K-means clustering algorithms: A comprehensive review, variants analysis, and advances in the era of big data
Advances in recent techniques for scientific data collection in the era of big data allow for the systematic accumulation of large quantities of data at various data-capturing sites. Similarly, exponential growth in the development of different data analysis approaches has been reported in the liter...
Saved in:
| Published in | Information sciences Vol. 622; pp. 178 - 210 |
|---|---|
| Main Authors | , , , , |
| Format | Journal Article |
| Language | English |
| Published |
Elsevier Inc
01.04.2023
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 0020-0255 1872-6291 |
| DOI | 10.1016/j.ins.2022.11.139 |
Cover
| Abstract | Advances in recent techniques for scientific data collection in the era of big data allow for the systematic accumulation of large quantities of data at various data-capturing sites. Similarly, exponential growth in the development of different data analysis approaches has been reported in the literature, amongst which the K-means algorithm remains the most popular and straightforward clustering algorithm. The broad applicability of the algorithm in many clustering application areas can be attributed to its implementation simplicity and low computational complexity. However, the K-means algorithm has many challenges that negatively affect its clustering performance. In the algorithm’s initialization process, users must specify the number of clusters in a given dataset apriori while the initial cluster centers are randomly selected. Furthermore, the algorithm's performance is susceptible to the selection of this initial cluster and for large datasets, determining the optimal number of clusters to start with becomes complex and is a very challenging task. Moreover, the random selection of the initial cluster centers sometimes results in minimal local convergence due to its greedy nature. A further limitation is that certain data object features are used in determining their similarity by using the Euclidean distance metric as a similarity measure, but this limits the algorithm’s robustness in detecting other cluster shapes and poses a great challenge in detecting overlapping clusters. Many research efforts have been conducted and reported in literature with regard to improving the K-means algorithm’s performance and robustness. The current work presents an overview and taxonomy of the K-means clustering algorithm and its variants. The history of the K-means, current trends, open issues and challenges, and recommended future research perspectives are also discussed. |
|---|---|
| AbstractList | Advances in recent techniques for scientific data collection in the era of big data allow for the systematic accumulation of large quantities of data at various data-capturing sites. Similarly, exponential growth in the development of different data analysis approaches has been reported in the literature, amongst which the K-means algorithm remains the most popular and straightforward clustering algorithm. The broad applicability of the algorithm in many clustering application areas can be attributed to its implementation simplicity and low computational complexity. However, the K-means algorithm has many challenges that negatively affect its clustering performance. In the algorithm’s initialization process, users must specify the number of clusters in a given dataset apriori while the initial cluster centers are randomly selected. Furthermore, the algorithm's performance is susceptible to the selection of this initial cluster and for large datasets, determining the optimal number of clusters to start with becomes complex and is a very challenging task. Moreover, the random selection of the initial cluster centers sometimes results in minimal local convergence due to its greedy nature. A further limitation is that certain data object features are used in determining their similarity by using the Euclidean distance metric as a similarity measure, but this limits the algorithm’s robustness in detecting other cluster shapes and poses a great challenge in detecting overlapping clusters. Many research efforts have been conducted and reported in literature with regard to improving the K-means algorithm’s performance and robustness. The current work presents an overview and taxonomy of the K-means clustering algorithm and its variants. The history of the K-means, current trends, open issues and challenges, and recommended future research perspectives are also discussed. |
| Author | Abualigah, Laith Ezugwu, Absalom E. Heming, Jia Ikotun, Abiodun M. Abuhaija, Belal |
| Author_xml | – sequence: 1 givenname: Abiodun M. surname: Ikotun fullname: Ikotun, Abiodun M. email: Abiodun@ukzn.ac.za organization: School of Computer Science, University of KwaZulu-Natal, Pietermaritzburg, KwaZulu-Natal, South Africa – sequence: 2 givenname: Absalom E. surname: Ezugwu fullname: Ezugwu, Absalom E. email: Ezugwua@ukzn.ac.za organization: School of Computer Science, University of KwaZulu-Natal, Pietermaritzburg, KwaZulu-Natal, South Africa – sequence: 3 givenname: Laith surname: Abualigah fullname: Abualigah, Laith organization: Prince Hussein Bin Abdullah College for Information Technology, Al Al-Bayt University, Mafraq 130040, Jordan – sequence: 4 givenname: Belal surname: Abuhaija fullname: Abuhaija, Belal email: babuhaij@kean.edu organization: Department of Computer Science, Wenzhou-Kean University, Wenzhou, China – sequence: 5 givenname: Jia surname: Heming fullname: Heming, Jia email: jiaheming@fjsmu.edu.cn organization: College of Information and Engineering, Sanming University, China |
| BookMark | eNp90L1OwzAQwHELFYlSeAA2P0ATbKexE5iqii9RiQVm6xJfWleJU9kmqG9PqjIxdLpb_ifd75pMXO-QkDvOUs64vN-l1oVUMCFSzlOelRdkygslEilKPiFTxgRLmMjzK3Idwo4xtlBSTkn3nnQILtC6_Q4RvXUbCu2m9zZuu_BAl7Tuu73HLbpgB6QeB4s_czqAt-BioOCgPQQb5uNmKJgBXI2BWkfjFil6oH1DK7uhBiLckMsG2oC3f3NGvp6fPlevyfrj5W21XCe1KFVMTKEAVSFNU1VlJRdZiTnLpFjkUIkmU4blAhdFVYEsjEAhVZnlOTTV-BMrSpbNiDrdrX0fgsdG1zZCtL2LHmyrOdNHNb3To5o-qmnO9ag2lvxfufe2A3842zyeGhxfGnm8DrXFkcFYj3XUprdn6l9Ylohd |
| CitedBy_id | crossref_primary_10_32604_cmc_2024_060837 crossref_primary_10_3390_machines12030180 crossref_primary_10_1016_j_neuroimage_2023_120470 crossref_primary_10_1109_ACCESS_2023_3327640 crossref_primary_10_3390_electronics12102326 crossref_primary_10_1371_journal_pone_0303341 crossref_primary_10_1051_itmconf_20245804008 crossref_primary_10_1109_TGRS_2025_3526644 crossref_primary_10_3390_a17120551 crossref_primary_10_1109_ACCESS_2023_3349319 crossref_primary_10_3390_buildings13051108 crossref_primary_10_3390_en16186491 crossref_primary_10_1016_j_cie_2024_110714 crossref_primary_10_1007_s11227_024_06607_7 crossref_primary_10_1109_ACCESS_2024_3436940 crossref_primary_10_1038_s41598_024_76545_0 crossref_primary_10_1002_cjce_25133 crossref_primary_10_1016_j_rpth_2025_102691 crossref_primary_10_1007_s40846_024_00923_2 crossref_primary_10_1016_j_engappai_2023_106379 crossref_primary_10_1016_j_joitmc_2023_100024 crossref_primary_10_1016_j_compbiomed_2024_109647 crossref_primary_10_3390_a16090396 crossref_primary_10_1080_00423114_2024_2425415 crossref_primary_10_3390_informatics11040072 crossref_primary_10_1007_s42044_024_00218_4 crossref_primary_10_1109_ACCESS_2024_3409312 crossref_primary_10_3390_app14010460 crossref_primary_10_1145_3698875 crossref_primary_10_1109_JIOT_2024_3422394 crossref_primary_10_1016_j_aap_2024_107714 crossref_primary_10_1142_S2737480724500134 crossref_primary_10_1016_j_oceaneng_2024_119329 crossref_primary_10_1016_j_rse_2023_113853 crossref_primary_10_1016_j_ijnurstu_2024_104963 crossref_primary_10_1016_j_ins_2024_120932 crossref_primary_10_1080_13467581_2024_2397100 crossref_primary_10_3390_diagnostics13142454 crossref_primary_10_1088_1361_6501_ad3fd5 crossref_primary_10_3390_math12131961 crossref_primary_10_1109_TMC_2024_3426945 crossref_primary_10_1007_s11227_023_05417_7 crossref_primary_10_1016_j_ins_2023_119621 crossref_primary_10_1080_08839514_2023_2166232 crossref_primary_10_1111_itor_13527 crossref_primary_10_3390_e26070579 crossref_primary_10_1016_j_apenergy_2025_125359 crossref_primary_10_1007_s10479_023_05657_z crossref_primary_10_18267_j_aip_223 crossref_primary_10_1364_OE_507052 crossref_primary_10_18359_rcin_7474 crossref_primary_10_3390_antibiotics13111052 crossref_primary_10_1016_j_postharvbio_2024_112875 crossref_primary_10_1007_s13369_024_09180_6 crossref_primary_10_1016_j_eswa_2024_125246 crossref_primary_10_1016_j_ins_2023_119634 crossref_primary_10_1016_j_ecolind_2024_112882 crossref_primary_10_1007_s11042_023_16734_7 crossref_primary_10_1088_1361_6501_ad9514 crossref_primary_10_1186_s44167_024_00045_9 crossref_primary_10_1007_s12145_024_01368_6 crossref_primary_10_1016_j_aej_2024_09_016 crossref_primary_10_3390_su17072827 crossref_primary_10_1007_s42979_024_03444_6 crossref_primary_10_1016_j_renene_2025_122594 crossref_primary_10_1007_s00180_024_01490_5 crossref_primary_10_3390_s25071984 crossref_primary_10_1002_mcda_1835 crossref_primary_10_1016_j_asoc_2025_112840 crossref_primary_10_1016_j_trd_2024_104578 crossref_primary_10_1029_2024JH000318 crossref_primary_10_1109_TGRS_2024_3360268 crossref_primary_10_1145_3676960 crossref_primary_10_1049_cmu2_12874 crossref_primary_10_1088_1361_6501_ad950a crossref_primary_10_1103_PhysRevMaterials_8_103804 crossref_primary_10_1016_j_jtrangeo_2023_103745 crossref_primary_10_1016_j_ufug_2023_128114 crossref_primary_10_1108_SASBE_04_2024_0111 crossref_primary_10_1108_COMPEL_05_2023_0207 crossref_primary_10_1016_j_cie_2024_110627 crossref_primary_10_1016_j_swevo_2024_101840 crossref_primary_10_12677_csa_2024_1410205 crossref_primary_10_1007_s10586_024_04664_4 crossref_primary_10_1097_NR9_0000000000000068 crossref_primary_10_3389_fenrg_2024_1449358 crossref_primary_10_1016_j_rcim_2023_102682 crossref_primary_10_1016_j_patcog_2025_111548 crossref_primary_10_1109_MITP_2024_3405857 crossref_primary_10_48084_etasr_9321 crossref_primary_10_1016_j_apenergy_2025_125339 crossref_primary_10_1016_j_ijepes_2024_110165 crossref_primary_10_1016_j_bspc_2024_106808 crossref_primary_10_1049_tje2_70032 crossref_primary_10_4236_jcc_2024_123009 crossref_primary_10_1016_j_compag_2024_109212 crossref_primary_10_1016_j_compbiolchem_2025_108412 crossref_primary_10_1016_j_yhbeh_2023_105445 crossref_primary_10_1061_JSUED2_SUENG_1551 crossref_primary_10_1111_jnu_13016 crossref_primary_10_1109_TCYB_2024_3418937 crossref_primary_10_1007_s10115_023_01952_0 crossref_primary_10_1109_TIM_2023_3301053 crossref_primary_10_1016_j_chb_2024_108422 crossref_primary_10_3390_electronics14030441 crossref_primary_10_1016_j_jhydrol_2024_130650 crossref_primary_10_1109_JSEN_2024_3493454 crossref_primary_10_1016_j_dss_2024_114344 crossref_primary_10_1016_j_joitmc_2024_100442 crossref_primary_10_1016_j_jort_2024_100769 crossref_primary_10_1016_j_est_2024_113616 crossref_primary_10_1177_09596518241278387 crossref_primary_10_1109_ACCESS_2024_3467997 crossref_primary_10_1007_s13042_024_02167_7 crossref_primary_10_1142_S2737416524400015 crossref_primary_10_1016_j_asoc_2025_112700 crossref_primary_10_1016_j_ejcon_2023_100858 crossref_primary_10_1016_j_eswa_2023_121406 crossref_primary_10_3390_rs16214097 crossref_primary_10_1016_j_swevo_2024_101823 crossref_primary_10_22630_ASPE_2023_22_4_23 crossref_primary_10_1016_j_ijepes_2024_110397 crossref_primary_10_1016_j_microc_2023_108655 crossref_primary_10_1016_j_ijleo_2024_172036 crossref_primary_10_1109_ACCESS_2024_3458830 crossref_primary_10_1007_s13762_024_06032_6 crossref_primary_10_3390_su17051819 crossref_primary_10_1016_j_jobe_2024_110033 crossref_primary_10_1080_23311975_2024_2361475 crossref_primary_10_1007_s11042_023_17129_4 crossref_primary_10_2478_aucts_2024_0002 crossref_primary_10_2478_ecce_2023_0005 crossref_primary_10_3390_rs16050740 crossref_primary_10_32604_cmc_2024_048528 crossref_primary_10_3390_informatics11040089 crossref_primary_10_1109_ACCESS_2023_3312287 crossref_primary_10_3390_ijgi13020041 crossref_primary_10_3390_ijgi13020040 crossref_primary_10_1016_j_asoc_2024_112639 crossref_primary_10_1016_j_energy_2025_134568 crossref_primary_10_1016_j_procs_2023_11_030 crossref_primary_10_1093_ce_zkae058 crossref_primary_10_54097_hset_v42i_7114 crossref_primary_10_1002_sys_21811 crossref_primary_10_21015_vtse_v11i4_1633 crossref_primary_10_1080_10589759_2025_2473038 crossref_primary_10_1088_2515_7647_ad369d crossref_primary_10_1016_j_apenergy_2024_125144 crossref_primary_10_1109_JSEN_2023_3303691 crossref_primary_10_1080_15435075_2024_2421328 crossref_primary_10_3389_fpsyg_2024_1491805 crossref_primary_10_1016_j_wasman_2025_02_016 crossref_primary_10_1016_j_eswa_2023_122713 crossref_primary_10_1016_j_energy_2023_128534 crossref_primary_10_1109_JSEN_2024_3522070 crossref_primary_10_1016_j_asoc_2024_111419 crossref_primary_10_1016_j_neuroimage_2024_120996 crossref_primary_10_1109_LSP_2024_3520010 crossref_primary_10_1016_j_ajpath_2024_01_012 crossref_primary_10_1016_j_heliyon_2025_e41657 crossref_primary_10_1016_j_jobe_2024_110411 crossref_primary_10_1049_gtd2_70027 crossref_primary_10_1142_S0218001424500022 crossref_primary_10_1109_TSIPN_2024_3511262 crossref_primary_10_1038_s41467_024_48545_1 crossref_primary_10_1088_1674_4926_24090045 crossref_primary_10_1016_j_est_2024_111747 crossref_primary_10_1016_j_ssaho_2025_101275 crossref_primary_10_1016_j_patcog_2024_111108 crossref_primary_10_1007_s13369_023_08043_w crossref_primary_10_1016_j_tranpol_2023_12_020 crossref_primary_10_1002_mp_17639 crossref_primary_10_1016_j_eswa_2023_122765 crossref_primary_10_1109_JSTARS_2023_3299413 crossref_primary_10_1002_acn3_51906 crossref_primary_10_1016_j_ijbiomac_2025_142286 crossref_primary_10_1108_K_01_2024_0113 crossref_primary_10_1002_pro_5176 crossref_primary_10_3390_math12020295 crossref_primary_10_1002_cpe_8027 crossref_primary_10_3174_ajnr_A8170 crossref_primary_10_1051_e3sconf_202455102002 crossref_primary_10_3389_feart_2024_1443458 crossref_primary_10_1007_s12351_024_00847_4 crossref_primary_10_1109_TGRS_2024_3519195 crossref_primary_10_1016_j_energy_2024_133833 crossref_primary_10_3390_app15020523 crossref_primary_10_1007_s12273_024_1200_z crossref_primary_10_1007_s00170_024_14139_w crossref_primary_10_1109_ACCESS_2025_3551160 crossref_primary_10_1016_j_engappai_2024_109078 crossref_primary_10_2478_acss_2024_0003 crossref_primary_10_1016_j_foodchem_2024_139431 crossref_primary_10_3390_jmse12122299 crossref_primary_10_1016_j_buildenv_2023_111155 crossref_primary_10_3390_su16166887 crossref_primary_10_1016_j_ress_2024_110656 crossref_primary_10_1016_j_ins_2023_03_103 crossref_primary_10_3390_jmse13020377 crossref_primary_10_1016_j_bspc_2024_107483 crossref_primary_10_1016_j_applthermaleng_2025_126280 crossref_primary_10_1016_j_physa_2023_129415 crossref_primary_10_1016_j_patcog_2024_111321 crossref_primary_10_1016_j_pocean_2025_103436 crossref_primary_10_1007_s13762_024_05823_1 crossref_primary_10_1007_s10653_024_01928_1 crossref_primary_10_1016_j_jclepro_2024_143412 crossref_primary_10_4271_01_17_01_0005 crossref_primary_10_1016_j_neucom_2024_127901 crossref_primary_10_3390_electronics12245034 crossref_primary_10_1016_j_health_2024_100380 crossref_primary_10_3390_app14020767 crossref_primary_10_1016_j_sca_2023_100019 crossref_primary_10_1007_s10236_025_01675_6 crossref_primary_10_1080_17499518_2024_2422489 crossref_primary_10_1109_TCSVT_2024_3492045 crossref_primary_10_1016_j_jretconser_2024_104121 crossref_primary_10_1007_s10489_024_05636_2 crossref_primary_10_1016_j_marpolbul_2024_116649 crossref_primary_10_1007_s00125_024_06248_8 crossref_primary_10_12688_openreseurope_17554_1 crossref_primary_10_3390_app14135530 crossref_primary_10_1063_5_0246498 crossref_primary_10_12688_openreseurope_17554_2 crossref_primary_10_1016_j_jwpe_2023_104480 crossref_primary_10_1038_s41398_024_03213_2 crossref_primary_10_1002_cpe_8284 crossref_primary_10_3389_fpls_2025_1495305 crossref_primary_10_1016_j_jplph_2024_154359 crossref_primary_10_1016_j_enbuild_2025_115549 crossref_primary_10_26599_NR_2025_94907276 crossref_primary_10_3390_ani14243611 crossref_primary_10_1155_2023_8352768 crossref_primary_10_1016_j_dsp_2025_105174 crossref_primary_10_3390_math12142211 crossref_primary_10_3390_agriculture14122294 crossref_primary_10_1016_j_jece_2024_114481 crossref_primary_10_1021_acsami_4c02797 crossref_primary_10_1186_s12887_024_05201_3 crossref_primary_10_2139_ssrn_4746305 crossref_primary_10_3390_en16093695 crossref_primary_10_1051_e3sconf_202454102005 crossref_primary_10_1007_s11356_023_30250_z crossref_primary_10_3389_fpubh_2024_1529736 crossref_primary_10_1080_10298436_2025_2450098 crossref_primary_10_3390_drones8060226 crossref_primary_10_14201_adcaij_31448 crossref_primary_10_1051_e3sconf_202449604001 crossref_primary_10_1080_13658816_2024_2408279 crossref_primary_10_56294_mw202468 crossref_primary_10_1016_j_knosys_2025_113170 crossref_primary_10_1016_j_measurement_2024_114391 crossref_primary_10_1016_j_heliyon_2025_e42777 crossref_primary_10_1007_s41870_024_02340_9 crossref_primary_10_1109_ACCESS_2024_3521922 crossref_primary_10_1186_s40537_024_01042_0 crossref_primary_10_1016_j_knosys_2024_111834 crossref_primary_10_1007_s11663_024_03358_x crossref_primary_10_3390_metabo15030201 crossref_primary_10_1016_j_aei_2024_102722 crossref_primary_10_1038_s41598_025_86916_w crossref_primary_10_3390_en17010151 crossref_primary_10_1109_ACCESS_2024_3467114 crossref_primary_10_3390_app15020718 crossref_primary_10_3390_make6020047 crossref_primary_10_3390_molecules28155729 crossref_primary_10_1080_07421222_2025_2452014 crossref_primary_10_1097_JS9_0000000000002118 crossref_primary_10_3390_electronics13214215 crossref_primary_10_1016_j_energy_2025_135288 crossref_primary_10_1109_ACCESS_2024_3496929 crossref_primary_10_1016_j_inffus_2025_103108 crossref_primary_10_1007_s11030_024_10914_9 crossref_primary_10_1057_s41599_024_04099_7 crossref_primary_10_3390_electronics13193835 crossref_primary_10_1007_s40820_024_01489_z crossref_primary_10_54370_ordubtd_1556727 crossref_primary_10_1007_s10668_023_03375_x crossref_primary_10_1016_j_ecolind_2025_113208 crossref_primary_10_3390_electronics13101987 crossref_primary_10_36456_jstat_vol16_no2_a8079 crossref_primary_10_1016_j_scitotenv_2024_172157 crossref_primary_10_1007_s13042_024_02139_x crossref_primary_10_1016_j_jclepro_2025_145079 crossref_primary_10_3390_buildings15010032 crossref_primary_10_1007_s11227_024_06885_1 crossref_primary_10_1016_j_apenergy_2024_124584 crossref_primary_10_1007_s10462_024_11069_7 crossref_primary_10_1080_00140139_2024_2324007 crossref_primary_10_1016_j_cpb_2024_100432 crossref_primary_10_3390_jtaer18010029 crossref_primary_10_1142_S2972370124500016 crossref_primary_10_5772_acrt_17 crossref_primary_10_3390_math12193083 crossref_primary_10_1016_j_health_2023_100293 crossref_primary_10_3390_buildings14092646 crossref_primary_10_1007_s41066_023_00410_0 crossref_primary_10_1016_j_enbuild_2023_113800 crossref_primary_10_1016_j_rineng_2024_103765 crossref_primary_10_3390_plants13010009 crossref_primary_10_1002_srin_202300736 crossref_primary_10_1007_s11227_025_07021_3 crossref_primary_10_1016_j_ins_2023_119957 crossref_primary_10_3390_atmos14091369 crossref_primary_10_1017_pasa_2024_133 crossref_primary_10_1080_10246029_2024_2367967 crossref_primary_10_7717_peerj_cs_2537 crossref_primary_10_1016_j_biotechadv_2024_108479 crossref_primary_10_1016_j_cherd_2025_03_018 crossref_primary_10_3390_s24175695 crossref_primary_10_1021_acsnano_4c18155 crossref_primary_10_1007_s10489_024_05506_x crossref_primary_10_3390_w17010038 crossref_primary_10_1007_s12667_023_00614_y crossref_primary_10_1016_j_jmsy_2024_07_015 crossref_primary_10_1016_j_cmpb_2023_107707 crossref_primary_10_1016_j_knosys_2024_111748 crossref_primary_10_1007_s41060_024_00603_z crossref_primary_10_1016_j_ecoinf_2024_102891 crossref_primary_10_3390_met14050580 crossref_primary_10_3390_jcm13247571 crossref_primary_10_58224_2618_7175_2024_4_84_90 crossref_primary_10_1109_ACCESS_2024_3407827 crossref_primary_10_1016_j_ins_2024_120242 crossref_primary_10_1038_s41598_023_48220_3 crossref_primary_10_1016_j_oceaneng_2025_120388 crossref_primary_10_1016_j_ipm_2024_103817 crossref_primary_10_1016_j_mechmat_2025_105307 crossref_primary_10_1007_s10115_024_02272_7 crossref_primary_10_1007_s11222_023_10355_8 crossref_primary_10_1016_j_energy_2024_133672 crossref_primary_10_1080_13467581_2024_2391126 crossref_primary_10_1088_1361_6501_ad86de crossref_primary_10_1109_TMI_2024_3424978 crossref_primary_10_1007_s11111_024_00466_3 crossref_primary_10_1007_s10586_024_04571_8 crossref_primary_10_3390_math12213356 crossref_primary_10_1016_j_bspc_2024_106585 crossref_primary_10_3390_bioengineering10070850 crossref_primary_10_1002_btm2_10641 crossref_primary_10_3390_land13111744 crossref_primary_10_1016_j_cor_2024_106548 crossref_primary_10_1016_j_gloei_2023_10_003 crossref_primary_10_7906_indecs_22_6_9 crossref_primary_10_1016_j_aej_2023_12_029 crossref_primary_10_1002_ange_202410435 crossref_primary_10_3390_systems12050171 crossref_primary_10_3390_app13084716 crossref_primary_10_12973_eu_jer_13_4_1587 crossref_primary_10_1016_j_ins_2024_121588 crossref_primary_10_1109_ACCESS_2024_3472498 crossref_primary_10_1021_acs_energyfuels_4c02605 crossref_primary_10_1016_j_isprsjprs_2024_09_026 crossref_primary_10_1186_s40537_025_01091_z crossref_primary_10_1007_s10489_024_05621_9 crossref_primary_10_1177_03611981241242362 crossref_primary_10_3390_s24082597 crossref_primary_10_1109_TIP_2024_3388969 crossref_primary_10_3390_jmse12111896 crossref_primary_10_3390_w15152760 crossref_primary_10_3389_fdata_2024_1375818 crossref_primary_10_1115_1_4067047 crossref_primary_10_1371_journal_pone_0291936 crossref_primary_10_1089_vbz_2023_0112 crossref_primary_10_3390_buildings14103068 crossref_primary_10_1016_j_gsd_2025_101407 crossref_primary_10_3390_info14070388 crossref_primary_10_1038_s41598_023_48267_2 crossref_primary_10_1016_j_est_2024_115169 crossref_primary_10_1016_j_jksuci_2024_102219 crossref_primary_10_3390_pr13030898 crossref_primary_10_1111_trf_17585 crossref_primary_10_1051_0004_6361_202451718 crossref_primary_10_1016_j_eswa_2023_121258 crossref_primary_10_1109_ACCESS_2024_3430987 crossref_primary_10_3390_app142411930 crossref_primary_10_1016_j_ins_2024_120588 crossref_primary_10_7717_peerj_cs_2460 crossref_primary_10_1016_j_heliyon_2024_e40310 crossref_primary_10_1080_15567036_2024_2435540 crossref_primary_10_1186_s12940_024_01144_5 crossref_primary_10_1038_s41598_025_94180_1 crossref_primary_10_3390_a17080358 crossref_primary_10_3390_electronics13214281 crossref_primary_10_1007_s10661_024_12663_6 crossref_primary_10_1145_3677377 crossref_primary_10_1016_j_asej_2024_102857 crossref_primary_10_1109_ACCESS_2024_3454823 crossref_primary_10_1016_j_ins_2025_121987 crossref_primary_10_1002_esp_5871 crossref_primary_10_37990_medr_1536199 crossref_primary_10_7498_aps_73_20241265 crossref_primary_10_1021_acs_est_4c04714 crossref_primary_10_3390_su16177500 crossref_primary_10_3390_rs17060978 crossref_primary_10_3390_math11234846 crossref_primary_10_1016_j_aei_2024_102799 crossref_primary_10_1016_j_ijpvp_2024_105364 crossref_primary_10_1016_j_ejmech_2024_117164 crossref_primary_10_3390_drones8070312 crossref_primary_10_3390_wevj15070301 crossref_primary_10_1109_ACCESS_2023_3330691 crossref_primary_10_1016_j_ins_2024_121014 crossref_primary_10_1016_j_jrmge_2024_12_018 crossref_primary_10_3390_s25030746 crossref_primary_10_1016_j_knosys_2024_112643 crossref_primary_10_1016_j_adhoc_2024_103729 crossref_primary_10_3390_e26080715 crossref_primary_10_37394_23209_2024_21_44 crossref_primary_10_48084_etasr_6609 crossref_primary_10_1016_j_aichem_2023_100039 crossref_primary_10_1016_j_apgeochem_2024_106013 crossref_primary_10_1016_j_knosys_2024_111793 crossref_primary_10_1016_j_adapen_2025_100211 crossref_primary_10_1140_epjs_s11734_025_01493_3 crossref_primary_10_1016_j_isci_2023_107456 crossref_primary_10_1016_j_eswa_2024_123646 crossref_primary_10_3390_electronics13061097 crossref_primary_10_1016_j_eswa_2024_124857 crossref_primary_10_1111_cbdd_14576 crossref_primary_10_1016_j_aiia_2024_05_002 crossref_primary_10_1016_j_heliyon_2024_e27015 crossref_primary_10_1109_TFUZZ_2024_3443207 crossref_primary_10_1007_s11769_024_1467_0 crossref_primary_10_1142_S0218126624501846 crossref_primary_10_3390_sym16091208 crossref_primary_10_1016_j_asr_2025_01_062 crossref_primary_10_3233_IDT_230190 crossref_primary_10_3390_math11030772 crossref_primary_10_1016_j_energy_2024_132532 crossref_primary_10_1080_09537325_2025_2464042 crossref_primary_10_1016_j_knosys_2024_111768 crossref_primary_10_1016_j_ets_2025_100014 crossref_primary_10_1016_j_oceaneng_2023_116337 crossref_primary_10_1109_JSEN_2024_3485069 crossref_primary_10_1109_ACCESS_2023_3307495 crossref_primary_10_1007_s13399_024_05305_x crossref_primary_10_1016_j_rser_2025_115478 crossref_primary_10_54097_hset_v70i_13889 crossref_primary_10_1007_s11269_025_04120_x crossref_primary_10_1088_2632_2153_ad51cb crossref_primary_10_1002_lpor_202401397 crossref_primary_10_1007_s10018_024_00420_5 crossref_primary_10_1016_j_scs_2024_105642 crossref_primary_10_1016_j_neucom_2024_128640 crossref_primary_10_1016_j_jenvman_2024_121087 crossref_primary_10_1080_13682199_2024_2390793 crossref_primary_10_1007_s00500_024_10350_9 crossref_primary_10_1016_j_apgeog_2025_103515 crossref_primary_10_1016_j_apenergy_2023_121838 crossref_primary_10_1109_TASLP_2024_3437237 crossref_primary_10_3390_land13122108 crossref_primary_10_1007_s10346_024_02438_y crossref_primary_10_1016_j_eswa_2023_121062 crossref_primary_10_1016_j_jobe_2024_109731 crossref_primary_10_1061_JTEPBS_TEENG_8704 crossref_primary_10_1007_s11227_024_06723_4 crossref_primary_10_1002_anie_202410435 crossref_primary_10_2478_jaiscr_2025_0013 crossref_primary_10_53759_832X_JCIMS202402006 crossref_primary_10_3390_jtaer19040145 crossref_primary_10_1021_acs_jpclett_4c01751 crossref_primary_10_32604_cmc_2024_060090 crossref_primary_10_3390_biomimetics9070391 crossref_primary_10_1016_j_eswa_2024_125609 crossref_primary_10_2478_acss_2023_0001 crossref_primary_10_1016_j_ces_2025_121429 crossref_primary_10_1117_1_JBO_30_S2_S23904 crossref_primary_10_1109_ACCESS_2023_3323951 crossref_primary_10_3934_era_2023359 crossref_primary_10_3390_electronics14050858 crossref_primary_10_1016_j_ijmecsci_2024_109630 crossref_primary_10_1016_j_tbs_2024_100960 crossref_primary_10_1016_j_ijmecsci_2024_109511 crossref_primary_10_1016_j_ins_2023_119004 crossref_primary_10_3390_agronomy14061119 crossref_primary_10_1016_j_tele_2023_102025 crossref_primary_10_1111_ejss_70087 crossref_primary_10_1002_widm_1521 crossref_primary_10_1016_j_ijpe_2023_108950 crossref_primary_10_1016_j_bdr_2023_100413 crossref_primary_10_1016_j_neucom_2024_127329 crossref_primary_10_1057_s41261_025_00269_y crossref_primary_10_3390_rs16020271 crossref_primary_10_1007_s11042_024_19312_7 crossref_primary_10_1016_j_aei_2023_102199 crossref_primary_10_3390_ani14071046 crossref_primary_10_3390_app122413019 crossref_primary_10_3390_bioengineering11101034 crossref_primary_10_1111_inr_13035 crossref_primary_10_53070_bbd_1421527 crossref_primary_10_1109_ACCESS_2024_3405350 crossref_primary_10_1016_j_compbiomed_2025_109984 crossref_primary_10_1016_j_eswa_2024_125986 crossref_primary_10_1109_TGRS_2024_3374597 crossref_primary_10_3390_educsci14111238 crossref_primary_10_3390_en17143576 crossref_primary_10_1016_j_asoc_2024_112299 crossref_primary_10_1021_acs_jpcb_4c03731 crossref_primary_10_3390_agronomy13122991 crossref_primary_10_1016_j_crmeth_2024_100798 crossref_primary_10_1016_j_neucom_2025_129469 crossref_primary_10_1016_j_scs_2025_106247 crossref_primary_10_1109_ACCESS_2024_3423807 crossref_primary_10_1007_s11227_023_05688_0 crossref_primary_10_1007_s12145_024_01453_w crossref_primary_10_1016_j_geoen_2025_213684 crossref_primary_10_1007_s41060_024_00560_7 crossref_primary_10_1007_s00180_025_01616_3 crossref_primary_10_1016_j_rser_2024_115157 crossref_primary_10_1016_j_watres_2024_121673 crossref_primary_10_1137_23M161937X crossref_primary_10_3233_JIFS_224234 crossref_primary_10_1016_j_cherd_2023_10_052 crossref_primary_10_1016_j_renene_2024_121511 crossref_primary_10_3390_jcm13206044 crossref_primary_10_1007_s10100_024_00939_8 crossref_primary_10_1016_j_scitotenv_2024_174099 crossref_primary_10_3390_plants13121686 crossref_primary_10_1002_cae_22749 crossref_primary_10_3390_stats7010006 crossref_primary_10_1109_ACCESS_2024_3519156 crossref_primary_10_1007_s00530_024_01480_z crossref_primary_10_3390_min13010029 crossref_primary_10_47172_2965_730X_SDGsReview_v5_n01_pe04196 crossref_primary_10_1016_j_optlastec_2025_112461 crossref_primary_10_1016_j_dcan_2024_06_009 crossref_primary_10_1093_bfgp_elae040 crossref_primary_10_1109_OJITS_2025_3532796 crossref_primary_10_1016_j_apenergy_2024_123976 crossref_primary_10_1111_1365_2478_13625 crossref_primary_10_1016_j_jobe_2024_111296 crossref_primary_10_1016_j_compag_2024_109315 crossref_primary_10_32604_cmc_2025_057693 crossref_primary_10_3390_app15063020 crossref_primary_10_1016_j_ins_2024_120504 crossref_primary_10_1007_s11227_024_06517_8 crossref_primary_10_1016_j_desal_2025_118551 crossref_primary_10_5433_1679_0375_2024_v45_49522 crossref_primary_10_1371_journal_pone_0302741 crossref_primary_10_1016_j_ecoinf_2025_103078 crossref_primary_10_1063_5_0241122 crossref_primary_10_1007_s13042_024_02480_1 crossref_primary_10_56294_saludcyt20241341 crossref_primary_10_1002_1873_3468_70010 crossref_primary_10_1002_fes3_565 crossref_primary_10_1007_s13042_024_02503_x crossref_primary_10_1016_j_tra_2024_104296 crossref_primary_10_31127_tuje_1481281 crossref_primary_10_3390_bioengineering11020173 crossref_primary_10_1016_j_trd_2025_104598 crossref_primary_10_1007_s00521_024_10764_4 crossref_primary_10_1016_j_comnet_2024_110534 crossref_primary_10_2478_picbe_2024_0115 crossref_primary_10_1016_j_jbiomech_2024_112402 crossref_primary_10_3934_publichealth_2024004 crossref_primary_10_3390_s24165084 crossref_primary_10_1016_j_cie_2024_110752 crossref_primary_10_1016_j_corsci_2024_112334 crossref_primary_10_1016_j_indcrop_2024_119470 crossref_primary_10_1038_s41598_024_70115_0 crossref_primary_10_1109_ACCESS_2023_3335985 crossref_primary_10_1109_ACCESS_2024_3463201 crossref_primary_10_1093_llc_fqad074 crossref_primary_10_1080_17538947_2024_2308707 crossref_primary_10_3390_biology14030283 crossref_primary_10_1016_j_erss_2025_103969 crossref_primary_10_1007_s11269_024_03894_w crossref_primary_10_1016_j_eswa_2023_119954 crossref_primary_10_1016_j_techsoc_2024_102662 crossref_primary_10_1007_s10846_025_02235_2 crossref_primary_10_1016_j_energy_2025_134503 crossref_primary_10_1016_j_eswa_2024_123485 crossref_primary_10_1109_ACCESS_2024_3351842 crossref_primary_10_3390_electronics13173523 crossref_primary_10_3389_frai_2024_1336071 crossref_primary_10_1016_j_energy_2024_133352 crossref_primary_10_1016_j_jobe_2023_107797 crossref_primary_10_1109_ACCESS_2024_3412928 crossref_primary_10_1002_jmri_29207 crossref_primary_10_3390_app14209305 crossref_primary_10_1063_5_0229111 crossref_primary_10_32604_cmc_2024_046185 crossref_primary_10_1109_ACCESS_2025_3529943 crossref_primary_10_1016_j_anireprosci_2023_107261 crossref_primary_10_1109_LRA_2024_3460430 crossref_primary_10_1016_j_datak_2024_102343 crossref_primary_10_1016_j_cie_2024_110409 crossref_primary_10_1016_j_ecolind_2024_112988 crossref_primary_10_1007_s10836_024_06142_6 crossref_primary_10_3390_cli12120205 crossref_primary_10_1016_j_ecolind_2024_112950 crossref_primary_10_3390_su16104221 crossref_primary_10_1016_j_esd_2024_101391 crossref_primary_10_1016_j_ast_2023_108722 crossref_primary_10_1016_j_engappai_2024_109854 crossref_primary_10_1007_s00500_023_07857_y crossref_primary_10_54021_seesv5n2_529 crossref_primary_10_1038_s41598_023_45358_y crossref_primary_10_1016_j_ins_2024_120661 crossref_primary_10_3390_rs16244798 crossref_primary_10_1061_JTEPBS_TEENG_8325 crossref_primary_10_1177_23312165241263485 crossref_primary_10_1016_j_ins_2024_120663 crossref_primary_10_1109_ACCESS_2025_3535226 crossref_primary_10_1016_j_oceaneng_2024_118527 crossref_primary_10_3390_app15042043 crossref_primary_10_34133_ehs_0095 crossref_primary_10_1109_TCE_2024_3475821 crossref_primary_10_1016_j_energy_2024_133699 crossref_primary_10_1007_s12053_023_10169_7 crossref_primary_10_1016_j_patcog_2025_111399 crossref_primary_10_2139_ssrn_4831118 crossref_primary_10_1007_s40747_024_01695_7 crossref_primary_10_32604_cmes_2024_051083 crossref_primary_10_1145_3688570 crossref_primary_10_1016_j_jclepro_2024_144252 crossref_primary_10_3390_en17143396 crossref_primary_10_60084_ljes_v2i1_181 crossref_primary_10_1016_j_chaos_2024_114670 crossref_primary_10_1016_j_apenergy_2023_122533 crossref_primary_10_4236_gep_2025_131003 crossref_primary_10_1016_j_ijmecsci_2023_108369 crossref_primary_10_1038_s41433_024_03444_z crossref_primary_10_1108_JAMR_03_2024_0095 crossref_primary_10_1016_j_ijcce_2024_04_002 crossref_primary_10_1016_j_knosys_2024_111384 |
| Cites_doi | 10.1016/j.acha.2020.03.002 10.1109/ACCESS.2020.2967797 10.1016/j.patcog.2009.02.014 10.1109/ACCESS.2020.2972333 10.3390/ijgi6120392 10.1155/2014/506480 10.1109/ICCAE.2010.5451883 10.1007/s00521-020-05395-4 10.1016/j.patrec.2009.09.011 10.1016/j.eswa.2009.12.017 10.1109/ACCESS.2020.3006173 10.1109/ACCESS.2020.2988796 10.1109/ACCESS.2021.3077622 10.1023/A:1024016609528 10.1016/j.patcog.2021.107996 10.1134/S1054661813020144 10.1007/s10115-021-01623-y 10.1109/TDSC.2022.3181667 10.1016/j.eswa.2012.07.021 10.1109/ACCESS.2017.2706947 10.1016/j.techfore.2020.120462 10.21629/JSEE.2017.02.18 10.1016/j.patrec.2014.11.017 10.1145/3357384.3357969 10.1016/j.knosys.2020.105682 10.1007/s00500-018-3289-4 10.1016/j.jocs.2017.07.018 10.3390/app10113827 10.1007/s10115-007-0114-2 10.1007/s11042-021-11016-6 10.1016/j.neucom.2022.03.043 10.1348/000711005X48266 10.3390/math9080879 10.1109/ICCN.2015.9 10.1631/jzus.C1200078 10.1145/2393216.2393327 10.1016/j.asoc.2015.12.001 10.1016/0098-3004(84)90020-7 10.1016/j.knosys.2018.09.013 10.1080/08923647.2020.1696140 10.1038/35000501 10.1109/TrustCom.2016.0348 10.1080/08839514.2018.1530869 10.1109/RAICS.2011.6069372 10.1109/ICPR.2008.4761079 10.1109/72.238318 10.5926/jjep1953.40.3_257 10.1016/j.eswa.2018.09.006 10.1016/j.neucom.2022.05.120 10.1109/CIS.2016.0041 10.1111/exsy.12526 10.1016/j.parco.2020.102736 10.1137/1.9781611972832.21 10.1109/TFUZZ.2009.2036603 10.1109/ACCESS.2019.2934179 10.1023/B:JIIS.0000029668.88665.1a 10.2307/2308930 10.1051/ps/2016016 10.1109/ICIIS51140.2020.9342639 10.1002/cpe.6621 10.1007/s00357-007-0003-0 10.1007/s11222-013-9410-8 10.1016/S0031-3203(02)00060-2 10.1016/j.patcog.2018.02.015 10.1016/j.patcog.2020.107625 10.1109/ICTAS47918.2020.234001 10.1016/j.engappai.2020.103857 10.1109/IEEM45057.2020.9309769 10.1007/s10462-020-09918-2 10.1007/s42405-018-0117-0 10.1109/ICMLC.2004.1382371 10.1109/ACCESS.2020.3040745 10.1002/sam.11416 10.1109/ICCSN.2011.6014384 10.1007/s00521-021-06689-x 10.3390/info11010027 10.1007/s00180-012-0358-5 10.1071/BT9660127 10.1016/j.asoc.2018.07.026 10.1145/331499.331504 10.1016/j.knosys.2020.106731 10.1016/j.ins.2021.04.076 10.1007/s11227-014-1225-7 10.1016/S0167-8655(99)00069-0 10.14778/3067421.3067425 10.1109/TKDE.2002.1033770 10.1007/s40745-015-0040-1 10.1016/j.eswa.2017.09.005 10.1016/j.asoc.2017.06.059 10.1109/CVPR.2005.210 10.1371/journal.pone.0201874 10.1145/1772690.1772862 10.1016/j.jksuci.2021.07.003 10.1007/s11042-020-10064-8 10.1109/ICICISYS.2009.5358020 10.1007/s11227-017-2182-8 10.1109/ACCESS.2019.2903568 10.1016/j.cie.2020.107023 10.1016/j.engappai.2022.104743 10.1109/BDCloud-SocialCom-SustainCom.2016.46 10.1109/TKDE.2022.3179554 10.1007/s12083-020-00881-x 10.1016/j.eswa.2022.117927 10.14429/dsj.68.11843 10.1007/978-981-4451-98-7_143 10.1109/CCIS.2016.7790241 10.1155/2021/5571683 10.1038/nmeth.4346 10.1007/s11227-021-04078-8 10.1201/9781420034912 10.21884/IJMTER.2017.4143.LGJZD 10.1016/j.scs.2020.102383 10.1002/sam.11392 10.1016/j.infsof.2008.09.009 10.1007/s13198-021-01262-0 10.1016/j.eswa.2021.114807 10.1016/j.knosys.2022.109189 10.3390/electronics9081295 10.1016/j.inffus.2020.03.009 10.1111/exsy.12886 10.1007/s00521-012-0959-5 10.1016/j.eswa.2020.113317 10.1007/s13198-015-0365-3 10.1145/3445945.3445947 10.1049/cvi2.12052 10.1109/JSEN.2015.2443380 10.1016/j.jnca.2020.102539 10.1109/ACCESS.2019.2960925 10.1109/IIH-MSP.2007.259 10.1080/00207160.2015.1124099 10.1109/TIFS.2022.3189532 10.1631/jzus.2006.A1626 10.1016/j.eswa.2008.01.039 10.1023/A:1009769707641 10.1007/11552253_5 10.1016/j.datak.2007.03.016 10.1109/RoboMech.2017.8261116 10.1109/ICDMW.2011.76 10.1007/s11042-016-3322-5 10.2147/DMSO.S206640 10.1109/CISP.2011.6100578 10.2478/amns.2020.1.00001 10.1109/TPAMI.2002.1017616 10.1109/ICAIBD.2018.8396161 10.1109/ICCSNT.2012.6526212 10.1016/S0167-8655(03)00146-6 10.1109/ICCASM.2010.5620383 10.1109/TKDE.2011.262 10.1109/TCBB.2014.2306200 10.1016/j.cja.2020.08.047 10.3390/app112311246 10.1049/sfw2.12032 10.1016/j.patcog.2019.04.014 10.3390/bdcc3020027 10.1016/j.knosys.2014.08.011 10.1145/974121.974131 10.1145/2401603.2401639 |
| ContentType | Journal Article |
| Copyright | 2022 Elsevier Inc. |
| Copyright_xml | – notice: 2022 Elsevier Inc. |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.ins.2022.11.139 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Library & Information Science |
| EISSN | 1872-6291 |
| EndPage | 210 |
| ExternalDocumentID | 10_1016_j_ins_2022_11_139 S0020025522014633 |
| GroupedDBID | --K --M --Z -~X .DC .~1 0R~ 1B1 1OL 1RT 1~. 1~5 29I 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN 9JO AAAKF AAAKG AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AARIN AAXUO AAYFN ABAOU ABBOA ABEFU ABFNM ABJNI ABMAC ABTAH ABUCO ABXDB ABYKQ ACAZW ACDAQ ACGFS ACNNM ACRLP ACZNC ADBBV ADEZE ADGUI ADJOM ADMUD ADTZH AEBSH AECPX AEKER AENEX AFFNX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIGVJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD APLSM ARUGR ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ HAMUX HLZ HVGLF HZ~ H~9 IHE J1W JJJVA KOM LG9 LY1 M41 MHUIS MO0 MS~ N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SBC SDF SDG SDP SDS SES SEW SPC SPCBC SSB SSD SST SSV SSW SSZ T5K TN5 TWZ UHS WH7 WUQ XPP YYP ZMT ZY4 ~02 ~G- 77I AATTM AAXKI AAYWO AAYXX ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO ADVLN AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD |
| ID | FETCH-LOGICAL-c297t-d87ae786dfbb9b6439e5036245ab2f37d052e48bba68d2e2679355afb47608903 |
| IEDL.DBID | .~1 |
| ISSN | 0020-0255 |
| IngestDate | Wed Oct 01 05:13:51 EDT 2025 Thu Apr 24 23:07:33 EDT 2025 Fri Feb 23 02:38:51 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | K-means K-means variants Modified k-means Big data clustering Perspectives on big data clustering Clustering algorithm Improved k-means |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c297t-d87ae786dfbb9b6439e5036245ab2f37d052e48bba68d2e2679355afb47608903 |
| PageCount | 33 |
| ParticipantIDs | crossref_citationtrail_10_1016_j_ins_2022_11_139 crossref_primary_10_1016_j_ins_2022_11_139 elsevier_sciencedirect_doi_10_1016_j_ins_2022_11_139 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | April 2023 2023-04-00 |
| PublicationDateYYYYMMDD | 2023-04-01 |
| PublicationDate_xml | – month: 04 year: 2023 text: April 2023 |
| PublicationDecade | 2020 |
| PublicationTitle | Information sciences |
| PublicationYear | 2023 |
| Publisher | Elsevier Inc |
| Publisher_xml | – name: Elsevier Inc |
| References | Zhu, Z., & Liu, N. (2021). Early warning of financial risk based on K-means clustering algorithm. 727-734. 43-46. Zhu, Li (b1235) 2020; 13 1207-1215. Lai, Huang, Liaw (b0590) 2009; 42 Steinbach, Karypis, Kumar (b1010) 2000 Lv, Hu, Zhong, Wu, Li, Zhao (b0670) 2010 Lloyd (b0660) 1982 Ikotun, Almutari, Ezugwu (b0460) 2021; 11 Sinha, Jana (b1005) 2018; 74 Alsabti, Ranka, Singh (b0075) 1997; 43 1027-1035. 10.1145/1283383.1283494. Hans-Hermann (b0405) 2008; 4 Kaufman, Rousseeuw (b0530) 1987 Xu, Ding, Liu, Luo (b1130) 2015; 54 Lim, Hwang (b0640) 2019; 20 Ye, J., Zhao, Z., & Wu, M. (2007). Discriminative K-means for clustering. Sinaga, Hussain, Yang (b0990) 2021; 9 Alguliyev, Aliguliyev, Sukhostat (b0065) 2021; 152 Kapoor, Singhal (b0525) 2017 Blömer, Lammersen, Schmidt, Sohler (b0140) 2016 1-9. 46-56. Celebi, Kingravi, Vela (b0180) 2013; 40 Peña, Lozano, Larrañaga (b0845) 1999; 20 1540-1544. 1-12. (1295). Boukhdhir, Lachiheb, Gouider (b0150) 2015 Huang, Kang, Xu, Liu (b0440) 2021; 117 , Stemmer, Kaplan (b1030) 2018; 31 Pimentel, de Carvalho (b0860) 2020; 195 . Moubayed, Injadat, Shami, Lutfiyya (b0735) 2020; 34 Zhu, Ma (b1230) 2018; 71 Chokniwal, Singh (b0220) 2016 Tayal, Solanki, Singh (b1035) 2020; 62 Nandapala, E. Y. L., & Jayasena, K. P. N. (2020). The practical approach in customers segmentation by using the K-means algorithm. Farcomeni (b0315) 2014; 24 Marom, Feldman (b0695) 2019; 32 Cui, Zhu, Yang, Li, Ji (b0240) 2014; 70 Fahim, Salem, Torkey, Ramadan (b0310) 2006; 7 Lee, Lin (b0605) 2012; 13 Rajah, V., & Ezugwu, A. E. (2020). Hybrid symbiotic organism search algorithms for automatic data clustering. Guan, Ding, Shen, Krim (b0385) 2018; 100 635-639. Arthur, D., & Vassilvitskii, S. (2007). K-means++: The advantages of careful seeding. Ezugwu, Shukla, Agbaje, Oyelade, José-García, Agushaka (b0305) 2021; 33 Abernathy, Celebi (b0005) 2022; 207 Zhou, Gu, Shen, Ma, Miao, Zhang, Gong (b1220) 2017; 6 Dafir, Lamari, Slaoui (b0245) 2021; 54 Newling, J., & Fleuret, F. (2016). Nested mini-batch K-means. Mouton, Ferreira, Helberg (b0740) 2020; 151 Jancey (b0490) 1966; 14 Jain, Murty, Flynn (b0485) 1999; 31 Sanwale, Singh (b0930) 2018; 68 Chen, Chen, Lu (b0205) 2021; 176 Nazeer, Kumar, Sebastian (b0775) 2011 Olukanmi, Nelwamondo, Marwala, Twala (b0815) 2022; 34 Olukanmi, P. O., & Twala, B. (2017). K-means-sharp: modified centroid update for outlier-robust K-means clustering. Wang, J., & Su, X. (2011). An improved K-means clustering algorithm. In 7-11. Ahmad, Khan (b0045) 2019; 7 Kanungo, Mount, Netanyahu, Piatko, Silverman, Wu (b0510) 2002; 24 2257-2262. 10-18. Mirkin, B. (2005), Clustering for data mining: A data recovery approach. Boca Raton FL: Chapman and Hall/CRC Ezugwu, Ikotun, Oyelade, Abualigah, Agushaka, Eke, Akinyelu (b0300) 2022; 110 Islam, Estivill-Castro, Rahman, Bossomaier (b0465) 2018; 91 147-153. 1321-1330. Wu, Kumar, Quinlan, Ghosh, Yang, Motoda, McLachlan, Ng, Liu, Philip, Zhou (b1085) 2008; 14 Lingxian, Jiaqing, Shihuai (b0650) 2019 Kijsipongse, Suriya (b0560) 2012 (Vol. 1, pp. 731-738), doi: 10.1109/CVPR.2005.210. Ren, S., & Fan, A. (2011). K-means clustering algorithm based on coefficient of variation. In 142-146. Xiong, Hua, Lv, Li (b1110) 2016 Minh, Sang-To, Wahab, Cuong-Le (b0710) 2022; 251 Jain (b0475) 2010; 31 Lam, Tsang, Leung (b0595) 2013; 22 Pérez-Ortega, Almanza-Ortega, Vega-Villalobos, Pazos-Rangel, Zavala-Díaz, Martínez-Rebollar (b0855) 2019 Silva, Lezama, Varela, Guiliany, Sanabria, Otero, Rojas (b0980) 2019 Guo, Han, Han (b0390) 2014 Wu, Zhu, Xu, Bhatt, Sharma (b1090) 2022; 13 Kuo, R. J., Suryani, E., & Yasid, A. (2013). Automatic clustering combining differential evolution algorithm and K-means algorithm. In Ragunthar, Ashok, Gopinath, Subashini (b0890) 2021 Gu (b0380) 2016 Benchara, Youssfi (b0115) 2021; 101 Makarychev, Reddy, Shan (b0685) 2020; 33 Belhadi, Djenouri, Nørvåg, Ramampiaro, Masseglia, Lin (b0100) 2020; 95 Drineas, Frieze, Kannan, Vempala, Vinay (b0280) 1999; 99 Nie, Li, Wang, Li (b0800) 2022; 14 IEEE Honda, Nonoguchi, Notsu, Ichihashi (b0425) 2011 1-3. London, UK: Association of Engineers. (550), 22-24. Elkan, C. (2003). Using the triangle inequality to accelerate K-means. In Ichikawa, Morishita (b0455) 2014; 11 Couto, J. (2005, September). Kernel K-means for categorical data. In Saha, Mukherjee (b0920) 2021; 110 Lange, T., Law, M. H., Jain, A. K., & Buhmann, J. M. (2005). Learning with constrained and unlabelled data. In Sarma, T. H. Viswanath, P., & Reddy, B. E. (2011). A fast approximate kernel K-means clustering method for large data sets. Harb, Makhoul, Couturier (b0410) 2015; 15 Zhang, Y., Zhang, D., & Shi, H. (2012). K-means clustering based on self-adaptive weight. In Zhang, H., & Zhou, X. (2018). A novel clustering algorithm combining niche genetic algorithm with canopy and K-means. Na, Xumin, Yong (b0750) 2010 Yang, Tjuawinata, Lam (b1150) 2022; 17 44-46. Shiudkar, Takmare (b0965) 2017; 4 IEEE, 26-32. 189-197. Gocer, Sener (b0365) 2022; 39 Van-Hieu, Meesad (b1040) 2015 Xie, Liu, Wei (b1105) 2020; 5 Abualigah (b0020) 2019 Zha, H., He, X., Ding, C., Gu, M., & Simon, H. (2001). Spectral relaxation for K-means clustering. Fukunaga (b0335) 2013 Geng, Mu, Mao, Ye, Zhu (b0355) 2020; 8 665-670. 29. Zhang, Lange, Xu (b1200) 2020; 33 Mahmud, Rahman, Akhtar (b0680) 2012 141-144. Estlick, Leeser, Theiler, Szymanski (b0290) 2001 14-19. Bezdek, Ehrlich, Full (b0130) 1984; 10 Ezugwu, Agbaje, Aljojo, Els, Chiroma, Abd Elaziz (b0295) 2020; 8 Lee, Lin (b0610) 2013; 23 Nanda, Gulati, Chauhan, Modi, Dhaked (b0755) 2019; 33 https://doi.org/10.1201/9781420034912. Feng, Lu, Yang, Xu (b0325) 2012 Mao, Gan, Mwakapesa, Nanehkaran, Tao, Huang (b0690) 2022; 78 Sharma, Vashisht, Singh (b0945) 2020 Pu, Gan, Qiu, Duan, Wang (b0865) 2022; 81 Vijayaraghavan, Dutta, Wang (b1055) 2017; 30 Xiao, Yan, Zhang, Tang (b1100) 2010; 37 Kapil, Chawla, Ansari (b0520) 2016 Zhang, Li, Deng (b1175) 2020; 11 Moodi, Saadatfar (b0730) 2021; 16 242-249. Dai, W., Jiao, C., & He, T. (2007). Research of K-means clustering method based on parallel genetic algorithm. In Lu, Gao, Zhang, Xia (b0665) 2022; 501 Lei, Jiang, Wu, Du, Zhu, Wang (b0615) 2016; 75 Steinhaus (b1015) 1956; 3 Gönen, Margolin (b0370) 2014; 27 Abualigah, Khader, Hanandeh (b0025) 2018; 25 Zhang, Ma (b1190) 2017; 94 Gavira-Durón, Gutierrez-Vargas, Cruz-Aké (b0350) 2021; 9 Kaur, Dhaliwal, Vohra (b0545) 2013 Xiong, Hu, Yongliang, Zikun, Bin, Hao (b1115) 2021; 34 Verykios, Bertino, Fovino, Provenza, Saygin, Theodoridis (b1045) 2004; 33 Alizadeh, Eisen, Davis, Ma, Lossos, Rosenwald, Boldrick, Sabet, Tran, Yu, Powell (b0070) 2000; 403 Singh, Mehta, Anand, Nath, Pandey, Khamparia (b1000) 2021; 38 Zhuang, Y., Mao, Y., & Chen, X. (2016). A limited-iteration bisecting K-means for fast clustering large datasets. In Krizhevsky, Hinton (b0575) 2009 Bradley, Mangasarian, Street (b0155) 1997; 9 Hu, Wang, Liu, Ye (b0435) 2017 He, Lan, Tan, Sung, Low (b0415) 2004 Jain, Dubes (b0480) 1988 Ng, Han (b0795) 2002; 14 Yuan, F., Meng, Z. H., Zhang, H. X., & Dong, C. R. (2004). A new algorithm to get the initial centroids. In Zhang, Huang, Sun, Zhao, Liu, Lai, Liu (b1185) 2022 Hussain, Haris (b0450) 2019; 118 Fränti, Sieranoja (b0330) 2019; 93 Wang, Shao, Xu, Zhang, Xu, Guan (b1075) 2020; 8 Modha, Spangler (b0725) 2003; 52 Sieranoja, Fränti (b0975) 2022; 64 Panday, Singh (b0825) 2019; 8 Cai, J., Liao, D., Chen, J., Chen, X., Liu, T., & Xi, J. (2020). Research on data security protection method based on improved K-means clustering algorithm. In Cleuziou, G. (2008, December). An extended version of the K-means method for overlapping clustering. In Abualigah, Diabat, Geem (b0015) 2020; 10 Honda, Notsu, Ichihashi (b0430) 2009; 18 Wang, Wang, Ke, Zeng, Li (b1060) 2012 Hamerly, Elkan (b0400) 2003; 16 Yang, Sinaga (b1145) 2019; 7 Zubair, Iqbal, Shil, Chowdhury, Moni, Sarker (b1250) 2022; 2022 IEEE, 344-349. 151(158), 11-11 Dec. 2011. Wu, Wu (b1095) 2020; 8 Park, Jun (b0835) 2009; 36 IEEE, 6, 636. Min, W., & Siqing, Y. (2010). Improved K-means clustering based on genetic algorithm. In Kao, Y., & Lee, S. Y. (2009). Combining K-means and particle swarm optimization for dynamic data clustering problems. In Zeebaree, Haron, Abdulazeez, Zeebaree (b1165) 2017; 12 Bai, Liang, Cao (b0095) 2020; 61 158-163. Newman (b0790) 1960; 67 Rathore, P., & Shukla, D. (2015). Analysis and performance improvement of K-means clustering in big data environment. In Pérez-Ortega, Almanza-Ortega, Romero (b0850) 2018; 13 Agbaje, Ezugwu, Els (b0035) 2019; 7 Kamil, Salih (b0500) 2019; 12 Xu, Krzyzak, Oja (b1125) 1993; 4 Chen, Yang (b0195) 2021; 52 Qi, Chen, Sun, Sun, Yang (b0885) 2021; 16 Xu, Tian (b1120) 2015; 2 Mustafi, Sahoo (b0745) 2019; 23 Georgogiannis, A. (2016). Robust K-means: a theoretical revisit. Pelleg, D., & Moore, A. W. (2000). X-means: Extending K-means with efficient estimation of the number of clusters. In 832-835. Bertin-Mahieux, Ellis, Whitman, Lamere (b0125) 2011 Borlea, Precup, Borlea, Iercan (b0145) 2021; 214 MacQueen (b0675) 1967 Zhu, Idemudia, Feng (b1225) 2019; 17 Berry, Maitra (b0120) 2019; 12 Ismkhan (b0470) 2018; 79 Gan, Ma, Wu (b0340) 2020; 64 He, Vialle, Baboulin (b0420) 2022; 34 Biswas, C., Ganguly, D., Roy, D., & Bhattacharya, U. (2019). Privacy preserving approximate K-means clustering. Zhao, Nie, Wang, Li (b1210) 2022; 491 Abualigah, Khader, Hanandeh, Gandomi (b0030) 2017; 60 Chien, Pan, Milenkovic (b0215) 2018; 31 Krey, Ligges, Leisch (b0570) 2014; 29 Gupta, Kumar, Lu, Moseley, Vassilvitskii (b0395) 2017; 10 Ahmed, M., Seraj, R., & Islam, S. M. S. (2020). The K-means algorithm: A comprehensive survey and performance evaluation. Niu, K., Gao, Z., Jiao, H., & Deng, N. (2016). K-means+: A developed clustering algorithm for big data. In Shen, Liu, Tsang, Shen, Sun (b0950) 2017 Goyal, Aggarwal (b0375) 2017; 8 Wang, B., Lv, Z., Zhao, J., Wang, X., & Zhang, T. (2016). An adaptively disperse centroids K-means algorithm based on mapreduce model. In Garg, Jindal (b0345) 2021; 80 Kaufman, Rousseeuw (b0535) 2009 Steinley (b1025) 2006; 59 Kaufman, Rousseeuw (b0540) 2008 Li, Song, Yang (b0625) 2019; 12 4, 2076-2079. Belhaouari, Ahmed, Mansour (b0105) 2014; 2014 158-161. 1-4. Casper, E., Hung, C. C., Jung, E., & Yang, M Krizhevsky (10.1016/j.ins.2022.11.139_b0575) 2009 Moodi (10.1016/j.ins.2022.11.139_b0730) 2021; 16 Huang (10.1016/j.ins.2022.11.139_b0445) 1998; 2 10.1016/j.ins.2022.11.139_b0580 Zhou (10.1016/j.ins.2022.11.139_b1215) 2019; 163 Fränti (10.1016/j.ins.2022.11.139_b0330) 2019; 93 10.1016/j.ins.2022.11.139_b0585 Xiong (10.1016/j.ins.2022.11.139_b1115) 2021; 34 Sinaga (10.1016/j.ins.2022.11.139_b0990) 2021; 9 Alsabti (10.1016/j.ins.2022.11.139_b0075) 1997; 43 Borlea (10.1016/j.ins.2022.11.139_b0145) 2021; 214 Gupta (10.1016/j.ins.2022.11.139_b0395) 2017; 10 Lv (10.1016/j.ins.2022.11.139_b0670) 2010 Kapil (10.1016/j.ins.2022.11.139_b0520) 2016 Likas (10.1016/j.ins.2022.11.139_b0635) 2003; 36 Park (10.1016/j.ins.2022.11.139_b0835) 2009; 36 Agbaje (10.1016/j.ins.2022.11.139_b0035) 2019; 7 Nazeer (10.1016/j.ins.2022.11.139_b0775) 2011 Li (10.1016/j.ins.2022.11.139_b0630) 2007; 2 Lim (10.1016/j.ins.2022.11.139_b0640) 2019; 20 Singh (10.1016/j.ins.2022.11.139_b1000) 2021; 38 Steinhaus (10.1016/j.ins.2022.11.139_b1015) 1956; 3 Kapoor (10.1016/j.ins.2022.11.139_b0525) 2017 Dafir (10.1016/j.ins.2022.11.139_b0245) 2021; 54 Lam (10.1016/j.ins.2022.11.139_b0595) 2013; 22 Wang (10.1016/j.ins.2022.11.139_b1060) 2012 Chen (10.1016/j.ins.2022.11.139_b0205) 2021; 176 He (10.1016/j.ins.2022.11.139_b0420) 2022; 34 Cheung (10.1016/j.ins.2022.11.139_b0210) 2003; 24 Estlick (10.1016/j.ins.2022.11.139_b0290) 2001 10.1016/j.ins.2022.11.139_b0360 Geng (10.1016/j.ins.2022.11.139_b0355) 2020; 8 Mao (10.1016/j.ins.2022.11.139_b0690) 2022; 78 Marom (10.1016/j.ins.2022.11.139_b0695) 2019; 32 10.1016/j.ins.2022.11.139_b0235 10.1016/j.ins.2022.11.139_b0910 Ding (10.1016/j.ins.2022.11.139_b0260) 2004 Garg (10.1016/j.ins.2022.11.139_b0345) 2021; 80 Bezdek (10.1016/j.ins.2022.11.139_b0130) 1984; 10 Ichikawa (10.1016/j.ins.2022.11.139_b0455) 2014; 11 Ikotun (10.1016/j.ins.2022.11.139_b0460) 2021; 11 Xiong (10.1016/j.ins.2022.11.139_b1110) 2016 Guo (10.1016/j.ins.2022.11.139_b0390) 2014 Pang (10.1016/j.ins.2022.11.139_b0830) 2021; 165 Ragunthar (10.1016/j.ins.2022.11.139_b0890) 2021 Harb (10.1016/j.ins.2022.11.139_b0410) 2015; 15 10.1016/j.ins.2022.11.139_b0230 Sinaga (10.1016/j.ins.2022.11.139_b0985) 2020; 8 Belhaouari (10.1016/j.ins.2022.11.139_b0105) 2014; 2014 Sieranoja (10.1016/j.ins.2022.11.139_b0975) 2022; 64 Zhang (10.1016/j.ins.2022.11.139_b1190) 2017; 94 Fahim (10.1016/j.ins.2022.11.139_b0310) 2006; 7 10.1016/j.ins.2022.11.139_b0900 10.1016/j.ins.2022.11.139_b0905 Khan (10.1016/j.ins.2022.11.139_b0555) 2020; 154 Makarychev (10.1016/j.ins.2022.11.139_b0685) 2020; 33 Yang (10.1016/j.ins.2022.11.139_b1135) 2017; 28 Boukhdhir (10.1016/j.ins.2022.11.139_b0150) 2015 Nie (10.1016/j.ins.2022.11.139_b0800) 2022; 14 10.1016/j.ins.2022.11.139_b0810 Ezugwu (10.1016/j.ins.2022.11.139_b0295) 2020; 8 Qi (10.1016/j.ins.2022.11.139_b0885) 2021; 16 10.1016/j.ins.2022.11.139_b0935 Lithio (10.1016/j.ins.2022.11.139_b0655) 2018; 11 Alam (10.1016/j.ins.2022.11.139_b0060) 2019; 3 Zeebaree (10.1016/j.ins.2022.11.139_b1165) 2017; 12 Xu (10.1016/j.ins.2022.11.139_b1125) 1993; 4 Pakhira (10.1016/j.ins.2022.11.139_b0820) 2014 Yang (10.1016/j.ins.2022.11.139_b1145) 2019; 7 Gönen (10.1016/j.ins.2022.11.139_b0370) 2014; 27 Wu (10.1016/j.ins.2022.11.139_b1095) 2020; 8 Gocer (10.1016/j.ins.2022.11.139_b0365) 2022; 39 Mishra (10.1016/j.ins.2022.11.139_b0720) 2012 Panday (10.1016/j.ins.2022.11.139_b0825) 2019; 8 10.1016/j.ins.2022.11.139_b0250 Bai (10.1016/j.ins.2022.11.139_b0095) 2020; 61 10.1016/j.ins.2022.11.139_b0135 Chen (10.1016/j.ins.2022.11.139_b0190) 2021; 402 Peña (10.1016/j.ins.2022.11.139_b0845) 1999; 20 Hans-Hermann (10.1016/j.ins.2022.11.139_b0405) 2008; 4 Verykios (10.1016/j.ins.2022.11.139_b1045) 2004; 33 10.1016/j.ins.2022.11.139_b0805 Zhao (10.1016/j.ins.2022.11.139_b1205) 2009 Newling (10.1016/j.ins.2022.11.139_b0785) 2017; 30 Jain (10.1016/j.ins.2022.11.139_b0485) 1999; 31 Pusadan (10.1016/j.ins.2022.11.139_b0875) 2019; 5 Gu (10.1016/j.ins.2022.11.139_b0380) 2016 Minh (10.1016/j.ins.2022.11.139_b0710) 2022; 251 10.1016/j.ins.2022.11.139_b0160 Zhao (10.1016/j.ins.2022.11.139_b1210) 2022; 491 10.1016/j.ins.2022.11.139_b0285 Moubayed (10.1016/j.ins.2022.11.139_b0735) 2020; 34 10.1016/j.ins.2022.11.139_b0960 Rahman (10.1016/j.ins.2022.11.139_b0895) 2014; 71 Hu (10.1016/j.ins.2022.11.139_b0435) 2017 Bradley (10.1016/j.ins.2022.11.139_b0155) 1997; 9 Wu (10.1016/j.ins.2022.11.139_b1085) 2008; 14 10.1016/j.ins.2022.11.139_b0715 Stemmer (10.1016/j.ins.2022.11.139_b1030) 2018; 31 Modha (10.1016/j.ins.2022.11.139_b0725) 2003; 52 Mustafi (10.1016/j.ins.2022.11.139_b0745) 2019; 23 Lei (10.1016/j.ins.2022.11.139_b0615) 2016; 75 Cui (10.1016/j.ins.2022.11.139_b0240) 2014; 70 10.1016/j.ins.2022.11.139_b1240 10.1016/j.ins.2022.11.139_b1245 Ahmad (10.1016/j.ins.2022.11.139_b0040) 2007; 63 Kant (10.1016/j.ins.2022.11.139_b0505) 2016; 7 Mahmud (10.1016/j.ins.2022.11.139_b0680) 2012 Kaur (10.1016/j.ins.2022.11.139_b0545) 2013 10.1016/j.ins.2022.11.139_b0940 Sharma (10.1016/j.ins.2022.11.139_b0945) 2020 Honda (10.1016/j.ins.2022.11.139_b0425) 2011 Li (10.1016/j.ins.2022.11.139_b0625) 2019; 12 Alguliyev (10.1016/j.ins.2022.11.139_b0065) 2021; 152 10.1016/j.ins.2022.11.139_b0705 Lingxian (10.1016/j.ins.2022.11.139_b0650) 2019 Wu (10.1016/j.ins.2022.11.139_b1090) 2022; 13 Hussain (10.1016/j.ins.2022.11.139_b0450) 2019; 118 Sanwale (10.1016/j.ins.2022.11.139_b0930) 2018; 68 Pu (10.1016/j.ins.2022.11.139_b0865) 2022; 81 Pérez-Ortega (10.1016/j.ins.2022.11.139_b0850) 2018; 13 Zhu (10.1016/j.ins.2022.11.139_b1230) 2018; 71 Alizadeh (10.1016/j.ins.2022.11.139_b0070) 2000; 403 Shrifan (10.1016/j.ins.2022.11.139_b0970) 2021; 34 Kaufman (10.1016/j.ins.2022.11.139_b0540) 2008 Calandriello (10.1016/j.ins.2022.11.139_b0165) 2018; 31 10.1016/j.ins.2022.11.139_b0185 10.1016/j.ins.2022.11.139_b1155 He (10.1016/j.ins.2022.11.139_b0415) 2004 Huang (10.1016/j.ins.2022.11.139_b0440) 2021; 117 Bache (10.1016/j.ins.2022.11.139_b0085) 2013 Chen (10.1016/j.ins.2022.11.139_b0200) 2011; 25 Goyal (10.1016/j.ins.2022.11.139_b0375) 2017; 8 Zhu (10.1016/j.ins.2022.11.139_b1235) 2020; 13 Ahmad (10.1016/j.ins.2022.11.139_b0045) 2019; 7 Abualigah (10.1016/j.ins.2022.11.139_b0025) 2018; 25 Jain (10.1016/j.ins.2022.11.139_b0480) 1988 Steinley (10.1016/j.ins.2022.11.139_b1025) 2006; 59 10.1016/j.ins.2022.11.139_b0050 10.1016/j.ins.2022.11.139_b0175 10.1016/j.ins.2022.11.139_b1140 Zhang (10.1016/j.ins.2022.11.139_b1200) 2020; 33 10.1016/j.ins.2022.11.139_b0055 10.1016/j.ins.2022.11.139_b0840 Shiudkar (10.1016/j.ins.2022.11.139_b0965) 2017; 4 10.1016/j.ins.2022.11.139_b0600 Gan (10.1016/j.ins.2022.11.139_b0340) 2020; 64 Tayal (10.1016/j.ins.2022.11.139_b1035) 2020; 62 Kijsipongse (10.1016/j.ins.2022.11.139_b0560) 2012 Yang (10.1016/j.ins.2022.11.139_b1150) 2022; 17 Guan (10.1016/j.ins.2022.11.139_b0385) 2018; 100 Lee (10.1016/j.ins.2022.11.139_b0605) 2012; 13 Lee (10.1016/j.ins.2022.11.139_b0610) 2013; 23 Nasir (10.1016/j.ins.2022.11.139_b0765) 2018; 42 Benchara (10.1016/j.ins.2022.11.139_b0115) 2021; 101 Blömer (10.1016/j.ins.2022.11.139_b0140) 2016 Ismkhan (10.1016/j.ins.2022.11.139_b0470) 2018; 79 Belhadi (10.1016/j.ins.2022.11.139_b0100) 2020; 95 Bertin-Mahieux (10.1016/j.ins.2022.11.139_b0125) 2011 Na (10.1016/j.ins.2022.11.139_b0750) 2010 10.1016/j.ins.2022.11.139_b1050 10.1016/j.ins.2022.11.139_b0080 Silva (10.1016/j.ins.2022.11.139_b0980) 2019 10.1016/j.ins.2022.11.139_b1170 Fukunaga (10.1016/j.ins.2022.11.139_b0335) 2013 10.1016/j.ins.2022.11.139_b0760 10.1016/j.ins.2022.11.139_b0880 Saini (10.1016/j.ins.2022.11.139_b0925) 2014; 3 Lai (10.1016/j.ins.2022.11.139_b0590) 2009; 42 10.1016/j.ins.2022.11.139_b0515 Zubair (10.1016/j.ins.2022.11.139_b1250) 2022; 2022 Doumas (10.1016/j.ins.2022.11.139_b0270) 2016; 20 Mouton (10.1016/j.ins.2022.11.139_b0740) 2020; 151 Xiao (10.1016/j.ins.2022.11.139_b1100) 2010; 37 Steinley (10.1016/j.ins.2022.11.139_b1020) 2007; 24 10.1016/j.ins.2022.11.139_b1160 Lingras (10.1016/j.ins.2022.11.139_b0645) 2004; 23 Wang (10.1016/j.ins.2022.11.139_b1075) 2020; 8 Chen (10.1016/j.ins.2022.11.139_b0195) 2021; 52 Abualigah (10.1016/j.ins.2022.11.139_b0015) 2020; 10 Zhu (10.1016/j.ins.2022.11.139_b1225) 2019; 17 Kavitha (10.1016/j.ins.2022.11.139_b0550) 2022 Duda (10.1016/j.ins.2022.11.139_b0275) 1973; Vol. 3 José-García (10.1016/j.ins.2022.11.139_b0495) 2016; 41 Shibayama (10.1016/j.ins.2022.11.139_b0955) 1992; 40 Van-Hieu (10.1016/j.ins.2022.11.139_b1040) 2015 Nanda (10.1016/j.ins.2022.11.139_b0755) 2019; 33 Kamil (10.1016/j.ins.2022.11.139_b0500) 2019; 12 Islam (10.1016/j.ins.2022.11.139_b0465) 2018; 91 Chokniwal (10.1016/j.ins.2022.11.139_b0220) 2016 Abernathy (10.1016/j.ins.2022.11.139_b0005) 2022; 207 Jain (10.1016/j.ins.2022.11.139_b0475) 2010; 31 10.1016/j.ins.2022.11.139_b1070 Abualigah (10.1016/j.ins.2022.11.139_b0030) 2017; 60 Xie (10.1016/j.ins.2022.11.139_b1105) 2020; 5 10.1016/j.ins.2022.11.139_b0780 10.1016/j.ins.2022.11.139_b1195 Cleuziou (10.1016/j.ins.2022.11.139_b0225) 2007; 54 Farcomeni (10.1016/j.ins.2022.11.139_b0315) 2014; 24 Olukanmi (10.1016/j.ins.2022.11.139_b0815) 2022; 34 Xu (10.1016/j.ins.2022.11.139_b1130) 2015; 54 Lu (10.1016/j.ins.2022.11.139_b0665) 2022; 501 Kaufman (10.1016/j.ins.2022.11.139_b0530) 1987 Ezugwu (10.1016/j.ins.2022.11.139_b0300) 2022; 110 10.1016/j.ins.2022.11.139_b0090 10.1016/j.ins.2022.11.139_b1180 10.1016/j.ins.2022.11.139_b1065 Ben Gouissem (10.1016/j.ins.2022.11.139_b0110) 2022; e5255 Pérez-Ortega (10.1016/j.ins.2022.11.139_b0855) 2019 10.1016/j.ins.2022.11.139_b0770 Honda (10.1016/j.ins.2022.11.139_b0430) 2009; 18 Sinha (10.1016/j.ins.2022.11.139_b1005) 2018; 74 MacQueen (10.1016/j.ins.2022.11.139_b0675) 1967 Shen (10.1016/j.ins.2022.11.139_b0950) 2017 Jancey (10.1016/j.ins.2022.11.139_b0490) 1966; 14 Krey (10.1016/j.ins.2022.11.139_b0570) 2014; 29 Feng (10.1016/j.ins.2022.11.139_b0325) 2012 Xu (10.1016/j.ins.2022.11.139_b1120) 2015; 2 Kanungo (10.1016/j.ins.2022.11.139_b0510) 2002; 24 Ezugwu (10.1016/j.ins.2022.11.139_b0305) 2021; 33 Lever (10.1016/j.ins.2022.11.139_b0620) 2017; 14 Steinbach (10.1016/j.ins.2022.11.139_b1010) 2000 10.1016/j.ins.2022.11.139_b0320 Mendes (10.1016/j.ins.2022.11.139_b0700) 2017; 5 Capó (10.1016/j.ins.2022.11.139_b0170) 2020 L |
| References_xml | – reference: 1027-1035. 10.1145/1283383.1283494. – volume: 34 start-page: e6621 year: 2022 ident: b0420 article-title: Parallel and accurate k-means algorithm on CPU-GPU architectures for spectral clustering publication-title: Concurr. Comput. Pract. Exp. – reference: , 14-19. – reference: , 1321-1330. – reference: Lange, T., Law, M. H., Jain, A. K., & Buhmann, J. M. (2005). Learning with constrained and unlabelled data. In – volume: 61 start-page: 36 year: 2020 end-page: 47 ident: b0095 article-title: A multiple K-means clustering ensemble algorithm to find nonlinearly separable clusters publication-title: Inform. Fusion – volume: 5 start-page: 285 year: 2019 end-page: 296 ident: b0875 article-title: Anomaly detection on flight route using similarity and grouping approach based-on automatic dependent surveillance-broadcast publication-title: Internat. J. Adv. Intell. Inform. – volume: 34 start-page: 554 year: 2021 end-page: 562 ident: b1115 article-title: Helicopter maritime search area planning based on a minimum bounding rectangle and K-means clustering publication-title: Chin. J. Aeronaut. – volume: 14 start-page: 1 year: 2022 end-page: 11 ident: b0800 article-title: An effective and efficient algorithm for K-means clustering with new formulation publication-title: IEEE Trans. Knowl. Data Eng. – volume: 71 start-page: 608 year: 2018 end-page: 621 ident: b1230 article-title: An effective partitional clustering algorithm based on new clustering validity index publication-title: Appl. Soft Comput. – volume: 33 start-page: 152 year: 2019 end-page: 170 ident: b0755 article-title: A K-means-galactic swarm optimization-based clustering algorithm with Otsu’s entropy for brain tumor detection publication-title: Appl. Artif. Intell. – volume: 40 start-page: 200 year: 2013 end-page: 210 ident: b0180 article-title: A comparative study of efficient initialization methods for the K-means clustering algorithm publication-title: Expert Syst. Appl. – volume: 52 start-page: 303 year: 2021 end-page: 347 ident: b0195 article-title: Diffusion K-means clustering on manifolds: Provable exact recovery via semidefinite relaxations publication-title: Appl. Comput. Harmon. Anal. – volume: 22 start-page: 1349 year: 2013 end-page: 1355 ident: b0595 article-title: PSO-based K-means clustering with enhanced cluster matching for gene expression data publication-title: Neural Comput. Appl. – volume: 9 start-page: 368 year: 1997 end-page: 374 ident: b0155 article-title: Clustering via concave minimization publication-title: Adv. Neural Inf. Proces. Syst. – reference: , 141-144. – volume: 75 start-page: 12043 year: 2016 end-page: 12059 ident: b0615 article-title: Robust K-means algorithm with automatically splitting and merging clusters and its applications for surveillance data publication-title: Multimed. Tools Appl. – start-page: 464 year: 2017 end-page: 467 ident: b0435 article-title: Improved K-means algorithm based on hybrid fruit fly optimization and differential evolution publication-title: 2017 12th International Conference on Computer Science and Education (ICCSE) – reference: Sarma, T. H. Viswanath, P., & Reddy, B. E. (2011). A fast approximate kernel K-means clustering method for large data sets. – reference: Zhu, Z., & Liu, N. (2021). Early warning of financial risk based on K-means clustering algorithm. – volume: e5255 year: 2022 ident: b0110 article-title: Energy efficient grid-based k-means clustering algorithm for large scale wireless sensor networks publication-title: Int. J. Commun Syst – volume: 23 start-page: 199 year: 2013 end-page: 206 ident: b0610 article-title: Fast K-means clustering using deletion by center displacement and norms product (CDNP) publication-title: Pattern Recognit Image Anal. – start-page: 1 year: 2010 end-page: 6 ident: b0255 article-title: MK-means-modified K-means clustering algorithm publication-title: The 2010 International Joint Conference on Neural Networks (IJCNN) – reference: Chawla, S., & Gionis, A. (2013). K-means–: A unified approach to clustering and outlier detection. In – reference: Kuo, R. J., Suryani, E., & Yasid, A. (2013). Automatic clustering combining differential evolution algorithm and K-means algorithm. In – volume: 7 start-page: 114472 year: 2019 end-page: 114486 ident: b1145 article-title: A feature-reduction multi-view K-means clustering algorithm publication-title: IEEE Access – reference: Sculley, D. (2010). Web-scale k-means clustering. In – volume: 2 start-page: 165 year: 2015 end-page: 193 ident: b1120 article-title: A comprehensive survey of clustering algorithms publication-title: Ann. Data Sci. – volume: 403 start-page: 503 year: 2000 end-page: 511 ident: b0070 article-title: Distinct types of diffuse large B-celllymphoma identified by gene expression profiling publication-title: Nature – volume: 95 year: 2020 ident: b0100 article-title: Space–time series clustering: Algorithms, taxonomy, and case study on urban smart cities publication-title: Eng. Appl. Artif. Intel. – volume: 163 start-page: 546 year: 2019 end-page: 557 ident: b1215 article-title: Automatic data clustering using nature-inspired symbiotic organism search algorithm publication-title: Knowl.-Based Syst. – volume: 207 year: 2022 ident: b0005 article-title: The incremental online k-means clustering algorithm and its application to color quantization publication-title: Expert Syst. Appl. – volume: 8 year: 2019 ident: b0825 article-title: Improved K-means map reduce algorithm for big data cluster analysis publication-title: Internat. J. Innov. Technol. Explor. Eng. (IJITEE) – volume: 11 start-page: 27 year: 2020 ident: b1175 article-title: K-Means clustering-based electrical equipment identification for smart building application publication-title: Information – volume: 36 start-page: 3336 year: 2009 end-page: 3341 ident: b0835 article-title: A simple and fast algorithm for K-medoids clustering publication-title: Expert Syst. Appl. – volume: 9 start-page: 67736 year: 2021 end-page: 67751 ident: b0990 article-title: Entropy K-means clustering with feature reduction under unknown number of clusters publication-title: IEEE Access – reference: , 44-46. – reference: , 2257-2262. – volume: 27 year: 2014 ident: b0370 article-title: Localized data fusion for kernel K-means clustering with application to cancer biology publication-title: Adv. Neural Inf. Proces. Syst. – volume: 31 start-page: 264 year: 1999 end-page: 323 ident: b0485 article-title: Data clustering: A review publication-title: ACM Comput. Surveys (CSUR) – volume: 99 start-page: 291 year: 1999 end-page: 299 ident: b0280 article-title: Clustering in large graphs and matrices publication-title: SODA – volume: 7 start-page: 184963 year: 2019 end-page: 184984 ident: b0035 article-title: Automatic data clustering using hybrid firefly particle swarm optimization algorithm publication-title: IEEE Access – volume: 12 start-page: 1573 year: 2019 ident: b0625 article-title: K-means clustering of overweight and obese population using quantile-transformed metabolic data publication-title: Diabetes Metab. Syndrome Obes. Targets Ther. – volume: 60 start-page: 423 year: 2017 end-page: 435 ident: b0030 article-title: A novel hybridization strategy for krill herd algorithm applied to clustering techniques publication-title: Appl. Soft Comput. – volume: 110 year: 2022 ident: b0300 article-title: A comprehensive survey of clustering algorithms: State-of-the-art machine learning applications, taxonomy, challenges, and future research prospects publication-title: Eng. Appl. Artif. Intel. – reference: , 727-734. – year: 2019 ident: b0855 article-title: The K-means algorithm evolution publication-title: Introduction to Data Science and Machine Learning – reference: , 189-197. – volume: 31 start-page: 651 year: 2010 end-page: 666 ident: b0475 article-title: Data clustering: 50 years beyond K-means publication-title: Pattern Recogn. Lett. – start-page: 162 year: 2010 end-page: 170 ident: b0670 article-title: Parallel K-means clustering of remote sensing images based on MapReduce publication-title: International Conference on Web Information Systems and Mining – volume: 251 year: 2022 ident: b0710 article-title: A new metaheuristic optimization based on K-means clustering algorithm and its application for structural damage identification in a complex 3D concrete structure publication-title: Knowl.-Based Syst. – volume: 20 start-page: 1027 year: 1999 end-page: 1040 ident: b0845 article-title: An empirical comparison of four initialization methods for the K-means algorithm publication-title: Pattern Recogn. Lett. – reference: Zha, H., He, X., Ding, C., Gu, M., & Simon, H. (2001). Spectral relaxation for K-means clustering. – volume: 3 start-page: 801 year: 1956 end-page: 804 ident: b1015 article-title: Sur la division des corps matériels en parties publication-title: Bulletin de l'Académie Polonaise des Sciences. Classe – volume: 62 year: 2020 ident: b1035 article-title: Integrated framework for identifying sustainable manufacturing layouts based on big data, machine learning, meta-heuristic, and data envelopment analysis publication-title: Sustain. Cities Soc. – volume: 20 start-page: 367 year: 2016 end-page: 399 ident: b0270 article-title: The coupon collector’s problem revisited: generalizing the double dixie cup problem of newman and shepp publication-title: ESAIM: Probab. Stat. – volume: 42 start-page: 1 year: 2018 end-page: 15 ident: b0765 article-title: Enhanced K-means clustering algorithm for malaria image segmentation publication-title: J. Adv. Res. Fluid Mech. Thermal Sci. – volume: 7 start-page: 31883 year: 2019 end-page: 31902 ident: b0045 article-title: Survey of state-of-the-art mixed data clustering algorithms publication-title: IEEE Access – year: 2022 ident: b1185 article-title: Privacy-Preserving and Outsourced multi-party K-means clustering based on multi-key fully homomorphic encryption publication-title: IEEE Trans. Dependable Secure Comput. – volume: 42 start-page: 2551 year: 2009 end-page: 2556 ident: b0590 article-title: A fast K-means clustering algorithm using cluster center displacement publication-title: Pattern Recogn. – year: 2008 ident: b0540 article-title: Finding groups in data: an introduction to cluster analysis – volume: 33 start-page: 50 year: 2004 end-page: 57 ident: b1045 article-title: State-of-the-art in privacy preserving data mining publication-title: ACM SIGMOD Rec. – reference: , 665-670. – reference: Kumar, P., & Wasan, S. K. (2010). Analysis of X-means and global K-means using tumor classification. In – volume: 36 start-page: 451 year: 2003 end-page: 461 ident: b0635 article-title: The global K-means clustering algorithm publication-title: Pattern Recogn. – reference: Bachem, O., Lucic, M., Hassani, H., & Krause, A. (2016). Fast and provably good seedings for k-means. – volume: 5 start-page: 1 year: 2020 end-page: 10 ident: b1105 article-title: Improvement of the fast-clustering algorithm improved by K-means in the big data publication-title: Appl. Math. Nonlinear Sci. – volume: 59 start-page: 1 year: 2006 end-page: 34 ident: b1025 article-title: K-means clustering: a half-century synthesis publication-title: Br. J. Math. Stat. Psychol. – volume: 63 start-page: 503 year: 2007 end-page: 527 ident: b0040 article-title: A K-mean clustering algorithm for mixed numeric and categorical data publication-title: Data Knowl. Eng. – volume: 64 start-page: 651 year: 2020 end-page: 662 ident: b0340 article-title: Data clustering: theory, algorithms, and applications publication-title: Biometrics – reference: 158-161. – volume: 152 year: 2021 ident: b0065 article-title: Parallel batch K-means for big data clustering publication-title: Comput. Ind. Eng. – volume: 7 start-page: 1626 year: 2006 end-page: 1633 ident: b0310 article-title: An efficient enhanced K-means clustering algorithm publication-title: Journal of Zhejiang University-Science A – volume: 18 start-page: 67 year: 2009 end-page: 79 ident: b0430 article-title: Fuzzy PCA-guided robust K-means clustering publication-title: IEEE Trans. Fuzzy Syst. – volume: 23 start-page: 5 year: 2004 end-page: 16 ident: b0645 article-title: Interval set clustering of web users with rough K-means publication-title: J. Intell. Inf. Syst. – start-page: 836 year: 2016 end-page: 839 ident: b0380 article-title: A novel locality sensitive K-means clustering algorithm based on subtractive clustering publication-title: In 2016 7th IEEE International Conference on Software Engineering and Service Science (ICSESS) – volume: 29 start-page: 37 year: 2014 end-page: 50 ident: b0570 article-title: Music and timbre segmentation by recursive constrained K-means clustering publication-title: Comput. Stat. – volume: 3 start-page: 2249 year: 2014 end-page: 8958 ident: b0925 article-title: K-mean Clustering and PSO: A review publication-title: Internat. J. Eng. Adv. Technol. (IJEAT) ISSN – volume: 70 start-page: 1249 year: 2014 end-page: 1259 ident: b0240 article-title: Optimized big data K-means clustering using MapReduce publication-title: J. Supercomput. – volume: 6 start-page: 392 year: 2017 ident: b1220 article-title: An automatic K-means clustering algorithm of GPS data combining a novel niche genetic algorithm with noise and density publication-title: ISPRS Int. J. Geo Inf. – volume: 195 year: 2020 ident: b0860 article-title: A meta-learning approach for recommending the number of clusters for clustering algorithms publication-title: Knowl.-Based Syst. – volume: 10 start-page: 3827 year: 2020 ident: b0015 article-title: A comprehensive survey of the harmony search algorithm in clustering applications publication-title: Appl. Sci. – start-page: 1 year: 2017 end-page: 6 ident: b0525 article-title: A comparative study of K-means, K-means++ and Fuzzy C-Means clustering algorithms publication-title: 2017 3rd international conference on computational intelligence and communication technology (CICT) – reference: Min, W., & Siqing, Y. (2010). Improved K-means clustering based on genetic algorithm. In – start-page: 1 year: 2022 end-page: 14 ident: b0550 article-title: Quantum K-means clustering method for detecting heart disease using quantum circuit approach publication-title: Soft. Comput. – reference: 158-163. – year: 2021 ident: b0890 article-title: A strong reinforcement parallel implementation of K-means algorithm using message passing interface publication-title: Mater. Today: Proc. – volume: 68 year: 2018 ident: b0930 article-title: Aerodynamic parameters estimation using radial basis function neural partial differentiation method publication-title: Def. Sci. J. – start-page: 947 year: 2016 end-page: 952 ident: b0220 article-title: Faster Mahalanobis K-means clustering for Gaussian distributions publication-title: 2016 International Conference on Advances in Computing, Communications, and Informatics, (ICACCI) – year: 2019 ident: b0020 article-title: Feature selection and enhanced krill herd algorithm for text document clustering – start-page: 674 year: 2009 end-page: 679 ident: b1205 article-title: Parallel K-means clustering based on mapreduce publication-title: IEEE international conference on cloud computing – start-page: 1146 year: 2012 end-page: 1456 ident: b0325 article-title: A K-means clustering algorithm based on the maximum triangle rule publication-title: 2012 IEEE International Conference on Mechatronics and Automation – reference: 1-9. – volume: 214 year: 2021 ident: b0145 article-title: A unified form of fuzzy C-means and K-means algorithms and its partitional implementation publication-title: Knowl.-Based Syst. – reference: 7-11. – start-page: 31 year: 2019 end-page: 41 ident: b0980 article-title: U-control chart based differential evolution clustering for determining the number of clusters in K-means publication-title: International Conference on Green, Pervasive, and Cloud Computing – year: 2000 ident: b1010 article-title: A comparison of document clustering techniques KDD workshop on text mining – volume: 2014 year: 2014 ident: b0105 article-title: Optimized k-means algorithm publication-title: Math. Probl. Eng. – start-page: 171 year: 2020 end-page: 180 ident: b0945 article-title: Performance analysis of evolutionary technique based partitional clustering algorithms for wireless sensor networks publication-title: Soft Computing: Theories and Applications – reference: , 43-46. – volume: 13 start-page: 761 year: 2012 end-page: 768 ident: b0605 article-title: An accelerated K-means clustering algorithm using selection and erasure rules publication-title: J. Zhejiang Univ. Sci. C – start-page: 115 year: 2019 end-page: 118 ident: b0650 article-title: Online retail sales prediction with integrated framework of K-means and neural network publication-title: Proceedings of the 2019 10th International Conference on E-business, Management and Economics – reference: 1-12. (1295). – volume: 78 start-page: 5181 year: 2022 end-page: 5202 ident: b0690 article-title: A MapReduce-based K-means clustering algorithm publication-title: J. Supercomput. – reference: Pelleg, D., & Moore, A. W. (2000). X-means: Extending K-means with efficient estimation of the number of clusters. In – volume: 52 start-page: 217 year: 2003 end-page: 237 ident: b0725 article-title: Feature weighting in K-means clustering publication-title: Mach. Learn. – volume: 12 start-page: 14238 year: 2017 end-page: 14245 ident: b1165 article-title: Combination of K-means clustering with genetic algorithm: A review publication-title: Int. J. Appl. Eng. Res. – start-page: 202 year: 2016 end-page: 206 ident: b0520 article-title: On K-means data clustering algorithm with genetic algorithm publication-title: 2016 Fourth International Conference on Parallel – reference: 151(158), 11-11 Dec. 2011. – year: 1988 ident: b0480 article-title: Algorithms for clustering data – volume: 34 start-page: 137 year: 2020 end-page: 156 ident: b0735 article-title: Student engagement level in an e-learning environment: Clustering using K-means publication-title: Am. J. Dist. Educ. – volume: 91 start-page: 402 year: 2018 end-page: 417 ident: b0465 article-title: Combining K-means and a genetic algorithm through a novel arrangement of genetic operators for high quality clustering publication-title: Expert Syst. Appl. – volume: 2 year: 2013 ident: b0995 article-title: Analysis and study of K-means clustering algorithm publication-title: Internat. J. Eng. Res. Technol. – volume: 30 year: 2017 ident: b1055 article-title: Clustering stable instances of Euclidean K-means publication-title: Adv. Neural Inf. Proces. Syst. – volume: 118 start-page: 20 year: 2019 end-page: 34 ident: b0450 article-title: A K-means based co-clustering (kCC) algorithm for sparse, high dimensional data publication-title: Expert Syst. Appl. – start-page: 405 year: 1987 end-page: 416 ident: b0530 article-title: Clustering by means of medoids publication-title: Statistical Data Analysis Based on the L1 - Norm and Related Methods – reference: Wang, B., Lv, Z., Zhao, J., Wang, X., & Zhang, T. (2016). An adaptively disperse centroids K-means algorithm based on mapreduce model. In – volume: 8 start-page: 217416 year: 2020 end-page: 217424 ident: b0355 article-title: An improved K-means algorithm based on fuzzy metrics publication-title: IEEE Access – reference: 29. – reference: Biswas, C., Ganguly, D., Roy, D., & Bhattacharya, U. (2019). Privacy preserving approximate K-means clustering. – reference: Ahmed, M., Seraj, R., & Islam, S. M. S. (2020). The K-means algorithm: A comprehensive survey and performance evaluation. – reference: . – reference: Zhang, Y., Zhang, D., & Shi, H. (2012). K-means clustering based on self-adaptive weight. In – volume: 16 start-page: 38 year: 2021 end-page: 49 ident: b0885 article-title: KText: Arbitrary shape text detection using modified K-means publication-title: IET Comput. Vis. – year: 2013 ident: b0085 article-title: UCI machine learning repository – reference: , 46-56. – volume: 24 start-page: 907 year: 2014 end-page: 919 ident: b0315 article-title: Snipping for robust K-means clustering under component-wise contamination publication-title: Stat. Comput. – volume: 12 start-page: 223 year: 2019 end-page: 233 ident: b0120 article-title: TiK-means: Transformation-infused K-means clustering for skewed groups publication-title: Stat. Anal. Data Mining: ASA Data Sci. J. – start-page: 591 year: 2011 end-page: 596 ident: b0125 article-title: The Million-Song Dataset – volume: 2 start-page: 63 year: 2007 end-page: 65 ident: b0630 article-title: An improved algorithm of K-means publication-title: J. Beijing Inst. Graph. Commun. – volume: 41 start-page: 192 year: 2016 end-page: 213 ident: b0495 article-title: Automatic clustering using nature-inspired metaheuristics: A survey publication-title: Appl. Soft Comput. – volume: 402 year: 2021 ident: b0190 article-title: Fast kernel K-means clustering using incomplete Cholesky factorization publication-title: Appl. Math Comput. – start-page: 346 year: 2012 end-page: 350 ident: b0560 article-title: Dynamic load balancing on GPU clusters for large-scale K-means clustering publication-title: 2012 IEEE International Joint Conference on Computer Science and Software Engineering (JCSSE) – volume: 33 start-page: 16142 year: 2020 end-page: 16152 ident: b0685 article-title: Improved guarantees for K-means++ and K-means++ Parallel publication-title: Adv. Neural Inf. Proces. Syst. – volume: 20 start-page: 260 year: 2019 end-page: 272 ident: b0640 article-title: The selection of vertiport location for on-demand mobility and its application to Seoul metro area publication-title: Int. J. Aeronaut. Space Sci. – start-page: 647 year: 2012 end-page: 650 ident: b0680 article-title: Improvement of K-means clustering algorithm with better initial centroids based on weighted average publication-title: 2012 7th International Conference on Electrical and Computer Engineering – reference: Rajah, V., & Ezugwu, A. E. (2020). Hybrid symbiotic organism search algorithms for automatic data clustering. – start-page: 106 year: 2012 end-page: 110 ident: b0720 article-title: Far efficient K-means clustering algorithm publication-title: Proceedings of the International Conference on Advances in Computing, Communications, and Informatics – reference: Vij, R., & Kumar, S. (2012). Improved K-means clustering algorithm for two-dimensional data. In – reference: Cai, J., Liao, D., Chen, J., Chen, X., Liu, T., & Xi, J. (2020). Research on data security protection method based on improved K-means clustering algorithm. In – reference: Couto, J. (2005, September). Kernel K-means for categorical data. In – reference: Niu, K., Gao, Z., Jiao, H., & Deng, N. (2016). K-means+: A developed clustering algorithm for big data. In – volume: 13 start-page: 0201874 year: 2018 ident: b0850 article-title: Balancing effort and benefit of K-means clustering algorithms in big data realms publication-title: PLoS One – volume: 8 start-page: 80716 year: 2020 end-page: 80727 ident: b0985 article-title: Unsupervised K-means clustering algorithm. publication-title: Access – volume: 31 year: 2018 ident: b0215 article-title: Query k-means clustering and the double dixie cup problem publication-title: Adv. Neural Inf. Proces. Syst. – volume: 3 start-page: 27 year: 2019 ident: b0060 article-title: Automatic human brain tumor detection in MRI image using template-based K means and improved fuzzy C means clustering algorithm publication-title: Big Data Cognit. Comput. – volume: 9 start-page: 879 year: 2021 ident: b0350 article-title: Markov chain K-means cluster models and their use for companies’ credit quality and default probability estimation publication-title: Mathematics – volume: 11 start-page: 681 year: 2014 end-page: 692 ident: b0455 article-title: A simple but powerful heuristic method for accelerating K-Means clustering of large-scale data in life science publication-title: IEEE/ACM Trans. Comput. Biol. Bioinf. – volume: 165 year: 2021 ident: b0830 article-title: Borrowers’ credit quality scoring model and applications, with default discriminant analysis based on the extreme learning machine publication-title: Technol. Forecast. Soc. Chang. – volume: 4 start-page: 1213 year: 2017 end-page: 1216 ident: b0965 article-title: Review of existing methods in K-means clustering algorithm publication-title: Internat. Res. J. Eng. Technol. – volume: 11 start-page: 296 year: 2018 end-page: 311 ident: b0655 article-title: An efficient K-means-type algorithm for clustering datasets with incomplete records publication-title: Stat. Anal. Data Mining: ASA Data Sci. J. – volume: 501 start-page: 609 year: 2022 end-page: 617 ident: b0665 article-title: A multi-view clustering framework via integrating K-means and graph-cut publication-title: Neurocomputing – volume: 8 start-page: 23069 year: 2020 end-page: 23081 ident: b1075 article-title: Study on the location of private clinics based on K-means clustering method and an integrated evaluation model publication-title: IEEE Access – volume: 24 start-page: 2883 year: 2003 end-page: 2893 ident: b0210 article-title: K∗-Means: A new generalized publication-title: Pattern Recogn. Lett. – reference: Cleuziou, G. (2008, December). An extended version of the K-means method for overlapping clustering. In – volume: 15 start-page: 5483 year: 2015 end-page: 5493 ident: b0410 article-title: An enhanced K-means and ANOVA-based clustering approach for similarity aggregation in underwater wireless sensor networks publication-title: IEEE Sens. J. – start-page: 2 year: 2013 ident: b0545 article-title: Statistically refining the initial points for K-means clustering algorithm publication-title: International Journal of Advanced Research in Computer Engineering and Technology (IJARCET) – volume: 74 start-page: 1562 year: 2018 end-page: 1579 ident: b1005 article-title: A hybrid MapReduce-based K-means clustering using genetic algorithm for distributed datasets publication-title: J. Supercomput. – start-page: 1 year: 2020 end-page: 4 ident: b0870 article-title: Selection of optimal number of clusters and centroids for K-means and fuzzy C-means clustering: A review publication-title: 2020 5th International Conference on Computing, Communication and Security (ICCCS) – volume: 16 year: 2003 ident: b0400 article-title: Learning the k in K-means publication-title: Adv. Neural Inf. Proces. Syst. – reference: Ren, S., & Fan, A. (2011). K-means clustering algorithm based on coefficient of variation. In – volume: 54 year: 2007 ident: b0225 article-title: A generalization of K-means for overlapping clustering publication-title: Rapport Technique – year: 2013 ident: b0335 article-title: Introduction to statistical pattern recognition publication-title: Elsevier – reference: Kao, Y., & Lee, S. Y. (2009). Combining K-means and particle swarm optimization for dynamic data clustering problems. In – volume: 100 year: 2018 ident: b0385 article-title: Reuse-centric K-means configuration publication-title: Inf. Syst. – volume: 31 year: 2018 ident: b1030 article-title: Differentially private K-means with constant multiplicative error publication-title: Adv. Neural Inf. Proces. Syst. – volume: 64 start-page: 115 year: 2022 end-page: 142 ident: b0975 article-title: Adapting k-means for graph clustering publication-title: Knowl. Inf. Syst. – volume: 176 year: 2021 ident: b0205 article-title: MK-means: Detecting evolutionary communities in dynamic networks publication-title: Expert Syst. Appl. – volume: 101 year: 2021 ident: b0115 article-title: A new scalable distributed K-means algorithm based on Cloud micro-services for high-performance computing publication-title: Parallel Comput. – start-page: 63 year: 2010 end-page: 67 ident: b0750 article-title: Research on K-means clustering algorithm: An improved K-means clustering algorithm publication-title: 2010 Third International Symposium on intelligent information technology and security informatics – reference: Yuan, F., Meng, Z. H., Zhang, H. X., & Dong, C. R. (2004). A new algorithm to get the initial centroids. In – volume: 80 start-page: 7397 year: 2021 end-page: 7410 ident: b0345 article-title: Skin lesion segmentation using K-means and optimized firefly algorithm publication-title: Multimed. Tools Appl. – volume: 2022 year: 2022 ident: b1250 article-title: An improved K-means clustering algorithm towards an efficient data-drivenmModeling publication-title: Annals of Data Science – volume: 5 start-page: 10562 year: 2017 end-page: 10582 ident: b0700 article-title: Privacy-preserving data mining: methods, metrics, and applications publication-title: IEEE Access – reference: IEEE, 344-349. – start-page: 81 year: 2016 end-page: 116 ident: b0140 article-title: Theoretical analysis of the K-means algorithm–a survey publication-title: Algorithm Engineering – reference: Olukanmi, P. O., & Twala, B. (2017). K-means-sharp: modified centroid update for outlier-robust K-means clustering. – volume: 17 start-page: 2524 year: 2022 end-page: 2537 ident: b1150 article-title: K-means clustering with local d χ-privacy for privacy-preserving data analysis publication-title: IEEE Trans. Inf. Forensics Secur. – volume: 8 start-page: 121089 year: 2020 end-page: 121118 ident: b0295 article-title: A comparative performance study of hybrid firefly algorithms for automatic data clustering publication-title: IEEE Access – reference: , – volume: 11 start-page: 11246 year: 2021 ident: b0460 article-title: K-Means-based nature-inspired metaheuristic algorithms for automatic data clustering problems: Recent advances and future directions publication-title: Appl. Sci. – reference: IEEE, 26-32. – reference: Elkan, C. (2003). Using the triangle inequality to accelerate K-means. In – start-page: 129 year: 1982 end-page: 137 ident: b0660 article-title: Least squares quantization in PCM publication-title: Bell Telephone Labs Memorandum, Murray Hill NJ. Reprinted In: IEEE Trans. Information Theory IT-28 2 – volume: 14 start-page: 1003 year: 2002 end-page: 1016 ident: b0795 article-title: CLARANS: A method for clustering objects for spatial data mining publication-title: IEEE Trans. Knowl. Data Eng. – reference: Wang, J., & Su, X. (2011). An improved K-means clustering algorithm. In – reference: Mirkin, B. (2005), Clustering for data mining: A data recovery approach. Boca Raton FL: Chapman and Hall/CRC – reference: Casper, E., Hung, C. C., Jung, E., & Yang, M. (2012). A quantum-modeled K-means clustering algorithm for multi-band image segmentation. In – reference: Newling, J., & Fleuret, F. (2016). Nested mini-batch K-means. – start-page: 1047 year: 2014 end-page: 1051 ident: b0820 article-title: A linear time-complexity k-means algorithm using cluster shifting publication-title: 2014 international conference on computational intelligence and communication networks – year: 2009 ident: b0575 article-title: Learning multiple layers of features from tiny images – volume: 154 year: 2020 ident: b0555 article-title: Survey and taxonomy of clustering algorithms in 5G publication-title: J. Netw. Comput. Appl. – start-page: 287 year: 2015 end-page: 298 ident: b1040 article-title: Fast K-means clustering for very large datasets based on mapreduce combined with a new cutting method publication-title: Knowledge and Systems Engineering – reference: , 832-835. – volume: 38 start-page: e12526 year: 2021 ident: b1000 article-title: An intelligent hybrid approach for hepatitis disease diagnosis: Combining enhanced K-means clustering and improved ensemble learning publication-title: Expert. Syst. – reference: Arthur, D., & Vassilvitskii, S. (2007). K-means++: The advantages of careful seeding. – volume: 16 start-page: 48 year: 2021 end-page: 59 ident: b0730 article-title: An improved K-means algorithm for big data publication-title: IET Softw. – volume: 151 year: 2020 ident: b0740 article-title: A comparison of clustering algorithms for automatic modulation classification publication-title: Expert Syst. Appl. – reference: Wei, D. (2016). A constant-factor bi-criteria approximation guarantee for K-means++. – volume: 51 start-page: 7 year: 2009 end-page: 15 ident: b0565 article-title: Systematic literature reviews in software engineering–a systematic literature review publication-title: Inf. Softw. Technol. – reference: Nazeer, K. A., & Sebastian, M. P. (2009). Improving the accuracy and efficiency of the k-means clustering algorithm. In – volume: 34 start-page: 6365 year: 2021 end-page: 6376 ident: b0970 article-title: An adaptive outlier removal aided K-means clustering algorithm publication-title: J. King Saud Univ.-Comput. Inform. Sci. – reference: Fatta G. D., Blasa, F., Cafiero, S., & Fortino, G. (2011). Epidemic K-means clustering. – start-page: 1710 year: 2011 end-page: 1714 ident: b0425 article-title: PCA-guided K-means clustering with incomplete data publication-title: 2011 IEEE International Conference on Fuzzy Systems (FUZZ) – year: 2017 ident: b0950 article-title: Compressed K-means for large-scale clustering publication-title: Thirty-first AAAI Conference on Artificial Intelligence – volume: 54 start-page: 2411 year: 2021 end-page: 2443 ident: b0245 article-title: A survey on parallel clustering algorithms for big data publication-title: Artif. Intell. Rev. – year: 2004 ident: b0415 article-title: Initialization of cluster refinement algorithms: A review and comparative study publication-title: IEEE International Joint Conference Neural Networks – volume: 4 year: 2008 ident: b0405 article-title: Origins and extensions of the K-means algorithm in cluster analysis publication-title: Journal Electronique d’Histoire des Probabilités et de la Statistique Electron. J. History Prob. Stat. – volume: 14 start-page: 1 year: 2008 end-page: 37 ident: b1085 article-title: Top 10 algorithms in data mining publication-title: Knowl. Inf. Syst. – reference: 242-249. – start-page: 3037 year: 2012 end-page: 3044 ident: b1060 article-title: Fast approximate K-means via cluster closures publication-title: IEEE Conference on Computer Vision and Pattern Recognition, Providence, RI, USA – volume: 93 start-page: 95 year: 2019 end-page: 112 ident: b0330 article-title: How much can K-means be improved by using better initialization and repeats? publication-title: Pattern Recogn. – volume: 8 year: 2017 ident: b0375 article-title: A review on K-mode clustering algorithm publication-title: Int. J. Adv. Res. Comput. Sci. – reference: (Vol. 1, pp. 731-738), doi: 10.1109/CVPR.2005.210. – reference: Shindler, M., Wong, A., & Meyerson, A. (2011). Fast and accurate K-means for large datasets. – volume: 67 start-page: 58 year: 1960 end-page: 61 ident: b0790 article-title: The double dixie cup problem publication-title: Am. Math. Mon. – reference: 147-153. – volume: 24 start-page: 881 year: 2002 end-page: 892 ident: b0510 article-title: An efficient K-means clustering algorithm: Analysis and implementation publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – start-page: 29 year: 2004 ident: b0260 article-title: K-means clustering via principal component analysis publication-title: Proceedings of the twenty-first international conference on machine learning – reference: Zhang, H., & Zhou, X. (2018). A novel clustering algorithm combining niche genetic algorithm with canopy and K-means. – volume: 13 start-page: 72 year: 2022 end-page: 80 ident: b1090 article-title: Research on image text recognition based on canny edge detection algorithm and k-means algorithm publication-title: Internat. J. Syst. Assur. Eng. Manage. – volume: 2 start-page: 283 year: 1998 end-page: 304 ident: b0445 article-title: Extensions to the K-means algorithm for clustering large data sets with categorical values publication-title: Data Min. Knowl. Disc. – reference: , 1540-1544. – reference: 1177-1178. – year: 2011 ident: b0775 article-title: Enhancing the k-means clustering algorithm by using a O (n logn) heuristic method for finding better initial centroids publication-title: 2011 Second International Conference on Emerging Applications of Information Technology 261–264 – reference: Zhuang, Y., Mao, Y., & Chen, X. (2016). A limited-iteration bisecting K-means for fast clustering large datasets. In – volume: 39 start-page: e12886 year: 2022 ident: b0365 article-title: Spherical fuzzy extension of AHP-ARAS methods integrated with modified k-means clustering for logistics hub location problem publication-title: Expert. Syst. – volume: 31 year: 2018 ident: b0165 article-title: Statistical and computational trade-offs in kernel k-means publication-title: Adv. Neural Inf. Proces. Syst. – volume: 34 start-page: 5939 year: 2022 end-page: 5958 ident: b0815 article-title: Automatic detection of outliers and the number of clusters in k-means clustering via Chebyshev-type inequalities publication-title: Neural Comput. & Applic. – reference: Dai, W., Jiao, C., & He, T. (2007). Research of K-means clustering method based on parallel genetic algorithm. In – reference: Ye, J., Zhao, Z., & Wu, M. (2007). Discriminative K-means for clustering. – reference: IEEE, – volume: 71 start-page: 345 year: 2014 end-page: 365 ident: b0895 article-title: A hybrid clustering technique combining a novel genetic algorithm with K-means publication-title: Knowl.-Based Syst. – volume: 213 year: 2021 ident: b0915 article-title: GBK-means clustering algorithm: An improvement to the K-means algorithm based on the bargaining game publication-title: Knowl.-Based Syst. – reference: Georgogiannis, A. (2016). Robust K-means: a theoretical revisit. – volume: 110 year: 2021 ident: b0920 article-title: CNAK: Cluster number assisted K-means publication-title: Pattern Recogn. – start-page: 265 year: 2016 end-page: 268 ident: b1110 article-title: An improved K-means text clustering algorithm by optimizing initial cluster centers publication-title: 2016 7th International Conference on Cloud Computing and Big Data (CCBD) – volume: 491 start-page: 34 year: 2022 end-page: 43 ident: b1210 article-title: Improving projected fuzzy K-means clustering via robust learning publication-title: Neurocomputing – volume: 571 start-page: 418 year: 2021 end-page: 442 ident: b0265 article-title: Clustering mixed numerical and categorical data with missing values publication-title: Inf. Sci. – volume: 7 start-page: 222 year: 2016 end-page: 228 ident: b0505 article-title: An improved K-means clustering with Atkinson index to classify liver patient dataset publication-title: Internat. J. Syst. Assurance Eng. Manage. – reference: 4, 2076-2079. – start-page: 281 year: 1967 end-page: 297 ident: b0675 article-title: Some methods for classification and analysis of multivariate observations publication-title: Fifth Berkeley Symposium on Mathematics. Statistics and Probability – volume: 30 year: 2017 ident: b0785 article-title: K-medoids for K-means seeding publication-title: Adv. Neural Inf. Proces. Syst. – reference: , 10-18. – volume: 117 year: 2021 ident: b0440 article-title: Robust deep K-means: An effective and simple method for data clustering publication-title: Pattern Recogn. – reference: 1, 757-761. – reference: Nandapala, E. Y. L., & Jayasena, K. P. N. (2020). The practical approach in customers segmentation by using the K-means algorithm. – volume: 8 start-page: 31171 year: 2020 end-page: 31179 ident: b1095 article-title: An enhanced regularized K-means type clustering algorithm with adaptive weights publication-title: IEEE Access – volume: 33 start-page: 10148 year: 2020 end-page: 10160 ident: b1200 article-title: Simple and scalable sparse K-means clustering via feature ranking publication-title: Adv. Neural Inf. Proces. Syst. – volume: 33 start-page: 6247 year: 2021 end-page: 6306 ident: b0305 article-title: Automatic clustering algorithms: A systematic review and bibliometric analysis of relevant literature publication-title: Neural Comput. & Applic. – volume: 81 start-page: 19321 year: 2022 end-page: 19339 ident: b0865 article-title: An efficient hybrid approach based on PSO, ABC and k-means for cluster analysis publication-title: Multimed. Tools Appl. – volume: 4 start-page: 636 year: 1993 end-page: 649 ident: b1125 article-title: Rival penalized competitive learning for clustering analysis, RBF net, and curve detection publication-title: IEEE Trans. Neural Netw. – volume: 17 year: 2019 ident: b1225 article-title: Improved logistic regression model for diabetes prediction by integrating PCA and K-means techniques publication-title: Inf. Med. Unlocked – volume: 37 start-page: 4966 year: 2010 end-page: 4973 ident: b1100 article-title: A quantum-inspired genetic algorithm for K-means clustering publication-title: Expert Syst. Appl. – reference: Qi, J., Yu, Y., Wang, L., & Liu, J. (2016). K*-means: An effective and efficient K-means clustering algorithm. In – volume: 4 start-page: 218 year: 2017 end-page: 221 ident: b0010 article-title: Survey report on K-means clustering algorithm publication-title: Int. J. Mod. Trends Eng. Res – reference: , 142-146. – volume: 32 year: 2019 ident: b0695 article-title: K-means clustering of lines for big data publication-title: Adv. Neural Inf. Proces. Syst. – volume: 43 year: 1997 ident: b0075 article-title: An efficient k-means clustering algorithm. publication-title: Science – reference: 2, 1191-1193. – reference: Yang, K. C., & Chao, W. P. (2020). Applying K-means technique and decision tree analysis to predict Taiwan ETF performance. In – start-page: 1 year: 2020 end-page: 36 ident: b0170 article-title: An efficient K-means clustering algorithm for tall data publication-title: Data Min. Knowl. Disc. – volume: 94 start-page: 663 year: 2017 end-page: 675 ident: b1190 article-title: Improved rough K-means clustering algorithm based on weighted distance measure with Gaussian function publication-title: Int. J. Comput. Math. – volume: 10 start-page: 191 year: 1984 end-page: 203 ident: b0130 article-title: FCM: The fuzzy c-means clustering algorithm publication-title: Comput. Geosci. – volume: 14 start-page: 127 year: 1966 end-page: 130 ident: b0490 article-title: Multidimensional group analysis publication-title: Aust. J. Bot. – volume: 23 start-page: 6361 year: 2019 end-page: 6378 ident: b0745 article-title: A hybrid approach using genetic algorithm and the differential evolution heuristic for enhanced initialization of the K-means algorithm with applications in text clustering publication-title: Soft. Comput. – volume: 25 start-page: 932 year: 2011 end-page: 944 ident: b0200 article-title: TW-K-means: Automated two-level variable weighting clustering algorithm for multiview data publication-title: IEEE Trans. Knowl. Data Eng. – start-page: 103 year: 2001 end-page: 110 ident: b0290 article-title: Algorithmic transformations in the implementation of k-means clustering on reconfigurable hardware publication-title: Proceedings of the 2001 ACM/SIGDA ninth international symposium on Field programmable gate arrays – volume: 12 start-page: 22 year: 2019 end-page: 29 ident: b0500 article-title: Mammography images segmentation via fuzzy C-mean and K-means publication-title: Internat. J. Intell. Eng. Syst. – reference: , 1-3. London, UK: Association of Engineers. – reference: , 635-639. – reference: IEEE, 6, 636. – reference: Rathore, P., & Shukla, D. (2015). Analysis and performance improvement of K-means clustering in big data environment. In – start-page: 251 year: 2014 end-page: 258 ident: b0390 article-title: K-intervals: A new extension of the K-means algorithm publication-title: 2014 IEEE 26th International Conference on Tools with Artificial Intelligence – reference: (550), 22-24. – reference: 1207-1215. – reference: https://doi.org/10.1201/9781420034912. – volume: 24 start-page: 99 year: 2007 end-page: 121 ident: b1020 article-title: Initializing K-means batch clustering: A critical evaluation of several techniques publication-title: J. Classif. – volume: 13 start-page: 2272 year: 2020 end-page: 2284 ident: b1235 article-title: Privacy-preserving K-means clustering with local synchronization in peer-to-peer networks publication-title: Peer-to-Peer Networking and Applications – volume: 14 start-page: 641 year: 2017 end-page: 643 ident: b0620 article-title: Points of significance: Principal component analysis publication-title: Nat. Methods – volume: 25 start-page: 456 year: 2018 end-page: 466 ident: b0025 article-title: A new feature selection method to improve the document clustering using particle swarm optimization algorithm publication-title: J. Comput. Sci. – volume: 10 start-page: 757 year: 2017 end-page: 768 ident: b0395 article-title: Local search methods for K-means with outliers publication-title: Proceedings of the VLDB Endowment – volume: 54 start-page: 50 year: 2015 end-page: 55 ident: b1130 article-title: PCA-guided search for K-means publication-title: Pattern Recogn. Lett. – reference: , 1-4. – start-page: 1 year: 2015 end-page: 6 ident: b0150 article-title: An improved MapReduce design of Kmeans for clustering very large datasets publication-title: 2015 IEEE/ACS 12th International Conference of Computer Systems and Applications (AICCSA) – volume: 79 start-page: 402 year: 2018 end-page: 413 ident: b0470 article-title: IK-means−+: An iterative clustering algorithm based on an enhanced version of the K-means publication-title: Pattern Recogn. – volume: 40 start-page: 257 year: 1992 end-page: 265 ident: b0955 article-title: A PCA-like method for multivariate data with missing values publication-title: Jpn. J. Educ. Psychol. – year: 2009 ident: b0535 article-title: Finding groups in data: An introduction to cluster analysis – reference: Ailon, N., Jaiswal, R., & Monteleoni, C. (2009). Streaming K-means approximation. NIPS'09: Proceedings of the 22nd International Conference on Neural Information Processing Systems – volume: Vol. 3 start-page: 731 year: 1973 end-page: 739 ident: b0275 publication-title: Pattern classification and scene analysis – volume: 28 start-page: 374 year: 2017 end-page: 384 ident: b1135 article-title: Tag clustering algorithm LMMSK: Improved K-means algorithm based on latent semantic analysis publication-title: J. Syst. Eng. Electron. – volume: 52 start-page: 303 year: 2021 ident: 10.1016/j.ins.2022.11.139_b0195 article-title: Diffusion K-means clustering on manifolds: Provable exact recovery via semidefinite relaxations publication-title: Appl. Comput. Harmon. Anal. doi: 10.1016/j.acha.2020.03.002 – volume: 8 start-page: 23069 year: 2020 ident: 10.1016/j.ins.2022.11.139_b1075 article-title: Study on the location of private clinics based on K-means clustering method and an integrated evaluation model publication-title: IEEE Access doi: 10.1109/ACCESS.2020.2967797 – volume: 42 start-page: 2551 issue: 11 year: 2009 ident: 10.1016/j.ins.2022.11.139_b0590 article-title: A fast K-means clustering algorithm using cluster center displacement publication-title: Pattern Recogn. doi: 10.1016/j.patcog.2009.02.014 – volume: 8 start-page: 31171 year: 2020 ident: 10.1016/j.ins.2022.11.139_b1095 article-title: An enhanced regularized K-means type clustering algorithm with adaptive weights publication-title: IEEE Access doi: 10.1109/ACCESS.2020.2972333 – volume: 6 start-page: 392 issue: 12 year: 2017 ident: 10.1016/j.ins.2022.11.139_b1220 article-title: An automatic K-means clustering algorithm of GPS data combining a novel niche genetic algorithm with noise and density publication-title: ISPRS Int. J. Geo Inf. doi: 10.3390/ijgi6120392 – ident: 10.1016/j.ins.2022.11.139_b0960 – volume: 2014 year: 2014 ident: 10.1016/j.ins.2022.11.139_b0105 article-title: Optimized k-means algorithm publication-title: Math. Probl. Eng. doi: 10.1155/2014/506480 – ident: 10.1016/j.ins.2022.11.139_b0580 doi: 10.1109/ICCAE.2010.5451883 – volume: 33 start-page: 6247 issue: 11 year: 2021 ident: 10.1016/j.ins.2022.11.139_b0305 article-title: Automatic clustering algorithms: A systematic review and bibliometric analysis of relevant literature publication-title: Neural Comput. & Applic. doi: 10.1007/s00521-020-05395-4 – volume: 31 start-page: 651 issue: 8 year: 2010 ident: 10.1016/j.ins.2022.11.139_b0475 article-title: Data clustering: 50 years beyond K-means publication-title: Pattern Recogn. Lett. doi: 10.1016/j.patrec.2009.09.011 – volume: 37 start-page: 4966 issue: 7 year: 2010 ident: 10.1016/j.ins.2022.11.139_b1100 article-title: A quantum-inspired genetic algorithm for K-means clustering publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2009.12.017 – volume: 8 start-page: 121089 year: 2020 ident: 10.1016/j.ins.2022.11.139_b0295 article-title: A comparative performance study of hybrid firefly algorithms for automatic data clustering publication-title: IEEE Access doi: 10.1109/ACCESS.2020.3006173 – volume: 30 year: 2017 ident: 10.1016/j.ins.2022.11.139_b1055 article-title: Clustering stable instances of Euclidean K-means publication-title: Adv. Neural Inf. Proces. Syst. – volume: 8 start-page: 80716 year: 2020 ident: 10.1016/j.ins.2022.11.139_b0985 article-title: Unsupervised K-means clustering algorithm. IEEE publication-title: Access doi: 10.1109/ACCESS.2020.2988796 – volume: 4 start-page: 1213 issue: 2 year: 2017 ident: 10.1016/j.ins.2022.11.139_b0965 article-title: Review of existing methods in K-means clustering algorithm publication-title: Internat. Res. J. Eng. Technol. – volume: 9 start-page: 67736 year: 2021 ident: 10.1016/j.ins.2022.11.139_b0990 article-title: Entropy K-means clustering with feature reduction under unknown number of clusters publication-title: IEEE Access doi: 10.1109/ACCESS.2021.3077622 – volume: 52 start-page: 217 issue: 3 year: 2003 ident: 10.1016/j.ins.2022.11.139_b0725 article-title: Feature weighting in K-means clustering publication-title: Mach. Learn. doi: 10.1023/A:1024016609528 – volume: 117 year: 2021 ident: 10.1016/j.ins.2022.11.139_b0440 article-title: Robust deep K-means: An effective and simple method for data clustering publication-title: Pattern Recogn. doi: 10.1016/j.patcog.2021.107996 – volume: 23 start-page: 199 issue: 2 year: 2013 ident: 10.1016/j.ins.2022.11.139_b0610 article-title: Fast K-means clustering using deletion by center displacement and norms product (CDNP) publication-title: Pattern Recognit Image Anal. doi: 10.1134/S1054661813020144 – volume: 213 year: 2021 ident: 10.1016/j.ins.2022.11.139_b0915 article-title: GBK-means clustering algorithm: An improvement to the K-means algorithm based on the bargaining game publication-title: Knowl.-Based Syst. – volume: 64 start-page: 115 issue: 1 year: 2022 ident: 10.1016/j.ins.2022.11.139_b0975 article-title: Adapting k-means for graph clustering publication-title: Knowl. Inf. Syst. doi: 10.1007/s10115-021-01623-y – year: 2009 ident: 10.1016/j.ins.2022.11.139_b0575 – start-page: 63 year: 2010 ident: 10.1016/j.ins.2022.11.139_b0750 article-title: Research on K-means clustering algorithm: An improved K-means clustering algorithm – start-page: 103 year: 2001 ident: 10.1016/j.ins.2022.11.139_b0290 article-title: Algorithmic transformations in the implementation of k-means clustering on reconfigurable hardware – start-page: 171 year: 2020 ident: 10.1016/j.ins.2022.11.139_b0945 article-title: Performance analysis of evolutionary technique based partitional clustering algorithms for wireless sensor networks – volume: 12 start-page: 14238 issue: 24 year: 2017 ident: 10.1016/j.ins.2022.11.139_b1165 article-title: Combination of K-means clustering with genetic algorithm: A review publication-title: Int. J. Appl. Eng. Res. – year: 2013 ident: 10.1016/j.ins.2022.11.139_b0085 – year: 2022 ident: 10.1016/j.ins.2022.11.139_b1185 article-title: Privacy-Preserving and Outsourced multi-party K-means clustering based on multi-key fully homomorphic encryption publication-title: IEEE Trans. Dependable Secure Comput. doi: 10.1109/TDSC.2022.3181667 – volume: 40 start-page: 200 issue: 1 year: 2013 ident: 10.1016/j.ins.2022.11.139_b0180 article-title: A comparative study of efficient initialization methods for the K-means clustering algorithm publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2012.07.021 – volume: 5 start-page: 10562 year: 2017 ident: 10.1016/j.ins.2022.11.139_b0700 article-title: Privacy-preserving data mining: methods, metrics, and applications publication-title: IEEE Access doi: 10.1109/ACCESS.2017.2706947 – volume: 165 year: 2021 ident: 10.1016/j.ins.2022.11.139_b0830 article-title: Borrowers’ credit quality scoring model and applications, with default discriminant analysis based on the extreme learning machine publication-title: Technol. Forecast. Soc. Chang. doi: 10.1016/j.techfore.2020.120462 – volume: 28 start-page: 374 issue: 2 year: 2017 ident: 10.1016/j.ins.2022.11.139_b1135 article-title: Tag clustering algorithm LMMSK: Improved K-means algorithm based on latent semantic analysis publication-title: J. Syst. Eng. Electron. doi: 10.21629/JSEE.2017.02.18 – start-page: 106 year: 2012 ident: 10.1016/j.ins.2022.11.139_b0720 article-title: Far efficient K-means clustering algorithm – volume: 54 start-page: 50 year: 2015 ident: 10.1016/j.ins.2022.11.139_b1130 article-title: PCA-guided search for K-means publication-title: Pattern Recogn. Lett. doi: 10.1016/j.patrec.2014.11.017 – volume: e5255 year: 2022 ident: 10.1016/j.ins.2022.11.139_b0110 article-title: Energy efficient grid-based k-means clustering algorithm for large scale wireless sensor networks publication-title: Int. J. Commun Syst – ident: 10.1016/j.ins.2022.11.139_b0135 doi: 10.1145/3357384.3357969 – volume: 195 year: 2020 ident: 10.1016/j.ins.2022.11.139_b0860 article-title: A meta-learning approach for recommending the number of clusters for clustering algorithms publication-title: Knowl.-Based Syst. doi: 10.1016/j.knosys.2020.105682 – volume: 23 start-page: 6361 issue: 15 year: 2019 ident: 10.1016/j.ins.2022.11.139_b0745 article-title: A hybrid approach using genetic algorithm and the differential evolution heuristic for enhanced initialization of the K-means algorithm with applications in text clustering publication-title: Soft. Comput. doi: 10.1007/s00500-018-3289-4 – volume: 25 start-page: 456 year: 2018 ident: 10.1016/j.ins.2022.11.139_b0025 article-title: A new feature selection method to improve the document clustering using particle swarm optimization algorithm publication-title: J. Comput. Sci. doi: 10.1016/j.jocs.2017.07.018 – volume: 10 start-page: 3827 issue: 11 year: 2020 ident: 10.1016/j.ins.2022.11.139_b0015 article-title: A comprehensive survey of the harmony search algorithm in clustering applications publication-title: Appl. Sci. doi: 10.3390/app10113827 – ident: 10.1016/j.ins.2022.11.139_b0840 – volume: 14 start-page: 1 issue: 1 year: 2008 ident: 10.1016/j.ins.2022.11.139_b1085 article-title: Top 10 algorithms in data mining publication-title: Knowl. Inf. Syst. doi: 10.1007/s10115-007-0114-2 – volume: 81 start-page: 19321 issue: 14 year: 2022 ident: 10.1016/j.ins.2022.11.139_b0865 article-title: An efficient hybrid approach based on PSO, ABC and k-means for cluster analysis publication-title: Multimed. Tools Appl. doi: 10.1007/s11042-021-11016-6 – volume: 491 start-page: 34 year: 2022 ident: 10.1016/j.ins.2022.11.139_b1210 article-title: Improving projected fuzzy K-means clustering via robust learning publication-title: Neurocomputing doi: 10.1016/j.neucom.2022.03.043 – volume: 59 start-page: 1 issue: 1 year: 2006 ident: 10.1016/j.ins.2022.11.139_b1025 article-title: K-means clustering: a half-century synthesis publication-title: Br. J. Math. Stat. Psychol. doi: 10.1348/000711005X48266 – volume: 9 start-page: 879 issue: 8 year: 2021 ident: 10.1016/j.ins.2022.11.139_b0350 article-title: Markov chain K-means cluster models and their use for companies’ credit quality and default probability estimation publication-title: Mathematics doi: 10.3390/math9080879 – ident: 10.1016/j.ins.2022.11.139_b0905 doi: 10.1109/ICCN.2015.9 – start-page: 287 year: 2015 ident: 10.1016/j.ins.2022.11.139_b1040 article-title: Fast K-means clustering for very large datasets based on mapreduce combined with a new cutting method – volume: 13 start-page: 761 issue: 10 year: 2012 ident: 10.1016/j.ins.2022.11.139_b0605 article-title: An accelerated K-means clustering algorithm using selection and erasure rules publication-title: J. Zhejiang Univ. Sci. C doi: 10.1631/jzus.C1200078 – start-page: 346 year: 2012 ident: 10.1016/j.ins.2022.11.139_b0560 article-title: Dynamic load balancing on GPU clusters for large-scale K-means clustering – ident: 10.1016/j.ins.2022.11.139_b1050 doi: 10.1145/2393216.2393327 – volume: 41 start-page: 192 year: 2016 ident: 10.1016/j.ins.2022.11.139_b0495 article-title: Automatic clustering using nature-inspired metaheuristics: A survey publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2015.12.001 – start-page: 1710 year: 2011 ident: 10.1016/j.ins.2022.11.139_b0425 article-title: PCA-guided K-means clustering with incomplete data – volume: 10 start-page: 191 issue: 2–3 year: 1984 ident: 10.1016/j.ins.2022.11.139_b0130 article-title: FCM: The fuzzy c-means clustering algorithm publication-title: Comput. Geosci. doi: 10.1016/0098-3004(84)90020-7 – volume: 163 start-page: 546 year: 2019 ident: 10.1016/j.ins.2022.11.139_b1215 article-title: Automatic data clustering using nature-inspired symbiotic organism search algorithm publication-title: Knowl.-Based Syst. doi: 10.1016/j.knosys.2018.09.013 – volume: 34 start-page: 137 issue: 2 year: 2020 ident: 10.1016/j.ins.2022.11.139_b0735 article-title: Student engagement level in an e-learning environment: Clustering using K-means publication-title: Am. J. Dist. Educ. doi: 10.1080/08923647.2020.1696140 – volume: 403 start-page: 503 year: 2000 ident: 10.1016/j.ins.2022.11.139_b0070 article-title: Distinct types of diffuse large B-celllymphoma identified by gene expression profiling publication-title: Nature doi: 10.1038/35000501 – ident: 10.1016/j.ins.2022.11.139_b1245 doi: 10.1109/TrustCom.2016.0348 – volume: 33 start-page: 152 issue: 2 year: 2019 ident: 10.1016/j.ins.2022.11.139_b0755 article-title: A K-means-galactic swarm optimization-based clustering algorithm with Otsu’s entropy for brain tumor detection publication-title: Appl. Artif. Intell. doi: 10.1080/08839514.2018.1530869 – ident: 10.1016/j.ins.2022.11.139_b0935 doi: 10.1109/RAICS.2011.6069372 – ident: 10.1016/j.ins.2022.11.139_b0230 doi: 10.1109/ICPR.2008.4761079 – volume: 4 start-page: 636 issue: 4 year: 1993 ident: 10.1016/j.ins.2022.11.139_b1125 article-title: Rival penalized competitive learning for clustering analysis, RBF net, and curve detection publication-title: IEEE Trans. Neural Netw. doi: 10.1109/72.238318 – volume: 12 start-page: 22 issue: 1 year: 2019 ident: 10.1016/j.ins.2022.11.139_b0500 article-title: Mammography images segmentation via fuzzy C-mean and K-means publication-title: Internat. J. Intell. Eng. Syst. – volume: 8 issue: 8 year: 2019 ident: 10.1016/j.ins.2022.11.139_b0825 article-title: Improved K-means map reduce algorithm for big data cluster analysis publication-title: Internat. J. Innov. Technol. Explor. Eng. (IJITEE) – volume: 40 start-page: 257 year: 1992 ident: 10.1016/j.ins.2022.11.139_b0955 article-title: A PCA-like method for multivariate data with missing values publication-title: Jpn. J. Educ. Psychol. doi: 10.5926/jjep1953.40.3_257 – volume: 118 start-page: 20 year: 2019 ident: 10.1016/j.ins.2022.11.139_b0450 article-title: A K-means based co-clustering (kCC) algorithm for sparse, high dimensional data publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2018.09.006 – volume: 3 start-page: 801 issue: 12 year: 1956 ident: 10.1016/j.ins.2022.11.139_b1015 article-title: Sur la division des corps matériels en parties publication-title: Bulletin de l'Académie Polonaise des Sciences. Classe – volume: 8 issue: 7 year: 2017 ident: 10.1016/j.ins.2022.11.139_b0375 article-title: A review on K-mode clustering algorithm publication-title: Int. J. Adv. Res. Comput. Sci. – volume: 16 year: 2003 ident: 10.1016/j.ins.2022.11.139_b0400 article-title: Learning the k in K-means publication-title: Adv. Neural Inf. Proces. Syst. – volume: 501 start-page: 609 year: 2022 ident: 10.1016/j.ins.2022.11.139_b0665 article-title: A multi-view clustering framework via integrating K-means and graph-cut publication-title: Neurocomputing doi: 10.1016/j.neucom.2022.05.120 – ident: 10.1016/j.ins.2022.11.139_b1065 doi: 10.1109/CIS.2016.0041 – volume: 38 start-page: e12526 issue: 1 year: 2021 ident: 10.1016/j.ins.2022.11.139_b1000 article-title: An intelligent hybrid approach for hepatitis disease diagnosis: Combining enhanced K-means clustering and improved ensemble learning publication-title: Expert. Syst. doi: 10.1111/exsy.12526 – volume: 32 year: 2019 ident: 10.1016/j.ins.2022.11.139_b0695 article-title: K-means clustering of lines for big data publication-title: Adv. Neural Inf. Proces. Syst. – year: 2019 ident: 10.1016/j.ins.2022.11.139_b0855 article-title: The K-means algorithm evolution – volume: 101 year: 2021 ident: 10.1016/j.ins.2022.11.139_b0115 article-title: A new scalable distributed K-means algorithm based on Cloud micro-services for high-performance computing publication-title: Parallel Comput. doi: 10.1016/j.parco.2020.102736 – ident: 10.1016/j.ins.2022.11.139_b0185 doi: 10.1137/1.9781611972832.21 – start-page: 265 year: 2016 ident: 10.1016/j.ins.2022.11.139_b1110 article-title: An improved K-means text clustering algorithm by optimizing initial cluster centers – ident: 10.1016/j.ins.2022.11.139_b0055 – volume: 18 start-page: 67 issue: 1 year: 2009 ident: 10.1016/j.ins.2022.11.139_b0430 article-title: Fuzzy PCA-guided robust K-means clustering publication-title: IEEE Trans. Fuzzy Syst. doi: 10.1109/TFUZZ.2009.2036603 – volume: 402 year: 2021 ident: 10.1016/j.ins.2022.11.139_b0190 article-title: Fast kernel K-means clustering using incomplete Cholesky factorization publication-title: Appl. Math Comput. – volume: 7 start-page: 114472 year: 2019 ident: 10.1016/j.ins.2022.11.139_b1145 article-title: A feature-reduction multi-view K-means clustering algorithm publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2934179 – volume: 23 start-page: 5 issue: 1 year: 2004 ident: 10.1016/j.ins.2022.11.139_b0645 article-title: Interval set clustering of web users with rough K-means publication-title: J. Intell. Inf. Syst. doi: 10.1023/B:JIIS.0000029668.88665.1a – volume: 67 start-page: 58 issue: 1 year: 1960 ident: 10.1016/j.ins.2022.11.139_b0790 article-title: The double dixie cup problem publication-title: Am. Math. Mon. doi: 10.2307/2308930 – volume: 20 start-page: 367 year: 2016 ident: 10.1016/j.ins.2022.11.139_b0270 article-title: The coupon collector’s problem revisited: generalizing the double dixie cup problem of newman and shepp publication-title: ESAIM: Probab. Stat. doi: 10.1051/ps/2016016 – ident: 10.1016/j.ins.2022.11.139_b0760 doi: 10.1109/ICIIS51140.2020.9342639 – volume: 34 start-page: e6621 issue: 14 year: 2022 ident: 10.1016/j.ins.2022.11.139_b0420 article-title: Parallel and accurate k-means algorithm on CPU-GPU architectures for spectral clustering publication-title: Concurr. Comput. Pract. Exp. doi: 10.1002/cpe.6621 – volume: 24 start-page: 99 year: 2007 ident: 10.1016/j.ins.2022.11.139_b1020 article-title: Initializing K-means batch clustering: A critical evaluation of several techniques publication-title: J. Classif. doi: 10.1007/s00357-007-0003-0 – volume: 24 start-page: 907 issue: 6 year: 2014 ident: 10.1016/j.ins.2022.11.139_b0315 article-title: Snipping for robust K-means clustering under component-wise contamination publication-title: Stat. Comput. doi: 10.1007/s11222-013-9410-8 – volume: 27 year: 2014 ident: 10.1016/j.ins.2022.11.139_b0370 article-title: Localized data fusion for kernel K-means clustering with application to cancer biology publication-title: Adv. Neural Inf. Proces. Syst. – volume: 9 start-page: 368 year: 1997 ident: 10.1016/j.ins.2022.11.139_b0155 article-title: Clustering via concave minimization publication-title: Adv. Neural Inf. Proces. Syst. – volume: 36 start-page: 451 issue: 2 year: 2003 ident: 10.1016/j.ins.2022.11.139_b0635 article-title: The global K-means clustering algorithm publication-title: Pattern Recogn. doi: 10.1016/S0031-3203(02)00060-2 – volume: 79 start-page: 402 year: 2018 ident: 10.1016/j.ins.2022.11.139_b0470 article-title: IK-means−+: An iterative clustering algorithm based on an enhanced version of the K-means publication-title: Pattern Recogn. doi: 10.1016/j.patcog.2018.02.015 – volume: 110 year: 2021 ident: 10.1016/j.ins.2022.11.139_b0920 article-title: CNAK: Cluster number assisted K-means publication-title: Pattern Recogn. doi: 10.1016/j.patcog.2020.107625 – ident: 10.1016/j.ins.2022.11.139_b1170 – ident: 10.1016/j.ins.2022.11.139_b0900 doi: 10.1109/ICTAS47918.2020.234001 – volume: 95 year: 2020 ident: 10.1016/j.ins.2022.11.139_b0100 article-title: Space–time series clustering: Algorithms, taxonomy, and case study on urban smart cities publication-title: Eng. Appl. Artif. Intel. doi: 10.1016/j.engappai.2020.103857 – volume: 100 year: 2018 ident: 10.1016/j.ins.2022.11.139_b0385 article-title: Reuse-centric K-means configuration publication-title: Inf. Syst. – year: 1988 ident: 10.1016/j.ins.2022.11.139_b0480 – ident: 10.1016/j.ins.2022.11.139_b1140 doi: 10.1109/IEEM45057.2020.9309769 – volume: 5 start-page: 285 issue: 3 year: 2019 ident: 10.1016/j.ins.2022.11.139_b0875 article-title: Anomaly detection on flight route using similarity and grouping approach based-on automatic dependent surveillance-broadcast publication-title: Internat. J. Adv. Intell. Inform. – volume: 33 start-page: 10148 year: 2020 ident: 10.1016/j.ins.2022.11.139_b1200 article-title: Simple and scalable sparse K-means clustering via feature ranking publication-title: Adv. Neural Inf. Proces. Syst. – volume: 54 start-page: 2411 issue: 4 year: 2021 ident: 10.1016/j.ins.2022.11.139_b0245 article-title: A survey on parallel clustering algorithms for big data publication-title: Artif. Intell. Rev. doi: 10.1007/s10462-020-09918-2 – ident: 10.1016/j.ins.2022.11.139_b0770 – volume: 20 start-page: 260 issue: 1 year: 2019 ident: 10.1016/j.ins.2022.11.139_b0640 article-title: The selection of vertiport location for on-demand mobility and its application to Seoul metro area publication-title: Int. J. Aeronaut. Space Sci. doi: 10.1007/s42405-018-0117-0 – ident: 10.1016/j.ins.2022.11.139_b1160 doi: 10.1109/ICMLC.2004.1382371 – volume: 8 start-page: 217416 year: 2020 ident: 10.1016/j.ins.2022.11.139_b0355 article-title: An improved K-means algorithm based on fuzzy metrics publication-title: IEEE Access doi: 10.1109/ACCESS.2020.3040745 – volume: 2 start-page: 63 year: 2007 ident: 10.1016/j.ins.2022.11.139_b0630 article-title: An improved algorithm of K-means publication-title: J. Beijing Inst. Graph. Commun. – year: 2021 ident: 10.1016/j.ins.2022.11.139_b0890 article-title: A strong reinforcement parallel implementation of K-means algorithm using message passing interface publication-title: Mater. Today: Proc. – volume: 12 start-page: 223 issue: 3 year: 2019 ident: 10.1016/j.ins.2022.11.139_b0120 article-title: TiK-means: Transformation-infused K-means clustering for skewed groups publication-title: Stat. Anal. Data Mining: ASA Data Sci. J. doi: 10.1002/sam.11416 – ident: 10.1016/j.ins.2022.11.139_b1070 doi: 10.1109/ICCSN.2011.6014384 – volume: 34 start-page: 5939 issue: 8 year: 2022 ident: 10.1016/j.ins.2022.11.139_b0815 article-title: Automatic detection of outliers and the number of clusters in k-means clustering via Chebyshev-type inequalities publication-title: Neural Comput. & Applic. doi: 10.1007/s00521-021-06689-x – volume: 11 start-page: 27 issue: 1 year: 2020 ident: 10.1016/j.ins.2022.11.139_b1175 article-title: K-Means clustering-based electrical equipment identification for smart building application publication-title: Information doi: 10.3390/info11010027 – volume: 30 year: 2017 ident: 10.1016/j.ins.2022.11.139_b0785 article-title: K-medoids for K-means seeding publication-title: Adv. Neural Inf. Proces. Syst. – volume: 3 start-page: 2249 issue: 5 year: 2014 ident: 10.1016/j.ins.2022.11.139_b0925 article-title: K-mean Clustering and PSO: A review publication-title: Internat. J. Eng. Adv. Technol. (IJEAT) ISSN – volume: 29 start-page: 37 issue: 1 year: 2014 ident: 10.1016/j.ins.2022.11.139_b0570 article-title: Music and timbre segmentation by recursive constrained K-means clustering publication-title: Comput. Stat. doi: 10.1007/s00180-012-0358-5 – volume: 14 start-page: 127 year: 1966 ident: 10.1016/j.ins.2022.11.139_b0490 article-title: Multidimensional group analysis publication-title: Aust. J. Bot. doi: 10.1071/BT9660127 – volume: 71 start-page: 608 year: 2018 ident: 10.1016/j.ins.2022.11.139_b1230 article-title: An effective partitional clustering algorithm based on new clustering validity index publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2018.07.026 – volume: 31 start-page: 264 issue: 3 year: 1999 ident: 10.1016/j.ins.2022.11.139_b0485 article-title: Data clustering: A review publication-title: ACM Comput. Surveys (CSUR) doi: 10.1145/331499.331504 – volume: 214 year: 2021 ident: 10.1016/j.ins.2022.11.139_b0145 article-title: A unified form of fuzzy C-means and K-means algorithms and its partitional implementation publication-title: Knowl.-Based Syst. doi: 10.1016/j.knosys.2020.106731 – volume: 571 start-page: 418 year: 2021 ident: 10.1016/j.ins.2022.11.139_b0265 article-title: Clustering mixed numerical and categorical data with missing values publication-title: Inf. Sci. doi: 10.1016/j.ins.2021.04.076 – volume: 70 start-page: 1249 issue: 3 year: 2014 ident: 10.1016/j.ins.2022.11.139_b0240 article-title: Optimized big data K-means clustering using MapReduce publication-title: J. Supercomput. doi: 10.1007/s11227-014-1225-7 – volume: 20 start-page: 1027 year: 1999 ident: 10.1016/j.ins.2022.11.139_b0845 article-title: An empirical comparison of four initialization methods for the K-means algorithm publication-title: Pattern Recogn. Lett. doi: 10.1016/S0167-8655(99)00069-0 – volume: 10 start-page: 757 issue: 7 year: 2017 ident: 10.1016/j.ins.2022.11.139_b0395 article-title: Local search methods for K-means with outliers publication-title: Proceedings of the VLDB Endowment doi: 10.14778/3067421.3067425 – volume: 14 start-page: 1003 issue: 5 year: 2002 ident: 10.1016/j.ins.2022.11.139_b0795 article-title: CLARANS: A method for clustering objects for spatial data mining publication-title: IEEE Trans. Knowl. Data Eng. doi: 10.1109/TKDE.2002.1033770 – ident: 10.1016/j.ins.2022.11.139_b0285 – volume: 2 start-page: 165 issue: 2 year: 2015 ident: 10.1016/j.ins.2022.11.139_b1120 article-title: A comprehensive survey of clustering algorithms publication-title: Ann. Data Sci. doi: 10.1007/s40745-015-0040-1 – volume: 91 start-page: 402 year: 2018 ident: 10.1016/j.ins.2022.11.139_b0465 article-title: Combining K-means and a genetic algorithm through a novel arrangement of genetic operators for high quality clustering publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2017.09.005 – start-page: 1 year: 2017 ident: 10.1016/j.ins.2022.11.139_b0525 article-title: A comparative study of K-means, K-means++ and Fuzzy C-Means clustering algorithms – volume: 60 start-page: 423 year: 2017 ident: 10.1016/j.ins.2022.11.139_b0030 article-title: A novel hybridization strategy for krill herd algorithm applied to clustering techniques publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2017.06.059 – ident: 10.1016/j.ins.2022.11.139_b0600 doi: 10.1109/CVPR.2005.210 – volume: 13 start-page: 0201874 issue: 9 year: 2018 ident: 10.1016/j.ins.2022.11.139_b0850 article-title: Balancing effort and benefit of K-means clustering algorithms in big data realms publication-title: PLoS One doi: 10.1371/journal.pone.0201874 – volume: 31 year: 2018 ident: 10.1016/j.ins.2022.11.139_b1030 article-title: Differentially private K-means with constant multiplicative error publication-title: Adv. Neural Inf. Proces. Syst. – ident: 10.1016/j.ins.2022.11.139_b0940 doi: 10.1145/1772690.1772862 – volume: 34 start-page: 6365 issue: 8 year: 2021 ident: 10.1016/j.ins.2022.11.139_b0970 article-title: An adaptive outlier removal aided K-means clustering algorithm publication-title: J. King Saud Univ.-Comput. Inform. Sci. doi: 10.1016/j.jksuci.2021.07.003 – start-page: 674 year: 2009 ident: 10.1016/j.ins.2022.11.139_b1205 article-title: Parallel K-means clustering based on mapreduce – volume: 80 start-page: 7397 issue: 5 year: 2021 ident: 10.1016/j.ins.2022.11.139_b0345 article-title: Skin lesion segmentation using K-means and optimized firefly algorithm publication-title: Multimed. Tools Appl. doi: 10.1007/s11042-020-10064-8 – start-page: 1 year: 2020 ident: 10.1016/j.ins.2022.11.139_b0170 article-title: An efficient K-means clustering algorithm for tall data publication-title: Data Min. Knowl. Disc. – ident: 10.1016/j.ins.2022.11.139_b0515 doi: 10.1109/ICICISYS.2009.5358020 – volume: 74 start-page: 1562 issue: 4 year: 2018 ident: 10.1016/j.ins.2022.11.139_b1005 article-title: A hybrid MapReduce-based K-means clustering using genetic algorithm for distributed datasets publication-title: J. Supercomput. doi: 10.1007/s11227-017-2182-8 – start-page: 162 year: 2010 ident: 10.1016/j.ins.2022.11.139_b0670 article-title: Parallel K-means clustering of remote sensing images based on MapReduce – volume: 7 start-page: 31883 year: 2019 ident: 10.1016/j.ins.2022.11.139_b0045 article-title: Survey of state-of-the-art mixed data clustering algorithms publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2903568 – volume: 64 start-page: 651 year: 2020 ident: 10.1016/j.ins.2022.11.139_b0340 article-title: Data clustering: theory, algorithms, and applications publication-title: Biometrics – volume: 152 year: 2021 ident: 10.1016/j.ins.2022.11.139_b0065 article-title: Parallel batch K-means for big data clustering publication-title: Comput. Ind. Eng. doi: 10.1016/j.cie.2020.107023 – volume: 110 year: 2022 ident: 10.1016/j.ins.2022.11.139_b0300 article-title: A comprehensive survey of clustering algorithms: State-of-the-art machine learning applications, taxonomy, challenges, and future research prospects publication-title: Eng. Appl. Artif. Intel. doi: 10.1016/j.engappai.2022.104743 – ident: 10.1016/j.ins.2022.11.139_b0880 doi: 10.1109/BDCloud-SocialCom-SustainCom.2016.46 – start-page: 2 year: 2013 ident: 10.1016/j.ins.2022.11.139_b0545 article-title: Statistically refining the initial points for K-means clustering algorithm – volume: 14 start-page: 1 issue: 8 year: 2022 ident: 10.1016/j.ins.2022.11.139_b0800 article-title: An effective and efficient algorithm for K-means clustering with new formulation publication-title: IEEE Trans. Knowl. Data Eng. doi: 10.1109/TKDE.2022.3179554 – start-page: 129 year: 1982 ident: 10.1016/j.ins.2022.11.139_b0660 article-title: Least squares quantization in PCM – volume: 13 start-page: 2272 issue: 6 year: 2020 ident: 10.1016/j.ins.2022.11.139_b1235 article-title: Privacy-preserving K-means clustering with local synchronization in peer-to-peer networks publication-title: Peer-to-Peer Networking and Applications doi: 10.1007/s12083-020-00881-x – volume: 207 year: 2022 ident: 10.1016/j.ins.2022.11.139_b0005 article-title: The incremental online k-means clustering algorithm and its application to color quantization publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2022.117927 – volume: 31 year: 2018 ident: 10.1016/j.ins.2022.11.139_b0165 article-title: Statistical and computational trade-offs in kernel k-means publication-title: Adv. Neural Inf. Proces. Syst. – start-page: 115 year: 2019 ident: 10.1016/j.ins.2022.11.139_b0650 article-title: Online retail sales prediction with integrated framework of K-means and neural network – year: 2019 ident: 10.1016/j.ins.2022.11.139_b0020 – ident: 10.1016/j.ins.2022.11.139_b1080 – volume: 68 issue: 3 year: 2018 ident: 10.1016/j.ins.2022.11.139_b0930 article-title: Aerodynamic parameters estimation using radial basis function neural partial differentiation method publication-title: Def. Sci. J. doi: 10.14429/dsj.68.11843 – ident: 10.1016/j.ins.2022.11.139_b0585 doi: 10.1007/978-981-4451-98-7_143 – start-page: 464 year: 2017 ident: 10.1016/j.ins.2022.11.139_b0435 article-title: Improved K-means algorithm based on hybrid fruit fly optimization and differential evolution – ident: 10.1016/j.ins.2022.11.139_b0780 – start-page: 647 year: 2012 ident: 10.1016/j.ins.2022.11.139_b0680 article-title: Improvement of K-means clustering algorithm with better initial centroids based on weighted average – volume: Vol. 3 start-page: 731 year: 1973 ident: 10.1016/j.ins.2022.11.139_b0275 publication-title: Pattern classification and scene analysis – start-page: 836 year: 2016 ident: 10.1016/j.ins.2022.11.139_b0380 article-title: A novel locality sensitive K-means clustering algorithm based on subtractive clustering – ident: 10.1016/j.ins.2022.11.139_b0805 doi: 10.1109/CCIS.2016.7790241 – year: 2009 ident: 10.1016/j.ins.2022.11.139_b0535 – start-page: 1146 year: 2012 ident: 10.1016/j.ins.2022.11.139_b0325 article-title: A K-means clustering algorithm based on the maximum triangle rule – volume: 42 start-page: 1 issue: 1 year: 2018 ident: 10.1016/j.ins.2022.11.139_b0765 article-title: Enhanced K-means clustering algorithm for malaria image segmentation publication-title: J. Adv. Res. Fluid Mech. Thermal Sci. – year: 2000 ident: 10.1016/j.ins.2022.11.139_b1010 – ident: 10.1016/j.ins.2022.11.139_b1240 doi: 10.1155/2021/5571683 – volume: 14 start-page: 641 issue: 7 year: 2017 ident: 10.1016/j.ins.2022.11.139_b0620 article-title: Points of significance: Principal component analysis publication-title: Nat. Methods doi: 10.1038/nmeth.4346 – volume: 78 start-page: 5181 issue: 4 year: 2022 ident: 10.1016/j.ins.2022.11.139_b0690 article-title: A MapReduce-based K-means clustering algorithm publication-title: J. Supercomput. doi: 10.1007/s11227-021-04078-8 – ident: 10.1016/j.ins.2022.11.139_b0715 doi: 10.1201/9781420034912 – volume: 4 start-page: 218 year: 2017 ident: 10.1016/j.ins.2022.11.139_b0010 article-title: Survey report on K-means clustering algorithm publication-title: Int. J. Mod. Trends Eng. Res doi: 10.21884/IJMTER.2017.4143.LGJZD – volume: 62 year: 2020 ident: 10.1016/j.ins.2022.11.139_b1035 article-title: Integrated framework for identifying sustainable manufacturing layouts based on big data, machine learning, meta-heuristic, and data envelopment analysis publication-title: Sustain. Cities Soc. doi: 10.1016/j.scs.2020.102383 – volume: 11 start-page: 296 issue: 6 year: 2018 ident: 10.1016/j.ins.2022.11.139_b0655 article-title: An efficient K-means-type algorithm for clustering datasets with incomplete records publication-title: Stat. Anal. Data Mining: ASA Data Sci. J. doi: 10.1002/sam.11392 – volume: 51 start-page: 7 issue: 1 year: 2009 ident: 10.1016/j.ins.2022.11.139_b0565 article-title: Systematic literature reviews in software engineering–a systematic literature review publication-title: Inf. Softw. Technol. doi: 10.1016/j.infsof.2008.09.009 – volume: 13 start-page: 72 issue: 1 year: 2022 ident: 10.1016/j.ins.2022.11.139_b1090 article-title: Research on image text recognition based on canny edge detection algorithm and k-means algorithm publication-title: Internat. J. Syst. Assur. Eng. Manage. doi: 10.1007/s13198-021-01262-0 – volume: 176 year: 2021 ident: 10.1016/j.ins.2022.11.139_b0205 article-title: MK-means: Detecting evolutionary communities in dynamic networks publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2021.114807 – volume: 251 year: 2022 ident: 10.1016/j.ins.2022.11.139_b0710 article-title: A new metaheuristic optimization based on K-means clustering algorithm and its application for structural damage identification in a complex 3D concrete structure publication-title: Knowl.-Based Syst. doi: 10.1016/j.knosys.2022.109189 – ident: 10.1016/j.ins.2022.11.139_b0050 doi: 10.3390/electronics9081295 – volume: 54 year: 2007 ident: 10.1016/j.ins.2022.11.139_b0225 article-title: A generalization of K-means for overlapping clustering publication-title: Rapport Technique – volume: 61 start-page: 36 year: 2020 ident: 10.1016/j.ins.2022.11.139_b0095 article-title: A multiple K-means clustering ensemble algorithm to find nonlinearly separable clusters publication-title: Inform. Fusion doi: 10.1016/j.inffus.2020.03.009 – volume: 31 year: 2018 ident: 10.1016/j.ins.2022.11.139_b0215 article-title: Query k-means clustering and the double dixie cup problem publication-title: Adv. Neural Inf. Proces. Syst. – ident: 10.1016/j.ins.2022.11.139_b0080 – year: 2011 ident: 10.1016/j.ins.2022.11.139_b0775 article-title: Enhancing the k-means clustering algorithm by using a O (n logn) heuristic method for finding better initial centroids – volume: 39 start-page: e12886 issue: 2 year: 2022 ident: 10.1016/j.ins.2022.11.139_b0365 article-title: Spherical fuzzy extension of AHP-ARAS methods integrated with modified k-means clustering for logistics hub location problem publication-title: Expert. Syst. doi: 10.1111/exsy.12886 – volume: 22 start-page: 1349 issue: 7 year: 2013 ident: 10.1016/j.ins.2022.11.139_b0595 article-title: PSO-based K-means clustering with enhanced cluster matching for gene expression data publication-title: Neural Comput. Appl. doi: 10.1007/s00521-012-0959-5 – start-page: 29 year: 2004 ident: 10.1016/j.ins.2022.11.139_b0260 article-title: K-means clustering via principal component analysis – start-page: 281 year: 1967 ident: 10.1016/j.ins.2022.11.139_b0675 article-title: Some methods for classification and analysis of multivariate observations – volume: 151 year: 2020 ident: 10.1016/j.ins.2022.11.139_b0740 article-title: A comparison of clustering algorithms for automatic modulation classification publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2020.113317 – year: 2008 ident: 10.1016/j.ins.2022.11.139_b0540 – volume: 7 start-page: 222 issue: 1 year: 2016 ident: 10.1016/j.ins.2022.11.139_b0505 article-title: An improved K-means clustering with Atkinson index to classify liver patient dataset publication-title: Internat. J. Syst. Assurance Eng. Manage. doi: 10.1007/s13198-015-0365-3 – ident: 10.1016/j.ins.2022.11.139_b0160 doi: 10.1145/3445945.3445947 – start-page: 591 year: 2011 ident: 10.1016/j.ins.2022.11.139_b0125 – start-page: 1 year: 2010 ident: 10.1016/j.ins.2022.11.139_b0255 article-title: MK-means-modified K-means clustering algorithm – volume: 16 start-page: 38 issue: 1 year: 2021 ident: 10.1016/j.ins.2022.11.139_b0885 article-title: KText: Arbitrary shape text detection using modified K-means publication-title: IET Comput. Vis. doi: 10.1049/cvi2.12052 – volume: 15 start-page: 5483 issue: 10 year: 2015 ident: 10.1016/j.ins.2022.11.139_b0410 article-title: An enhanced K-means and ANOVA-based clustering approach for similarity aggregation in underwater wireless sensor networks publication-title: IEEE Sens. J. doi: 10.1109/JSEN.2015.2443380 – volume: 154 year: 2020 ident: 10.1016/j.ins.2022.11.139_b0555 article-title: Survey and taxonomy of clustering algorithms in 5G publication-title: J. Netw. Comput. Appl. doi: 10.1016/j.jnca.2020.102539 – volume: 7 start-page: 184963 year: 2019 ident: 10.1016/j.ins.2022.11.139_b0035 article-title: Automatic data clustering using hybrid firefly particle swarm optimization algorithm publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2960925 – year: 2013 ident: 10.1016/j.ins.2022.11.139_b0335 article-title: Introduction to statistical pattern recognition publication-title: Elsevier – ident: 10.1016/j.ins.2022.11.139_b0250 doi: 10.1109/IIH-MSP.2007.259 – volume: 99 start-page: 291 year: 1999 ident: 10.1016/j.ins.2022.11.139_b0280 article-title: Clustering in large graphs and matrices publication-title: SODA – start-page: 947 year: 2016 ident: 10.1016/j.ins.2022.11.139_b0220 article-title: Faster Mahalanobis K-means clustering for Gaussian distributions – start-page: 31 year: 2019 ident: 10.1016/j.ins.2022.11.139_b0980 article-title: U-control chart based differential evolution clustering for determining the number of clusters in K-means – volume: 94 start-page: 663 issue: 4 year: 2017 ident: 10.1016/j.ins.2022.11.139_b1190 article-title: Improved rough K-means clustering algorithm based on weighted distance measure with Gaussian function publication-title: Int. J. Comput. Math. doi: 10.1080/00207160.2015.1124099 – start-page: 1 year: 2015 ident: 10.1016/j.ins.2022.11.139_b0150 article-title: An improved MapReduce design of Kmeans for clustering very large datasets – volume: 17 start-page: 2524 year: 2022 ident: 10.1016/j.ins.2022.11.139_b1150 article-title: K-means clustering with local d χ-privacy for privacy-preserving data analysis publication-title: IEEE Trans. Inf. Forensics Secur. doi: 10.1109/TIFS.2022.3189532 – start-page: 1 year: 2022 ident: 10.1016/j.ins.2022.11.139_b0550 article-title: Quantum K-means clustering method for detecting heart disease using quantum circuit approach publication-title: Soft. Comput. – volume: 7 start-page: 1626 issue: 10 year: 2006 ident: 10.1016/j.ins.2022.11.139_b0310 article-title: An efficient enhanced K-means clustering algorithm publication-title: Journal of Zhejiang University-Science A doi: 10.1631/jzus.2006.A1626 – volume: 36 start-page: 3336 issue: 2 year: 2009 ident: 10.1016/j.ins.2022.11.139_b0835 article-title: A simple and fast algorithm for K-medoids clustering publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2008.01.039 – volume: 2 start-page: 283 issue: 3 year: 1998 ident: 10.1016/j.ins.2022.11.139_b0445 article-title: Extensions to the K-means algorithm for clustering large data sets with categorical values publication-title: Data Min. Knowl. Disc. doi: 10.1023/A:1009769707641 – ident: 10.1016/j.ins.2022.11.139_b0235 doi: 10.1007/11552253_5 – start-page: 1 year: 2020 ident: 10.1016/j.ins.2022.11.139_b0870 article-title: Selection of optimal number of clusters and centroids for K-means and fuzzy C-means clustering: A review – volume: 63 start-page: 503 year: 2007 ident: 10.1016/j.ins.2022.11.139_b0040 article-title: A K-mean clustering algorithm for mixed numeric and categorical data publication-title: Data Knowl. Eng. doi: 10.1016/j.datak.2007.03.016 – ident: 10.1016/j.ins.2022.11.139_b0810 doi: 10.1109/RoboMech.2017.8261116 – start-page: 81 year: 2016 ident: 10.1016/j.ins.2022.11.139_b0140 article-title: Theoretical analysis of the K-means algorithm–a survey – ident: 10.1016/j.ins.2022.11.139_b0320 doi: 10.1109/ICDMW.2011.76 – volume: 75 start-page: 12043 issue: 19 year: 2016 ident: 10.1016/j.ins.2022.11.139_b0615 article-title: Robust K-means algorithm with automatically splitting and merging clusters and its applications for surveillance data publication-title: Multimed. Tools Appl. doi: 10.1007/s11042-016-3322-5 – volume: 12 start-page: 1573 year: 2019 ident: 10.1016/j.ins.2022.11.139_b0625 article-title: K-means clustering of overweight and obese population using quantile-transformed metabolic data publication-title: Diabetes Metab. Syndrome Obes. Targets Ther. doi: 10.2147/DMSO.S206640 – ident: 10.1016/j.ins.2022.11.139_b0910 doi: 10.1109/CISP.2011.6100578 – year: 2004 ident: 10.1016/j.ins.2022.11.139_b0415 article-title: Initialization of cluster refinement algorithms: A review and comparative study – volume: 5 start-page: 1 issue: 1 year: 2020 ident: 10.1016/j.ins.2022.11.139_b1105 article-title: Improvement of the fast-clustering algorithm improved by K-means in the big data publication-title: Appl. Math. Nonlinear Sci. doi: 10.2478/amns.2020.1.00001 – volume: 24 start-page: 881 issue: 7 year: 2002 ident: 10.1016/j.ins.2022.11.139_b0510 article-title: An efficient K-means clustering algorithm: Analysis and implementation publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2002.1017616 – volume: 33 start-page: 16142 year: 2020 ident: 10.1016/j.ins.2022.11.139_b0685 article-title: Improved guarantees for K-means++ and K-means++ Parallel publication-title: Adv. Neural Inf. Proces. Syst. – ident: 10.1016/j.ins.2022.11.139_b0360 – volume: 17 year: 2019 ident: 10.1016/j.ins.2022.11.139_b1225 article-title: Improved logistic regression model for diabetes prediction by integrating PCA and K-means techniques publication-title: Inf. Med. Unlocked – volume: 2022 year: 2022 ident: 10.1016/j.ins.2022.11.139_b1250 article-title: An improved K-means clustering algorithm towards an efficient data-drivenmModeling publication-title: Annals of Data Science – volume: 2 year: 2013 ident: 10.1016/j.ins.2022.11.139_b0995 article-title: Analysis and study of K-means clustering algorithm publication-title: Internat. J. Eng. Res. Technol. – ident: 10.1016/j.ins.2022.11.139_b1180 doi: 10.1109/ICAIBD.2018.8396161 – ident: 10.1016/j.ins.2022.11.139_b1195 doi: 10.1109/ICCSNT.2012.6526212 – volume: 24 start-page: 2883 issue: 15 year: 2003 ident: 10.1016/j.ins.2022.11.139_b0210 article-title: K∗-Means: A new generalized K-means clustering algorithm publication-title: Pattern Recogn. Lett. doi: 10.1016/S0167-8655(03)00146-6 – ident: 10.1016/j.ins.2022.11.139_b0705 doi: 10.1109/ICCASM.2010.5620383 – volume: 43 year: 1997 ident: 10.1016/j.ins.2022.11.139_b0075 article-title: An efficient k-means clustering algorithm. Electrical Engineering and Computer publication-title: Science – start-page: 3037 year: 2012 ident: 10.1016/j.ins.2022.11.139_b1060 article-title: Fast approximate K-means via cluster closures – volume: 25 start-page: 932 issue: 4 year: 2011 ident: 10.1016/j.ins.2022.11.139_b0200 article-title: TW-K-means: Automated two-level variable weighting clustering algorithm for multiview data publication-title: IEEE Trans. Knowl. Data Eng. doi: 10.1109/TKDE.2011.262 – volume: 11 start-page: 681 issue: 4 year: 2014 ident: 10.1016/j.ins.2022.11.139_b0455 article-title: A simple but powerful heuristic method for accelerating K-Means clustering of large-scale data in life science publication-title: IEEE/ACM Trans. Comput. Biol. Bioinf. doi: 10.1109/TCBB.2014.2306200 – start-page: 202 year: 2016 ident: 10.1016/j.ins.2022.11.139_b0520 article-title: On K-means data clustering algorithm with genetic algorithm – volume: 34 start-page: 554 issue: 2 year: 2021 ident: 10.1016/j.ins.2022.11.139_b1115 article-title: Helicopter maritime search area planning based on a minimum bounding rectangle and K-means clustering publication-title: Chin. J. Aeronaut. doi: 10.1016/j.cja.2020.08.047 – start-page: 251 year: 2014 ident: 10.1016/j.ins.2022.11.139_b0390 article-title: K-intervals: A new extension of the K-means algorithm – volume: 11 start-page: 11246 issue: 23 year: 2021 ident: 10.1016/j.ins.2022.11.139_b0460 article-title: K-Means-based nature-inspired metaheuristic algorithms for automatic data clustering problems: Recent advances and future directions publication-title: Appl. Sci. doi: 10.3390/app112311246 – volume: 16 start-page: 48 issue: 1 year: 2021 ident: 10.1016/j.ins.2022.11.139_b0730 article-title: An improved K-means algorithm for big data publication-title: IET Softw. doi: 10.1049/sfw2.12032 – volume: 93 start-page: 95 year: 2019 ident: 10.1016/j.ins.2022.11.139_b0330 article-title: How much can K-means be improved by using better initialization and repeats? publication-title: Pattern Recogn. doi: 10.1016/j.patcog.2019.04.014 – volume: 3 start-page: 27 issue: 2 year: 2019 ident: 10.1016/j.ins.2022.11.139_b0060 article-title: Automatic human brain tumor detection in MRI image using template-based K means and improved fuzzy C means clustering algorithm publication-title: Big Data Cognit. Comput. doi: 10.3390/bdcc3020027 – ident: 10.1016/j.ins.2022.11.139_b1155 – volume: 4 issue: 2 year: 2008 ident: 10.1016/j.ins.2022.11.139_b0405 article-title: Origins and extensions of the K-means algorithm in cluster analysis publication-title: Journal Electronique d’Histoire des Probabilités et de la Statistique Electron. J. History Prob. Stat. – year: 2017 ident: 10.1016/j.ins.2022.11.139_b0950 article-title: Compressed K-means for large-scale clustering – ident: 10.1016/j.ins.2022.11.139_b0090 – volume: 71 start-page: 345 year: 2014 ident: 10.1016/j.ins.2022.11.139_b0895 article-title: A hybrid clustering technique combining a novel genetic algorithm with K-means publication-title: Knowl.-Based Syst. doi: 10.1016/j.knosys.2014.08.011 – volume: 33 start-page: 50 issue: 1 year: 2004 ident: 10.1016/j.ins.2022.11.139_b1045 article-title: State-of-the-art in privacy preserving data mining publication-title: ACM SIGMOD Rec. doi: 10.1145/974121.974131 – start-page: 405 year: 1987 ident: 10.1016/j.ins.2022.11.139_b0530 article-title: Clustering by means of medoids – start-page: 1047 year: 2014 ident: 10.1016/j.ins.2022.11.139_b0820 article-title: A linear time-complexity k-means algorithm using cluster shifting – ident: 10.1016/j.ins.2022.11.139_b0175 doi: 10.1145/2401603.2401639 |
| SSID | ssj0004766 |
| Score | 2.7596328 |
| Snippet | Advances in recent techniques for scientific data collection in the era of big data allow for the systematic accumulation of large quantities of data at... |
| SourceID | crossref elsevier |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 178 |
| SubjectTerms | Big data clustering Clustering algorithm Improved k-means K-means K-means variants Modified k-means Perspectives on big data clustering |
| Title | K-means clustering algorithms: A comprehensive review, variants analysis, and advances in the era of big data |
| URI | https://dx.doi.org/10.1016/j.ins.2022.11.139 |
| Volume | 622 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1872-6291 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0004766 issn: 0020-0255 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals [SCFCJ] customDbUrl: eissn: 1872-6291 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0004766 issn: 0020-0255 databaseCode: AIKHN dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: ScienceDirect (Elsevier) customDbUrl: eissn: 1872-6291 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0004766 issn: 0020-0255 databaseCode: .~1 dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: ScienceDirect Freedom Collection Journals customDbUrl: eissn: 1872-6291 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0004766 issn: 0020-0255 databaseCode: ACRLP dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1872-6291 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0004766 issn: 0020-0255 databaseCode: AKRWK dateStart: 19681201 isFulltext: true providerName: Library Specific Holdings |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NS8QwEA2iFz2IrorfzEE8iNVumjSpt2VRVkVPCt5Kskm1stuVdfXob3dmm_oB6sFbKRkomXTmDXnzhrE9LJHTVHEZGa1NJBDgR9pxHRVKeu7aSVv06Ub36jrt3YqLO3k3w7pNLwzRKkPsr2P6NFqHN8dhN4-fypJ6fPkUEXNOAigJKX4KoWiKwdHbJ81DqPq-ksokWt3cbE45XmVFit2cY-A4atO88J9y05d8c7bEFgNQhE79LctsxlcttvBFPrDFdkLTAexD6CqiXYbwu66w4WU09JiKoD94IT0ENAIzuB-Ny8nD8PkEOkCE8rF_qEnsULexHMIr1s9EjwETFEsO8clBoAs8Q1kBwkbwYwOjAmx5D8QzXWW3Z6c33V4UxitEfZ6pSeS0Ml7p1BXWZpaQiZeUz4Q0lheJcrHkXmhrTYru8zxVpMVuCotbGussTtbYbDWq_DoD5522mdRF7LxwNrYIA3xmEV3IJJOivcHiZmPzftAepxEYg7whmT3m6IucfIE1SY6-2GAHHyZPtfDGX4tF46382-nJMTH8brb5P7MtNk9D52v-zjabnYxf_A5Ck4ndnZ69XTbXOb_sXb8D0p3iAg |
| linkProvider | Elsevier |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3BTtwwEB1Remh7qCht1aWFzqHqoSKQdezY6Q2tQNsucAKJW2SvHTZoN4uWhSPfzszGaUFqe-gtijxS5HFm3shv3gB8oRI5z7VQiTXGJpIAfmK8MEmlVRC-n_XlmG90T07z4bn8eaEu1mDQ9cIwrTLG_jamr6J1fLMfd3P_uq65x1esELEQLICSZc_guVRCcwW2d_-b5yF1e2HJdRIv7642VySvumHJbiEocuz1eWD4n5LTo4RztAGvI1LEg_Zj3sBaaDbh1SP9wE3Yjl0H-BVjWxFvM8b_9S3MRsksUC7C8fSWBRHICO30cr6ol5PZzXc8QGaUL8KkZbFj28eyi3dUQDM_Bm2ULNmlJ4-RL3CDdYOEGzEsLM4rdPUlMtH0HZwfHZ4Nhkmcr5CMRaGXiTfaBm1yXzlXOIYmQXFCk8o6UWXap0oEaZyzOfkviFyzGLutHG1paoo0ew_rzbwJHwB98MYVylSpD9K71BEOCIUjeKGyQsl-D9JuY8txFB_nGRjTsmOZXZXki5J9QUVJSb7owbdfJtet8sa_FsvOW-WT41NSZvi72db_mX2GF8Ozk-Py-Mfp6CO85An0LZnnE6wvF7dhm3DK0u2szuEDJVLjlw |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=K-means+clustering+algorithms%3A+A+comprehensive+review%2C+variants+analysis%2C+and+advances+in+the+era+of+big+data&rft.jtitle=Information+sciences&rft.au=Ikotun%2C+Abiodun+M.&rft.au=Ezugwu%2C+Absalom+E.&rft.au=Abualigah%2C+Laith&rft.au=Abuhaija%2C+Belal&rft.date=2023-04-01&rft.issn=0020-0255&rft.volume=622&rft.spage=178&rft.epage=210&rft_id=info:doi/10.1016%2Fj.ins.2022.11.139&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_ins_2022_11_139 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0020-0255&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0020-0255&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0020-0255&client=summon |