Using Python for scientific computing: Efficient and flexible evaluation of the statistical characteristics of functions with multivariate random inputs
This paper examines the feasibility of high-level Python based utilities for numerically intensive applications via an example of a multidimensional integration for the evaluation of the statistical characteristics of a random variable. We discuss the approaches to the implementation of mathematical...
Saved in:
| Published in | Computer physics communications Vol. 184; no. 2; pp. 414 - 427 |
|---|---|
| Main Authors | , , , |
| Format | Journal Article |
| Language | English |
| Published |
Elsevier B.V
01.02.2013
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 0010-4655 1879-2944 |
| DOI | 10.1016/j.cpc.2012.08.021 |
Cover
| Abstract | This paper examines the feasibility of high-level Python based utilities for numerically intensive applications via an example of a multidimensional integration for the evaluation of the statistical characteristics of a random variable. We discuss the approaches to the implementation of mathematically formulated incremental expressions using high-level scripting code and low-level compiled code. Due to the dynamic typing of the Python language, components of the algorithm can be easily coded in a generic way as algorithmic templates. Using the Enthought Development Suite they can be effectively assembled into a flexible computational framework that can be configured to execute the code for arbitrary combinations of integration schemes and versions of instantiated code. The paper describes the development cycle using a simple running example involving averaging of a random two-parametric function that includes discontinuity. This example is also used to compare the performance of the available algorithmic and executional features. The implemented package including further examples and the results of performance studies have been made available via the free repository [1] and CPCP library.
Program title: spirrid
Catalogue identifier: AENL_v1_0
Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AENL_v1_0.html
Program obtainable from: CPC Program Library, Queen’s University, Belfast, N. Ireland
Licensing provisions: Special licence provided by the author
No. of lines in distributed program, including test data, etc.: 10722
No. of bytes in distributed program, including test data, etc.: 157099
Distribution format: tar.gz
Programming language: Python and C.
Computer: PC.
Operating system: LINUX, UNIX, Windows.
Classification: 4.13, 6.2.
External routines: NumPy (http://numpy.scipy.org/), SciPy (http://www.scipy.com)
Nature of problem:
Evaluation of the statistical moments of a function of random variables.
Solution method:
Direct multidimensional integration.
Running time:
Depending on the number of random variables the time needed for the numerical estimation of the mean value of a function with a sufficiently low level of numerical error varies. For orientation, the time needed for two included
examples: examples/fiber_tt_2p/fiber_tt_2p.py with 2 random
variables: few milliseconds
examples/fiber_po_8p/fiber_po_8p.py with 8 random
variables: few seconds |
|---|---|
| AbstractList | This paper examines the feasibility of high-level Python based utilities for numerically intensive applications via an example of a multidimensional integration for the evaluation of the statistical characteristics of a random variable. We discuss the approaches to the implementation of mathematically formulated incremental expressions using high-level scripting code and low-level compiled code. Due to the dynamic typing of the Python language, components of the algorithm can be easily coded in a generic way as algorithmic templates. Using the Enthought Development Suite they can be effectively assembled into a flexible computational framework that can be configured to execute the code for arbitrary combinations of integration schemes and versions of instantiated code. The paper describes the development cycle using a simple running example involving averaging of a random two-parametric function that includes discontinuity. This example is also used to compare the performance of the available algorithmic and executional features. The implemented package including further examples and the results of performance studies have been made available via the free repository [1] and CPCP library.
Program title: spirrid
Catalogue identifier: AENL_v1_0
Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AENL_v1_0.html
Program obtainable from: CPC Program Library, Queen’s University, Belfast, N. Ireland
Licensing provisions: Special licence provided by the author
No. of lines in distributed program, including test data, etc.: 10722
No. of bytes in distributed program, including test data, etc.: 157099
Distribution format: tar.gz
Programming language: Python and C.
Computer: PC.
Operating system: LINUX, UNIX, Windows.
Classification: 4.13, 6.2.
External routines: NumPy (http://numpy.scipy.org/), SciPy (http://www.scipy.com)
Nature of problem:
Evaluation of the statistical moments of a function of random variables.
Solution method:
Direct multidimensional integration.
Running time:
Depending on the number of random variables the time needed for the numerical estimation of the mean value of a function with a sufficiently low level of numerical error varies. For orientation, the time needed for two included
examples: examples/fiber_tt_2p/fiber_tt_2p.py with 2 random
variables: few milliseconds
examples/fiber_po_8p/fiber_po_8p.py with 8 random
variables: few seconds |
| Author | Sadílek, V. Rypl, R. Vořechovský, M. Chudoba, R. |
| Author_xml | – sequence: 1 givenname: R. surname: Chudoba fullname: Chudoba, R. email: rostislav.chudoba@rwth-aachen.de organization: RWTH Aachen University, Germany – sequence: 2 givenname: V. surname: Sadílek fullname: Sadílek, V. organization: Brno University of Technology, Czech Republic – sequence: 3 givenname: R. surname: Rypl fullname: Rypl, R. organization: RWTH Aachen University, Germany – sequence: 4 givenname: M. surname: Vořechovský fullname: Vořechovský, M. organization: Brno University of Technology, Czech Republic |
| BookMark | eNp9kEtu2zAQQInAAep8DtAdLyB1SEmmma6KIG0DGGgXzZqgyWE8hiwZJO3WN-lxSzlZdeHVYD5vBvNu2GwYB2Tso4BagFh82tZu72oJQtawrEGKKzYXS6Urqdt2xuYAAqp20XUf2E1KWwBQSjdz9vcl0fDKf57yZhx4GCNPjnDIFMhxN-72h1z6D_wplMLU4HbwPPT4h9Y9cjza_mAzFXYMPG-Qp1zSlMnZnruNjdZljOdCmkbCYXDTeOK_KW_47tBnOtpINiOPZfW44zSUo-mOXQfbJ7x_j7fs5evTr8fv1erHt-fHL6vKSa1y5TWCCLqVjbYL1Nq3YQHKN60H7YJSa9U1nQqgtVxDZ6VvfXAWvRLYgLayuWXqba-LY0oRg3GUzx_laKk3Aswk2GxNEWwmwQaWpggupPiP3Efa2Xi6yHx-Y7C8dCSM5qzboaeILhs_0gX6HyDAmrs |
| CitedBy_id | crossref_primary_10_1111_mice_12088 crossref_primary_10_22481_intermaths_v1i1_7704 crossref_primary_10_1080_13658816_2021_1884686 crossref_primary_10_1016_j_advengsoft_2013_05_004 crossref_primary_10_1016_j_advengsoft_2024_103593 crossref_primary_10_3846_jcem_2018_5189 crossref_primary_10_1016_j_conbuildmat_2021_124817 crossref_primary_10_1016_j_compscitech_2013_09_014 crossref_primary_10_1016_j_apm_2020_10_041 crossref_primary_10_1617_s11527_022_01935_7 crossref_primary_10_1016_j_cpc_2013_10_033 crossref_primary_10_1016_j_advengsoft_2013_06_011 crossref_primary_10_1016_j_compositesb_2017_11_040 crossref_primary_10_1016_j_cma_2022_115606 |
| Cites_doi | 10.1016/j.probengmech.2011.09.004 10.2172/806696 10.1088/1749-4699/3/1/015003 10.1093/bioinformatics/btl416 10.1109/MCSE.2011.37 10.1016/j.parco.2011.09.001 10.1016/j.probengmech.2009.01.004 10.2307/1426033 10.1109/MCSE.2010.118 10.1080/00401706.1987.10488205 10.1016/j.ijsolstr.2005.06.063 10.1016/j.cpc.2007.06.013 10.1109/DoD.HPCMP.UGC.2008.49 |
| ContentType | Journal Article |
| Copyright | 2012 Elsevier B.V. |
| Copyright_xml | – notice: 2012 Elsevier B.V. |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.cpc.2012.08.021 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Physics |
| EISSN | 1879-2944 |
| EndPage | 427 |
| ExternalDocumentID | 10_1016_j_cpc_2012_08_021 S0010465512003086 |
| GroupedDBID | --K --M -~X .DC .~1 0R~ 1B1 1RT 1~. 1~5 29F 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AARLI AAXUO AAYFN ABBOA ABFNM ABMAC ABNEU ABQEM ABQYD ABXDB ABYKQ ACDAQ ACFVG ACGFS ACLVX ACNNM ACRLP ACSBN ACZNC ADBBV ADECG ADEZE ADJOM ADMUD AEBSH AEKER AENEX AFKWA AFTJW AFZHZ AGHFR AGUBO AGYEJ AHHHB AHZHX AI. AIALX AIEXJ AIKHN AITUG AIVDX AJBFU AJOXV AJSZI ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD ASPBG ATOGT AVWKF AXJTR AZFZN BBWZM BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FLBIZ FNPLU FYGXN G-2 G-Q GBLVA GBOLZ HLZ HME HMV HVGLF HZ~ IHE IMUCA J1W KOM LG9 LZ4 M38 M41 MO0 N9A NDZJH O-L O9- OAUVE OGIMB OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SBC SCB SDF SDG SES SEW SHN SPC SPCBC SPD SPG SSE SSK SSQ SSV SSZ T5K TN5 UPT VH1 WUQ ZMT ~02 ~G- AATTM AAXKI AAYWO AAYXX ABJNI ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD |
| ID | FETCH-LOGICAL-c297t-d9e01f94239a6e99d4f607d34d09cf77b75357f0992b05a2d4dfcaed71e309a23 |
| IEDL.DBID | .~1 |
| ISSN | 0010-4655 |
| IngestDate | Thu Apr 24 23:13:04 EDT 2025 Wed Oct 01 04:08:36 EDT 2025 Fri Feb 23 02:30:55 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 2 |
| Keywords | SciPy C Loopless programming Estimation of statistical moments Enthought traits Multidimensional integration NumPy Python |
| Language | English |
| License | https://www.elsevier.com/tdm/userlicense/1.0 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c297t-d9e01f94239a6e99d4f607d34d09cf77b75357f0992b05a2d4dfcaed71e309a23 |
| PageCount | 14 |
| ParticipantIDs | crossref_citationtrail_10_1016_j_cpc_2012_08_021 crossref_primary_10_1016_j_cpc_2012_08_021 elsevier_sciencedirect_doi_10_1016_j_cpc_2012_08_021 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | February 2013 2013-2-00 |
| PublicationDateYYYYMMDD | 2013-02-01 |
| PublicationDate_xml | – month: 02 year: 2013 text: February 2013 |
| PublicationDecade | 2010 |
| PublicationTitle | Computer physics communications |
| PublicationYear | 2013 |
| Publisher | Elsevier B.V |
| Publisher_xml | – name: Elsevier B.V |
| References | W. Conover, On a better method for selecting input variables, 1975, Unpublished Los Alamos National Laboratories manuscript, reproduced as Appendix A of “Latin Hypercube Sampling and the Propagation of Uncertainty in Analyses of Complex Systems” by J.C. Helton and F.J. Davis, Sandia National Laboratories report SAND2001-0417, printed November 2002. Wilbers, Langtangen, Odegard (br000110) 2009; 9 2011. Stein (br000075) 1987; 29 Weave: tools for inlining C/C++ within Python code J.C. Helton, F.J. Davis, Latin Hypercube Sampling and the Propagation of Uncertainty in Analyses of Complex Systems, Technical Report SAND2001-0417, Sandia National Laboratories Albuquerque, New Mexico and Livermore, California, 2002. Chaves, Nehrbass, Guilfoos, Gardiner, Ahalt, Krishnamurthy, Unpingco, Chalker, Warnock, Samsi (br000045) 2006 McKay, Conover, Beckman (br000070) 1979; 21 Klöckner, Pinto, Lee, Catanzaro, Ivanov, Fasih (br000135) 2012; 38 Langtangen (br000020) 2007; vol. 4699 Jarvis, Broadhurst, Johnson, O’Boyle, Goodacre (br000055) 2006; 22 J. Bergstra, O. Breuleux, F. Bastien, P. Lamblin, R. Pascanu, G. Desjardins, J. Turian, D. Warde-Farley, Y. Bengio, Theano: a CPU and GPU math expression compiler, in: Proceedings of the Python for Scientific Computing Conference (SciPy). L. Pierce, J. Swisher, Traits UI user guide Phoenix, Taylor (br000090) 1973; 5 J. Unpingco, Some comparative benchmarks for linear algebra computations in matlab and scientific Python, in: DoD HPCMP Users Group Conference, 2008, DOD HPCMP UGC, pp. 503–505. F. Alted, I. Vilata, PyTables: hierarchical datasets in Python Behnel, Bradshaw, Citro, Dalcin, Seljebotn, Smith (br000115) 2011; 13 D.C. Morrill, J.M. Swisher, Traits 3 user manual Langtangen (br000015) 2009 Vořechovský (br000085) 2012; 29 Chudoba, Vořechovský, Konrad (br000095) 2006; 43 Vořechovský, Novák (br000080) 2009; 24 Booch, Rumbaugh, Jacobson (br000100) 1998 Nilsen, Cai, Hoyland, Langtangen (br000125) 2010; 3 2002. Langtangen, Cai (br000025) 2008 Walt, Colbert, Varoquaux (br000030) 2011; 13 Nilsen (br000035) 2007; 177 Krysl, Trivedi (br000010) 2005; 21 SPIRRID: tool for estimation of statistical characteristics of multi-variate random functions 10.1016/j.cpc.2012.08.021_br000140 Wilbers (10.1016/j.cpc.2012.08.021_br000110) 2009; 9 Krysl (10.1016/j.cpc.2012.08.021_br000010) 2005; 21 10.1016/j.cpc.2012.08.021_br000065 10.1016/j.cpc.2012.08.021_br000120 10.1016/j.cpc.2012.08.021_br000060 10.1016/j.cpc.2012.08.021_br000040 McKay (10.1016/j.cpc.2012.08.021_br000070) 1979; 21 Vořechovský (10.1016/j.cpc.2012.08.021_br000080) 2009; 24 Chaves (10.1016/j.cpc.2012.08.021_br000045) 2006 Chudoba (10.1016/j.cpc.2012.08.021_br000095) 2006; 43 Walt (10.1016/j.cpc.2012.08.021_br000030) 2011; 13 Booch (10.1016/j.cpc.2012.08.021_br000100) 1998 Nilsen (10.1016/j.cpc.2012.08.021_br000125) 2010; 3 10.1016/j.cpc.2012.08.021_br000005 10.1016/j.cpc.2012.08.021_br000105 Langtangen (10.1016/j.cpc.2012.08.021_br000020) 2007; vol. 4699 10.1016/j.cpc.2012.08.021_br000130 10.1016/j.cpc.2012.08.021_br000050 Stein (10.1016/j.cpc.2012.08.021_br000075) 1987; 29 Vořechovský (10.1016/j.cpc.2012.08.021_br000085) 2012; 29 Behnel (10.1016/j.cpc.2012.08.021_br000115) 2011; 13 Nilsen (10.1016/j.cpc.2012.08.021_br000035) 2007; 177 Phoenix (10.1016/j.cpc.2012.08.021_br000090) 1973; 5 Jarvis (10.1016/j.cpc.2012.08.021_br000055) 2006; 22 Langtangen (10.1016/j.cpc.2012.08.021_br000025) 2008 Klöckner (10.1016/j.cpc.2012.08.021_br000135) 2012; 38 Langtangen (10.1016/j.cpc.2012.08.021_br000015) 2009 |
| References_xml | – start-page: 337 year: 2008 end-page: 357 ident: br000025 article-title: On the efficiency of Python for high-performance computing: a case study involving stencil updates for partial differential equations publication-title: Modeling, Simulation and Optimization of Complex Processes – reference: , 2011. – volume: vol. 4699 start-page: 36 year: 2007 end-page: 49 ident: br000020 article-title: A case study in high-performance mixed-language programming publication-title: Applied Parallel Computing, State of the Art in Scientific Computing – volume: 21 start-page: 778 year: 2005 end-page: 783 ident: br000010 article-title: Instructional use of MATLAB software components for computational structural engineering applications publication-title: International Journal of Engineering Education – start-page: 429 year: 2006 end-page: 434 ident: br000045 article-title: Octave and Python: high-level scripting languages productivity and performance evaluation publication-title: Proceedings of the HPCMP Users Group Conference, HPCMP-UGC ’06 – reference: L. Pierce, J. Swisher, Traits UI user guide, – volume: 29 start-page: 105 year: 2012 end-page: 120 ident: br000085 article-title: Correlation control in small sample Monte Carlo type simulations II: analysis of estimation formulas, random correlation and perfect uncorrelatedness publication-title: Probabilistic Engineering Mechanics – reference: J. Unpingco, Some comparative benchmarks for linear algebra computations in matlab and scientific Python, in: DoD HPCMP Users Group Conference, 2008, DOD HPCMP UGC, pp. 503–505. – year: 1998 ident: br000100 article-title: The Unified Modeling Language User Guide – reference: F. Alted, I. Vilata, PyTables: hierarchical datasets in Python, – volume: 22 start-page: 2565 year: 2006 end-page: 2566 ident: br000055 article-title: PYCHEM: a multivariate analysis package for Python publication-title: Bioinformatics – reference: Weave: tools for inlining C/C++ within Python code, – reference: J. Bergstra, O. Breuleux, F. Bastien, P. Lamblin, R. Pascanu, G. Desjardins, J. Turian, D. Warde-Farley, Y. Bengio, Theano: a CPU and GPU math expression compiler, in: Proceedings of the Python for Scientific Computing Conference (SciPy). – volume: 3 start-page: 1 year: 2010 end-page: 24 ident: br000125 article-title: Simplifying the parallelization of scientific codes by a function-centric approach in Python publication-title: Computational Science & Discovery – year: 2009 ident: br000015 article-title: A Primer on Scientific Programming with Python – volume: 13 start-page: 22 year: 2011 end-page: 30 ident: br000030 article-title: The NumPy array: a structure for efficient numerical computation publication-title: Computing in Science & Engineering – reference: W. Conover, On a better method for selecting input variables, 1975, Unpublished Los Alamos National Laboratories manuscript, reproduced as Appendix A of “Latin Hypercube Sampling and the Propagation of Uncertainty in Analyses of Complex Systems” by J.C. Helton and F.J. Davis, Sandia National Laboratories report SAND2001-0417, printed November 2002. – volume: 38 start-page: 157 year: 2012 end-page: 174 ident: br000135 article-title: PyCUDA and PyOpenCL: a scripting-based approach to GPU run-time code generation publication-title: Parallel Computing – reference: J.C. Helton, F.J. Davis, Latin Hypercube Sampling and the Propagation of Uncertainty in Analyses of Complex Systems, Technical Report SAND2001-0417, Sandia National Laboratories Albuquerque, New Mexico and Livermore, California, 2002. – reference: SPIRRID: tool for estimation of statistical characteristics of multi-variate random functions, – volume: 5 start-page: 200 year: 1973 end-page: 216 ident: br000090 article-title: The asymptotic strength distribution of a general fiber bundle publication-title: Advances in Applied Probability – reference: D.C. Morrill, J.M. Swisher, Traits 3 user manual, – volume: 29 start-page: 143 year: 1987 end-page: 151 ident: br000075 article-title: Large sample properties of simulations using Latin Hypercube Sampling publication-title: Technometrics – volume: 9 start-page: 495 year: 2009 end-page: 512 ident: br000110 article-title: Using Cython to speed up numerical Python programs publication-title: Proceedings of MekIT – reference: , 2002. – volume: 21 start-page: 239 year: 1979 end-page: 245 ident: br000070 article-title: A comparison of three methods for selecting values of input variables in the analysis of output from a computer code publication-title: Technometrics – volume: 43 start-page: 413 year: 2006 end-page: 434 ident: br000095 article-title: Stochastic modeling of multi-filament yarns I: random properties within the cross section and size effect publication-title: International Journal of Solids and Structures – volume: 24 start-page: 452 year: 2009 end-page: 462 ident: br000080 article-title: Correlation control in small sample Monte Carlo type simulations I: a simulated annealing approach publication-title: Probabilistic Engineering Mechanics – volume: 177 start-page: 799 year: 2007 end-page: 814 ident: br000035 article-title: MontePython: implementing quantum Monte Carlo using Python publication-title: Computer Physics Communications – volume: 13 start-page: 31 year: 2011 end-page: 39 ident: br000115 article-title: Cython: the best of both worlds publication-title: Computing in Science & Engineering – ident: 10.1016/j.cpc.2012.08.021_br000105 – ident: 10.1016/j.cpc.2012.08.021_br000130 – volume: 29 start-page: 105 year: 2012 ident: 10.1016/j.cpc.2012.08.021_br000085 article-title: Correlation control in small sample Monte Carlo type simulations II: analysis of estimation formulas, random correlation and perfect uncorrelatedness publication-title: Probabilistic Engineering Mechanics doi: 10.1016/j.probengmech.2011.09.004 – ident: 10.1016/j.cpc.2012.08.021_br000065 doi: 10.2172/806696 – ident: 10.1016/j.cpc.2012.08.021_br000050 – volume: 3 start-page: 1 year: 2010 ident: 10.1016/j.cpc.2012.08.021_br000125 article-title: Simplifying the parallelization of scientific codes by a function-centric approach in Python publication-title: Computational Science & Discovery doi: 10.1088/1749-4699/3/1/015003 – volume: 9 start-page: 495 year: 2009 ident: 10.1016/j.cpc.2012.08.021_br000110 article-title: Using Cython to speed up numerical Python programs publication-title: Proceedings of MekIT – ident: 10.1016/j.cpc.2012.08.021_br000120 – ident: 10.1016/j.cpc.2012.08.021_br000140 – ident: 10.1016/j.cpc.2012.08.021_br000060 – volume: 22 start-page: 2565 year: 2006 ident: 10.1016/j.cpc.2012.08.021_br000055 article-title: PYCHEM: a multivariate analysis package for Python publication-title: Bioinformatics doi: 10.1093/bioinformatics/btl416 – year: 1998 ident: 10.1016/j.cpc.2012.08.021_br000100 – ident: 10.1016/j.cpc.2012.08.021_br000005 – volume: 13 start-page: 22 year: 2011 ident: 10.1016/j.cpc.2012.08.021_br000030 article-title: The NumPy array: a structure for efficient numerical computation publication-title: Computing in Science & Engineering doi: 10.1109/MCSE.2011.37 – volume: 38 start-page: 157 year: 2012 ident: 10.1016/j.cpc.2012.08.021_br000135 article-title: PyCUDA and PyOpenCL: a scripting-based approach to GPU run-time code generation publication-title: Parallel Computing doi: 10.1016/j.parco.2011.09.001 – start-page: 337 year: 2008 ident: 10.1016/j.cpc.2012.08.021_br000025 article-title: On the efficiency of Python for high-performance computing: a case study involving stencil updates for partial differential equations – volume: 24 start-page: 452 year: 2009 ident: 10.1016/j.cpc.2012.08.021_br000080 article-title: Correlation control in small sample Monte Carlo type simulations I: a simulated annealing approach publication-title: Probabilistic Engineering Mechanics doi: 10.1016/j.probengmech.2009.01.004 – volume: 5 start-page: 200 year: 1973 ident: 10.1016/j.cpc.2012.08.021_br000090 article-title: The asymptotic strength distribution of a general fiber bundle publication-title: Advances in Applied Probability doi: 10.2307/1426033 – volume: 13 start-page: 31 year: 2011 ident: 10.1016/j.cpc.2012.08.021_br000115 article-title: Cython: the best of both worlds publication-title: Computing in Science & Engineering doi: 10.1109/MCSE.2010.118 – volume: 29 start-page: 143 year: 1987 ident: 10.1016/j.cpc.2012.08.021_br000075 article-title: Large sample properties of simulations using Latin Hypercube Sampling publication-title: Technometrics doi: 10.1080/00401706.1987.10488205 – volume: vol. 4699 start-page: 36 year: 2007 ident: 10.1016/j.cpc.2012.08.021_br000020 article-title: A case study in high-performance mixed-language programming – start-page: 429 year: 2006 ident: 10.1016/j.cpc.2012.08.021_br000045 article-title: Octave and Python: high-level scripting languages productivity and performance evaluation – year: 2009 ident: 10.1016/j.cpc.2012.08.021_br000015 – volume: 43 start-page: 413 year: 2006 ident: 10.1016/j.cpc.2012.08.021_br000095 article-title: Stochastic modeling of multi-filament yarns I: random properties within the cross section and size effect publication-title: International Journal of Solids and Structures doi: 10.1016/j.ijsolstr.2005.06.063 – volume: 21 start-page: 778 year: 2005 ident: 10.1016/j.cpc.2012.08.021_br000010 article-title: Instructional use of MATLAB software components for computational structural engineering applications publication-title: International Journal of Engineering Education – volume: 177 start-page: 799 year: 2007 ident: 10.1016/j.cpc.2012.08.021_br000035 article-title: MontePython: implementing quantum Monte Carlo using Python publication-title: Computer Physics Communications doi: 10.1016/j.cpc.2007.06.013 – volume: 21 start-page: 239 year: 1979 ident: 10.1016/j.cpc.2012.08.021_br000070 article-title: A comparison of three methods for selecting values of input variables in the analysis of output from a computer code publication-title: Technometrics – ident: 10.1016/j.cpc.2012.08.021_br000040 doi: 10.1109/DoD.HPCMP.UGC.2008.49 |
| SSID | ssj0007793 |
| Score | 2.160307 |
| Snippet | This paper examines the feasibility of high-level Python based utilities for numerically intensive applications via an example of a multidimensional... |
| SourceID | crossref elsevier |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 414 |
| SubjectTerms | Enthought traits Estimation of statistical moments Loopless programming Multidimensional integration NumPy Python SciPy |
| Title | Using Python for scientific computing: Efficient and flexible evaluation of the statistical characteristics of functions with multivariate random inputs |
| URI | https://dx.doi.org/10.1016/j.cpc.2012.08.021 |
| Volume | 184 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1879-2944 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0007793 issn: 0010-4655 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier ScienceDirect customDbUrl: eissn: 1879-2944 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0007793 issn: 0010-4655 databaseCode: .~1 dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Complete Freedom Collection [SCCMFC] customDbUrl: eissn: 1879-2944 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0007793 issn: 0010-4655 databaseCode: ACRLP dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals [SCFCJ] customDbUrl: eissn: 1879-2944 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0007793 issn: 0010-4655 databaseCode: AIKHN dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1879-2944 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0007793 issn: 0010-4655 databaseCode: AKRWK dateStart: 19690701 isFulltext: true providerName: Library Specific Holdings |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEA6iCF7EJz6XOXgSqtk0bRpvIiuriyKi6K20ecCKdhd3Fbz4O_y5zmRbH6AePBXaCSmZMI_km28Y28lKK32apZGyCSYomc2iIhY-MjEvPXfc-ZRqh8_O0-61PL1NbqfYUVMLQ7DK2vZPbHqw1vWb_Xo194f9PtX40v0kenwRSFeIdltKRV0M9l4_YR5K1cS7aG9IurnZDBgvMyQWQzoOzPa4aP_sm774m-MFNl8HinA4-ZdFNuWqJTYbAJtmtMzewl0_XLxQ7T9g5AmT0kZC_oAJrRrw-wF0AkUEfoCisuCJ_rK8d_BJ8g0DDxgEAlUWBdJmnNR8Z3EmEfJ_YYsCndxCwCE-Y56NoSqgu7ODB-hXOOlohV0fd66OulHdZSEyQqtxZLXjba-JCLBIndakO65sLC3XxitVYkKTKI-RpCh5UggrrTeFs6rtYq4LEa-y6WpQuTUGmZSJ8CiRWCm1sAXmVkkps8SYuNBGrjPerG9uagpy6oRxnzdYs7scVZKTSnLqjina62z3Y8hwwr_xl7BslJZ_20Q5-offh238b9gmmxOhNwZhW7bY9PjxyW1jhDIuW2ELttjM4Umve07P3uVN7x2ELup0 |
| linkProvider | Elsevier |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEA4-EL2IT3w7B09CNZumTeNNFmV94kHBW2nzgBXtLroKXvwd_lxnsq2roB68NhNSMmEeyTffMLaTlVb6NEsjZRNMUDKbRUUsfGRiXnruuPMp1Q5fXKadG3l6m9yOsXZTC0Owytr2D216sNb1l_16N_f73S7V-NL7JHp8EUhX0nE2KROhKAPbexvhPJSqmXfR4JB487QZQF6mTzSGdB-Y7XHR-tk5fXE4x3Nsto4U4XD4M_NszFULbCogNs3TInsPj_1w9UrF_4ChJwxrGwn6Ayb0asDxAzgKHBE4AEVlwRP_ZXnvYMTyDT0PGAUClRYF1mZc1HyncSYRcoDhjAJd3UIAIr5goo2xKqC_s70H6Fa46NMSuzk-um53orrNQmSEVoPIasdbXhMTYJE6rUl5XNlYWq6NV6rEjCZRHkNJUfKkEFZabwpnVcvFXBciXmYTVa9yKwwyiRrwKJFYKbWwBSZXSSmzxJi40EauMt7sb25qDnJqhXGfN2CzuxxVkpNKcmqPKVqrbPdzSn9IwPGXsGyUln87RTk6iN-nrf1v2jab7lxfnOfnJ5dn62xGhEYZBHTZYBODx2e3ieHKoNwKx_EDqLTqZg |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Using+Python+for+scientific+computing%3A+Efficient+and+flexible+evaluation+of+the+statistical+characteristics+of+functions+with+multivariate+random+inputs&rft.jtitle=Computer+physics+communications&rft.au=Chudoba%2C+R.&rft.au=Sad%C3%ADlek%2C+V.&rft.au=Rypl%2C+R.&rft.au=Vo%C5%99echovsk%C3%BD%2C+M.&rft.date=2013-02-01&rft.pub=Elsevier+B.V&rft.issn=0010-4655&rft.eissn=1879-2944&rft.volume=184&rft.issue=2&rft.spage=414&rft.epage=427&rft_id=info:doi/10.1016%2Fj.cpc.2012.08.021&rft.externalDocID=S0010465512003086 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0010-4655&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0010-4655&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0010-4655&client=summon |