood+pressure+waveforms&rft.jtitle=Information+sciences&rft.au=Son%2C+Yunsik&rft.au=Lee%2C+Seung-Bo&rft.au=Kim%2C+Hakseung&rft.au=Song%2C+Eun-Suk&rft.date=2018-08-01&rft.issn=0020-0255&rft.volume=456&rft.spage=145&rft.epage=158&rft_id=info:doi/10.1016%2Fj.ins.2018.05.018&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_ins_2018_05_018
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0020-0255&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0020-0255&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0020-0255&client=summon