Using Python for scientific computing: Efficient and flexible evaluation of the statistical characteristics of functions with multivariate random inputs

This paper examines the feasibility of high-level Python based utilities for numerically intensive applications via an example of a multidimensional integration for the evaluation of the statistical characteristics of a random variable. We discuss the approaches to the implementation of mathematical...

Full description

Saved in:
Bibliographic Details
Published inComputer physics communications Vol. 184; no. 2; pp. 414 - 427
Main Authors Chudoba, R., Sadílek, V., Rypl, R., Vořechovský, M.
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.02.2013
Subjects
Online AccessGet full text
ISSN0010-4655
1879-2944
DOI10.1016/j.cpc.2012.08.021

Cover

Abstract This paper examines the feasibility of high-level Python based utilities for numerically intensive applications via an example of a multidimensional integration for the evaluation of the statistical characteristics of a random variable. We discuss the approaches to the implementation of mathematically formulated incremental expressions using high-level scripting code and low-level compiled code. Due to the dynamic typing of the Python language, components of the algorithm can be easily coded in a generic way as algorithmic templates. Using the Enthought Development Suite they can be effectively assembled into a flexible computational framework that can be configured to execute the code for arbitrary combinations of integration schemes and versions of instantiated code. The paper describes the development cycle using a simple running example involving averaging of a random two-parametric function that includes discontinuity. This example is also used to compare the performance of the available algorithmic and executional features. The implemented package including further examples and the results of performance studies have been made available via the free repository [1] and CPCP library. Program title: spirrid Catalogue identifier: AENL_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AENL_v1_0.html Program obtainable from: CPC Program Library, Queen’s University, Belfast, N. Ireland Licensing provisions: Special licence provided by the author No. of lines in distributed program, including test data, etc.: 10722 No. of bytes in distributed program, including test data, etc.: 157099 Distribution format: tar.gz Programming language: Python and C. Computer: PC. Operating system: LINUX, UNIX, Windows. Classification: 4.13, 6.2. External routines: NumPy (http://numpy.scipy.org/), SciPy (http://www.scipy.com) Nature of problem: Evaluation of the statistical moments of a function of random variables. Solution method: Direct multidimensional integration. Running time: Depending on the number of random variables the time needed for the numerical estimation of the mean value of a function with a sufficiently low level of numerical error varies. For orientation, the time needed for two included examples: examples/fiber_tt_2p/fiber_tt_2p.py with 2 random variables: few milliseconds examples/fiber_po_8p/fiber_po_8p.py with 8 random variables: few seconds
AbstractList This paper examines the feasibility of high-level Python based utilities for numerically intensive applications via an example of a multidimensional integration for the evaluation of the statistical characteristics of a random variable. We discuss the approaches to the implementation of mathematically formulated incremental expressions using high-level scripting code and low-level compiled code. Due to the dynamic typing of the Python language, components of the algorithm can be easily coded in a generic way as algorithmic templates. Using the Enthought Development Suite they can be effectively assembled into a flexible computational framework that can be configured to execute the code for arbitrary combinations of integration schemes and versions of instantiated code. The paper describes the development cycle using a simple running example involving averaging of a random two-parametric function that includes discontinuity. This example is also used to compare the performance of the available algorithmic and executional features. The implemented package including further examples and the results of performance studies have been made available via the free repository [1] and CPCP library. Program title: spirrid Catalogue identifier: AENL_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AENL_v1_0.html Program obtainable from: CPC Program Library, Queen’s University, Belfast, N. Ireland Licensing provisions: Special licence provided by the author No. of lines in distributed program, including test data, etc.: 10722 No. of bytes in distributed program, including test data, etc.: 157099 Distribution format: tar.gz Programming language: Python and C. Computer: PC. Operating system: LINUX, UNIX, Windows. Classification: 4.13, 6.2. External routines: NumPy (http://numpy.scipy.org/), SciPy (http://www.scipy.com) Nature of problem: Evaluation of the statistical moments of a function of random variables. Solution method: Direct multidimensional integration. Running time: Depending on the number of random variables the time needed for the numerical estimation of the mean value of a function with a sufficiently low level of numerical error varies. For orientation, the time needed for two included examples: examples/fiber_tt_2p/fiber_tt_2p.py with 2 random variables: few milliseconds examples/fiber_po_8p/fiber_po_8p.py with 8 random variables: few seconds
Author Sadílek, V.
Rypl, R.
Vořechovský, M.
Chudoba, R.
Author_xml – sequence: 1
  givenname: R.
  surname: Chudoba
  fullname: Chudoba, R.
  email: rostislav.chudoba@rwth-aachen.de
  organization: RWTH Aachen University, Germany
– sequence: 2
  givenname: V.
  surname: Sadílek
  fullname: Sadílek, V.
  organization: Brno University of Technology, Czech Republic
– sequence: 3
  givenname: R.
  surname: Rypl
  fullname: Rypl, R.
  organization: RWTH Aachen University, Germany
– sequence: 4
  givenname: M.
  surname: Vořechovský
  fullname: Vořechovský, M.
  organization: Brno University of Technology, Czech Republic
BookMark eNp9kEtu2zAQQInAAep8DtAdLyB1SEmmma6KIG0DGGgXzZqgyWE8hiwZJO3WN-lxSzlZdeHVYD5vBvNu2GwYB2Tso4BagFh82tZu72oJQtawrEGKKzYXS6Urqdt2xuYAAqp20XUf2E1KWwBQSjdz9vcl0fDKf57yZhx4GCNPjnDIFMhxN-72h1z6D_wplMLU4HbwPPT4h9Y9cjza_mAzFXYMPG-Qp1zSlMnZnruNjdZljOdCmkbCYXDTeOK_KW_47tBnOtpINiOPZfW44zSUo-mOXQfbJ7x_j7fs5evTr8fv1erHt-fHL6vKSa1y5TWCCLqVjbYL1Nq3YQHKN60H7YJSa9U1nQqgtVxDZ6VvfXAWvRLYgLayuWXqba-LY0oRg3GUzx_laKk3Aswk2GxNEWwmwQaWpggupPiP3Efa2Xi6yHx-Y7C8dCSM5qzboaeILhs_0gX6HyDAmrs
CitedBy_id crossref_primary_10_1111_mice_12088
crossref_primary_10_22481_intermaths_v1i1_7704
crossref_primary_10_1080_13658816_2021_1884686
crossref_primary_10_1016_j_advengsoft_2013_05_004
crossref_primary_10_1016_j_advengsoft_2024_103593
crossref_primary_10_3846_jcem_2018_5189
crossref_primary_10_1016_j_conbuildmat_2021_124817
crossref_primary_10_1016_j_compscitech_2013_09_014
crossref_primary_10_1016_j_apm_2020_10_041
crossref_primary_10_1617_s11527_022_01935_7
crossref_primary_10_1016_j_cpc_2013_10_033
crossref_primary_10_1016_j_advengsoft_2013_06_011
crossref_primary_10_1016_j_compositesb_2017_11_040
crossref_primary_10_1016_j_cma_2022_115606
Cites_doi 10.1016/j.probengmech.2011.09.004
10.2172/806696
10.1088/1749-4699/3/1/015003
10.1093/bioinformatics/btl416
10.1109/MCSE.2011.37
10.1016/j.parco.2011.09.001
10.1016/j.probengmech.2009.01.004
10.2307/1426033
10.1109/MCSE.2010.118
10.1080/00401706.1987.10488205
10.1016/j.ijsolstr.2005.06.063
10.1016/j.cpc.2007.06.013
10.1109/DoD.HPCMP.UGC.2008.49
ContentType Journal Article
Copyright 2012 Elsevier B.V.
Copyright_xml – notice: 2012 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.cpc.2012.08.021
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 1879-2944
EndPage 427
ExternalDocumentID 10_1016_j_cpc_2012_08_021
S0010465512003086
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
1B1
1RT
1~.
1~5
29F
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARLI
AAXUO
AAYFN
ABBOA
ABFNM
ABMAC
ABNEU
ABQEM
ABQYD
ABXDB
ABYKQ
ACDAQ
ACFVG
ACGFS
ACLVX
ACNNM
ACRLP
ACSBN
ACZNC
ADBBV
ADECG
ADEZE
ADJOM
ADMUD
AEBSH
AEKER
AENEX
AFKWA
AFTJW
AFZHZ
AGHFR
AGUBO
AGYEJ
AHHHB
AHZHX
AI.
AIALX
AIEXJ
AIKHN
AITUG
AIVDX
AJBFU
AJOXV
AJSZI
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ASPBG
ATOGT
AVWKF
AXJTR
AZFZN
BBWZM
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FLBIZ
FNPLU
FYGXN
G-2
G-Q
GBLVA
GBOLZ
HLZ
HME
HMV
HVGLF
HZ~
IHE
IMUCA
J1W
KOM
LG9
LZ4
M38
M41
MO0
N9A
NDZJH
O-L
O9-
OAUVE
OGIMB
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SBC
SCB
SDF
SDG
SES
SEW
SHN
SPC
SPCBC
SPD
SPG
SSE
SSK
SSQ
SSV
SSZ
T5K
TN5
UPT
VH1
WUQ
ZMT
~02
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
ID FETCH-LOGICAL-c297t-d9e01f94239a6e99d4f607d34d09cf77b75357f0992b05a2d4dfcaed71e309a23
IEDL.DBID .~1
ISSN 0010-4655
IngestDate Thu Apr 24 23:13:04 EDT 2025
Wed Oct 01 04:08:36 EDT 2025
Fri Feb 23 02:30:55 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords SciPy
C
Loopless programming
Estimation of statistical moments
Enthought traits
Multidimensional integration
NumPy
Python
Language English
License https://www.elsevier.com/tdm/userlicense/1.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c297t-d9e01f94239a6e99d4f607d34d09cf77b75357f0992b05a2d4dfcaed71e309a23
PageCount 14
ParticipantIDs crossref_citationtrail_10_1016_j_cpc_2012_08_021
crossref_primary_10_1016_j_cpc_2012_08_021
elsevier_sciencedirect_doi_10_1016_j_cpc_2012_08_021
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate February 2013
2013-2-00
PublicationDateYYYYMMDD 2013-02-01
PublicationDate_xml – month: 02
  year: 2013
  text: February 2013
PublicationDecade 2010
PublicationTitle Computer physics communications
PublicationYear 2013
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References W. Conover, On a better method for selecting input variables, 1975, Unpublished Los Alamos National Laboratories manuscript, reproduced as Appendix A of “Latin Hypercube Sampling and the Propagation of Uncertainty in Analyses of Complex Systems” by J.C. Helton and F.J. Davis, Sandia National Laboratories report SAND2001-0417, printed November 2002.
Wilbers, Langtangen, Odegard (br000110) 2009; 9
2011.
Stein (br000075) 1987; 29
Weave: tools for inlining C/C++ within Python code
J.C. Helton, F.J. Davis, Latin Hypercube Sampling and the Propagation of Uncertainty in Analyses of Complex Systems, Technical Report SAND2001-0417, Sandia National Laboratories Albuquerque, New Mexico and Livermore, California, 2002.
Chaves, Nehrbass, Guilfoos, Gardiner, Ahalt, Krishnamurthy, Unpingco, Chalker, Warnock, Samsi (br000045) 2006
McKay, Conover, Beckman (br000070) 1979; 21
Klöckner, Pinto, Lee, Catanzaro, Ivanov, Fasih (br000135) 2012; 38
Langtangen (br000020) 2007; vol. 4699
Jarvis, Broadhurst, Johnson, O’Boyle, Goodacre (br000055) 2006; 22
J. Bergstra, O. Breuleux, F. Bastien, P. Lamblin, R. Pascanu, G. Desjardins, J. Turian, D. Warde-Farley, Y. Bengio, Theano: a CPU and GPU math expression compiler, in: Proceedings of the Python for Scientific Computing Conference (SciPy).
L. Pierce, J. Swisher, Traits UI user guide
Phoenix, Taylor (br000090) 1973; 5
J. Unpingco, Some comparative benchmarks for linear algebra computations in matlab and scientific Python, in: DoD HPCMP Users Group Conference, 2008, DOD HPCMP UGC, pp. 503–505.
F. Alted, I. Vilata, PyTables: hierarchical datasets in Python
Behnel, Bradshaw, Citro, Dalcin, Seljebotn, Smith (br000115) 2011; 13
D.C. Morrill, J.M. Swisher, Traits 3 user manual
Langtangen (br000015) 2009
Vořechovský (br000085) 2012; 29
Chudoba, Vořechovský, Konrad (br000095) 2006; 43
Vořechovský, Novák (br000080) 2009; 24
Booch, Rumbaugh, Jacobson (br000100) 1998
Nilsen, Cai, Hoyland, Langtangen (br000125) 2010; 3
2002.
Langtangen, Cai (br000025) 2008
Walt, Colbert, Varoquaux (br000030) 2011; 13
Nilsen (br000035) 2007; 177
Krysl, Trivedi (br000010) 2005; 21
SPIRRID: tool for estimation of statistical characteristics of multi-variate random functions
10.1016/j.cpc.2012.08.021_br000140
Wilbers (10.1016/j.cpc.2012.08.021_br000110) 2009; 9
Krysl (10.1016/j.cpc.2012.08.021_br000010) 2005; 21
10.1016/j.cpc.2012.08.021_br000065
10.1016/j.cpc.2012.08.021_br000120
10.1016/j.cpc.2012.08.021_br000060
10.1016/j.cpc.2012.08.021_br000040
McKay (10.1016/j.cpc.2012.08.021_br000070) 1979; 21
Vořechovský (10.1016/j.cpc.2012.08.021_br000080) 2009; 24
Chaves (10.1016/j.cpc.2012.08.021_br000045) 2006
Chudoba (10.1016/j.cpc.2012.08.021_br000095) 2006; 43
Walt (10.1016/j.cpc.2012.08.021_br000030) 2011; 13
Booch (10.1016/j.cpc.2012.08.021_br000100) 1998
Nilsen (10.1016/j.cpc.2012.08.021_br000125) 2010; 3
10.1016/j.cpc.2012.08.021_br000005
10.1016/j.cpc.2012.08.021_br000105
Langtangen (10.1016/j.cpc.2012.08.021_br000020) 2007; vol. 4699
10.1016/j.cpc.2012.08.021_br000130
10.1016/j.cpc.2012.08.021_br000050
Stein (10.1016/j.cpc.2012.08.021_br000075) 1987; 29
Vořechovský (10.1016/j.cpc.2012.08.021_br000085) 2012; 29
Behnel (10.1016/j.cpc.2012.08.021_br000115) 2011; 13
Nilsen (10.1016/j.cpc.2012.08.021_br000035) 2007; 177
Phoenix (10.1016/j.cpc.2012.08.021_br000090) 1973; 5
Jarvis (10.1016/j.cpc.2012.08.021_br000055) 2006; 22
Langtangen (10.1016/j.cpc.2012.08.021_br000025) 2008
Klöckner (10.1016/j.cpc.2012.08.021_br000135) 2012; 38
Langtangen (10.1016/j.cpc.2012.08.021_br000015) 2009
References_xml – start-page: 337
  year: 2008
  end-page: 357
  ident: br000025
  article-title: On the efficiency of Python for high-performance computing: a case study involving stencil updates for partial differential equations
  publication-title: Modeling, Simulation and Optimization of Complex Processes
– reference: , 2011.
– volume: vol. 4699
  start-page: 36
  year: 2007
  end-page: 49
  ident: br000020
  article-title: A case study in high-performance mixed-language programming
  publication-title: Applied Parallel Computing, State of the Art in Scientific Computing
– volume: 21
  start-page: 778
  year: 2005
  end-page: 783
  ident: br000010
  article-title: Instructional use of MATLAB software components for computational structural engineering applications
  publication-title: International Journal of Engineering Education
– start-page: 429
  year: 2006
  end-page: 434
  ident: br000045
  article-title: Octave and Python: high-level scripting languages productivity and performance evaluation
  publication-title: Proceedings of the HPCMP Users Group Conference, HPCMP-UGC ’06
– reference: L. Pierce, J. Swisher, Traits UI user guide,
– volume: 29
  start-page: 105
  year: 2012
  end-page: 120
  ident: br000085
  article-title: Correlation control in small sample Monte Carlo type simulations II: analysis of estimation formulas, random correlation and perfect uncorrelatedness
  publication-title: Probabilistic Engineering Mechanics
– reference: J. Unpingco, Some comparative benchmarks for linear algebra computations in matlab and scientific Python, in: DoD HPCMP Users Group Conference, 2008, DOD HPCMP UGC, pp. 503–505.
– year: 1998
  ident: br000100
  article-title: The Unified Modeling Language User Guide
– reference: F. Alted, I. Vilata, PyTables: hierarchical datasets in Python,
– volume: 22
  start-page: 2565
  year: 2006
  end-page: 2566
  ident: br000055
  article-title: PYCHEM: a multivariate analysis package for Python
  publication-title: Bioinformatics
– reference: Weave: tools for inlining C/C++ within Python code,
– reference: J. Bergstra, O. Breuleux, F. Bastien, P. Lamblin, R. Pascanu, G. Desjardins, J. Turian, D. Warde-Farley, Y. Bengio, Theano: a CPU and GPU math expression compiler, in: Proceedings of the Python for Scientific Computing Conference (SciPy).
– volume: 3
  start-page: 1
  year: 2010
  end-page: 24
  ident: br000125
  article-title: Simplifying the parallelization of scientific codes by a function-centric approach in Python
  publication-title: Computational Science & Discovery
– year: 2009
  ident: br000015
  article-title: A Primer on Scientific Programming with Python
– volume: 13
  start-page: 22
  year: 2011
  end-page: 30
  ident: br000030
  article-title: The NumPy array: a structure for efficient numerical computation
  publication-title: Computing in Science & Engineering
– reference: W. Conover, On a better method for selecting input variables, 1975, Unpublished Los Alamos National Laboratories manuscript, reproduced as Appendix A of “Latin Hypercube Sampling and the Propagation of Uncertainty in Analyses of Complex Systems” by J.C. Helton and F.J. Davis, Sandia National Laboratories report SAND2001-0417, printed November 2002.
– volume: 38
  start-page: 157
  year: 2012
  end-page: 174
  ident: br000135
  article-title: PyCUDA and PyOpenCL: a scripting-based approach to GPU run-time code generation
  publication-title: Parallel Computing
– reference: J.C. Helton, F.J. Davis, Latin Hypercube Sampling and the Propagation of Uncertainty in Analyses of Complex Systems, Technical Report SAND2001-0417, Sandia National Laboratories Albuquerque, New Mexico and Livermore, California, 2002.
– reference: SPIRRID: tool for estimation of statistical characteristics of multi-variate random functions,
– volume: 5
  start-page: 200
  year: 1973
  end-page: 216
  ident: br000090
  article-title: The asymptotic strength distribution of a general fiber bundle
  publication-title: Advances in Applied Probability
– reference: D.C. Morrill, J.M. Swisher, Traits 3 user manual,
– volume: 29
  start-page: 143
  year: 1987
  end-page: 151
  ident: br000075
  article-title: Large sample properties of simulations using Latin Hypercube Sampling
  publication-title: Technometrics
– volume: 9
  start-page: 495
  year: 2009
  end-page: 512
  ident: br000110
  article-title: Using Cython to speed up numerical Python programs
  publication-title: Proceedings of MekIT
– reference: , 2002.
– volume: 21
  start-page: 239
  year: 1979
  end-page: 245
  ident: br000070
  article-title: A comparison of three methods for selecting values of input variables in the analysis of output from a computer code
  publication-title: Technometrics
– volume: 43
  start-page: 413
  year: 2006
  end-page: 434
  ident: br000095
  article-title: Stochastic modeling of multi-filament yarns I: random properties within the cross section and size effect
  publication-title: International Journal of Solids and Structures
– volume: 24
  start-page: 452
  year: 2009
  end-page: 462
  ident: br000080
  article-title: Correlation control in small sample Monte Carlo type simulations I: a simulated annealing approach
  publication-title: Probabilistic Engineering Mechanics
– volume: 177
  start-page: 799
  year: 2007
  end-page: 814
  ident: br000035
  article-title: MontePython: implementing quantum Monte Carlo using Python
  publication-title: Computer Physics Communications
– volume: 13
  start-page: 31
  year: 2011
  end-page: 39
  ident: br000115
  article-title: Cython: the best of both worlds
  publication-title: Computing in Science & Engineering
– ident: 10.1016/j.cpc.2012.08.021_br000105
– ident: 10.1016/j.cpc.2012.08.021_br000130
– volume: 29
  start-page: 105
  year: 2012
  ident: 10.1016/j.cpc.2012.08.021_br000085
  article-title: Correlation control in small sample Monte Carlo type simulations II: analysis of estimation formulas, random correlation and perfect uncorrelatedness
  publication-title: Probabilistic Engineering Mechanics
  doi: 10.1016/j.probengmech.2011.09.004
– ident: 10.1016/j.cpc.2012.08.021_br000065
  doi: 10.2172/806696
– ident: 10.1016/j.cpc.2012.08.021_br000050
– volume: 3
  start-page: 1
  year: 2010
  ident: 10.1016/j.cpc.2012.08.021_br000125
  article-title: Simplifying the parallelization of scientific codes by a function-centric approach in Python
  publication-title: Computational Science & Discovery
  doi: 10.1088/1749-4699/3/1/015003
– volume: 9
  start-page: 495
  year: 2009
  ident: 10.1016/j.cpc.2012.08.021_br000110
  article-title: Using Cython to speed up numerical Python programs
  publication-title: Proceedings of MekIT
– ident: 10.1016/j.cpc.2012.08.021_br000120
– ident: 10.1016/j.cpc.2012.08.021_br000140
– ident: 10.1016/j.cpc.2012.08.021_br000060
– volume: 22
  start-page: 2565
  year: 2006
  ident: 10.1016/j.cpc.2012.08.021_br000055
  article-title: PYCHEM: a multivariate analysis package for Python
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btl416
– year: 1998
  ident: 10.1016/j.cpc.2012.08.021_br000100
– ident: 10.1016/j.cpc.2012.08.021_br000005
– volume: 13
  start-page: 22
  year: 2011
  ident: 10.1016/j.cpc.2012.08.021_br000030
  article-title: The NumPy array: a structure for efficient numerical computation
  publication-title: Computing in Science & Engineering
  doi: 10.1109/MCSE.2011.37
– volume: 38
  start-page: 157
  year: 2012
  ident: 10.1016/j.cpc.2012.08.021_br000135
  article-title: PyCUDA and PyOpenCL: a scripting-based approach to GPU run-time code generation
  publication-title: Parallel Computing
  doi: 10.1016/j.parco.2011.09.001
– start-page: 337
  year: 2008
  ident: 10.1016/j.cpc.2012.08.021_br000025
  article-title: On the efficiency of Python for high-performance computing: a case study involving stencil updates for partial differential equations
– volume: 24
  start-page: 452
  year: 2009
  ident: 10.1016/j.cpc.2012.08.021_br000080
  article-title: Correlation control in small sample Monte Carlo type simulations I: a simulated annealing approach
  publication-title: Probabilistic Engineering Mechanics
  doi: 10.1016/j.probengmech.2009.01.004
– volume: 5
  start-page: 200
  year: 1973
  ident: 10.1016/j.cpc.2012.08.021_br000090
  article-title: The asymptotic strength distribution of a general fiber bundle
  publication-title: Advances in Applied Probability
  doi: 10.2307/1426033
– volume: 13
  start-page: 31
  year: 2011
  ident: 10.1016/j.cpc.2012.08.021_br000115
  article-title: Cython: the best of both worlds
  publication-title: Computing in Science & Engineering
  doi: 10.1109/MCSE.2010.118
– volume: 29
  start-page: 143
  year: 1987
  ident: 10.1016/j.cpc.2012.08.021_br000075
  article-title: Large sample properties of simulations using Latin Hypercube Sampling
  publication-title: Technometrics
  doi: 10.1080/00401706.1987.10488205
– volume: vol. 4699
  start-page: 36
  year: 2007
  ident: 10.1016/j.cpc.2012.08.021_br000020
  article-title: A case study in high-performance mixed-language programming
– start-page: 429
  year: 2006
  ident: 10.1016/j.cpc.2012.08.021_br000045
  article-title: Octave and Python: high-level scripting languages productivity and performance evaluation
– year: 2009
  ident: 10.1016/j.cpc.2012.08.021_br000015
– volume: 43
  start-page: 413
  year: 2006
  ident: 10.1016/j.cpc.2012.08.021_br000095
  article-title: Stochastic modeling of multi-filament yarns I: random properties within the cross section and size effect
  publication-title: International Journal of Solids and Structures
  doi: 10.1016/j.ijsolstr.2005.06.063
– volume: 21
  start-page: 778
  year: 2005
  ident: 10.1016/j.cpc.2012.08.021_br000010
  article-title: Instructional use of MATLAB software components for computational structural engineering applications
  publication-title: International Journal of Engineering Education
– volume: 177
  start-page: 799
  year: 2007
  ident: 10.1016/j.cpc.2012.08.021_br000035
  article-title: MontePython: implementing quantum Monte Carlo using Python
  publication-title: Computer Physics Communications
  doi: 10.1016/j.cpc.2007.06.013
– volume: 21
  start-page: 239
  year: 1979
  ident: 10.1016/j.cpc.2012.08.021_br000070
  article-title: A comparison of three methods for selecting values of input variables in the analysis of output from a computer code
  publication-title: Technometrics
– ident: 10.1016/j.cpc.2012.08.021_br000040
  doi: 10.1109/DoD.HPCMP.UGC.2008.49
SSID ssj0007793
Score 2.160307
Snippet This paper examines the feasibility of high-level Python based utilities for numerically intensive applications via an example of a multidimensional...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 414
SubjectTerms Enthought traits
Estimation of statistical moments
Loopless programming
Multidimensional integration
NumPy
Python
SciPy
Title Using Python for scientific computing: Efficient and flexible evaluation of the statistical characteristics of functions with multivariate random inputs
URI https://dx.doi.org/10.1016/j.cpc.2012.08.021
Volume 184
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1879-2944
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0007793
  issn: 0010-4655
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier ScienceDirect
  customDbUrl:
  eissn: 1879-2944
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0007793
  issn: 0010-4655
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Complete Freedom Collection [SCCMFC]
  customDbUrl:
  eissn: 1879-2944
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0007793
  issn: 0010-4655
  databaseCode: ACRLP
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals [SCFCJ]
  customDbUrl:
  eissn: 1879-2944
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0007793
  issn: 0010-4655
  databaseCode: AIKHN
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1879-2944
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0007793
  issn: 0010-4655
  databaseCode: AKRWK
  dateStart: 19690701
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEA6iCF7EJz6XOXgSqtk0bRpvIiuriyKi6K20ecCKdhd3Fbz4O_y5zmRbH6AePBXaCSmZMI_km28Y28lKK32apZGyCSYomc2iIhY-MjEvPXfc-ZRqh8_O0-61PL1NbqfYUVMLQ7DK2vZPbHqw1vWb_Xo194f9PtX40v0kenwRSFeIdltKRV0M9l4_YR5K1cS7aG9IurnZDBgvMyQWQzoOzPa4aP_sm774m-MFNl8HinA4-ZdFNuWqJTYbAJtmtMzewl0_XLxQ7T9g5AmT0kZC_oAJrRrw-wF0AkUEfoCisuCJ_rK8d_BJ8g0DDxgEAlUWBdJmnNR8Z3EmEfJ_YYsCndxCwCE-Y56NoSqgu7ODB-hXOOlohV0fd66OulHdZSEyQqtxZLXjba-JCLBIndakO65sLC3XxitVYkKTKI-RpCh5UggrrTeFs6rtYq4LEa-y6WpQuTUGmZSJ8CiRWCm1sAXmVkkps8SYuNBGrjPerG9uagpy6oRxnzdYs7scVZKTSnLqjina62z3Y8hwwr_xl7BslJZ_20Q5-offh238b9gmmxOhNwZhW7bY9PjxyW1jhDIuW2ELttjM4Umve07P3uVN7x2ELup0
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEA4-EL2IT3w7B09CNZumTeNNFmV94kHBW2nzgBXtLroKXvwd_lxnsq2roB68NhNSMmEeyTffMLaTlVb6NEsjZRNMUDKbRUUsfGRiXnruuPMp1Q5fXKadG3l6m9yOsXZTC0Owytr2D216sNb1l_16N_f73S7V-NL7JHp8EUhX0nE2KROhKAPbexvhPJSqmXfR4JB487QZQF6mTzSGdB-Y7XHR-tk5fXE4x3Nsto4U4XD4M_NszFULbCogNs3TInsPj_1w9UrF_4ChJwxrGwn6Ayb0asDxAzgKHBE4AEVlwRP_ZXnvYMTyDT0PGAUClRYF1mZc1HyncSYRcoDhjAJd3UIAIr5goo2xKqC_s70H6Fa46NMSuzk-um53orrNQmSEVoPIasdbXhMTYJE6rUl5XNlYWq6NV6rEjCZRHkNJUfKkEFZabwpnVcvFXBciXmYTVa9yKwwyiRrwKJFYKbWwBSZXSSmzxJi40EauMt7sb25qDnJqhXGfN2CzuxxVkpNKcmqPKVqrbPdzSn9IwPGXsGyUln87RTk6iN-nrf1v2jab7lxfnOfnJ5dn62xGhEYZBHTZYBODx2e3ieHKoNwKx_EDqLTqZg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Using+Python+for+scientific+computing%3A+Efficient+and+flexible+evaluation+of+the+statistical+characteristics+of+functions+with+multivariate+random+inputs&rft.jtitle=Computer+physics+communications&rft.au=Chudoba%2C+R.&rft.au=Sad%C3%ADlek%2C+V.&rft.au=Rypl%2C+R.&rft.au=Vo%C5%99echovsk%C3%BD%2C+M.&rft.date=2013-02-01&rft.pub=Elsevier+B.V&rft.issn=0010-4655&rft.eissn=1879-2944&rft.volume=184&rft.issue=2&rft.spage=414&rft.epage=427&rft_id=info:doi/10.1016%2Fj.cpc.2012.08.021&rft.externalDocID=S0010465512003086
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0010-4655&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0010-4655&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0010-4655&client=summon