Numerical solution of free final time fractional optimal control problems

•A constrained fractional optimal control problem with free terminal time is considered.•The problem is transformed based on time-scaling transformation and numerical integration scheme.•A novel gradient-based optimization is developed to solve the transformed optimization problem. The main purpose...

Full description

Saved in:
Bibliographic Details
Published inApplied mathematics and computation Vol. 405; p. 126270
Main Authors Gong, Zhaohua, Liu, Chongyang, Teo, Kok Lay, Wang, Song, Wu, Yonghong
Format Journal Article
LanguageEnglish
Published Elsevier Inc 15.09.2021
Subjects
Online AccessGet full text
ISSN0096-3003
DOI10.1016/j.amc.2021.126270

Cover

Abstract •A constrained fractional optimal control problem with free terminal time is considered.•The problem is transformed based on time-scaling transformation and numerical integration scheme.•A novel gradient-based optimization is developed to solve the transformed optimization problem. The main purpose of this work is to develop a numerical solution method for solving a class of nonlinear free final time fractional optimal control problems. This problem is subject to equality and inequality constraints in canonical forms, and the orders in the fractional system can be different. For this problem, we first show that, by a time-scaling transformation, the problem can be transformed into an equivalent fractional optimal control problem with fixed final time. We then discretize the transformed fractional optimal control problem by a second-order one-point numerical integration scheme and the trapezoidal rule. Furthermore, we derive the gradient formulae of the cost and constraint functions with respect to decision variables and propose a numerical procedure for calculating these gradients. On this basis, a gradient-based optimization algorithm is developed for solving the resulting problem. Finally, numerical simulations of three example problems illustrate the effectiveness of the developed algorithm.
AbstractList •A constrained fractional optimal control problem with free terminal time is considered.•The problem is transformed based on time-scaling transformation and numerical integration scheme.•A novel gradient-based optimization is developed to solve the transformed optimization problem. The main purpose of this work is to develop a numerical solution method for solving a class of nonlinear free final time fractional optimal control problems. This problem is subject to equality and inequality constraints in canonical forms, and the orders in the fractional system can be different. For this problem, we first show that, by a time-scaling transformation, the problem can be transformed into an equivalent fractional optimal control problem with fixed final time. We then discretize the transformed fractional optimal control problem by a second-order one-point numerical integration scheme and the trapezoidal rule. Furthermore, we derive the gradient formulae of the cost and constraint functions with respect to decision variables and propose a numerical procedure for calculating these gradients. On this basis, a gradient-based optimization algorithm is developed for solving the resulting problem. Finally, numerical simulations of three example problems illustrate the effectiveness of the developed algorithm.
ArticleNumber 126270
Author Gong, Zhaohua
Liu, Chongyang
Wang, Song
Wu, Yonghong
Teo, Kok Lay
Author_xml – sequence: 1
  givenname: Zhaohua
  surname: Gong
  fullname: Gong, Zhaohua
  organization: School of Mathematics and Information Science, Shandong Technology and Business University, Yantai, Shandong 264005 China
– sequence: 2
  givenname: Chongyang
  surname: Liu
  fullname: Liu, Chongyang
  email: liu_chongyang@yahoo.com
  organization: School of Mathematics and Information Science, Shandong Technology and Business University, Yantai, Shandong 264005 China
– sequence: 3
  givenname: Kok Lay
  surname: Teo
  fullname: Teo, Kok Lay
  organization: School of Mathematical Sciences, Sunway University, Kuala Lumpur 47500, Malaysia
– sequence: 4
  givenname: Song
  surname: Wang
  fullname: Wang, Song
  organization: School of Electrical Engineering, Computing and Mathematical Sciences, Curtin University, Perth, Western Australia 2605 Australia
– sequence: 5
  givenname: Yonghong
  surname: Wu
  fullname: Wu, Yonghong
  organization: School of Electrical Engineering, Computing and Mathematical Sciences, Curtin University, Perth, Western Australia 2605 Australia
BookMark eNp9j8tqwzAQRbVIoUnaD-jOP2BXj0Sy6KqEPgIh3bRrIUsjULCtICmF_n1l3FUXWc3MHc4wZ4UWYxgBoQeCG4IJfzw1ejANxZQ0hHIq8AItMZa8ZhizW7RK6YQxFpxslmh_vAwQvdF9lUJ_yT6MVXCViwCV82OJsx9KG7WZdmUO55KUasKYY-ircwxdD0O6QzdO9wnu_-oafb2-fO7e68PH2373fKgNlSLXVlouNdWktdwKKYC1hrfMCkvNhm2NINpx3lFHOwa2ldtN23VcC-xaCZJwtkZkvmtiSCmCU-dYHoo_imA1-auTKv5q8lezf2HEP8b4rCehHLXvr5JPMwlF6dtDVMl4GA1YH8FkZYO_Qv8CHlV53w
CitedBy_id crossref_primary_10_1155_2023_1294070
crossref_primary_10_1080_00207721_2024_2317352
crossref_primary_10_1016_j_nahs_2021_101059
crossref_primary_10_1016_j_automatica_2022_110565
crossref_primary_10_3934_math_2025042
crossref_primary_10_3390_fractalfract6100579
crossref_primary_10_3934_jimo_2021182
crossref_primary_10_1007_s10957_023_02212_5
crossref_primary_10_1002_oca_2877
crossref_primary_10_1016_j_ifacol_2023_02_037
crossref_primary_10_3934_math_2021697
crossref_primary_10_1016_j_cam_2024_116169
Cites_doi 10.1007/s11071-004-3764-6
10.1016/j.jprocont.2018.10.001
10.3934/naco.2017018
10.1016/j.nahs.2017.01.006
10.1177/1077546319898570
10.1093/imamci/6.1.81
10.1177/1077546307077467
10.1002/asjc.1321
10.1016/j.automatica.2016.12.022
10.1016/j.automatica.2015.09.007
10.1177/1077546307087434
10.1016/j.sysconle.2014.07.001
10.1080/00207178608933664
10.1016/j.chaos.2019.01.028
10.1023/A:1016592219341
10.1016/j.sigpro.2006.02.022
10.1002/asjc.1109
10.1007/s10957-017-1163-7
10.3934/jimo.2014.10.363
10.1016/j.cam.2013.03.003
10.1007/s10957-018-1418-y
10.1137/S0363012902402578
10.1109/TCST.2011.2153203
10.1007/s12190-019-01307-5
10.1016/j.cnsns.2018.05.011
10.1016/j.camwa.2009.08.006
10.1002/asjc.677
ContentType Journal Article
Copyright 2021 Elsevier Inc.
Copyright_xml – notice: 2021 Elsevier Inc.
DBID AAYXX
CITATION
DOI 10.1016/j.amc.2021.126270
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
ExternalDocumentID 10_1016_j_amc_2021_126270
S0096300321003593
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
1B1
1RT
1~.
1~5
23M
4.4
457
4G.
5GY
6J9
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AATTM
AAXKI
AAXUO
ABAOU
ABFNM
ABFRF
ABJNI
ABMAC
ACDAQ
ACGFO
ACGFS
ACRLP
ADBBV
ADEZE
ADGUI
AEBSH
AEFWE
AEIPS
AEKER
AENEX
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AIEXJ
AIGVJ
AIKHN
AITUG
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ARUGR
AXJTR
BKOJK
BLXMC
BNPGV
CS3
EBS
EFJIC
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
KOM
LG9
M26
M41
MHUIS
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RNS
ROL
RPZ
RXW
SBC
SDF
SDG
SES
SME
SPC
SPCBC
SSH
SSW
SSZ
T5K
TN5
WH7
X6Y
XPP
ZMT
~02
~G-
5VS
AAQXK
AAYWO
AAYXX
ABEFU
ABWVN
ABXDB
ACLOT
ACRPL
ACVFH
ADCNI
ADIYS
ADMUD
ADNMO
AEUPX
AFFNX
AFJKZ
AFPUW
AGQPQ
AI.
AIGII
AIIUN
AKBMS
AKYEP
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
EFLBG
EJD
FEDTE
FGOYB
G-2
HLZ
HMJ
HVGLF
HZ~
R2-
SEW
TAE
VH1
VOH
WUQ
~HD
ID FETCH-LOGICAL-c297t-d9d69a2a18d6d797e38c683d7d2c435c71af66b2f2b3ed89548bb6a70f89e9163
IEDL.DBID .~1
ISSN 0096-3003
IngestDate Thu Oct 02 04:29:34 EDT 2025
Thu Apr 24 23:11:37 EDT 2025
Sun Apr 06 06:54:24 EDT 2025
IsPeerReviewed true
IsScholarly true
Keywords Constrained optimal control
Fractional-order system
Numerical optimization
Free final time
Time-scaling transformation
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c297t-d9d69a2a18d6d797e38c683d7d2c435c71af66b2f2b3ed89548bb6a70f89e9163
ParticipantIDs crossref_primary_10_1016_j_amc_2021_126270
crossref_citationtrail_10_1016_j_amc_2021_126270
elsevier_sciencedirect_doi_10_1016_j_amc_2021_126270
PublicationCentury 2000
PublicationDate 2021-09-15
PublicationDateYYYYMMDD 2021-09-15
PublicationDate_xml – month: 09
  year: 2021
  text: 2021-09-15
  day: 15
PublicationDecade 2020
PublicationTitle Applied mathematics and computation
PublicationYear 2021
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References Delavari, Lanusse, Sabatier (bib0002) 2013; 15
Calderon, Vinagre, Feliu (bib0003) 2006; 86
Liu, Gong, Teo, Sun, Caccetta (bib0022) 2017; 25
Liu, Gong, Lee, Teo (bib0023) 2019; 78
Shiri, Baleanu (bib0026) 2019; 120
Ding, Wang, Ye (bib0034) 2012; 20
Salati, Shamsi, Torres (bib0032) 2019; 67
Tricaud, Chen (bib0009) 2010; 59
Tyrtyshnikov (bib0029) 1997
Khiabani, Ghaffarzadeh, Shiri, Katebi (bib0006) 2020; 26
Lotfi, Yousefi, Dehghan (bib0011) 2013; 250
Li, Wang, Rehbock (bib0017) 2017; 7
Teo, Goh, Wong (bib0033) 1991
Bhrawy, Doha, Machado, Ezz-Eldien (bib0012) 2015; 17
Liu, Loxton, Teo (bib0021) 2014; 72
Li, Wang, Rehbock (bib0016) 2019; 180
Shiri, Wu, Baleanu (bib0027) 2020; 156
Diethelm, Ford, Freed (bib0025) 2002; 29
Teo, Goh, Lim (bib0019) 1989; 6
Subrahmanyam (bib0031) 1986; 44
Tang, Liu, Wang (bib0013) 2015; 62
Liu, Han (bib0024) 2020; 13
Mu, Wang, Liu (bib0015) 2020; 187
Maurer, Osmolovskii (bib0020) 2004; 42
Suarez, Vinagre, Chen (bib0004) 2008; 14
Cresson (bib0001) 2014
Pooseh, Almieda, Torres (bib0018) 2014; 10
Agrawal (bib0007) 2004; 38
Nemati, Yousefi, Soltanian, Ardabili (bib0010) 2016; 18
Diethelm (bib0028) 2010
Dadkhah, Shiri, Ghaffarzadeh, Baleanu (bib0005) 2020; 63
Tang, Liu, Wang (bib0014) 2017; 78
Nocedal, Wright (bib0030) 2006
Agrawal (bib0008) 2007; 13
Li (10.1016/j.amc.2021.126270_bib0017) 2017; 7
Bhrawy (10.1016/j.amc.2021.126270_bib0012) 2015; 17
Maurer (10.1016/j.amc.2021.126270_bib0020) 2004; 42
Delavari (10.1016/j.amc.2021.126270_bib0002) 2013; 15
Agrawal (10.1016/j.amc.2021.126270_bib0007) 2004; 38
Salati (10.1016/j.amc.2021.126270_bib0032) 2019; 67
Tricaud (10.1016/j.amc.2021.126270_bib0009) 2010; 59
Liu (10.1016/j.amc.2021.126270_bib0022) 2017; 25
Shiri (10.1016/j.amc.2021.126270_bib0026) 2019; 120
Nemati (10.1016/j.amc.2021.126270_bib0010) 2016; 18
Nocedal (10.1016/j.amc.2021.126270_bib0030) 2006
Agrawal (10.1016/j.amc.2021.126270_bib0008) 2007; 13
Diethelm (10.1016/j.amc.2021.126270_bib0025) 2002; 29
Ding (10.1016/j.amc.2021.126270_bib0034) 2012; 20
Khiabani (10.1016/j.amc.2021.126270_bib0006) 2020; 26
Li (10.1016/j.amc.2021.126270_bib0016) 2019; 180
Liu (10.1016/j.amc.2021.126270_bib0021) 2014; 72
Subrahmanyam (10.1016/j.amc.2021.126270_bib0031) 1986; 44
Teo (10.1016/j.amc.2021.126270_bib0033) 1991
Tang (10.1016/j.amc.2021.126270_bib0013) 2015; 62
Lotfi (10.1016/j.amc.2021.126270_bib0011) 2013; 250
Cresson (10.1016/j.amc.2021.126270_bib0001) 2014
Diethelm (10.1016/j.amc.2021.126270_bib0028) 2010
Liu (10.1016/j.amc.2021.126270_bib0024) 2020; 13
Shiri (10.1016/j.amc.2021.126270_bib0027) 2020; 156
Suarez (10.1016/j.amc.2021.126270_bib0004) 2008; 14
Mu (10.1016/j.amc.2021.126270_bib0015) 2020; 187
Tyrtyshnikov (10.1016/j.amc.2021.126270_bib0029) 1997
Liu (10.1016/j.amc.2021.126270_bib0023) 2019; 78
Tang (10.1016/j.amc.2021.126270_bib0014) 2017; 78
Teo (10.1016/j.amc.2021.126270_bib0019) 1989; 6
Pooseh (10.1016/j.amc.2021.126270_bib0018) 2014; 10
Dadkhah (10.1016/j.amc.2021.126270_bib0005) 2020; 63
Calderon (10.1016/j.amc.2021.126270_bib0003) 2006; 86
References_xml – volume: 7
  start-page: 273
  year: 2017
  end-page: 287
  ident: bib0017
  article-title: A 2nd-order one-step numerical integration scheme for a fractional differential equation
  publication-title: Numer. Algebra Control Optim.
– volume: 250
  start-page: 143
  year: 2013
  end-page: 160
  ident: bib0011
  article-title: Numerical solution of a class of fractional optimal control problems via the legendre orthonormal basis combined with the operational matrix and the gauss quadrature rule
  publication-title: J. Comp. Appl. Math.
– volume: 156
  start-page: 385
  year: 2020
  end-page: 395
  ident: bib0027
  article-title: Collocation methods for terminal value problems of tempered fractional differential equations
  publication-title: Appl. Math. Comput.
– volume: 67
  start-page: 334
  year: 2019
  end-page: 350
  ident: bib0032
  article-title: Direct transcription methods based on fractional integral approximation formulas for solving nonlinear fractional optimal control problems
  publication-title: Commun. Nonlinear Sci. Numer. Simulat.
– volume: 59
  start-page: 1644
  year: 2010
  end-page: 1655
  ident: bib0009
  article-title: An approximate method for numerically solving fractional order optimal control problems of general form
  publication-title: Comput. Math. Appl.
– volume: 72
  start-page: 53
  year: 2014
  end-page: 60
  ident: bib0021
  article-title: A computational method for solving time-delay optimal control problems with free terminal time
  publication-title: Syst. Control Lett.
– volume: 44
  start-page: 1233
  year: 1986
  end-page: 1243
  ident: bib0031
  article-title: A computational method for the solution of time-optimal control problem by Newton’s method
  publication-title: Int. J. Control
– volume: 120
  start-page: 203
  year: 2019
  end-page: 212
  ident: bib0026
  article-title: System of fractional differential algebraic equations with applications
  publication-title: Chaos Soliton. Fract.
– year: 1997
  ident: bib0029
  article-title: A Brief Introduction to Numerical Analysis
– volume: 15
  start-page: 783
  year: 2013
  end-page: 795
  ident: bib0002
  article-title: Fractional order controller design for a flexible link manipulator robot
  publication-title: Asian J. Control
– volume: 62
  start-page: 304
  year: 2015
  end-page: 311
  ident: bib0013
  article-title: Integral fractional pseudospectral methods for solving fractional optimal control problems
  publication-title: Automatica
– volume: 78
  start-page: 170
  year: 2019
  end-page: 182
  ident: bib0023
  article-title: Robust bi-objective optimal control of 1,3-propanediol microbial batch production process
  publication-title: J. Process Control
– volume: 180
  start-page: 556
  year: 2019
  end-page: 573
  ident: bib0016
  article-title: Numerical solution of fractional optimal control
  publication-title: J. Optimiz. Theory Appl.
– volume: 42
  start-page: 2239
  year: 2004
  end-page: 2263
  ident: bib0020
  article-title: Second order sufficient conditions for time-optimal bang-bang control
  publication-title: SIAM J. Control Optim.
– volume: 13
  start-page: 1697
  year: 2020
  end-page: 1709
  ident: bib0024
  article-title: Time-delay optimal control of a fed-batch production involving multiple feeds
  publication-title: Discrete Contin. Dyn. Syst. Ser. S
– year: 1991
  ident: bib0033
  article-title: A unified computational approach to optimal control problems
  publication-title: Longman Scientific & Technical
– volume: 20
  start-page: 763
  year: 2012
  end-page: 769
  ident: bib0034
  article-title: Optimal control of a fractional-order HIV-immune system with memory
  publication-title: IEEE Trans. Control Syst. Technol.
– volume: 86
  start-page: 2803
  year: 2006
  end-page: 2819
  ident: bib0003
  article-title: Fractional order control strategies for power electronic buck converters
  publication-title: Signal Process.
– volume: 187
  start-page: 234
  year: 2020
  end-page: 247
  ident: bib0015
  article-title: A control parameterization method to solve the fractional-order optimal control problem
  publication-title: J. Optimiz. Theory Appl.
– volume: 26
  start-page: 1445
  year: 2020
  end-page: 1462
  ident: bib0006
  article-title: Spline collocation methods for seismic analysis of multiple degree of freedom systems with viso-elastic dampers using fractional models
  publication-title: J. Vib. Control
– year: 2014
  ident: bib0001
  article-title: Fractional calculus in analysis
  publication-title: Dynamics and Optimal Control
– volume: 63
  start-page: 29
  year: 2020
  end-page: 57
  ident: bib0005
  article-title: Viso-elastic dampers in structural buildings and numerical solution with spline collocation methods
  publication-title: J. Appl. Math. Comput.
– volume: 38
  start-page: 323
  year: 2004
  end-page: 337
  ident: bib0007
  article-title: A general formulation and solution scheme for fractional optimal control problems
  publication-title: Nonlinear Dyn.
– volume: 17
  start-page: 2389
  year: 2015
  end-page: 2402
  ident: bib0012
  article-title: An effifcient numerical scheme for solving multi-dimensional fractional optimal control problems with a quadratic performance index
  publication-title: Asian J. Control
– volume: 78
  start-page: 333
  year: 2017
  end-page: 340
  ident: bib0014
  article-title: A new framework for solving fractional optimal control problems using fractional pseudo-spectral methods
  publication-title: Automatica
– volume: 6
  start-page: 81
  year: 1989
  end-page: 95
  ident: bib0019
  article-title: A computational method for a class of dynamical optimization problems in which the terminal time is conditionally free
  publication-title: IMA J. Math. Control Inf.
– volume: 10
  start-page: 363
  year: 2014
  end-page: 381
  ident: bib0018
  article-title: Fractional order optimal control problems with free terminal time
  publication-title: J. Ind. Manag. Optim.
– year: 2006
  ident: bib0030
  article-title: Numerical Optimization
– volume: 13
  start-page: 1269
  year: 2007
  end-page: 1281
  ident: bib0008
  article-title: A hamiltonian formulation and a direct numerical scheme for fractional optimal control problems
  publication-title: J. Vib. Control
– volume: 18
  start-page: 2272
  year: 2016
  end-page: 2282
  ident: bib0010
  article-title: An efficient numerical solution of fractional optimal control problems by using the ritz method and bernstein operational matrix
  publication-title: Asian J. Control
– volume: 29
  start-page: 2
  year: 2002
  end-page: 22
  ident: bib0025
  article-title: A predictor corrector approach for numerical solution of fractional equation
  publication-title: Nonlinear Dyn.
– year: 2010
  ident: bib0028
  article-title: The Analysis of Fractional Differential Equations
– volume: 14
  start-page: 1499
  year: 2008
  end-page: 1511
  ident: bib0004
  article-title: A fractional adaptation scheme for lateral control of an AGV
  publication-title: J. Vib. Control
– volume: 25
  start-page: 1
  year: 2017
  end-page: 20
  ident: bib0022
  article-title: Robust multi-objective optimal switching control arising in 1,3-propanediol microbial fed-batch process
  publication-title: Nonlinear Anal-Hybri.
– volume: 38
  start-page: 323
  year: 2004
  ident: 10.1016/j.amc.2021.126270_bib0007
  article-title: A general formulation and solution scheme for fractional optimal control problems
  publication-title: Nonlinear Dyn.
  doi: 10.1007/s11071-004-3764-6
– volume: 78
  start-page: 170
  year: 2019
  ident: 10.1016/j.amc.2021.126270_bib0023
  article-title: Robust bi-objective optimal control of 1,3-propanediol microbial batch production process
  publication-title: J. Process Control
  doi: 10.1016/j.jprocont.2018.10.001
– volume: 7
  start-page: 273
  year: 2017
  ident: 10.1016/j.amc.2021.126270_bib0017
  article-title: A 2nd-order one-step numerical integration scheme for a fractional differential equation
  publication-title: Numer. Algebra Control Optim.
  doi: 10.3934/naco.2017018
– volume: 156
  start-page: 385
  year: 2020
  ident: 10.1016/j.amc.2021.126270_bib0027
  article-title: Collocation methods for terminal value problems of tempered fractional differential equations
  publication-title: Appl. Math. Comput.
– year: 1991
  ident: 10.1016/j.amc.2021.126270_bib0033
  article-title: A unified computational approach to optimal control problems
– volume: 25
  start-page: 1
  year: 2017
  ident: 10.1016/j.amc.2021.126270_bib0022
  article-title: Robust multi-objective optimal switching control arising in 1,3-propanediol microbial fed-batch process
  publication-title: Nonlinear Anal-Hybri.
  doi: 10.1016/j.nahs.2017.01.006
– volume: 26
  start-page: 1445
  year: 2020
  ident: 10.1016/j.amc.2021.126270_bib0006
  article-title: Spline collocation methods for seismic analysis of multiple degree of freedom systems with viso-elastic dampers using fractional models
  publication-title: J. Vib. Control
  doi: 10.1177/1077546319898570
– year: 1997
  ident: 10.1016/j.amc.2021.126270_bib0029
– volume: 6
  start-page: 81
  year: 1989
  ident: 10.1016/j.amc.2021.126270_bib0019
  article-title: A computational method for a class of dynamical optimization problems in which the terminal time is conditionally free
  publication-title: IMA J. Math. Control Inf.
  doi: 10.1093/imamci/6.1.81
– volume: 13
  start-page: 1269
  year: 2007
  ident: 10.1016/j.amc.2021.126270_bib0008
  article-title: A hamiltonian formulation and a direct numerical scheme for fractional optimal control problems
  publication-title: J. Vib. Control
  doi: 10.1177/1077546307077467
– volume: 18
  start-page: 2272
  year: 2016
  ident: 10.1016/j.amc.2021.126270_bib0010
  article-title: An efficient numerical solution of fractional optimal control problems by using the ritz method and bernstein operational matrix
  publication-title: Asian J. Control
  doi: 10.1002/asjc.1321
– volume: 78
  start-page: 333
  year: 2017
  ident: 10.1016/j.amc.2021.126270_bib0014
  article-title: A new framework for solving fractional optimal control problems using fractional pseudo-spectral methods
  publication-title: Automatica
  doi: 10.1016/j.automatica.2016.12.022
– volume: 62
  start-page: 304
  year: 2015
  ident: 10.1016/j.amc.2021.126270_bib0013
  article-title: Integral fractional pseudospectral methods for solving fractional optimal control problems
  publication-title: Automatica
  doi: 10.1016/j.automatica.2015.09.007
– volume: 14
  start-page: 1499
  year: 2008
  ident: 10.1016/j.amc.2021.126270_bib0004
  article-title: A fractional adaptation scheme for lateral control of an AGV
  publication-title: J. Vib. Control
  doi: 10.1177/1077546307087434
– volume: 72
  start-page: 53
  year: 2014
  ident: 10.1016/j.amc.2021.126270_bib0021
  article-title: A computational method for solving time-delay optimal control problems with free terminal time
  publication-title: Syst. Control Lett.
  doi: 10.1016/j.sysconle.2014.07.001
– volume: 44
  start-page: 1233
  year: 1986
  ident: 10.1016/j.amc.2021.126270_bib0031
  article-title: A computational method for the solution of time-optimal control problem by Newton’s method
  publication-title: Int. J. Control
  doi: 10.1080/00207178608933664
– volume: 120
  start-page: 203
  year: 2019
  ident: 10.1016/j.amc.2021.126270_bib0026
  article-title: System of fractional differential algebraic equations with applications
  publication-title: Chaos Soliton. Fract.
  doi: 10.1016/j.chaos.2019.01.028
– year: 2014
  ident: 10.1016/j.amc.2021.126270_bib0001
  article-title: Fractional calculus in analysis
– volume: 29
  start-page: 2
  year: 2002
  ident: 10.1016/j.amc.2021.126270_bib0025
  article-title: A predictor corrector approach for numerical solution of fractional equation
  publication-title: Nonlinear Dyn.
  doi: 10.1023/A:1016592219341
– volume: 86
  start-page: 2803
  year: 2006
  ident: 10.1016/j.amc.2021.126270_bib0003
  article-title: Fractional order control strategies for power electronic buck converters
  publication-title: Signal Process.
  doi: 10.1016/j.sigpro.2006.02.022
– volume: 17
  start-page: 2389
  year: 2015
  ident: 10.1016/j.amc.2021.126270_bib0012
  article-title: An effifcient numerical scheme for solving multi-dimensional fractional optimal control problems with a quadratic performance index
  publication-title: Asian J. Control
  doi: 10.1002/asjc.1109
– volume: 187
  start-page: 234
  year: 2020
  ident: 10.1016/j.amc.2021.126270_bib0015
  article-title: A control parameterization method to solve the fractional-order optimal control problem
  publication-title: J. Optimiz. Theory Appl.
  doi: 10.1007/s10957-017-1163-7
– volume: 10
  start-page: 363
  year: 2014
  ident: 10.1016/j.amc.2021.126270_bib0018
  article-title: Fractional order optimal control problems with free terminal time
  publication-title: J. Ind. Manag. Optim.
  doi: 10.3934/jimo.2014.10.363
– volume: 250
  start-page: 143
  year: 2013
  ident: 10.1016/j.amc.2021.126270_bib0011
  article-title: Numerical solution of a class of fractional optimal control problems via the legendre orthonormal basis combined with the operational matrix and the gauss quadrature rule
  publication-title: J. Comp. Appl. Math.
  doi: 10.1016/j.cam.2013.03.003
– volume: 180
  start-page: 556
  year: 2019
  ident: 10.1016/j.amc.2021.126270_bib0016
  article-title: Numerical solution of fractional optimal control
  publication-title: J. Optimiz. Theory Appl.
  doi: 10.1007/s10957-018-1418-y
– volume: 42
  start-page: 2239
  year: 2004
  ident: 10.1016/j.amc.2021.126270_bib0020
  article-title: Second order sufficient conditions for time-optimal bang-bang control
  publication-title: SIAM J. Control Optim.
  doi: 10.1137/S0363012902402578
– year: 2010
  ident: 10.1016/j.amc.2021.126270_bib0028
– volume: 20
  start-page: 763
  year: 2012
  ident: 10.1016/j.amc.2021.126270_bib0034
  article-title: Optimal control of a fractional-order HIV-immune system with memory
  publication-title: IEEE Trans. Control Syst. Technol.
  doi: 10.1109/TCST.2011.2153203
– year: 2006
  ident: 10.1016/j.amc.2021.126270_bib0030
– volume: 63
  start-page: 29
  year: 2020
  ident: 10.1016/j.amc.2021.126270_bib0005
  article-title: Viso-elastic dampers in structural buildings and numerical solution with spline collocation methods
  publication-title: J. Appl. Math. Comput.
  doi: 10.1007/s12190-019-01307-5
– volume: 67
  start-page: 334
  year: 2019
  ident: 10.1016/j.amc.2021.126270_bib0032
  article-title: Direct transcription methods based on fractional integral approximation formulas for solving nonlinear fractional optimal control problems
  publication-title: Commun. Nonlinear Sci. Numer. Simulat.
  doi: 10.1016/j.cnsns.2018.05.011
– volume: 59
  start-page: 1644
  year: 2010
  ident: 10.1016/j.amc.2021.126270_bib0009
  article-title: An approximate method for numerically solving fractional order optimal control problems of general form
  publication-title: Comput. Math. Appl.
  doi: 10.1016/j.camwa.2009.08.006
– volume: 15
  start-page: 783
  year: 2013
  ident: 10.1016/j.amc.2021.126270_bib0002
  article-title: Fractional order controller design for a flexible link manipulator robot
  publication-title: Asian J. Control
  doi: 10.1002/asjc.677
– volume: 13
  start-page: 1697
  year: 2020
  ident: 10.1016/j.amc.2021.126270_bib0024
  article-title: Time-delay optimal control of a fed-batch production involving multiple feeds
  publication-title: Discrete Contin. Dyn. Syst. Ser. S
SSID ssj0007614
Score 2.4860077
Snippet •A constrained fractional optimal control problem with free terminal time is considered.•The problem is transformed based on time-scaling transformation and...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 126270
SubjectTerms Constrained optimal control
Fractional-order system
Free final time
Numerical optimization
Time-scaling transformation
Title Numerical solution of free final time fractional optimal control problems
URI https://dx.doi.org/10.1016/j.amc.2021.126270
Volume 405
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  issn: 0096-3003
  databaseCode: GBLVA
  dateStart: 20110101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: true
  ssIdentifier: ssj0007614
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier ScienceDirect
  issn: 0096-3003
  databaseCode: .~1
  dateStart: 19950101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: true
  ssIdentifier: ssj0007614
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier ScienceDirect
  issn: 0096-3003
  databaseCode: ACRLP
  dateStart: 19950101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: true
  ssIdentifier: ssj0007614
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier ScienceDirect
  issn: 0096-3003
  databaseCode: AIKHN
  dateStart: 19950101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: true
  ssIdentifier: ssj0007614
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  issn: 0096-3003
  databaseCode: AKRWK
  dateStart: 19930101
  customDbUrl:
  isFulltext: true
  mediaType: online
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0007614
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1JS8NAFB5KvehBXLEuZQ6ehLTJZDLLsRSlVdqThd7CbIFKN7pc_e3OayZVQT14ChMyEL4Mb97LfO_7ELrnQuqMGhsprVhEbSwj7VdWlHDj6zjn6xYNvwYGQ9Yb0edxNq6hbtULA7TKEPvLmL6L1uFOO6DZXk4m0OMrQS8KmlBAhw4UPynl4GLQev-kefgyvVRilsDxitPqZHPH8VIzUDEkSSshjIBf8U9705f95ukEHYdEEXfKdzlFNTc_Q0eDvcrq-hz1h9vyvGWKqxWEFwUuVs7hAtyuMDjH-3HZvODHCx8gZv4aCOo42MmsL9Do6fG124uCNUJkiOSbyErLpCIqEZZZLrlLhWEitdwS4xMgwxNVMKZJQXTqrABVN62Z4nEhpPMZYXqJ6vPF3F0hrDTJjOVKOBrTgvkCwxIPqdY8k1ZR0UBxBUpugm442FdM84og9pZ7HHPAMS9xbKCH_ZRlKZrx18O0Qjr_9uVzH9R_n3b9v2k36BBGwPhIsltU36y27s6nFRvd3K2bJjro9F96ww9Vn8tx
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELZKGYAB8RTlmYEJKW3iOH6MqAK10HZqpW6WHTtSUV_qY-W342ucAhIwMEVOYin6fDrfxd99h9A940KnJDOh0oqGxEQi1M6ywphlLo-zLm_R8Gug26OtAXkZpsMKapa1MECr9L6_8Okbb-3vNDyajfloBDW-AvSioAgFdOiSHbRLUswgA6u_f_I8XJ5eSDELIHlFSXm0uSF5qQnIGOK4HmOKoWHxT5vTlw3n-Qgd-kgxeCw-5hhV7PQEHXS3MqvLU9TurYsDl3FQmlAwy4N8YW2QQ7urAFrHu3FRveDGM-chJu7qGeqB7yezPEOD56d-sxX63ghhhgVbhUYYKhRWMTfUMMFswjPKE8MMzlwElLFY5ZRqnGOdWMNB1k1rqliUc2FdSJico-p0NrUXKFAap5lhilsSkZy6DMNgh6nWLBVGEV5DUQmKzLxwOPSvGMuSIfYmHY4ScJQFjjX0sJ0yL1Qz_nqZlEjLb0svnVf_fdrl_6bdob1Wv9uRnXbv9QrtwxOgf8TpNaquFmt742KMlb7d2NAHP57NBg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Numerical+solution+of+free+final+time+fractional+optimal+control+problems&rft.jtitle=Applied+mathematics+and+computation&rft.au=Gong%2C+Zhaohua&rft.au=Liu%2C+Chongyang&rft.au=Teo%2C+Kok+Lay&rft.au=Wang%2C+Song&rft.date=2021-09-15&rft.pub=Elsevier+Inc&rft.issn=0096-3003&rft.volume=405&rft_id=info:doi/10.1016%2Fj.amc.2021.126270&rft.externalDocID=S0096300321003593
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0096-3003&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0096-3003&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0096-3003&client=summon