Numerical solution of free final time fractional optimal control problems
•A constrained fractional optimal control problem with free terminal time is considered.•The problem is transformed based on time-scaling transformation and numerical integration scheme.•A novel gradient-based optimization is developed to solve the transformed optimization problem. The main purpose...
Saved in:
| Published in | Applied mathematics and computation Vol. 405; p. 126270 |
|---|---|
| Main Authors | , , , , |
| Format | Journal Article |
| Language | English |
| Published |
Elsevier Inc
15.09.2021
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 0096-3003 |
| DOI | 10.1016/j.amc.2021.126270 |
Cover
| Abstract | •A constrained fractional optimal control problem with free terminal time is considered.•The problem is transformed based on time-scaling transformation and numerical integration scheme.•A novel gradient-based optimization is developed to solve the transformed optimization problem.
The main purpose of this work is to develop a numerical solution method for solving a class of nonlinear free final time fractional optimal control problems. This problem is subject to equality and inequality constraints in canonical forms, and the orders in the fractional system can be different. For this problem, we first show that, by a time-scaling transformation, the problem can be transformed into an equivalent fractional optimal control problem with fixed final time. We then discretize the transformed fractional optimal control problem by a second-order one-point numerical integration scheme and the trapezoidal rule. Furthermore, we derive the gradient formulae of the cost and constraint functions with respect to decision variables and propose a numerical procedure for calculating these gradients. On this basis, a gradient-based optimization algorithm is developed for solving the resulting problem. Finally, numerical simulations of three example problems illustrate the effectiveness of the developed algorithm. |
|---|---|
| AbstractList | •A constrained fractional optimal control problem with free terminal time is considered.•The problem is transformed based on time-scaling transformation and numerical integration scheme.•A novel gradient-based optimization is developed to solve the transformed optimization problem.
The main purpose of this work is to develop a numerical solution method for solving a class of nonlinear free final time fractional optimal control problems. This problem is subject to equality and inequality constraints in canonical forms, and the orders in the fractional system can be different. For this problem, we first show that, by a time-scaling transformation, the problem can be transformed into an equivalent fractional optimal control problem with fixed final time. We then discretize the transformed fractional optimal control problem by a second-order one-point numerical integration scheme and the trapezoidal rule. Furthermore, we derive the gradient formulae of the cost and constraint functions with respect to decision variables and propose a numerical procedure for calculating these gradients. On this basis, a gradient-based optimization algorithm is developed for solving the resulting problem. Finally, numerical simulations of three example problems illustrate the effectiveness of the developed algorithm. |
| ArticleNumber | 126270 |
| Author | Gong, Zhaohua Liu, Chongyang Wang, Song Wu, Yonghong Teo, Kok Lay |
| Author_xml | – sequence: 1 givenname: Zhaohua surname: Gong fullname: Gong, Zhaohua organization: School of Mathematics and Information Science, Shandong Technology and Business University, Yantai, Shandong 264005 China – sequence: 2 givenname: Chongyang surname: Liu fullname: Liu, Chongyang email: liu_chongyang@yahoo.com organization: School of Mathematics and Information Science, Shandong Technology and Business University, Yantai, Shandong 264005 China – sequence: 3 givenname: Kok Lay surname: Teo fullname: Teo, Kok Lay organization: School of Mathematical Sciences, Sunway University, Kuala Lumpur 47500, Malaysia – sequence: 4 givenname: Song surname: Wang fullname: Wang, Song organization: School of Electrical Engineering, Computing and Mathematical Sciences, Curtin University, Perth, Western Australia 2605 Australia – sequence: 5 givenname: Yonghong surname: Wu fullname: Wu, Yonghong organization: School of Electrical Engineering, Computing and Mathematical Sciences, Curtin University, Perth, Western Australia 2605 Australia |
| BookMark | eNp9j8tqwzAQRbVIoUnaD-jOP2BXj0Sy6KqEPgIh3bRrIUsjULCtICmF_n1l3FUXWc3MHc4wZ4UWYxgBoQeCG4IJfzw1ejANxZQ0hHIq8AItMZa8ZhizW7RK6YQxFpxslmh_vAwQvdF9lUJ_yT6MVXCViwCV82OJsx9KG7WZdmUO55KUasKYY-ircwxdD0O6QzdO9wnu_-oafb2-fO7e68PH2373fKgNlSLXVlouNdWktdwKKYC1hrfMCkvNhm2NINpx3lFHOwa2ldtN23VcC-xaCZJwtkZkvmtiSCmCU-dYHoo_imA1-auTKv5q8lezf2HEP8b4rCehHLXvr5JPMwlF6dtDVMl4GA1YH8FkZYO_Qv8CHlV53w |
| CitedBy_id | crossref_primary_10_1155_2023_1294070 crossref_primary_10_1080_00207721_2024_2317352 crossref_primary_10_1016_j_nahs_2021_101059 crossref_primary_10_1016_j_automatica_2022_110565 crossref_primary_10_3934_math_2025042 crossref_primary_10_3390_fractalfract6100579 crossref_primary_10_3934_jimo_2021182 crossref_primary_10_1007_s10957_023_02212_5 crossref_primary_10_1002_oca_2877 crossref_primary_10_1016_j_ifacol_2023_02_037 crossref_primary_10_3934_math_2021697 crossref_primary_10_1016_j_cam_2024_116169 |
| Cites_doi | 10.1007/s11071-004-3764-6 10.1016/j.jprocont.2018.10.001 10.3934/naco.2017018 10.1016/j.nahs.2017.01.006 10.1177/1077546319898570 10.1093/imamci/6.1.81 10.1177/1077546307077467 10.1002/asjc.1321 10.1016/j.automatica.2016.12.022 10.1016/j.automatica.2015.09.007 10.1177/1077546307087434 10.1016/j.sysconle.2014.07.001 10.1080/00207178608933664 10.1016/j.chaos.2019.01.028 10.1023/A:1016592219341 10.1016/j.sigpro.2006.02.022 10.1002/asjc.1109 10.1007/s10957-017-1163-7 10.3934/jimo.2014.10.363 10.1016/j.cam.2013.03.003 10.1007/s10957-018-1418-y 10.1137/S0363012902402578 10.1109/TCST.2011.2153203 10.1007/s12190-019-01307-5 10.1016/j.cnsns.2018.05.011 10.1016/j.camwa.2009.08.006 10.1002/asjc.677 |
| ContentType | Journal Article |
| Copyright | 2021 Elsevier Inc. |
| Copyright_xml | – notice: 2021 Elsevier Inc. |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.amc.2021.126270 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Mathematics |
| ExternalDocumentID | 10_1016_j_amc_2021_126270 S0096300321003593 |
| GroupedDBID | --K --M -~X .DC .~1 0R~ 1B1 1RT 1~. 1~5 23M 4.4 457 4G. 5GY 6J9 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AATTM AAXKI AAXUO ABAOU ABFNM ABFRF ABJNI ABMAC ACDAQ ACGFO ACGFS ACRLP ADBBV ADEZE ADGUI AEBSH AEFWE AEIPS AEKER AENEX AFTJW AGHFR AGUBO AGYEJ AHHHB AIEXJ AIGVJ AIKHN AITUG AKRWK ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ARUGR AXJTR BKOJK BLXMC BNPGV CS3 EBS EFJIC EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W KOM LG9 M26 M41 MHUIS MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RNS ROL RPZ RXW SBC SDF SDG SES SME SPC SPCBC SSH SSW SSZ T5K TN5 WH7 X6Y XPP ZMT ~02 ~G- 5VS AAQXK AAYWO AAYXX ABEFU ABWVN ABXDB ACLOT ACRPL ACVFH ADCNI ADIYS ADMUD ADNMO AEUPX AFFNX AFJKZ AFPUW AGQPQ AI. AIGII AIIUN AKBMS AKYEP APXCP ASPBG AVWKF AZFZN CITATION EFKBS EFLBG EJD FEDTE FGOYB G-2 HLZ HMJ HVGLF HZ~ R2- SEW TAE VH1 VOH WUQ ~HD |
| ID | FETCH-LOGICAL-c297t-d9d69a2a18d6d797e38c683d7d2c435c71af66b2f2b3ed89548bb6a70f89e9163 |
| IEDL.DBID | .~1 |
| ISSN | 0096-3003 |
| IngestDate | Thu Oct 02 04:29:34 EDT 2025 Thu Apr 24 23:11:37 EDT 2025 Sun Apr 06 06:54:24 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Constrained optimal control Fractional-order system Numerical optimization Free final time Time-scaling transformation |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c297t-d9d69a2a18d6d797e38c683d7d2c435c71af66b2f2b3ed89548bb6a70f89e9163 |
| ParticipantIDs | crossref_primary_10_1016_j_amc_2021_126270 crossref_citationtrail_10_1016_j_amc_2021_126270 elsevier_sciencedirect_doi_10_1016_j_amc_2021_126270 |
| PublicationCentury | 2000 |
| PublicationDate | 2021-09-15 |
| PublicationDateYYYYMMDD | 2021-09-15 |
| PublicationDate_xml | – month: 09 year: 2021 text: 2021-09-15 day: 15 |
| PublicationDecade | 2020 |
| PublicationTitle | Applied mathematics and computation |
| PublicationYear | 2021 |
| Publisher | Elsevier Inc |
| Publisher_xml | – name: Elsevier Inc |
| References | Delavari, Lanusse, Sabatier (bib0002) 2013; 15 Calderon, Vinagre, Feliu (bib0003) 2006; 86 Liu, Gong, Teo, Sun, Caccetta (bib0022) 2017; 25 Liu, Gong, Lee, Teo (bib0023) 2019; 78 Shiri, Baleanu (bib0026) 2019; 120 Ding, Wang, Ye (bib0034) 2012; 20 Salati, Shamsi, Torres (bib0032) 2019; 67 Tricaud, Chen (bib0009) 2010; 59 Tyrtyshnikov (bib0029) 1997 Khiabani, Ghaffarzadeh, Shiri, Katebi (bib0006) 2020; 26 Lotfi, Yousefi, Dehghan (bib0011) 2013; 250 Li, Wang, Rehbock (bib0017) 2017; 7 Teo, Goh, Wong (bib0033) 1991 Bhrawy, Doha, Machado, Ezz-Eldien (bib0012) 2015; 17 Liu, Loxton, Teo (bib0021) 2014; 72 Li, Wang, Rehbock (bib0016) 2019; 180 Shiri, Wu, Baleanu (bib0027) 2020; 156 Diethelm, Ford, Freed (bib0025) 2002; 29 Teo, Goh, Lim (bib0019) 1989; 6 Subrahmanyam (bib0031) 1986; 44 Tang, Liu, Wang (bib0013) 2015; 62 Liu, Han (bib0024) 2020; 13 Mu, Wang, Liu (bib0015) 2020; 187 Maurer, Osmolovskii (bib0020) 2004; 42 Suarez, Vinagre, Chen (bib0004) 2008; 14 Cresson (bib0001) 2014 Pooseh, Almieda, Torres (bib0018) 2014; 10 Agrawal (bib0007) 2004; 38 Nemati, Yousefi, Soltanian, Ardabili (bib0010) 2016; 18 Diethelm (bib0028) 2010 Dadkhah, Shiri, Ghaffarzadeh, Baleanu (bib0005) 2020; 63 Tang, Liu, Wang (bib0014) 2017; 78 Nocedal, Wright (bib0030) 2006 Agrawal (bib0008) 2007; 13 Li (10.1016/j.amc.2021.126270_bib0017) 2017; 7 Bhrawy (10.1016/j.amc.2021.126270_bib0012) 2015; 17 Maurer (10.1016/j.amc.2021.126270_bib0020) 2004; 42 Delavari (10.1016/j.amc.2021.126270_bib0002) 2013; 15 Agrawal (10.1016/j.amc.2021.126270_bib0007) 2004; 38 Salati (10.1016/j.amc.2021.126270_bib0032) 2019; 67 Tricaud (10.1016/j.amc.2021.126270_bib0009) 2010; 59 Liu (10.1016/j.amc.2021.126270_bib0022) 2017; 25 Shiri (10.1016/j.amc.2021.126270_bib0026) 2019; 120 Nemati (10.1016/j.amc.2021.126270_bib0010) 2016; 18 Nocedal (10.1016/j.amc.2021.126270_bib0030) 2006 Agrawal (10.1016/j.amc.2021.126270_bib0008) 2007; 13 Diethelm (10.1016/j.amc.2021.126270_bib0025) 2002; 29 Ding (10.1016/j.amc.2021.126270_bib0034) 2012; 20 Khiabani (10.1016/j.amc.2021.126270_bib0006) 2020; 26 Li (10.1016/j.amc.2021.126270_bib0016) 2019; 180 Liu (10.1016/j.amc.2021.126270_bib0021) 2014; 72 Subrahmanyam (10.1016/j.amc.2021.126270_bib0031) 1986; 44 Teo (10.1016/j.amc.2021.126270_bib0033) 1991 Tang (10.1016/j.amc.2021.126270_bib0013) 2015; 62 Lotfi (10.1016/j.amc.2021.126270_bib0011) 2013; 250 Cresson (10.1016/j.amc.2021.126270_bib0001) 2014 Diethelm (10.1016/j.amc.2021.126270_bib0028) 2010 Liu (10.1016/j.amc.2021.126270_bib0024) 2020; 13 Shiri (10.1016/j.amc.2021.126270_bib0027) 2020; 156 Suarez (10.1016/j.amc.2021.126270_bib0004) 2008; 14 Mu (10.1016/j.amc.2021.126270_bib0015) 2020; 187 Tyrtyshnikov (10.1016/j.amc.2021.126270_bib0029) 1997 Liu (10.1016/j.amc.2021.126270_bib0023) 2019; 78 Tang (10.1016/j.amc.2021.126270_bib0014) 2017; 78 Teo (10.1016/j.amc.2021.126270_bib0019) 1989; 6 Pooseh (10.1016/j.amc.2021.126270_bib0018) 2014; 10 Dadkhah (10.1016/j.amc.2021.126270_bib0005) 2020; 63 Calderon (10.1016/j.amc.2021.126270_bib0003) 2006; 86 |
| References_xml | – volume: 7 start-page: 273 year: 2017 end-page: 287 ident: bib0017 article-title: A 2nd-order one-step numerical integration scheme for a fractional differential equation publication-title: Numer. Algebra Control Optim. – volume: 250 start-page: 143 year: 2013 end-page: 160 ident: bib0011 article-title: Numerical solution of a class of fractional optimal control problems via the legendre orthonormal basis combined with the operational matrix and the gauss quadrature rule publication-title: J. Comp. Appl. Math. – volume: 156 start-page: 385 year: 2020 end-page: 395 ident: bib0027 article-title: Collocation methods for terminal value problems of tempered fractional differential equations publication-title: Appl. Math. Comput. – volume: 67 start-page: 334 year: 2019 end-page: 350 ident: bib0032 article-title: Direct transcription methods based on fractional integral approximation formulas for solving nonlinear fractional optimal control problems publication-title: Commun. Nonlinear Sci. Numer. Simulat. – volume: 59 start-page: 1644 year: 2010 end-page: 1655 ident: bib0009 article-title: An approximate method for numerically solving fractional order optimal control problems of general form publication-title: Comput. Math. Appl. – volume: 72 start-page: 53 year: 2014 end-page: 60 ident: bib0021 article-title: A computational method for solving time-delay optimal control problems with free terminal time publication-title: Syst. Control Lett. – volume: 44 start-page: 1233 year: 1986 end-page: 1243 ident: bib0031 article-title: A computational method for the solution of time-optimal control problem by Newton’s method publication-title: Int. J. Control – volume: 120 start-page: 203 year: 2019 end-page: 212 ident: bib0026 article-title: System of fractional differential algebraic equations with applications publication-title: Chaos Soliton. Fract. – year: 1997 ident: bib0029 article-title: A Brief Introduction to Numerical Analysis – volume: 15 start-page: 783 year: 2013 end-page: 795 ident: bib0002 article-title: Fractional order controller design for a flexible link manipulator robot publication-title: Asian J. Control – volume: 62 start-page: 304 year: 2015 end-page: 311 ident: bib0013 article-title: Integral fractional pseudospectral methods for solving fractional optimal control problems publication-title: Automatica – volume: 78 start-page: 170 year: 2019 end-page: 182 ident: bib0023 article-title: Robust bi-objective optimal control of 1,3-propanediol microbial batch production process publication-title: J. Process Control – volume: 180 start-page: 556 year: 2019 end-page: 573 ident: bib0016 article-title: Numerical solution of fractional optimal control publication-title: J. Optimiz. Theory Appl. – volume: 42 start-page: 2239 year: 2004 end-page: 2263 ident: bib0020 article-title: Second order sufficient conditions for time-optimal bang-bang control publication-title: SIAM J. Control Optim. – volume: 13 start-page: 1697 year: 2020 end-page: 1709 ident: bib0024 article-title: Time-delay optimal control of a fed-batch production involving multiple feeds publication-title: Discrete Contin. Dyn. Syst. Ser. S – year: 1991 ident: bib0033 article-title: A unified computational approach to optimal control problems publication-title: Longman Scientific & Technical – volume: 20 start-page: 763 year: 2012 end-page: 769 ident: bib0034 article-title: Optimal control of a fractional-order HIV-immune system with memory publication-title: IEEE Trans. Control Syst. Technol. – volume: 86 start-page: 2803 year: 2006 end-page: 2819 ident: bib0003 article-title: Fractional order control strategies for power electronic buck converters publication-title: Signal Process. – volume: 187 start-page: 234 year: 2020 end-page: 247 ident: bib0015 article-title: A control parameterization method to solve the fractional-order optimal control problem publication-title: J. Optimiz. Theory Appl. – volume: 26 start-page: 1445 year: 2020 end-page: 1462 ident: bib0006 article-title: Spline collocation methods for seismic analysis of multiple degree of freedom systems with viso-elastic dampers using fractional models publication-title: J. Vib. Control – year: 2014 ident: bib0001 article-title: Fractional calculus in analysis publication-title: Dynamics and Optimal Control – volume: 63 start-page: 29 year: 2020 end-page: 57 ident: bib0005 article-title: Viso-elastic dampers in structural buildings and numerical solution with spline collocation methods publication-title: J. Appl. Math. Comput. – volume: 38 start-page: 323 year: 2004 end-page: 337 ident: bib0007 article-title: A general formulation and solution scheme for fractional optimal control problems publication-title: Nonlinear Dyn. – volume: 17 start-page: 2389 year: 2015 end-page: 2402 ident: bib0012 article-title: An effifcient numerical scheme for solving multi-dimensional fractional optimal control problems with a quadratic performance index publication-title: Asian J. Control – volume: 78 start-page: 333 year: 2017 end-page: 340 ident: bib0014 article-title: A new framework for solving fractional optimal control problems using fractional pseudo-spectral methods publication-title: Automatica – volume: 6 start-page: 81 year: 1989 end-page: 95 ident: bib0019 article-title: A computational method for a class of dynamical optimization problems in which the terminal time is conditionally free publication-title: IMA J. Math. Control Inf. – volume: 10 start-page: 363 year: 2014 end-page: 381 ident: bib0018 article-title: Fractional order optimal control problems with free terminal time publication-title: J. Ind. Manag. Optim. – year: 2006 ident: bib0030 article-title: Numerical Optimization – volume: 13 start-page: 1269 year: 2007 end-page: 1281 ident: bib0008 article-title: A hamiltonian formulation and a direct numerical scheme for fractional optimal control problems publication-title: J. Vib. Control – volume: 18 start-page: 2272 year: 2016 end-page: 2282 ident: bib0010 article-title: An efficient numerical solution of fractional optimal control problems by using the ritz method and bernstein operational matrix publication-title: Asian J. Control – volume: 29 start-page: 2 year: 2002 end-page: 22 ident: bib0025 article-title: A predictor corrector approach for numerical solution of fractional equation publication-title: Nonlinear Dyn. – year: 2010 ident: bib0028 article-title: The Analysis of Fractional Differential Equations – volume: 14 start-page: 1499 year: 2008 end-page: 1511 ident: bib0004 article-title: A fractional adaptation scheme for lateral control of an AGV publication-title: J. Vib. Control – volume: 25 start-page: 1 year: 2017 end-page: 20 ident: bib0022 article-title: Robust multi-objective optimal switching control arising in 1,3-propanediol microbial fed-batch process publication-title: Nonlinear Anal-Hybri. – volume: 38 start-page: 323 year: 2004 ident: 10.1016/j.amc.2021.126270_bib0007 article-title: A general formulation and solution scheme for fractional optimal control problems publication-title: Nonlinear Dyn. doi: 10.1007/s11071-004-3764-6 – volume: 78 start-page: 170 year: 2019 ident: 10.1016/j.amc.2021.126270_bib0023 article-title: Robust bi-objective optimal control of 1,3-propanediol microbial batch production process publication-title: J. Process Control doi: 10.1016/j.jprocont.2018.10.001 – volume: 7 start-page: 273 year: 2017 ident: 10.1016/j.amc.2021.126270_bib0017 article-title: A 2nd-order one-step numerical integration scheme for a fractional differential equation publication-title: Numer. Algebra Control Optim. doi: 10.3934/naco.2017018 – volume: 156 start-page: 385 year: 2020 ident: 10.1016/j.amc.2021.126270_bib0027 article-title: Collocation methods for terminal value problems of tempered fractional differential equations publication-title: Appl. Math. Comput. – year: 1991 ident: 10.1016/j.amc.2021.126270_bib0033 article-title: A unified computational approach to optimal control problems – volume: 25 start-page: 1 year: 2017 ident: 10.1016/j.amc.2021.126270_bib0022 article-title: Robust multi-objective optimal switching control arising in 1,3-propanediol microbial fed-batch process publication-title: Nonlinear Anal-Hybri. doi: 10.1016/j.nahs.2017.01.006 – volume: 26 start-page: 1445 year: 2020 ident: 10.1016/j.amc.2021.126270_bib0006 article-title: Spline collocation methods for seismic analysis of multiple degree of freedom systems with viso-elastic dampers using fractional models publication-title: J. Vib. Control doi: 10.1177/1077546319898570 – year: 1997 ident: 10.1016/j.amc.2021.126270_bib0029 – volume: 6 start-page: 81 year: 1989 ident: 10.1016/j.amc.2021.126270_bib0019 article-title: A computational method for a class of dynamical optimization problems in which the terminal time is conditionally free publication-title: IMA J. Math. Control Inf. doi: 10.1093/imamci/6.1.81 – volume: 13 start-page: 1269 year: 2007 ident: 10.1016/j.amc.2021.126270_bib0008 article-title: A hamiltonian formulation and a direct numerical scheme for fractional optimal control problems publication-title: J. Vib. Control doi: 10.1177/1077546307077467 – volume: 18 start-page: 2272 year: 2016 ident: 10.1016/j.amc.2021.126270_bib0010 article-title: An efficient numerical solution of fractional optimal control problems by using the ritz method and bernstein operational matrix publication-title: Asian J. Control doi: 10.1002/asjc.1321 – volume: 78 start-page: 333 year: 2017 ident: 10.1016/j.amc.2021.126270_bib0014 article-title: A new framework for solving fractional optimal control problems using fractional pseudo-spectral methods publication-title: Automatica doi: 10.1016/j.automatica.2016.12.022 – volume: 62 start-page: 304 year: 2015 ident: 10.1016/j.amc.2021.126270_bib0013 article-title: Integral fractional pseudospectral methods for solving fractional optimal control problems publication-title: Automatica doi: 10.1016/j.automatica.2015.09.007 – volume: 14 start-page: 1499 year: 2008 ident: 10.1016/j.amc.2021.126270_bib0004 article-title: A fractional adaptation scheme for lateral control of an AGV publication-title: J. Vib. Control doi: 10.1177/1077546307087434 – volume: 72 start-page: 53 year: 2014 ident: 10.1016/j.amc.2021.126270_bib0021 article-title: A computational method for solving time-delay optimal control problems with free terminal time publication-title: Syst. Control Lett. doi: 10.1016/j.sysconle.2014.07.001 – volume: 44 start-page: 1233 year: 1986 ident: 10.1016/j.amc.2021.126270_bib0031 article-title: A computational method for the solution of time-optimal control problem by Newton’s method publication-title: Int. J. Control doi: 10.1080/00207178608933664 – volume: 120 start-page: 203 year: 2019 ident: 10.1016/j.amc.2021.126270_bib0026 article-title: System of fractional differential algebraic equations with applications publication-title: Chaos Soliton. Fract. doi: 10.1016/j.chaos.2019.01.028 – year: 2014 ident: 10.1016/j.amc.2021.126270_bib0001 article-title: Fractional calculus in analysis – volume: 29 start-page: 2 year: 2002 ident: 10.1016/j.amc.2021.126270_bib0025 article-title: A predictor corrector approach for numerical solution of fractional equation publication-title: Nonlinear Dyn. doi: 10.1023/A:1016592219341 – volume: 86 start-page: 2803 year: 2006 ident: 10.1016/j.amc.2021.126270_bib0003 article-title: Fractional order control strategies for power electronic buck converters publication-title: Signal Process. doi: 10.1016/j.sigpro.2006.02.022 – volume: 17 start-page: 2389 year: 2015 ident: 10.1016/j.amc.2021.126270_bib0012 article-title: An effifcient numerical scheme for solving multi-dimensional fractional optimal control problems with a quadratic performance index publication-title: Asian J. Control doi: 10.1002/asjc.1109 – volume: 187 start-page: 234 year: 2020 ident: 10.1016/j.amc.2021.126270_bib0015 article-title: A control parameterization method to solve the fractional-order optimal control problem publication-title: J. Optimiz. Theory Appl. doi: 10.1007/s10957-017-1163-7 – volume: 10 start-page: 363 year: 2014 ident: 10.1016/j.amc.2021.126270_bib0018 article-title: Fractional order optimal control problems with free terminal time publication-title: J. Ind. Manag. Optim. doi: 10.3934/jimo.2014.10.363 – volume: 250 start-page: 143 year: 2013 ident: 10.1016/j.amc.2021.126270_bib0011 article-title: Numerical solution of a class of fractional optimal control problems via the legendre orthonormal basis combined with the operational matrix and the gauss quadrature rule publication-title: J. Comp. Appl. Math. doi: 10.1016/j.cam.2013.03.003 – volume: 180 start-page: 556 year: 2019 ident: 10.1016/j.amc.2021.126270_bib0016 article-title: Numerical solution of fractional optimal control publication-title: J. Optimiz. Theory Appl. doi: 10.1007/s10957-018-1418-y – volume: 42 start-page: 2239 year: 2004 ident: 10.1016/j.amc.2021.126270_bib0020 article-title: Second order sufficient conditions for time-optimal bang-bang control publication-title: SIAM J. Control Optim. doi: 10.1137/S0363012902402578 – year: 2010 ident: 10.1016/j.amc.2021.126270_bib0028 – volume: 20 start-page: 763 year: 2012 ident: 10.1016/j.amc.2021.126270_bib0034 article-title: Optimal control of a fractional-order HIV-immune system with memory publication-title: IEEE Trans. Control Syst. Technol. doi: 10.1109/TCST.2011.2153203 – year: 2006 ident: 10.1016/j.amc.2021.126270_bib0030 – volume: 63 start-page: 29 year: 2020 ident: 10.1016/j.amc.2021.126270_bib0005 article-title: Viso-elastic dampers in structural buildings and numerical solution with spline collocation methods publication-title: J. Appl. Math. Comput. doi: 10.1007/s12190-019-01307-5 – volume: 67 start-page: 334 year: 2019 ident: 10.1016/j.amc.2021.126270_bib0032 article-title: Direct transcription methods based on fractional integral approximation formulas for solving nonlinear fractional optimal control problems publication-title: Commun. Nonlinear Sci. Numer. Simulat. doi: 10.1016/j.cnsns.2018.05.011 – volume: 59 start-page: 1644 year: 2010 ident: 10.1016/j.amc.2021.126270_bib0009 article-title: An approximate method for numerically solving fractional order optimal control problems of general form publication-title: Comput. Math. Appl. doi: 10.1016/j.camwa.2009.08.006 – volume: 15 start-page: 783 year: 2013 ident: 10.1016/j.amc.2021.126270_bib0002 article-title: Fractional order controller design for a flexible link manipulator robot publication-title: Asian J. Control doi: 10.1002/asjc.677 – volume: 13 start-page: 1697 year: 2020 ident: 10.1016/j.amc.2021.126270_bib0024 article-title: Time-delay optimal control of a fed-batch production involving multiple feeds publication-title: Discrete Contin. Dyn. Syst. Ser. S |
| SSID | ssj0007614 |
| Score | 2.4860077 |
| Snippet | •A constrained fractional optimal control problem with free terminal time is considered.•The problem is transformed based on time-scaling transformation and... |
| SourceID | crossref elsevier |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 126270 |
| SubjectTerms | Constrained optimal control Fractional-order system Free final time Numerical optimization Time-scaling transformation |
| Title | Numerical solution of free final time fractional optimal control problems |
| URI | https://dx.doi.org/10.1016/j.amc.2021.126270 |
| Volume | 405 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) issn: 0096-3003 databaseCode: GBLVA dateStart: 20110101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: true ssIdentifier: ssj0007614 providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier ScienceDirect issn: 0096-3003 databaseCode: .~1 dateStart: 19950101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: true ssIdentifier: ssj0007614 providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier ScienceDirect issn: 0096-3003 databaseCode: ACRLP dateStart: 19950101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: true ssIdentifier: ssj0007614 providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier ScienceDirect issn: 0096-3003 databaseCode: AIKHN dateStart: 19950101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: true ssIdentifier: ssj0007614 providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals issn: 0096-3003 databaseCode: AKRWK dateStart: 19930101 customDbUrl: isFulltext: true mediaType: online dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0007614 providerName: Library Specific Holdings |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1JS8NAFB5KvehBXLEuZQ6ehLTJZDLLsRSlVdqThd7CbIFKN7pc_e3OayZVQT14ChMyEL4Mb97LfO_7ELrnQuqMGhsprVhEbSwj7VdWlHDj6zjn6xYNvwYGQ9Yb0edxNq6hbtULA7TKEPvLmL6L1uFOO6DZXk4m0OMrQS8KmlBAhw4UPynl4GLQev-kefgyvVRilsDxitPqZHPH8VIzUDEkSSshjIBf8U9705f95ukEHYdEEXfKdzlFNTc_Q0eDvcrq-hz1h9vyvGWKqxWEFwUuVs7hAtyuMDjH-3HZvODHCx8gZv4aCOo42MmsL9Do6fG124uCNUJkiOSbyErLpCIqEZZZLrlLhWEitdwS4xMgwxNVMKZJQXTqrABVN62Z4nEhpPMZYXqJ6vPF3F0hrDTJjOVKOBrTgvkCwxIPqdY8k1ZR0UBxBUpugm442FdM84og9pZ7HHPAMS9xbKCH_ZRlKZrx18O0Qjr_9uVzH9R_n3b9v2k36BBGwPhIsltU36y27s6nFRvd3K2bJjro9F96ww9Vn8tx |
| linkProvider | Elsevier |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELZKGYAB8RTlmYEJKW3iOH6MqAK10HZqpW6WHTtSUV_qY-W342ucAhIwMEVOYin6fDrfxd99h9A940KnJDOh0oqGxEQi1M6ywphlLo-zLm_R8Gug26OtAXkZpsMKapa1MECr9L6_8Okbb-3vNDyajfloBDW-AvSioAgFdOiSHbRLUswgA6u_f_I8XJ5eSDELIHlFSXm0uSF5qQnIGOK4HmOKoWHxT5vTlw3n-Qgd-kgxeCw-5hhV7PQEHXS3MqvLU9TurYsDl3FQmlAwy4N8YW2QQ7urAFrHu3FRveDGM-chJu7qGeqB7yezPEOD56d-sxX63ghhhgVbhUYYKhRWMTfUMMFswjPKE8MMzlwElLFY5ZRqnGOdWMNB1k1rqliUc2FdSJico-p0NrUXKFAap5lhilsSkZy6DMNgh6nWLBVGEV5DUQmKzLxwOPSvGMuSIfYmHY4ScJQFjjX0sJ0yL1Qz_nqZlEjLb0svnVf_fdrl_6bdob1Wv9uRnXbv9QrtwxOgf8TpNaquFmt742KMlb7d2NAHP57NBg |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Numerical+solution+of+free+final+time+fractional+optimal+control+problems&rft.jtitle=Applied+mathematics+and+computation&rft.au=Gong%2C+Zhaohua&rft.au=Liu%2C+Chongyang&rft.au=Teo%2C+Kok+Lay&rft.au=Wang%2C+Song&rft.date=2021-09-15&rft.pub=Elsevier+Inc&rft.issn=0096-3003&rft.volume=405&rft_id=info:doi/10.1016%2Fj.amc.2021.126270&rft.externalDocID=S0096300321003593 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0096-3003&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0096-3003&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0096-3003&client=summon |