K-means clustering algorithms: A comprehensive review, variants analysis, and advances in the era of big data

Advances in recent techniques for scientific data collection in the era of big data allow for the systematic accumulation of large quantities of data at various data-capturing sites. Similarly, exponential growth in the development of different data analysis approaches has been reported in the liter...

Full description

Saved in:
Bibliographic Details
Published inInformation sciences Vol. 622; pp. 178 - 210
Main Authors Ikotun, Abiodun M., Ezugwu, Absalom E., Abualigah, Laith, Abuhaija, Belal, Heming, Jia
Format Journal Article
LanguageEnglish
Published Elsevier Inc 01.04.2023
Subjects
Online AccessGet full text
ISSN0020-0255
1872-6291
DOI10.1016/j.ins.2022.11.139

Cover

Abstract Advances in recent techniques for scientific data collection in the era of big data allow for the systematic accumulation of large quantities of data at various data-capturing sites. Similarly, exponential growth in the development of different data analysis approaches has been reported in the literature, amongst which the K-means algorithm remains the most popular and straightforward clustering algorithm. The broad applicability of the algorithm in many clustering application areas can be attributed to its implementation simplicity and low computational complexity. However, the K-means algorithm has many challenges that negatively affect its clustering performance. In the algorithm’s initialization process, users must specify the number of clusters in a given dataset apriori while the initial cluster centers are randomly selected. Furthermore, the algorithm's performance is susceptible to the selection of this initial cluster and for large datasets, determining the optimal number of clusters to start with becomes complex and is a very challenging task. Moreover, the random selection of the initial cluster centers sometimes results in minimal local convergence due to its greedy nature. A further limitation is that certain data object features are used in determining their similarity by using the Euclidean distance metric as a similarity measure, but this limits the algorithm’s robustness in detecting other cluster shapes and poses a great challenge in detecting overlapping clusters. Many research efforts have been conducted and reported in literature with regard to improving the K-means algorithm’s performance and robustness. The current work presents an overview and taxonomy of the K-means clustering algorithm and its variants. The history of the K-means, current trends, open issues and challenges, and recommended future research perspectives are also discussed.
AbstractList Advances in recent techniques for scientific data collection in the era of big data allow for the systematic accumulation of large quantities of data at various data-capturing sites. Similarly, exponential growth in the development of different data analysis approaches has been reported in the literature, amongst which the K-means algorithm remains the most popular and straightforward clustering algorithm. The broad applicability of the algorithm in many clustering application areas can be attributed to its implementation simplicity and low computational complexity. However, the K-means algorithm has many challenges that negatively affect its clustering performance. In the algorithm’s initialization process, users must specify the number of clusters in a given dataset apriori while the initial cluster centers are randomly selected. Furthermore, the algorithm's performance is susceptible to the selection of this initial cluster and for large datasets, determining the optimal number of clusters to start with becomes complex and is a very challenging task. Moreover, the random selection of the initial cluster centers sometimes results in minimal local convergence due to its greedy nature. A further limitation is that certain data object features are used in determining their similarity by using the Euclidean distance metric as a similarity measure, but this limits the algorithm’s robustness in detecting other cluster shapes and poses a great challenge in detecting overlapping clusters. Many research efforts have been conducted and reported in literature with regard to improving the K-means algorithm’s performance and robustness. The current work presents an overview and taxonomy of the K-means clustering algorithm and its variants. The history of the K-means, current trends, open issues and challenges, and recommended future research perspectives are also discussed.
Author Abualigah, Laith
Ezugwu, Absalom E.
Heming, Jia
Ikotun, Abiodun M.
Abuhaija, Belal
Author_xml – sequence: 1
  givenname: Abiodun M.
  surname: Ikotun
  fullname: Ikotun, Abiodun M.
  email: Abiodun@ukzn.ac.za
  organization: School of Computer Science, University of KwaZulu-Natal, Pietermaritzburg, KwaZulu-Natal, South Africa
– sequence: 2
  givenname: Absalom E.
  surname: Ezugwu
  fullname: Ezugwu, Absalom E.
  email: Ezugwua@ukzn.ac.za
  organization: School of Computer Science, University of KwaZulu-Natal, Pietermaritzburg, KwaZulu-Natal, South Africa
– sequence: 3
  givenname: Laith
  surname: Abualigah
  fullname: Abualigah, Laith
  organization: Prince Hussein Bin Abdullah College for Information Technology, Al Al-Bayt University, Mafraq 130040, Jordan
– sequence: 4
  givenname: Belal
  surname: Abuhaija
  fullname: Abuhaija, Belal
  email: babuhaij@kean.edu
  organization: Department of Computer Science, Wenzhou-Kean University, Wenzhou, China
– sequence: 5
  givenname: Jia
  surname: Heming
  fullname: Heming, Jia
  email: jiaheming@fjsmu.edu.cn
  organization: College of Information and Engineering, Sanming University, China
BookMark eNp90L1OwzAQwHELFYlSeAA2P0ATbKexE5iqii9RiQVm6xJfWleJU9kmqG9PqjIxdLpb_ifd75pMXO-QkDvOUs64vN-l1oVUMCFSzlOelRdkygslEilKPiFTxgRLmMjzK3Idwo4xtlBSTkn3nnQILtC6_Q4RvXUbCu2m9zZuu_BAl7Tuu73HLbpgB6QeB4s_czqAt-BioOCgPQQb5uNmKJgBXI2BWkfjFil6oH1DK7uhBiLckMsG2oC3f3NGvp6fPlevyfrj5W21XCe1KFVMTKEAVSFNU1VlJRdZiTnLpFjkUIkmU4blAhdFVYEsjEAhVZnlOTTV-BMrSpbNiDrdrX0fgsdG1zZCtL2LHmyrOdNHNb3To5o-qmnO9ag2lvxfufe2A3842zyeGhxfGnm8DrXFkcFYj3XUprdn6l9Ylohd
CitedBy_id crossref_primary_10_32604_cmc_2024_060837
crossref_primary_10_3390_machines12030180
crossref_primary_10_1016_j_neuroimage_2023_120470
crossref_primary_10_1109_ACCESS_2023_3327640
crossref_primary_10_3390_electronics12102326
crossref_primary_10_1371_journal_pone_0303341
crossref_primary_10_1051_itmconf_20245804008
crossref_primary_10_1109_TGRS_2025_3526644
crossref_primary_10_3390_a17120551
crossref_primary_10_1109_ACCESS_2023_3349319
crossref_primary_10_3390_buildings13051108
crossref_primary_10_3390_en16186491
crossref_primary_10_1016_j_cie_2024_110714
crossref_primary_10_1007_s11227_024_06607_7
crossref_primary_10_1109_ACCESS_2024_3436940
crossref_primary_10_1038_s41598_024_76545_0
crossref_primary_10_1002_cjce_25133
crossref_primary_10_1016_j_rpth_2025_102691
crossref_primary_10_1007_s40846_024_00923_2
crossref_primary_10_1016_j_engappai_2023_106379
crossref_primary_10_1016_j_joitmc_2023_100024
crossref_primary_10_1016_j_compbiomed_2024_109647
crossref_primary_10_3390_a16090396
crossref_primary_10_1080_00423114_2024_2425415
crossref_primary_10_3390_informatics11040072
crossref_primary_10_1007_s42044_024_00218_4
crossref_primary_10_1109_ACCESS_2024_3409312
crossref_primary_10_3390_app14010460
crossref_primary_10_1145_3698875
crossref_primary_10_1109_JIOT_2024_3422394
crossref_primary_10_1016_j_aap_2024_107714
crossref_primary_10_1142_S2737480724500134
crossref_primary_10_1016_j_oceaneng_2024_119329
crossref_primary_10_1016_j_rse_2023_113853
crossref_primary_10_1016_j_ijnurstu_2024_104963
crossref_primary_10_1016_j_ins_2024_120932
crossref_primary_10_1080_13467581_2024_2397100
crossref_primary_10_3390_diagnostics13142454
crossref_primary_10_1088_1361_6501_ad3fd5
crossref_primary_10_3390_math12131961
crossref_primary_10_1109_TMC_2024_3426945
crossref_primary_10_1007_s11227_023_05417_7
crossref_primary_10_1016_j_ins_2023_119621
crossref_primary_10_1080_08839514_2023_2166232
crossref_primary_10_1111_itor_13527
crossref_primary_10_3390_e26070579
crossref_primary_10_1016_j_apenergy_2025_125359
crossref_primary_10_1007_s10479_023_05657_z
crossref_primary_10_18267_j_aip_223
crossref_primary_10_1364_OE_507052
crossref_primary_10_18359_rcin_7474
crossref_primary_10_3390_antibiotics13111052
crossref_primary_10_1016_j_postharvbio_2024_112875
crossref_primary_10_1007_s13369_024_09180_6
crossref_primary_10_1016_j_eswa_2024_125246
crossref_primary_10_1016_j_ins_2023_119634
crossref_primary_10_1016_j_ecolind_2024_112882
crossref_primary_10_1007_s11042_023_16734_7
crossref_primary_10_1088_1361_6501_ad9514
crossref_primary_10_1186_s44167_024_00045_9
crossref_primary_10_1007_s12145_024_01368_6
crossref_primary_10_1016_j_aej_2024_09_016
crossref_primary_10_3390_su17072827
crossref_primary_10_1007_s42979_024_03444_6
crossref_primary_10_1016_j_renene_2025_122594
crossref_primary_10_1007_s00180_024_01490_5
crossref_primary_10_3390_s25071984
crossref_primary_10_1002_mcda_1835
crossref_primary_10_1016_j_asoc_2025_112840
crossref_primary_10_1016_j_trd_2024_104578
crossref_primary_10_1029_2024JH000318
crossref_primary_10_1109_TGRS_2024_3360268
crossref_primary_10_1145_3676960
crossref_primary_10_1049_cmu2_12874
crossref_primary_10_1088_1361_6501_ad950a
crossref_primary_10_1103_PhysRevMaterials_8_103804
crossref_primary_10_1016_j_jtrangeo_2023_103745
crossref_primary_10_1016_j_ufug_2023_128114
crossref_primary_10_1108_SASBE_04_2024_0111
crossref_primary_10_1108_COMPEL_05_2023_0207
crossref_primary_10_1016_j_cie_2024_110627
crossref_primary_10_1016_j_swevo_2024_101840
crossref_primary_10_12677_csa_2024_1410205
crossref_primary_10_1007_s10586_024_04664_4
crossref_primary_10_1097_NR9_0000000000000068
crossref_primary_10_3389_fenrg_2024_1449358
crossref_primary_10_1016_j_rcim_2023_102682
crossref_primary_10_1016_j_patcog_2025_111548
crossref_primary_10_1109_MITP_2024_3405857
crossref_primary_10_48084_etasr_9321
crossref_primary_10_1016_j_apenergy_2025_125339
crossref_primary_10_1016_j_ijepes_2024_110165
crossref_primary_10_1016_j_bspc_2024_106808
crossref_primary_10_1049_tje2_70032
crossref_primary_10_4236_jcc_2024_123009
crossref_primary_10_1016_j_compag_2024_109212
crossref_primary_10_1016_j_compbiolchem_2025_108412
crossref_primary_10_1016_j_yhbeh_2023_105445
crossref_primary_10_1061_JSUED2_SUENG_1551
crossref_primary_10_1111_jnu_13016
crossref_primary_10_1109_TCYB_2024_3418937
crossref_primary_10_1007_s10115_023_01952_0
crossref_primary_10_1109_TIM_2023_3301053
crossref_primary_10_1016_j_chb_2024_108422
crossref_primary_10_3390_electronics14030441
crossref_primary_10_1016_j_jhydrol_2024_130650
crossref_primary_10_1109_JSEN_2024_3493454
crossref_primary_10_1016_j_dss_2024_114344
crossref_primary_10_1016_j_joitmc_2024_100442
crossref_primary_10_1016_j_jort_2024_100769
crossref_primary_10_1016_j_est_2024_113616
crossref_primary_10_1177_09596518241278387
crossref_primary_10_1109_ACCESS_2024_3467997
crossref_primary_10_1007_s13042_024_02167_7
crossref_primary_10_1142_S2737416524400015
crossref_primary_10_1016_j_asoc_2025_112700
crossref_primary_10_1016_j_ejcon_2023_100858
crossref_primary_10_1016_j_eswa_2023_121406
crossref_primary_10_3390_rs16214097
crossref_primary_10_1016_j_swevo_2024_101823
crossref_primary_10_22630_ASPE_2023_22_4_23
crossref_primary_10_1016_j_ijepes_2024_110397
crossref_primary_10_1016_j_microc_2023_108655
crossref_primary_10_1016_j_ijleo_2024_172036
crossref_primary_10_1109_ACCESS_2024_3458830
crossref_primary_10_1007_s13762_024_06032_6
crossref_primary_10_3390_su17051819
crossref_primary_10_1016_j_jobe_2024_110033
crossref_primary_10_1080_23311975_2024_2361475
crossref_primary_10_1007_s11042_023_17129_4
crossref_primary_10_2478_aucts_2024_0002
crossref_primary_10_2478_ecce_2023_0005
crossref_primary_10_3390_rs16050740
crossref_primary_10_32604_cmc_2024_048528
crossref_primary_10_3390_informatics11040089
crossref_primary_10_1109_ACCESS_2023_3312287
crossref_primary_10_3390_ijgi13020041
crossref_primary_10_3390_ijgi13020040
crossref_primary_10_1016_j_asoc_2024_112639
crossref_primary_10_1016_j_energy_2025_134568
crossref_primary_10_1016_j_procs_2023_11_030
crossref_primary_10_1093_ce_zkae058
crossref_primary_10_54097_hset_v42i_7114
crossref_primary_10_1002_sys_21811
crossref_primary_10_21015_vtse_v11i4_1633
crossref_primary_10_1080_10589759_2025_2473038
crossref_primary_10_1088_2515_7647_ad369d
crossref_primary_10_1016_j_apenergy_2024_125144
crossref_primary_10_1109_JSEN_2023_3303691
crossref_primary_10_1080_15435075_2024_2421328
crossref_primary_10_3389_fpsyg_2024_1491805
crossref_primary_10_1016_j_wasman_2025_02_016
crossref_primary_10_1016_j_eswa_2023_122713
crossref_primary_10_1016_j_energy_2023_128534
crossref_primary_10_1109_JSEN_2024_3522070
crossref_primary_10_1016_j_asoc_2024_111419
crossref_primary_10_1016_j_neuroimage_2024_120996
crossref_primary_10_1109_LSP_2024_3520010
crossref_primary_10_1016_j_ajpath_2024_01_012
crossref_primary_10_1016_j_heliyon_2025_e41657
crossref_primary_10_1016_j_jobe_2024_110411
crossref_primary_10_1049_gtd2_70027
crossref_primary_10_1142_S0218001424500022
crossref_primary_10_1109_TSIPN_2024_3511262
crossref_primary_10_1038_s41467_024_48545_1
crossref_primary_10_1088_1674_4926_24090045
crossref_primary_10_1016_j_est_2024_111747
crossref_primary_10_1016_j_ssaho_2025_101275
crossref_primary_10_1016_j_patcog_2024_111108
crossref_primary_10_1007_s13369_023_08043_w
crossref_primary_10_1016_j_tranpol_2023_12_020
crossref_primary_10_1002_mp_17639
crossref_primary_10_1016_j_eswa_2023_122765
crossref_primary_10_1109_JSTARS_2023_3299413
crossref_primary_10_1002_acn3_51906
crossref_primary_10_1016_j_ijbiomac_2025_142286
crossref_primary_10_1108_K_01_2024_0113
crossref_primary_10_1002_pro_5176
crossref_primary_10_3390_math12020295
crossref_primary_10_1002_cpe_8027
crossref_primary_10_3174_ajnr_A8170
crossref_primary_10_1051_e3sconf_202455102002
crossref_primary_10_3389_feart_2024_1443458
crossref_primary_10_1007_s12351_024_00847_4
crossref_primary_10_1109_TGRS_2024_3519195
crossref_primary_10_1016_j_energy_2024_133833
crossref_primary_10_3390_app15020523
crossref_primary_10_1007_s12273_024_1200_z
crossref_primary_10_1007_s00170_024_14139_w
crossref_primary_10_1109_ACCESS_2025_3551160
crossref_primary_10_1016_j_engappai_2024_109078
crossref_primary_10_2478_acss_2024_0003
crossref_primary_10_1016_j_foodchem_2024_139431
crossref_primary_10_3390_jmse12122299
crossref_primary_10_1016_j_buildenv_2023_111155
crossref_primary_10_3390_su16166887
crossref_primary_10_1016_j_ress_2024_110656
crossref_primary_10_1016_j_ins_2023_03_103
crossref_primary_10_3390_jmse13020377
crossref_primary_10_1016_j_bspc_2024_107483
crossref_primary_10_1016_j_applthermaleng_2025_126280
crossref_primary_10_1016_j_physa_2023_129415
crossref_primary_10_1016_j_patcog_2024_111321
crossref_primary_10_1016_j_pocean_2025_103436
crossref_primary_10_1007_s13762_024_05823_1
crossref_primary_10_1007_s10653_024_01928_1
crossref_primary_10_1016_j_jclepro_2024_143412
crossref_primary_10_4271_01_17_01_0005
crossref_primary_10_1016_j_neucom_2024_127901
crossref_primary_10_3390_electronics12245034
crossref_primary_10_1016_j_health_2024_100380
crossref_primary_10_3390_app14020767
crossref_primary_10_1016_j_sca_2023_100019
crossref_primary_10_1007_s10236_025_01675_6
crossref_primary_10_1080_17499518_2024_2422489
crossref_primary_10_1109_TCSVT_2024_3492045
crossref_primary_10_1016_j_jretconser_2024_104121
crossref_primary_10_1007_s10489_024_05636_2
crossref_primary_10_1016_j_marpolbul_2024_116649
crossref_primary_10_1007_s00125_024_06248_8
crossref_primary_10_12688_openreseurope_17554_1
crossref_primary_10_3390_app14135530
crossref_primary_10_1063_5_0246498
crossref_primary_10_12688_openreseurope_17554_2
crossref_primary_10_1016_j_jwpe_2023_104480
crossref_primary_10_1038_s41398_024_03213_2
crossref_primary_10_1002_cpe_8284
crossref_primary_10_3389_fpls_2025_1495305
crossref_primary_10_1016_j_jplph_2024_154359
crossref_primary_10_1016_j_enbuild_2025_115549
crossref_primary_10_26599_NR_2025_94907276
crossref_primary_10_3390_ani14243611
crossref_primary_10_1155_2023_8352768
crossref_primary_10_1016_j_dsp_2025_105174
crossref_primary_10_3390_math12142211
crossref_primary_10_3390_agriculture14122294
crossref_primary_10_1016_j_jece_2024_114481
crossref_primary_10_1021_acsami_4c02797
crossref_primary_10_1186_s12887_024_05201_3
crossref_primary_10_2139_ssrn_4746305
crossref_primary_10_3390_en16093695
crossref_primary_10_1051_e3sconf_202454102005
crossref_primary_10_1007_s11356_023_30250_z
crossref_primary_10_3389_fpubh_2024_1529736
crossref_primary_10_1080_10298436_2025_2450098
crossref_primary_10_3390_drones8060226
crossref_primary_10_14201_adcaij_31448
crossref_primary_10_1051_e3sconf_202449604001
crossref_primary_10_1080_13658816_2024_2408279
crossref_primary_10_56294_mw202468
crossref_primary_10_1016_j_knosys_2025_113170
crossref_primary_10_1016_j_measurement_2024_114391
crossref_primary_10_1016_j_heliyon_2025_e42777
crossref_primary_10_1007_s41870_024_02340_9
crossref_primary_10_1109_ACCESS_2024_3521922
crossref_primary_10_1186_s40537_024_01042_0
crossref_primary_10_1016_j_knosys_2024_111834
crossref_primary_10_1007_s11663_024_03358_x
crossref_primary_10_3390_metabo15030201
crossref_primary_10_1016_j_aei_2024_102722
crossref_primary_10_1038_s41598_025_86916_w
crossref_primary_10_3390_en17010151
crossref_primary_10_1109_ACCESS_2024_3467114
crossref_primary_10_3390_app15020718
crossref_primary_10_3390_make6020047
crossref_primary_10_3390_molecules28155729
crossref_primary_10_1080_07421222_2025_2452014
crossref_primary_10_1097_JS9_0000000000002118
crossref_primary_10_3390_electronics13214215
crossref_primary_10_1016_j_energy_2025_135288
crossref_primary_10_1109_ACCESS_2024_3496929
crossref_primary_10_1016_j_inffus_2025_103108
crossref_primary_10_1007_s11030_024_10914_9
crossref_primary_10_1057_s41599_024_04099_7
crossref_primary_10_3390_electronics13193835
crossref_primary_10_1007_s40820_024_01489_z
crossref_primary_10_54370_ordubtd_1556727
crossref_primary_10_1007_s10668_023_03375_x
crossref_primary_10_1016_j_ecolind_2025_113208
crossref_primary_10_3390_electronics13101987
crossref_primary_10_36456_jstat_vol16_no2_a8079
crossref_primary_10_1016_j_scitotenv_2024_172157
crossref_primary_10_1007_s13042_024_02139_x
crossref_primary_10_1016_j_jclepro_2025_145079
crossref_primary_10_3390_buildings15010032
crossref_primary_10_1007_s11227_024_06885_1
crossref_primary_10_1016_j_apenergy_2024_124584
crossref_primary_10_1007_s10462_024_11069_7
crossref_primary_10_1080_00140139_2024_2324007
crossref_primary_10_1016_j_cpb_2024_100432
crossref_primary_10_3390_jtaer18010029
crossref_primary_10_1142_S2972370124500016
crossref_primary_10_5772_acrt_17
crossref_primary_10_3390_math12193083
crossref_primary_10_1016_j_health_2023_100293
crossref_primary_10_3390_buildings14092646
crossref_primary_10_1007_s41066_023_00410_0
crossref_primary_10_1016_j_enbuild_2023_113800
crossref_primary_10_1016_j_rineng_2024_103765
crossref_primary_10_3390_plants13010009
crossref_primary_10_1002_srin_202300736
crossref_primary_10_1007_s11227_025_07021_3
crossref_primary_10_1016_j_ins_2023_119957
crossref_primary_10_3390_atmos14091369
crossref_primary_10_1017_pasa_2024_133
crossref_primary_10_1080_10246029_2024_2367967
crossref_primary_10_7717_peerj_cs_2537
crossref_primary_10_1016_j_biotechadv_2024_108479
crossref_primary_10_1016_j_cherd_2025_03_018
crossref_primary_10_3390_s24175695
crossref_primary_10_1021_acsnano_4c18155
crossref_primary_10_1007_s10489_024_05506_x
crossref_primary_10_3390_w17010038
crossref_primary_10_1007_s12667_023_00614_y
crossref_primary_10_1016_j_jmsy_2024_07_015
crossref_primary_10_1016_j_cmpb_2023_107707
crossref_primary_10_1016_j_knosys_2024_111748
crossref_primary_10_1007_s41060_024_00603_z
crossref_primary_10_1016_j_ecoinf_2024_102891
crossref_primary_10_3390_met14050580
crossref_primary_10_3390_jcm13247571
crossref_primary_10_58224_2618_7175_2024_4_84_90
crossref_primary_10_1109_ACCESS_2024_3407827
crossref_primary_10_1016_j_ins_2024_120242
crossref_primary_10_1038_s41598_023_48220_3
crossref_primary_10_1016_j_oceaneng_2025_120388
crossref_primary_10_1016_j_ipm_2024_103817
crossref_primary_10_1016_j_mechmat_2025_105307
crossref_primary_10_1007_s10115_024_02272_7
crossref_primary_10_1007_s11222_023_10355_8
crossref_primary_10_1016_j_energy_2024_133672
crossref_primary_10_1080_13467581_2024_2391126
crossref_primary_10_1088_1361_6501_ad86de
crossref_primary_10_1109_TMI_2024_3424978
crossref_primary_10_1007_s11111_024_00466_3
crossref_primary_10_1007_s10586_024_04571_8
crossref_primary_10_3390_math12213356
crossref_primary_10_1016_j_bspc_2024_106585
crossref_primary_10_3390_bioengineering10070850
crossref_primary_10_1002_btm2_10641
crossref_primary_10_3390_land13111744
crossref_primary_10_1016_j_cor_2024_106548
crossref_primary_10_1016_j_gloei_2023_10_003
crossref_primary_10_7906_indecs_22_6_9
crossref_primary_10_1016_j_aej_2023_12_029
crossref_primary_10_1002_ange_202410435
crossref_primary_10_3390_systems12050171
crossref_primary_10_3390_app13084716
crossref_primary_10_12973_eu_jer_13_4_1587
crossref_primary_10_1016_j_ins_2024_121588
crossref_primary_10_1109_ACCESS_2024_3472498
crossref_primary_10_1021_acs_energyfuels_4c02605
crossref_primary_10_1016_j_isprsjprs_2024_09_026
crossref_primary_10_1186_s40537_025_01091_z
crossref_primary_10_1007_s10489_024_05621_9
crossref_primary_10_1177_03611981241242362
crossref_primary_10_3390_s24082597
crossref_primary_10_1109_TIP_2024_3388969
crossref_primary_10_3390_jmse12111896
crossref_primary_10_3390_w15152760
crossref_primary_10_3389_fdata_2024_1375818
crossref_primary_10_1115_1_4067047
crossref_primary_10_1371_journal_pone_0291936
crossref_primary_10_1089_vbz_2023_0112
crossref_primary_10_3390_buildings14103068
crossref_primary_10_1016_j_gsd_2025_101407
crossref_primary_10_3390_info14070388
crossref_primary_10_1038_s41598_023_48267_2
crossref_primary_10_1016_j_est_2024_115169
crossref_primary_10_1016_j_jksuci_2024_102219
crossref_primary_10_3390_pr13030898
crossref_primary_10_1111_trf_17585
crossref_primary_10_1051_0004_6361_202451718
crossref_primary_10_1016_j_eswa_2023_121258
crossref_primary_10_1109_ACCESS_2024_3430987
crossref_primary_10_3390_app142411930
crossref_primary_10_1016_j_ins_2024_120588
crossref_primary_10_7717_peerj_cs_2460
crossref_primary_10_1016_j_heliyon_2024_e40310
crossref_primary_10_1080_15567036_2024_2435540
crossref_primary_10_1186_s12940_024_01144_5
crossref_primary_10_1038_s41598_025_94180_1
crossref_primary_10_3390_a17080358
crossref_primary_10_3390_electronics13214281
crossref_primary_10_1007_s10661_024_12663_6
crossref_primary_10_1145_3677377
crossref_primary_10_1016_j_asej_2024_102857
crossref_primary_10_1109_ACCESS_2024_3454823
crossref_primary_10_1016_j_ins_2025_121987
crossref_primary_10_1002_esp_5871
crossref_primary_10_37990_medr_1536199
crossref_primary_10_7498_aps_73_20241265
crossref_primary_10_1021_acs_est_4c04714
crossref_primary_10_3390_su16177500
crossref_primary_10_3390_rs17060978
crossref_primary_10_3390_math11234846
crossref_primary_10_1016_j_aei_2024_102799
crossref_primary_10_1016_j_ijpvp_2024_105364
crossref_primary_10_1016_j_ejmech_2024_117164
crossref_primary_10_3390_drones8070312
crossref_primary_10_3390_wevj15070301
crossref_primary_10_1109_ACCESS_2023_3330691
crossref_primary_10_1016_j_ins_2024_121014
crossref_primary_10_1016_j_jrmge_2024_12_018
crossref_primary_10_3390_s25030746
crossref_primary_10_1016_j_knosys_2024_112643
crossref_primary_10_1016_j_adhoc_2024_103729
crossref_primary_10_3390_e26080715
crossref_primary_10_37394_23209_2024_21_44
crossref_primary_10_48084_etasr_6609
crossref_primary_10_1016_j_aichem_2023_100039
crossref_primary_10_1016_j_apgeochem_2024_106013
crossref_primary_10_1016_j_knosys_2024_111793
crossref_primary_10_1016_j_adapen_2025_100211
crossref_primary_10_1140_epjs_s11734_025_01493_3
crossref_primary_10_1016_j_isci_2023_107456
crossref_primary_10_1016_j_eswa_2024_123646
crossref_primary_10_3390_electronics13061097
crossref_primary_10_1016_j_eswa_2024_124857
crossref_primary_10_1111_cbdd_14576
crossref_primary_10_1016_j_aiia_2024_05_002
crossref_primary_10_1016_j_heliyon_2024_e27015
crossref_primary_10_1109_TFUZZ_2024_3443207
crossref_primary_10_1007_s11769_024_1467_0
crossref_primary_10_1142_S0218126624501846
crossref_primary_10_3390_sym16091208
crossref_primary_10_1016_j_asr_2025_01_062
crossref_primary_10_3233_IDT_230190
crossref_primary_10_3390_math11030772
crossref_primary_10_1016_j_energy_2024_132532
crossref_primary_10_1080_09537325_2025_2464042
crossref_primary_10_1016_j_knosys_2024_111768
crossref_primary_10_1016_j_ets_2025_100014
crossref_primary_10_1016_j_oceaneng_2023_116337
crossref_primary_10_1109_JSEN_2024_3485069
crossref_primary_10_1109_ACCESS_2023_3307495
crossref_primary_10_1007_s13399_024_05305_x
crossref_primary_10_1016_j_rser_2025_115478
crossref_primary_10_54097_hset_v70i_13889
crossref_primary_10_1007_s11269_025_04120_x
crossref_primary_10_1088_2632_2153_ad51cb
crossref_primary_10_1002_lpor_202401397
crossref_primary_10_1007_s10018_024_00420_5
crossref_primary_10_1016_j_scs_2024_105642
crossref_primary_10_1016_j_neucom_2024_128640
crossref_primary_10_1016_j_jenvman_2024_121087
crossref_primary_10_1080_13682199_2024_2390793
crossref_primary_10_1007_s00500_024_10350_9
crossref_primary_10_1016_j_apgeog_2025_103515
crossref_primary_10_1016_j_apenergy_2023_121838
crossref_primary_10_1109_TASLP_2024_3437237
crossref_primary_10_3390_land13122108
crossref_primary_10_1007_s10346_024_02438_y
crossref_primary_10_1016_j_eswa_2023_121062
crossref_primary_10_1016_j_jobe_2024_109731
crossref_primary_10_1061_JTEPBS_TEENG_8704
crossref_primary_10_1007_s11227_024_06723_4
crossref_primary_10_1002_anie_202410435
crossref_primary_10_2478_jaiscr_2025_0013
crossref_primary_10_53759_832X_JCIMS202402006
crossref_primary_10_3390_jtaer19040145
crossref_primary_10_1021_acs_jpclett_4c01751
crossref_primary_10_32604_cmc_2024_060090
crossref_primary_10_3390_biomimetics9070391
crossref_primary_10_1016_j_eswa_2024_125609
crossref_primary_10_2478_acss_2023_0001
crossref_primary_10_1016_j_ces_2025_121429
crossref_primary_10_1117_1_JBO_30_S2_S23904
crossref_primary_10_1109_ACCESS_2023_3323951
crossref_primary_10_3934_era_2023359
crossref_primary_10_3390_electronics14050858
crossref_primary_10_1016_j_ijmecsci_2024_109630
crossref_primary_10_1016_j_tbs_2024_100960
crossref_primary_10_1016_j_ijmecsci_2024_109511
crossref_primary_10_1016_j_ins_2023_119004
crossref_primary_10_3390_agronomy14061119
crossref_primary_10_1016_j_tele_2023_102025
crossref_primary_10_1111_ejss_70087
crossref_primary_10_1002_widm_1521
crossref_primary_10_1016_j_ijpe_2023_108950
crossref_primary_10_1016_j_bdr_2023_100413
crossref_primary_10_1016_j_neucom_2024_127329
crossref_primary_10_1057_s41261_025_00269_y
crossref_primary_10_3390_rs16020271
crossref_primary_10_1007_s11042_024_19312_7
crossref_primary_10_1016_j_aei_2023_102199
crossref_primary_10_3390_ani14071046
crossref_primary_10_3390_app122413019
crossref_primary_10_3390_bioengineering11101034
crossref_primary_10_1111_inr_13035
crossref_primary_10_53070_bbd_1421527
crossref_primary_10_1109_ACCESS_2024_3405350
crossref_primary_10_1016_j_compbiomed_2025_109984
crossref_primary_10_1016_j_eswa_2024_125986
crossref_primary_10_1109_TGRS_2024_3374597
crossref_primary_10_3390_educsci14111238
crossref_primary_10_3390_en17143576
crossref_primary_10_1016_j_asoc_2024_112299
crossref_primary_10_1021_acs_jpcb_4c03731
crossref_primary_10_3390_agronomy13122991
crossref_primary_10_1016_j_crmeth_2024_100798
crossref_primary_10_1016_j_neucom_2025_129469
crossref_primary_10_1016_j_scs_2025_106247
crossref_primary_10_1109_ACCESS_2024_3423807
crossref_primary_10_1007_s11227_023_05688_0
crossref_primary_10_1007_s12145_024_01453_w
crossref_primary_10_1016_j_geoen_2025_213684
crossref_primary_10_1007_s41060_024_00560_7
crossref_primary_10_1007_s00180_025_01616_3
crossref_primary_10_1016_j_rser_2024_115157
crossref_primary_10_1016_j_watres_2024_121673
crossref_primary_10_1137_23M161937X
crossref_primary_10_3233_JIFS_224234
crossref_primary_10_1016_j_cherd_2023_10_052
crossref_primary_10_1016_j_renene_2024_121511
crossref_primary_10_3390_jcm13206044
crossref_primary_10_1007_s10100_024_00939_8
crossref_primary_10_1016_j_scitotenv_2024_174099
crossref_primary_10_3390_plants13121686
crossref_primary_10_1002_cae_22749
crossref_primary_10_3390_stats7010006
crossref_primary_10_1109_ACCESS_2024_3519156
crossref_primary_10_1007_s00530_024_01480_z
crossref_primary_10_3390_min13010029
crossref_primary_10_47172_2965_730X_SDGsReview_v5_n01_pe04196
crossref_primary_10_1016_j_optlastec_2025_112461
crossref_primary_10_1016_j_dcan_2024_06_009
crossref_primary_10_1093_bfgp_elae040
crossref_primary_10_1109_OJITS_2025_3532796
crossref_primary_10_1016_j_apenergy_2024_123976
crossref_primary_10_1111_1365_2478_13625
crossref_primary_10_1016_j_jobe_2024_111296
crossref_primary_10_1016_j_compag_2024_109315
crossref_primary_10_32604_cmc_2025_057693
crossref_primary_10_3390_app15063020
crossref_primary_10_1016_j_ins_2024_120504
crossref_primary_10_1007_s11227_024_06517_8
crossref_primary_10_1016_j_desal_2025_118551
crossref_primary_10_5433_1679_0375_2024_v45_49522
crossref_primary_10_1371_journal_pone_0302741
crossref_primary_10_1016_j_ecoinf_2025_103078
crossref_primary_10_1063_5_0241122
crossref_primary_10_1007_s13042_024_02480_1
crossref_primary_10_56294_saludcyt20241341
crossref_primary_10_1002_1873_3468_70010
crossref_primary_10_1002_fes3_565
crossref_primary_10_1007_s13042_024_02503_x
crossref_primary_10_1016_j_tra_2024_104296
crossref_primary_10_31127_tuje_1481281
crossref_primary_10_3390_bioengineering11020173
crossref_primary_10_1016_j_trd_2025_104598
crossref_primary_10_1007_s00521_024_10764_4
crossref_primary_10_1016_j_comnet_2024_110534
crossref_primary_10_2478_picbe_2024_0115
crossref_primary_10_1016_j_jbiomech_2024_112402
crossref_primary_10_3934_publichealth_2024004
crossref_primary_10_3390_s24165084
crossref_primary_10_1016_j_cie_2024_110752
crossref_primary_10_1016_j_corsci_2024_112334
crossref_primary_10_1016_j_indcrop_2024_119470
crossref_primary_10_1038_s41598_024_70115_0
crossref_primary_10_1109_ACCESS_2023_3335985
crossref_primary_10_1109_ACCESS_2024_3463201
crossref_primary_10_1093_llc_fqad074
crossref_primary_10_1080_17538947_2024_2308707
crossref_primary_10_3390_biology14030283
crossref_primary_10_1016_j_erss_2025_103969
crossref_primary_10_1007_s11269_024_03894_w
crossref_primary_10_1016_j_eswa_2023_119954
crossref_primary_10_1016_j_techsoc_2024_102662
crossref_primary_10_1007_s10846_025_02235_2
crossref_primary_10_1016_j_energy_2025_134503
crossref_primary_10_1016_j_eswa_2024_123485
crossref_primary_10_1109_ACCESS_2024_3351842
crossref_primary_10_3390_electronics13173523
crossref_primary_10_3389_frai_2024_1336071
crossref_primary_10_1016_j_energy_2024_133352
crossref_primary_10_1016_j_jobe_2023_107797
crossref_primary_10_1109_ACCESS_2024_3412928
crossref_primary_10_1002_jmri_29207
crossref_primary_10_3390_app14209305
crossref_primary_10_1063_5_0229111
crossref_primary_10_32604_cmc_2024_046185
crossref_primary_10_1109_ACCESS_2025_3529943
crossref_primary_10_1016_j_anireprosci_2023_107261
crossref_primary_10_1109_LRA_2024_3460430
crossref_primary_10_1016_j_datak_2024_102343
crossref_primary_10_1016_j_cie_2024_110409
crossref_primary_10_1016_j_ecolind_2024_112988
crossref_primary_10_1007_s10836_024_06142_6
crossref_primary_10_3390_cli12120205
crossref_primary_10_1016_j_ecolind_2024_112950
crossref_primary_10_3390_su16104221
crossref_primary_10_1016_j_esd_2024_101391
crossref_primary_10_1016_j_ast_2023_108722
crossref_primary_10_1016_j_engappai_2024_109854
crossref_primary_10_1007_s00500_023_07857_y
crossref_primary_10_54021_seesv5n2_529
crossref_primary_10_1038_s41598_023_45358_y
crossref_primary_10_1016_j_ins_2024_120661
crossref_primary_10_3390_rs16244798
crossref_primary_10_1061_JTEPBS_TEENG_8325
crossref_primary_10_1177_23312165241263485
crossref_primary_10_1016_j_ins_2024_120663
crossref_primary_10_1109_ACCESS_2025_3535226
crossref_primary_10_1016_j_oceaneng_2024_118527
crossref_primary_10_3390_app15042043
crossref_primary_10_34133_ehs_0095
crossref_primary_10_1109_TCE_2024_3475821
crossref_primary_10_1016_j_energy_2024_133699
crossref_primary_10_1007_s12053_023_10169_7
crossref_primary_10_1016_j_patcog_2025_111399
crossref_primary_10_2139_ssrn_4831118
crossref_primary_10_1007_s40747_024_01695_7
crossref_primary_10_32604_cmes_2024_051083
crossref_primary_10_1145_3688570
crossref_primary_10_1016_j_jclepro_2024_144252
crossref_primary_10_3390_en17143396
crossref_primary_10_60084_ljes_v2i1_181
crossref_primary_10_1016_j_chaos_2024_114670
crossref_primary_10_1016_j_apenergy_2023_122533
crossref_primary_10_4236_gep_2025_131003
crossref_primary_10_1016_j_ijmecsci_2023_108369
crossref_primary_10_1038_s41433_024_03444_z
crossref_primary_10_1108_JAMR_03_2024_0095
crossref_primary_10_1016_j_ijcce_2024_04_002
crossref_primary_10_1016_j_knosys_2024_111384
Cites_doi 10.1016/j.acha.2020.03.002
10.1109/ACCESS.2020.2967797
10.1016/j.patcog.2009.02.014
10.1109/ACCESS.2020.2972333
10.3390/ijgi6120392
10.1155/2014/506480
10.1109/ICCAE.2010.5451883
10.1007/s00521-020-05395-4
10.1016/j.patrec.2009.09.011
10.1016/j.eswa.2009.12.017
10.1109/ACCESS.2020.3006173
10.1109/ACCESS.2020.2988796
10.1109/ACCESS.2021.3077622
10.1023/A:1024016609528
10.1016/j.patcog.2021.107996
10.1134/S1054661813020144
10.1007/s10115-021-01623-y
10.1109/TDSC.2022.3181667
10.1016/j.eswa.2012.07.021
10.1109/ACCESS.2017.2706947
10.1016/j.techfore.2020.120462
10.21629/JSEE.2017.02.18
10.1016/j.patrec.2014.11.017
10.1145/3357384.3357969
10.1016/j.knosys.2020.105682
10.1007/s00500-018-3289-4
10.1016/j.jocs.2017.07.018
10.3390/app10113827
10.1007/s10115-007-0114-2
10.1007/s11042-021-11016-6
10.1016/j.neucom.2022.03.043
10.1348/000711005X48266
10.3390/math9080879
10.1109/ICCN.2015.9
10.1631/jzus.C1200078
10.1145/2393216.2393327
10.1016/j.asoc.2015.12.001
10.1016/0098-3004(84)90020-7
10.1016/j.knosys.2018.09.013
10.1080/08923647.2020.1696140
10.1038/35000501
10.1109/TrustCom.2016.0348
10.1080/08839514.2018.1530869
10.1109/RAICS.2011.6069372
10.1109/ICPR.2008.4761079
10.1109/72.238318
10.5926/jjep1953.40.3_257
10.1016/j.eswa.2018.09.006
10.1016/j.neucom.2022.05.120
10.1109/CIS.2016.0041
10.1111/exsy.12526
10.1016/j.parco.2020.102736
10.1137/1.9781611972832.21
10.1109/TFUZZ.2009.2036603
10.1109/ACCESS.2019.2934179
10.1023/B:JIIS.0000029668.88665.1a
10.2307/2308930
10.1051/ps/2016016
10.1109/ICIIS51140.2020.9342639
10.1002/cpe.6621
10.1007/s00357-007-0003-0
10.1007/s11222-013-9410-8
10.1016/S0031-3203(02)00060-2
10.1016/j.patcog.2018.02.015
10.1016/j.patcog.2020.107625
10.1109/ICTAS47918.2020.234001
10.1016/j.engappai.2020.103857
10.1109/IEEM45057.2020.9309769
10.1007/s10462-020-09918-2
10.1007/s42405-018-0117-0
10.1109/ICMLC.2004.1382371
10.1109/ACCESS.2020.3040745
10.1002/sam.11416
10.1109/ICCSN.2011.6014384
10.1007/s00521-021-06689-x
10.3390/info11010027
10.1007/s00180-012-0358-5
10.1071/BT9660127
10.1016/j.asoc.2018.07.026
10.1145/331499.331504
10.1016/j.knosys.2020.106731
10.1016/j.ins.2021.04.076
10.1007/s11227-014-1225-7
10.1016/S0167-8655(99)00069-0
10.14778/3067421.3067425
10.1109/TKDE.2002.1033770
10.1007/s40745-015-0040-1
10.1016/j.eswa.2017.09.005
10.1016/j.asoc.2017.06.059
10.1109/CVPR.2005.210
10.1371/journal.pone.0201874
10.1145/1772690.1772862
10.1016/j.jksuci.2021.07.003
10.1007/s11042-020-10064-8
10.1109/ICICISYS.2009.5358020
10.1007/s11227-017-2182-8
10.1109/ACCESS.2019.2903568
10.1016/j.cie.2020.107023
10.1016/j.engappai.2022.104743
10.1109/BDCloud-SocialCom-SustainCom.2016.46
10.1109/TKDE.2022.3179554
10.1007/s12083-020-00881-x
10.1016/j.eswa.2022.117927
10.14429/dsj.68.11843
10.1007/978-981-4451-98-7_143
10.1109/CCIS.2016.7790241
10.1155/2021/5571683
10.1038/nmeth.4346
10.1007/s11227-021-04078-8
10.1201/9781420034912
10.21884/IJMTER.2017.4143.LGJZD
10.1016/j.scs.2020.102383
10.1002/sam.11392
10.1016/j.infsof.2008.09.009
10.1007/s13198-021-01262-0
10.1016/j.eswa.2021.114807
10.1016/j.knosys.2022.109189
10.3390/electronics9081295
10.1016/j.inffus.2020.03.009
10.1111/exsy.12886
10.1007/s00521-012-0959-5
10.1016/j.eswa.2020.113317
10.1007/s13198-015-0365-3
10.1145/3445945.3445947
10.1049/cvi2.12052
10.1109/JSEN.2015.2443380
10.1016/j.jnca.2020.102539
10.1109/ACCESS.2019.2960925
10.1109/IIH-MSP.2007.259
10.1080/00207160.2015.1124099
10.1109/TIFS.2022.3189532
10.1631/jzus.2006.A1626
10.1016/j.eswa.2008.01.039
10.1023/A:1009769707641
10.1007/11552253_5
10.1016/j.datak.2007.03.016
10.1109/RoboMech.2017.8261116
10.1109/ICDMW.2011.76
10.1007/s11042-016-3322-5
10.2147/DMSO.S206640
10.1109/CISP.2011.6100578
10.2478/amns.2020.1.00001
10.1109/TPAMI.2002.1017616
10.1109/ICAIBD.2018.8396161
10.1109/ICCSNT.2012.6526212
10.1016/S0167-8655(03)00146-6
10.1109/ICCASM.2010.5620383
10.1109/TKDE.2011.262
10.1109/TCBB.2014.2306200
10.1016/j.cja.2020.08.047
10.3390/app112311246
10.1049/sfw2.12032
10.1016/j.patcog.2019.04.014
10.3390/bdcc3020027
10.1016/j.knosys.2014.08.011
10.1145/974121.974131
10.1145/2401603.2401639
ContentType Journal Article
Copyright 2022 Elsevier Inc.
Copyright_xml – notice: 2022 Elsevier Inc.
DBID AAYXX
CITATION
DOI 10.1016/j.ins.2022.11.139
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Library & Information Science
EISSN 1872-6291
EndPage 210
ExternalDocumentID 10_1016_j_ins_2022_11_139
S0020025522014633
GroupedDBID --K
--M
--Z
-~X
.DC
.~1
0R~
1B1
1OL
1RT
1~.
1~5
29I
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
9JO
AAAKF
AAAKG
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARIN
AAXUO
AAYFN
ABAOU
ABBOA
ABEFU
ABFNM
ABJNI
ABMAC
ABTAH
ABUCO
ABXDB
ABYKQ
ACAZW
ACDAQ
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADGUI
ADJOM
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFFNX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIGVJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
APLSM
ARUGR
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HAMUX
HLZ
HVGLF
HZ~
H~9
IHE
J1W
JJJVA
KOM
LG9
LY1
M41
MHUIS
MO0
MS~
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SBC
SDF
SDG
SDP
SDS
SES
SEW
SPC
SPCBC
SSB
SSD
SST
SSV
SSW
SSZ
T5K
TN5
TWZ
UHS
WH7
WUQ
XPP
YYP
ZMT
ZY4
~02
~G-
77I
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
ADVLN
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
ID FETCH-LOGICAL-c297t-d87ae786dfbb9b6439e5036245ab2f37d052e48bba68d2e2679355afb47608903
IEDL.DBID .~1
ISSN 0020-0255
IngestDate Wed Oct 01 05:13:51 EDT 2025
Thu Apr 24 23:07:33 EDT 2025
Fri Feb 23 02:38:51 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords K-means
K-means variants
Modified k-means
Big data clustering
Perspectives on big data clustering
Clustering algorithm
Improved k-means
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c297t-d87ae786dfbb9b6439e5036245ab2f37d052e48bba68d2e2679355afb47608903
PageCount 33
ParticipantIDs crossref_citationtrail_10_1016_j_ins_2022_11_139
crossref_primary_10_1016_j_ins_2022_11_139
elsevier_sciencedirect_doi_10_1016_j_ins_2022_11_139
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate April 2023
2023-04-00
PublicationDateYYYYMMDD 2023-04-01
PublicationDate_xml – month: 04
  year: 2023
  text: April 2023
PublicationDecade 2020
PublicationTitle Information sciences
PublicationYear 2023
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References Zhu, Z., & Liu, N. (2021). Early warning of financial risk based on K-means clustering algorithm.
727-734.
43-46.
Zhu, Li (b1235) 2020; 13
1207-1215.
Lai, Huang, Liaw (b0590) 2009; 42
Steinbach, Karypis, Kumar (b1010) 2000
Lv, Hu, Zhong, Wu, Li, Zhao (b0670) 2010
Lloyd (b0660) 1982
Ikotun, Almutari, Ezugwu (b0460) 2021; 11
Sinha, Jana (b1005) 2018; 74
Alsabti, Ranka, Singh (b0075) 1997; 43
1027-1035. 10.1145/1283383.1283494.
Hans-Hermann (b0405) 2008; 4
Kaufman, Rousseeuw (b0530) 1987
Xu, Ding, Liu, Luo (b1130) 2015; 54
Lim, Hwang (b0640) 2019; 20
Ye, J., Zhao, Z., & Wu, M. (2007). Discriminative K-means for clustering.
Sinaga, Hussain, Yang (b0990) 2021; 9
Alguliyev, Aliguliyev, Sukhostat (b0065) 2021; 152
Kapoor, Singhal (b0525) 2017
Blömer, Lammersen, Schmidt, Sohler (b0140) 2016
1-9.
46-56.
Celebi, Kingravi, Vela (b0180) 2013; 40
Peña, Lozano, Larrañaga (b0845) 1999; 20
1540-1544.
1-12. (1295).
Boukhdhir, Lachiheb, Gouider (b0150) 2015
Huang, Kang, Xu, Liu (b0440) 2021; 117
,
Stemmer, Kaplan (b1030) 2018; 31
Pimentel, de Carvalho (b0860) 2020; 195
.
Moubayed, Injadat, Shami, Lutfiyya (b0735) 2020; 34
Zhu, Ma (b1230) 2018; 71
Chokniwal, Singh (b0220) 2016
Tayal, Solanki, Singh (b1035) 2020; 62
Nandapala, E. Y. L., & Jayasena, K. P. N. (2020). The practical approach in customers segmentation by using the K-means algorithm.
Farcomeni (b0315) 2014; 24
Marom, Feldman (b0695) 2019; 32
Cui, Zhu, Yang, Li, Ji (b0240) 2014; 70
Fahim, Salem, Torkey, Ramadan (b0310) 2006; 7
Lee, Lin (b0605) 2012; 13
Rajah, V., & Ezugwu, A. E. (2020). Hybrid symbiotic organism search algorithms for automatic data clustering.
Guan, Ding, Shen, Krim (b0385) 2018; 100
635-639.
Arthur, D., & Vassilvitskii, S. (2007). K-means++: The advantages of careful seeding.
Ezugwu, Shukla, Agbaje, Oyelade, José-García, Agushaka (b0305) 2021; 33
Abernathy, Celebi (b0005) 2022; 207
Zhou, Gu, Shen, Ma, Miao, Zhang, Gong (b1220) 2017; 6
Dafir, Lamari, Slaoui (b0245) 2021; 54
Newling, J., & Fleuret, F. (2016). Nested mini-batch K-means.
Mouton, Ferreira, Helberg (b0740) 2020; 151
Jancey (b0490) 1966; 14
Jain, Murty, Flynn (b0485) 1999; 31
Sanwale, Singh (b0930) 2018; 68
Chen, Chen, Lu (b0205) 2021; 176
Nazeer, Kumar, Sebastian (b0775) 2011
Olukanmi, Nelwamondo, Marwala, Twala (b0815) 2022; 34
Olukanmi, P. O., & Twala, B. (2017). K-means-sharp: modified centroid update for outlier-robust K-means clustering.
Wang, J., & Su, X. (2011). An improved K-means clustering algorithm. In
7-11.
Ahmad, Khan (b0045) 2019; 7
Kanungo, Mount, Netanyahu, Piatko, Silverman, Wu (b0510) 2002; 24
2257-2262.
10-18.
Mirkin, B. (2005), Clustering for data mining: A data recovery approach. Boca Raton FL: Chapman and Hall/CRC
Ezugwu, Ikotun, Oyelade, Abualigah, Agushaka, Eke, Akinyelu (b0300) 2022; 110
Islam, Estivill-Castro, Rahman, Bossomaier (b0465) 2018; 91
147-153.
1321-1330.
Wu, Kumar, Quinlan, Ghosh, Yang, Motoda, McLachlan, Ng, Liu, Philip, Zhou (b1085) 2008; 14
Lingxian, Jiaqing, Shihuai (b0650) 2019
Kijsipongse, Suriya (b0560) 2012
(Vol. 1, pp. 731-738), doi: 10.1109/CVPR.2005.210.
Ren, S., & Fan, A. (2011). K-means clustering algorithm based on coefficient of variation. In
142-146.
Xiong, Hua, Lv, Li (b1110) 2016
Minh, Sang-To, Wahab, Cuong-Le (b0710) 2022; 251
Jain (b0475) 2010; 31
Lam, Tsang, Leung (b0595) 2013; 22
Pérez-Ortega, Almanza-Ortega, Vega-Villalobos, Pazos-Rangel, Zavala-Díaz, Martínez-Rebollar (b0855) 2019
Silva, Lezama, Varela, Guiliany, Sanabria, Otero, Rojas (b0980) 2019
Guo, Han, Han (b0390) 2014
Wu, Zhu, Xu, Bhatt, Sharma (b1090) 2022; 13
Kuo, R. J., Suryani, E., & Yasid, A. (2013). Automatic clustering combining differential evolution algorithm and K-means algorithm. In
Ragunthar, Ashok, Gopinath, Subashini (b0890) 2021
Gu (b0380) 2016
Benchara, Youssfi (b0115) 2021; 101
Makarychev, Reddy, Shan (b0685) 2020; 33
Belhadi, Djenouri, Nørvåg, Ramampiaro, Masseglia, Lin (b0100) 2020; 95
Drineas, Frieze, Kannan, Vempala, Vinay (b0280) 1999; 99
Nie, Li, Wang, Li (b0800) 2022; 14
IEEE
Honda, Nonoguchi, Notsu, Ichihashi (b0425) 2011
1-3. London, UK: Association of Engineers.
(550), 22-24.
Elkan, C. (2003). Using the triangle inequality to accelerate K-means. In
Ichikawa, Morishita (b0455) 2014; 11
Couto, J. (2005, September). Kernel K-means for categorical data. In
Saha, Mukherjee (b0920) 2021; 110
Lange, T., Law, M. H., Jain, A. K., & Buhmann, J. M. (2005). Learning with constrained and unlabelled data. In
Sarma, T. H. Viswanath, P., & Reddy, B. E. (2011). A fast approximate kernel K-means clustering method for large data sets.
Harb, Makhoul, Couturier (b0410) 2015; 15
Zhang, Y., Zhang, D., & Shi, H. (2012). K-means clustering based on self-adaptive weight. In
Zhang, H., & Zhou, X. (2018). A novel clustering algorithm combining niche genetic algorithm with canopy and K-means.
Na, Xumin, Yong (b0750) 2010
Yang, Tjuawinata, Lam (b1150) 2022; 17
44-46.
Shiudkar, Takmare (b0965) 2017; 4
IEEE, 26-32.
189-197.
Gocer, Sener (b0365) 2022; 39
Van-Hieu, Meesad (b1040) 2015
Xie, Liu, Wei (b1105) 2020; 5
Abualigah (b0020) 2019
Zha, H., He, X., Ding, C., Gu, M., & Simon, H. (2001). Spectral relaxation for K-means clustering.
Fukunaga (b0335) 2013
Geng, Mu, Mao, Ye, Zhu (b0355) 2020; 8
665-670.
29.
Zhang, Lange, Xu (b1200) 2020; 33
Mahmud, Rahman, Akhtar (b0680) 2012
141-144.
Estlick, Leeser, Theiler, Szymanski (b0290) 2001
14-19.
Bezdek, Ehrlich, Full (b0130) 1984; 10
Ezugwu, Agbaje, Aljojo, Els, Chiroma, Abd Elaziz (b0295) 2020; 8
Lee, Lin (b0610) 2013; 23
Nanda, Gulati, Chauhan, Modi, Dhaked (b0755) 2019; 33
https://doi.org/10.1201/9781420034912.
Feng, Lu, Yang, Xu (b0325) 2012
Mao, Gan, Mwakapesa, Nanehkaran, Tao, Huang (b0690) 2022; 78
Sharma, Vashisht, Singh (b0945) 2020
Pu, Gan, Qiu, Duan, Wang (b0865) 2022; 81
Vijayaraghavan, Dutta, Wang (b1055) 2017; 30
Xiao, Yan, Zhang, Tang (b1100) 2010; 37
Kapil, Chawla, Ansari (b0520) 2016
Zhang, Li, Deng (b1175) 2020; 11
Moodi, Saadatfar (b0730) 2021; 16
242-249.
Dai, W., Jiao, C., & He, T. (2007). Research of K-means clustering method based on parallel genetic algorithm. In
Lu, Gao, Zhang, Xia (b0665) 2022; 501
Lei, Jiang, Wu, Du, Zhu, Wang (b0615) 2016; 75
Steinhaus (b1015) 1956; 3
Gönen, Margolin (b0370) 2014; 27
Abualigah, Khader, Hanandeh (b0025) 2018; 25
Zhang, Ma (b1190) 2017; 94
Gavira-Durón, Gutierrez-Vargas, Cruz-Aké (b0350) 2021; 9
Kaur, Dhaliwal, Vohra (b0545) 2013
Xiong, Hu, Yongliang, Zikun, Bin, Hao (b1115) 2021; 34
Verykios, Bertino, Fovino, Provenza, Saygin, Theodoridis (b1045) 2004; 33
Alizadeh, Eisen, Davis, Ma, Lossos, Rosenwald, Boldrick, Sabet, Tran, Yu, Powell (b0070) 2000; 403
Singh, Mehta, Anand, Nath, Pandey, Khamparia (b1000) 2021; 38
Zhuang, Y., Mao, Y., & Chen, X. (2016). A limited-iteration bisecting K-means for fast clustering large datasets. In
Krizhevsky, Hinton (b0575) 2009
Bradley, Mangasarian, Street (b0155) 1997; 9
Hu, Wang, Liu, Ye (b0435) 2017
He, Lan, Tan, Sung, Low (b0415) 2004
Jain, Dubes (b0480) 1988
Ng, Han (b0795) 2002; 14
Yuan, F., Meng, Z. H., Zhang, H. X., & Dong, C. R. (2004). A new algorithm to get the initial centroids. In
Zhang, Huang, Sun, Zhao, Liu, Lai, Liu (b1185) 2022
Hussain, Haris (b0450) 2019; 118
Fränti, Sieranoja (b0330) 2019; 93
Wang, Shao, Xu, Zhang, Xu, Guan (b1075) 2020; 8
Modha, Spangler (b0725) 2003; 52
Sieranoja, Fränti (b0975) 2022; 64
Panday, Singh (b0825) 2019; 8
Cai, J., Liao, D., Chen, J., Chen, X., Liu, T., & Xi, J. (2020). Research on data security protection method based on improved K-means clustering algorithm. In
Cleuziou, G. (2008, December). An extended version of the K-means method for overlapping clustering. In
Abualigah, Diabat, Geem (b0015) 2020; 10
Honda, Notsu, Ichihashi (b0430) 2009; 18
Wang, Wang, Ke, Zeng, Li (b1060) 2012
Hamerly, Elkan (b0400) 2003; 16
Yang, Sinaga (b1145) 2019; 7
Zubair, Iqbal, Shil, Chowdhury, Moni, Sarker (b1250) 2022; 2022
IEEE, 344-349.
151(158), 11-11 Dec. 2011.
Wu, Wu (b1095) 2020; 8
Park, Jun (b0835) 2009; 36
IEEE, 6, 636.
Min, W., & Siqing, Y. (2010). Improved K-means clustering based on genetic algorithm. In
Kao, Y., & Lee, S. Y. (2009). Combining K-means and particle swarm optimization for dynamic data clustering problems. In
Zeebaree, Haron, Abdulazeez, Zeebaree (b1165) 2017; 12
Bai, Liang, Cao (b0095) 2020; 61
158-163.
Newman (b0790) 1960; 67
Rathore, P., & Shukla, D. (2015). Analysis and performance improvement of K-means clustering in big data environment. In
Pérez-Ortega, Almanza-Ortega, Romero (b0850) 2018; 13
Agbaje, Ezugwu, Els (b0035) 2019; 7
Kamil, Salih (b0500) 2019; 12
Xu, Krzyzak, Oja (b1125) 1993; 4
Chen, Yang (b0195) 2021; 52
Qi, Chen, Sun, Sun, Yang (b0885) 2021; 16
Xu, Tian (b1120) 2015; 2
Mustafi, Sahoo (b0745) 2019; 23
Georgogiannis, A. (2016). Robust K-means: a theoretical revisit.
Pelleg, D., & Moore, A. W. (2000). X-means: Extending K-means with efficient estimation of the number of clusters. In
832-835.
Bertin-Mahieux, Ellis, Whitman, Lamere (b0125) 2011
Borlea, Precup, Borlea, Iercan (b0145) 2021; 214
MacQueen (b0675) 1967
Zhu, Idemudia, Feng (b1225) 2019; 17
Berry, Maitra (b0120) 2019; 12
Ismkhan (b0470) 2018; 79
Gan, Ma, Wu (b0340) 2020; 64
He, Vialle, Baboulin (b0420) 2022; 34
Biswas, C., Ganguly, D., Roy, D., & Bhattacharya, U. (2019). Privacy preserving approximate K-means clustering.
Zhao, Nie, Wang, Li (b1210) 2022; 491
Abualigah, Khader, Hanandeh, Gandomi (b0030) 2017; 60
Chien, Pan, Milenkovic (b0215) 2018; 31
Krey, Ligges, Leisch (b0570) 2014; 29
Gupta, Kumar, Lu, Moseley, Vassilvitskii (b0395) 2017; 10
Ahmed, M., Seraj, R., & Islam, S. M. S. (2020). The K-means algorithm: A comprehensive survey and performance evaluation.
Niu, K., Gao, Z., Jiao, H., & Deng, N. (2016). K-means+: A developed clustering algorithm for big data. In
Shen, Liu, Tsang, Shen, Sun (b0950) 2017
Goyal, Aggarwal (b0375) 2017; 8
Wang, B., Lv, Z., Zhao, J., Wang, X., & Zhang, T. (2016). An adaptively disperse centroids K-means algorithm based on mapreduce model. In
Garg, Jindal (b0345) 2021; 80
Kaufman, Rousseeuw (b0535) 2009
Steinley (b1025) 2006; 59
Kaufman, Rousseeuw (b0540) 2008
Li, Song, Yang (b0625) 2019; 12
4, 2076-2079.
Belhaouari, Ahmed, Mansour (b0105) 2014; 2014
158-161.
1-4.
Casper, E., Hung, C. C., Jung, E., & Yang, M
Krizhevsky (10.1016/j.ins.2022.11.139_b0575) 2009
Moodi (10.1016/j.ins.2022.11.139_b0730) 2021; 16
Huang (10.1016/j.ins.2022.11.139_b0445) 1998; 2
10.1016/j.ins.2022.11.139_b0580
Zhou (10.1016/j.ins.2022.11.139_b1215) 2019; 163
Fränti (10.1016/j.ins.2022.11.139_b0330) 2019; 93
10.1016/j.ins.2022.11.139_b0585
Xiong (10.1016/j.ins.2022.11.139_b1115) 2021; 34
Sinaga (10.1016/j.ins.2022.11.139_b0990) 2021; 9
Alsabti (10.1016/j.ins.2022.11.139_b0075) 1997; 43
Borlea (10.1016/j.ins.2022.11.139_b0145) 2021; 214
Gupta (10.1016/j.ins.2022.11.139_b0395) 2017; 10
Lv (10.1016/j.ins.2022.11.139_b0670) 2010
Kapil (10.1016/j.ins.2022.11.139_b0520) 2016
Likas (10.1016/j.ins.2022.11.139_b0635) 2003; 36
Park (10.1016/j.ins.2022.11.139_b0835) 2009; 36
Agbaje (10.1016/j.ins.2022.11.139_b0035) 2019; 7
Nazeer (10.1016/j.ins.2022.11.139_b0775) 2011
Li (10.1016/j.ins.2022.11.139_b0630) 2007; 2
Lim (10.1016/j.ins.2022.11.139_b0640) 2019; 20
Singh (10.1016/j.ins.2022.11.139_b1000) 2021; 38
Steinhaus (10.1016/j.ins.2022.11.139_b1015) 1956; 3
Kapoor (10.1016/j.ins.2022.11.139_b0525) 2017
Dafir (10.1016/j.ins.2022.11.139_b0245) 2021; 54
Lam (10.1016/j.ins.2022.11.139_b0595) 2013; 22
Wang (10.1016/j.ins.2022.11.139_b1060) 2012
Chen (10.1016/j.ins.2022.11.139_b0205) 2021; 176
He (10.1016/j.ins.2022.11.139_b0420) 2022; 34
Cheung (10.1016/j.ins.2022.11.139_b0210) 2003; 24
Estlick (10.1016/j.ins.2022.11.139_b0290) 2001
10.1016/j.ins.2022.11.139_b0360
Geng (10.1016/j.ins.2022.11.139_b0355) 2020; 8
Mao (10.1016/j.ins.2022.11.139_b0690) 2022; 78
Marom (10.1016/j.ins.2022.11.139_b0695) 2019; 32
10.1016/j.ins.2022.11.139_b0235
10.1016/j.ins.2022.11.139_b0910
Ding (10.1016/j.ins.2022.11.139_b0260) 2004
Garg (10.1016/j.ins.2022.11.139_b0345) 2021; 80
Bezdek (10.1016/j.ins.2022.11.139_b0130) 1984; 10
Ichikawa (10.1016/j.ins.2022.11.139_b0455) 2014; 11
Ikotun (10.1016/j.ins.2022.11.139_b0460) 2021; 11
Xiong (10.1016/j.ins.2022.11.139_b1110) 2016
Guo (10.1016/j.ins.2022.11.139_b0390) 2014
Pang (10.1016/j.ins.2022.11.139_b0830) 2021; 165
Ragunthar (10.1016/j.ins.2022.11.139_b0890) 2021
Harb (10.1016/j.ins.2022.11.139_b0410) 2015; 15
10.1016/j.ins.2022.11.139_b0230
Sinaga (10.1016/j.ins.2022.11.139_b0985) 2020; 8
Belhaouari (10.1016/j.ins.2022.11.139_b0105) 2014; 2014
Sieranoja (10.1016/j.ins.2022.11.139_b0975) 2022; 64
Zhang (10.1016/j.ins.2022.11.139_b1190) 2017; 94
Fahim (10.1016/j.ins.2022.11.139_b0310) 2006; 7
10.1016/j.ins.2022.11.139_b0900
10.1016/j.ins.2022.11.139_b0905
Khan (10.1016/j.ins.2022.11.139_b0555) 2020; 154
Makarychev (10.1016/j.ins.2022.11.139_b0685) 2020; 33
Yang (10.1016/j.ins.2022.11.139_b1135) 2017; 28
Boukhdhir (10.1016/j.ins.2022.11.139_b0150) 2015
Nie (10.1016/j.ins.2022.11.139_b0800) 2022; 14
10.1016/j.ins.2022.11.139_b0810
Ezugwu (10.1016/j.ins.2022.11.139_b0295) 2020; 8
Qi (10.1016/j.ins.2022.11.139_b0885) 2021; 16
10.1016/j.ins.2022.11.139_b0935
Lithio (10.1016/j.ins.2022.11.139_b0655) 2018; 11
Alam (10.1016/j.ins.2022.11.139_b0060) 2019; 3
Zeebaree (10.1016/j.ins.2022.11.139_b1165) 2017; 12
Xu (10.1016/j.ins.2022.11.139_b1125) 1993; 4
Pakhira (10.1016/j.ins.2022.11.139_b0820) 2014
Yang (10.1016/j.ins.2022.11.139_b1145) 2019; 7
Gönen (10.1016/j.ins.2022.11.139_b0370) 2014; 27
Wu (10.1016/j.ins.2022.11.139_b1095) 2020; 8
Gocer (10.1016/j.ins.2022.11.139_b0365) 2022; 39
Mishra (10.1016/j.ins.2022.11.139_b0720) 2012
Panday (10.1016/j.ins.2022.11.139_b0825) 2019; 8
10.1016/j.ins.2022.11.139_b0250
Bai (10.1016/j.ins.2022.11.139_b0095) 2020; 61
10.1016/j.ins.2022.11.139_b0135
Chen (10.1016/j.ins.2022.11.139_b0190) 2021; 402
Peña (10.1016/j.ins.2022.11.139_b0845) 1999; 20
Hans-Hermann (10.1016/j.ins.2022.11.139_b0405) 2008; 4
Verykios (10.1016/j.ins.2022.11.139_b1045) 2004; 33
10.1016/j.ins.2022.11.139_b0805
Zhao (10.1016/j.ins.2022.11.139_b1205) 2009
Newling (10.1016/j.ins.2022.11.139_b0785) 2017; 30
Jain (10.1016/j.ins.2022.11.139_b0485) 1999; 31
Pusadan (10.1016/j.ins.2022.11.139_b0875) 2019; 5
Gu (10.1016/j.ins.2022.11.139_b0380) 2016
Minh (10.1016/j.ins.2022.11.139_b0710) 2022; 251
10.1016/j.ins.2022.11.139_b0160
Zhao (10.1016/j.ins.2022.11.139_b1210) 2022; 491
10.1016/j.ins.2022.11.139_b0285
Moubayed (10.1016/j.ins.2022.11.139_b0735) 2020; 34
10.1016/j.ins.2022.11.139_b0960
Rahman (10.1016/j.ins.2022.11.139_b0895) 2014; 71
Hu (10.1016/j.ins.2022.11.139_b0435) 2017
Bradley (10.1016/j.ins.2022.11.139_b0155) 1997; 9
Wu (10.1016/j.ins.2022.11.139_b1085) 2008; 14
10.1016/j.ins.2022.11.139_b0715
Stemmer (10.1016/j.ins.2022.11.139_b1030) 2018; 31
Modha (10.1016/j.ins.2022.11.139_b0725) 2003; 52
Mustafi (10.1016/j.ins.2022.11.139_b0745) 2019; 23
Lei (10.1016/j.ins.2022.11.139_b0615) 2016; 75
Cui (10.1016/j.ins.2022.11.139_b0240) 2014; 70
10.1016/j.ins.2022.11.139_b1240
10.1016/j.ins.2022.11.139_b1245
Ahmad (10.1016/j.ins.2022.11.139_b0040) 2007; 63
Kant (10.1016/j.ins.2022.11.139_b0505) 2016; 7
Mahmud (10.1016/j.ins.2022.11.139_b0680) 2012
Kaur (10.1016/j.ins.2022.11.139_b0545) 2013
10.1016/j.ins.2022.11.139_b0940
Sharma (10.1016/j.ins.2022.11.139_b0945) 2020
Honda (10.1016/j.ins.2022.11.139_b0425) 2011
Li (10.1016/j.ins.2022.11.139_b0625) 2019; 12
Alguliyev (10.1016/j.ins.2022.11.139_b0065) 2021; 152
10.1016/j.ins.2022.11.139_b0705
Lingxian (10.1016/j.ins.2022.11.139_b0650) 2019
Wu (10.1016/j.ins.2022.11.139_b1090) 2022; 13
Hussain (10.1016/j.ins.2022.11.139_b0450) 2019; 118
Sanwale (10.1016/j.ins.2022.11.139_b0930) 2018; 68
Pu (10.1016/j.ins.2022.11.139_b0865) 2022; 81
Pérez-Ortega (10.1016/j.ins.2022.11.139_b0850) 2018; 13
Zhu (10.1016/j.ins.2022.11.139_b1230) 2018; 71
Alizadeh (10.1016/j.ins.2022.11.139_b0070) 2000; 403
Shrifan (10.1016/j.ins.2022.11.139_b0970) 2021; 34
Kaufman (10.1016/j.ins.2022.11.139_b0540) 2008
Calandriello (10.1016/j.ins.2022.11.139_b0165) 2018; 31
10.1016/j.ins.2022.11.139_b0185
10.1016/j.ins.2022.11.139_b1155
He (10.1016/j.ins.2022.11.139_b0415) 2004
Huang (10.1016/j.ins.2022.11.139_b0440) 2021; 117
Bache (10.1016/j.ins.2022.11.139_b0085) 2013
Chen (10.1016/j.ins.2022.11.139_b0200) 2011; 25
Goyal (10.1016/j.ins.2022.11.139_b0375) 2017; 8
Zhu (10.1016/j.ins.2022.11.139_b1235) 2020; 13
Ahmad (10.1016/j.ins.2022.11.139_b0045) 2019; 7
Abualigah (10.1016/j.ins.2022.11.139_b0025) 2018; 25
Jain (10.1016/j.ins.2022.11.139_b0480) 1988
Steinley (10.1016/j.ins.2022.11.139_b1025) 2006; 59
10.1016/j.ins.2022.11.139_b0050
10.1016/j.ins.2022.11.139_b0175
10.1016/j.ins.2022.11.139_b1140
Zhang (10.1016/j.ins.2022.11.139_b1200) 2020; 33
10.1016/j.ins.2022.11.139_b0055
10.1016/j.ins.2022.11.139_b0840
Shiudkar (10.1016/j.ins.2022.11.139_b0965) 2017; 4
10.1016/j.ins.2022.11.139_b0600
Gan (10.1016/j.ins.2022.11.139_b0340) 2020; 64
Tayal (10.1016/j.ins.2022.11.139_b1035) 2020; 62
Kijsipongse (10.1016/j.ins.2022.11.139_b0560) 2012
Yang (10.1016/j.ins.2022.11.139_b1150) 2022; 17
Guan (10.1016/j.ins.2022.11.139_b0385) 2018; 100
Lee (10.1016/j.ins.2022.11.139_b0605) 2012; 13
Lee (10.1016/j.ins.2022.11.139_b0610) 2013; 23
Nasir (10.1016/j.ins.2022.11.139_b0765) 2018; 42
Benchara (10.1016/j.ins.2022.11.139_b0115) 2021; 101
Blömer (10.1016/j.ins.2022.11.139_b0140) 2016
Ismkhan (10.1016/j.ins.2022.11.139_b0470) 2018; 79
Belhadi (10.1016/j.ins.2022.11.139_b0100) 2020; 95
Bertin-Mahieux (10.1016/j.ins.2022.11.139_b0125) 2011
Na (10.1016/j.ins.2022.11.139_b0750) 2010
10.1016/j.ins.2022.11.139_b1050
10.1016/j.ins.2022.11.139_b0080
Silva (10.1016/j.ins.2022.11.139_b0980) 2019
10.1016/j.ins.2022.11.139_b1170
Fukunaga (10.1016/j.ins.2022.11.139_b0335) 2013
10.1016/j.ins.2022.11.139_b0760
10.1016/j.ins.2022.11.139_b0880
Saini (10.1016/j.ins.2022.11.139_b0925) 2014; 3
Lai (10.1016/j.ins.2022.11.139_b0590) 2009; 42
10.1016/j.ins.2022.11.139_b0515
Zubair (10.1016/j.ins.2022.11.139_b1250) 2022; 2022
Doumas (10.1016/j.ins.2022.11.139_b0270) 2016; 20
Mouton (10.1016/j.ins.2022.11.139_b0740) 2020; 151
Xiao (10.1016/j.ins.2022.11.139_b1100) 2010; 37
Steinley (10.1016/j.ins.2022.11.139_b1020) 2007; 24
10.1016/j.ins.2022.11.139_b1160
Lingras (10.1016/j.ins.2022.11.139_b0645) 2004; 23
Wang (10.1016/j.ins.2022.11.139_b1075) 2020; 8
Chen (10.1016/j.ins.2022.11.139_b0195) 2021; 52
Abualigah (10.1016/j.ins.2022.11.139_b0015) 2020; 10
Zhu (10.1016/j.ins.2022.11.139_b1225) 2019; 17
Kavitha (10.1016/j.ins.2022.11.139_b0550) 2022
Duda (10.1016/j.ins.2022.11.139_b0275) 1973; Vol. 3
José-García (10.1016/j.ins.2022.11.139_b0495) 2016; 41
Shibayama (10.1016/j.ins.2022.11.139_b0955) 1992; 40
Van-Hieu (10.1016/j.ins.2022.11.139_b1040) 2015
Nanda (10.1016/j.ins.2022.11.139_b0755) 2019; 33
Kamil (10.1016/j.ins.2022.11.139_b0500) 2019; 12
Islam (10.1016/j.ins.2022.11.139_b0465) 2018; 91
Chokniwal (10.1016/j.ins.2022.11.139_b0220) 2016
Abernathy (10.1016/j.ins.2022.11.139_b0005) 2022; 207
Jain (10.1016/j.ins.2022.11.139_b0475) 2010; 31
10.1016/j.ins.2022.11.139_b1070
Abualigah (10.1016/j.ins.2022.11.139_b0030) 2017; 60
Xie (10.1016/j.ins.2022.11.139_b1105) 2020; 5
10.1016/j.ins.2022.11.139_b0780
10.1016/j.ins.2022.11.139_b1195
Cleuziou (10.1016/j.ins.2022.11.139_b0225) 2007; 54
Farcomeni (10.1016/j.ins.2022.11.139_b0315) 2014; 24
Olukanmi (10.1016/j.ins.2022.11.139_b0815) 2022; 34
Xu (10.1016/j.ins.2022.11.139_b1130) 2015; 54
Lu (10.1016/j.ins.2022.11.139_b0665) 2022; 501
Kaufman (10.1016/j.ins.2022.11.139_b0530) 1987
Ezugwu (10.1016/j.ins.2022.11.139_b0300) 2022; 110
10.1016/j.ins.2022.11.139_b0090
10.1016/j.ins.2022.11.139_b1180
10.1016/j.ins.2022.11.139_b1065
Ben Gouissem (10.1016/j.ins.2022.11.139_b0110) 2022; e5255
Pérez-Ortega (10.1016/j.ins.2022.11.139_b0855) 2019
10.1016/j.ins.2022.11.139_b0770
Honda (10.1016/j.ins.2022.11.139_b0430) 2009; 18
Sinha (10.1016/j.ins.2022.11.139_b1005) 2018; 74
MacQueen (10.1016/j.ins.2022.11.139_b0675) 1967
Shen (10.1016/j.ins.2022.11.139_b0950) 2017
Jancey (10.1016/j.ins.2022.11.139_b0490) 1966; 14
Krey (10.1016/j.ins.2022.11.139_b0570) 2014; 29
Feng (10.1016/j.ins.2022.11.139_b0325) 2012
Xu (10.1016/j.ins.2022.11.139_b1120) 2015; 2
Kanungo (10.1016/j.ins.2022.11.139_b0510) 2002; 24
Ezugwu (10.1016/j.ins.2022.11.139_b0305) 2021; 33
Lever (10.1016/j.ins.2022.11.139_b0620) 2017; 14
Steinbach (10.1016/j.ins.2022.11.139_b1010) 2000
10.1016/j.ins.2022.11.139_b0320
Mendes (10.1016/j.ins.2022.11.139_b0700) 2017; 5
Capó (10.1016/j.ins.2022.11.139_b0170) 2020
L
References_xml – reference: 1027-1035. 10.1145/1283383.1283494.
– volume: 34
  start-page: e6621
  year: 2022
  ident: b0420
  article-title: Parallel and accurate k-means algorithm on CPU-GPU architectures for spectral clustering
  publication-title: Concurr. Comput. Pract. Exp.
– reference: , 14-19.
– reference: , 1321-1330.
– reference: Lange, T., Law, M. H., Jain, A. K., & Buhmann, J. M. (2005). Learning with constrained and unlabelled data. In
– volume: 61
  start-page: 36
  year: 2020
  end-page: 47
  ident: b0095
  article-title: A multiple K-means clustering ensemble algorithm to find nonlinearly separable clusters
  publication-title: Inform. Fusion
– volume: 5
  start-page: 285
  year: 2019
  end-page: 296
  ident: b0875
  article-title: Anomaly detection on flight route using similarity and grouping approach based-on automatic dependent surveillance-broadcast
  publication-title: Internat. J. Adv. Intell. Inform.
– volume: 34
  start-page: 554
  year: 2021
  end-page: 562
  ident: b1115
  article-title: Helicopter maritime search area planning based on a minimum bounding rectangle and K-means clustering
  publication-title: Chin. J. Aeronaut.
– volume: 14
  start-page: 1
  year: 2022
  end-page: 11
  ident: b0800
  article-title: An effective and efficient algorithm for K-means clustering with new formulation
  publication-title: IEEE Trans. Knowl. Data Eng.
– volume: 71
  start-page: 608
  year: 2018
  end-page: 621
  ident: b1230
  article-title: An effective partitional clustering algorithm based on new clustering validity index
  publication-title: Appl. Soft Comput.
– volume: 33
  start-page: 152
  year: 2019
  end-page: 170
  ident: b0755
  article-title: A K-means-galactic swarm optimization-based clustering algorithm with Otsu’s entropy for brain tumor detection
  publication-title: Appl. Artif. Intell.
– volume: 40
  start-page: 200
  year: 2013
  end-page: 210
  ident: b0180
  article-title: A comparative study of efficient initialization methods for the K-means clustering algorithm
  publication-title: Expert Syst. Appl.
– volume: 52
  start-page: 303
  year: 2021
  end-page: 347
  ident: b0195
  article-title: Diffusion K-means clustering on manifolds: Provable exact recovery via semidefinite relaxations
  publication-title: Appl. Comput. Harmon. Anal.
– volume: 22
  start-page: 1349
  year: 2013
  end-page: 1355
  ident: b0595
  article-title: PSO-based K-means clustering with enhanced cluster matching for gene expression data
  publication-title: Neural Comput. Appl.
– volume: 9
  start-page: 368
  year: 1997
  end-page: 374
  ident: b0155
  article-title: Clustering via concave minimization
  publication-title: Adv. Neural Inf. Proces. Syst.
– reference: , 141-144.
– volume: 75
  start-page: 12043
  year: 2016
  end-page: 12059
  ident: b0615
  article-title: Robust K-means algorithm with automatically splitting and merging clusters and its applications for surveillance data
  publication-title: Multimed. Tools Appl.
– start-page: 464
  year: 2017
  end-page: 467
  ident: b0435
  article-title: Improved K-means algorithm based on hybrid fruit fly optimization and differential evolution
  publication-title: 2017 12th International Conference on Computer Science and Education (ICCSE)
– reference: Sarma, T. H. Viswanath, P., & Reddy, B. E. (2011). A fast approximate kernel K-means clustering method for large data sets.
– reference: Zhu, Z., & Liu, N. (2021). Early warning of financial risk based on K-means clustering algorithm.
– volume: e5255
  year: 2022
  ident: b0110
  article-title: Energy efficient grid-based k-means clustering algorithm for large scale wireless sensor networks
  publication-title: Int. J. Commun Syst
– volume: 23
  start-page: 199
  year: 2013
  end-page: 206
  ident: b0610
  article-title: Fast K-means clustering using deletion by center displacement and norms product (CDNP)
  publication-title: Pattern Recognit Image Anal.
– start-page: 1
  year: 2010
  end-page: 6
  ident: b0255
  article-title: MK-means-modified K-means clustering algorithm
  publication-title: The 2010 International Joint Conference on Neural Networks (IJCNN)
– reference: Chawla, S., & Gionis, A. (2013). K-means–: A unified approach to clustering and outlier detection. In
– reference: Kuo, R. J., Suryani, E., & Yasid, A. (2013). Automatic clustering combining differential evolution algorithm and K-means algorithm. In
– volume: 7
  start-page: 114472
  year: 2019
  end-page: 114486
  ident: b1145
  article-title: A feature-reduction multi-view K-means clustering algorithm
  publication-title: IEEE Access
– reference: Sculley, D. (2010). Web-scale k-means clustering. In
– volume: 2
  start-page: 165
  year: 2015
  end-page: 193
  ident: b1120
  article-title: A comprehensive survey of clustering algorithms
  publication-title: Ann. Data Sci.
– volume: 403
  start-page: 503
  year: 2000
  end-page: 511
  ident: b0070
  article-title: Distinct types of diffuse large B-celllymphoma identified by gene expression profiling
  publication-title: Nature
– volume: 95
  year: 2020
  ident: b0100
  article-title: Space–time series clustering: Algorithms, taxonomy, and case study on urban smart cities
  publication-title: Eng. Appl. Artif. Intel.
– volume: 163
  start-page: 546
  year: 2019
  end-page: 557
  ident: b1215
  article-title: Automatic data clustering using nature-inspired symbiotic organism search algorithm
  publication-title: Knowl.-Based Syst.
– volume: 207
  year: 2022
  ident: b0005
  article-title: The incremental online k-means clustering algorithm and its application to color quantization
  publication-title: Expert Syst. Appl.
– volume: 8
  year: 2019
  ident: b0825
  article-title: Improved K-means map reduce algorithm for big data cluster analysis
  publication-title: Internat. J. Innov. Technol. Explor. Eng. (IJITEE)
– volume: 11
  start-page: 27
  year: 2020
  ident: b1175
  article-title: K-Means clustering-based electrical equipment identification for smart building application
  publication-title: Information
– volume: 36
  start-page: 3336
  year: 2009
  end-page: 3341
  ident: b0835
  article-title: A simple and fast algorithm for K-medoids clustering
  publication-title: Expert Syst. Appl.
– volume: 9
  start-page: 67736
  year: 2021
  end-page: 67751
  ident: b0990
  article-title: Entropy K-means clustering with feature reduction under unknown number of clusters
  publication-title: IEEE Access
– reference: , 44-46.
– reference: , 2257-2262.
– volume: 27
  year: 2014
  ident: b0370
  article-title: Localized data fusion for kernel K-means clustering with application to cancer biology
  publication-title: Adv. Neural Inf. Proces. Syst.
– volume: 31
  start-page: 264
  year: 1999
  end-page: 323
  ident: b0485
  article-title: Data clustering: A review
  publication-title: ACM Comput. Surveys (CSUR)
– volume: 99
  start-page: 291
  year: 1999
  end-page: 299
  ident: b0280
  article-title: Clustering in large graphs and matrices
  publication-title: SODA
– volume: 7
  start-page: 184963
  year: 2019
  end-page: 184984
  ident: b0035
  article-title: Automatic data clustering using hybrid firefly particle swarm optimization algorithm
  publication-title: IEEE Access
– volume: 12
  start-page: 1573
  year: 2019
  ident: b0625
  article-title: K-means clustering of overweight and obese population using quantile-transformed metabolic data
  publication-title: Diabetes Metab. Syndrome Obes. Targets Ther.
– volume: 60
  start-page: 423
  year: 2017
  end-page: 435
  ident: b0030
  article-title: A novel hybridization strategy for krill herd algorithm applied to clustering techniques
  publication-title: Appl. Soft Comput.
– volume: 110
  year: 2022
  ident: b0300
  article-title: A comprehensive survey of clustering algorithms: State-of-the-art machine learning applications, taxonomy, challenges, and future research prospects
  publication-title: Eng. Appl. Artif. Intel.
– reference: , 727-734.
– year: 2019
  ident: b0855
  article-title: The K-means algorithm evolution
  publication-title: Introduction to Data Science and Machine Learning
– reference: , 189-197.
– volume: 31
  start-page: 651
  year: 2010
  end-page: 666
  ident: b0475
  article-title: Data clustering: 50 years beyond K-means
  publication-title: Pattern Recogn. Lett.
– start-page: 162
  year: 2010
  end-page: 170
  ident: b0670
  article-title: Parallel K-means clustering of remote sensing images based on MapReduce
  publication-title: International Conference on Web Information Systems and Mining
– volume: 251
  year: 2022
  ident: b0710
  article-title: A new metaheuristic optimization based on K-means clustering algorithm and its application for structural damage identification in a complex 3D concrete structure
  publication-title: Knowl.-Based Syst.
– volume: 20
  start-page: 1027
  year: 1999
  end-page: 1040
  ident: b0845
  article-title: An empirical comparison of four initialization methods for the K-means algorithm
  publication-title: Pattern Recogn. Lett.
– reference: Zha, H., He, X., Ding, C., Gu, M., & Simon, H. (2001). Spectral relaxation for K-means clustering.
– volume: 3
  start-page: 801
  year: 1956
  end-page: 804
  ident: b1015
  article-title: Sur la division des corps matériels en parties
  publication-title: Bulletin de l'Académie Polonaise des Sciences. Classe
– volume: 62
  year: 2020
  ident: b1035
  article-title: Integrated framework for identifying sustainable manufacturing layouts based on big data, machine learning, meta-heuristic, and data envelopment analysis
  publication-title: Sustain. Cities Soc.
– volume: 20
  start-page: 367
  year: 2016
  end-page: 399
  ident: b0270
  article-title: The coupon collector’s problem revisited: generalizing the double dixie cup problem of newman and shepp
  publication-title: ESAIM: Probab. Stat.
– volume: 42
  start-page: 1
  year: 2018
  end-page: 15
  ident: b0765
  article-title: Enhanced K-means clustering algorithm for malaria image segmentation
  publication-title: J. Adv. Res. Fluid Mech. Thermal Sci.
– volume: 7
  start-page: 31883
  year: 2019
  end-page: 31902
  ident: b0045
  article-title: Survey of state-of-the-art mixed data clustering algorithms
  publication-title: IEEE Access
– year: 2022
  ident: b1185
  article-title: Privacy-Preserving and Outsourced multi-party K-means clustering based on multi-key fully homomorphic encryption
  publication-title: IEEE Trans. Dependable Secure Comput.
– volume: 42
  start-page: 2551
  year: 2009
  end-page: 2556
  ident: b0590
  article-title: A fast K-means clustering algorithm using cluster center displacement
  publication-title: Pattern Recogn.
– year: 2008
  ident: b0540
  article-title: Finding groups in data: an introduction to cluster analysis
– volume: 33
  start-page: 50
  year: 2004
  end-page: 57
  ident: b1045
  article-title: State-of-the-art in privacy preserving data mining
  publication-title: ACM SIGMOD Rec.
– reference: , 665-670.
– reference: Kumar, P., & Wasan, S. K. (2010). Analysis of X-means and global K-means using tumor classification. In
– volume: 36
  start-page: 451
  year: 2003
  end-page: 461
  ident: b0635
  article-title: The global K-means clustering algorithm
  publication-title: Pattern Recogn.
– reference: Bachem, O., Lucic, M., Hassani, H., & Krause, A. (2016). Fast and provably good seedings for k-means.
– volume: 5
  start-page: 1
  year: 2020
  end-page: 10
  ident: b1105
  article-title: Improvement of the fast-clustering algorithm improved by K-means in the big data
  publication-title: Appl. Math. Nonlinear Sci.
– volume: 59
  start-page: 1
  year: 2006
  end-page: 34
  ident: b1025
  article-title: K-means clustering: a half-century synthesis
  publication-title: Br. J. Math. Stat. Psychol.
– volume: 63
  start-page: 503
  year: 2007
  end-page: 527
  ident: b0040
  article-title: A K-mean clustering algorithm for mixed numeric and categorical data
  publication-title: Data Knowl. Eng.
– volume: 64
  start-page: 651
  year: 2020
  end-page: 662
  ident: b0340
  article-title: Data clustering: theory, algorithms, and applications
  publication-title: Biometrics
– reference: 158-161.
– volume: 152
  year: 2021
  ident: b0065
  article-title: Parallel batch K-means for big data clustering
  publication-title: Comput. Ind. Eng.
– volume: 7
  start-page: 1626
  year: 2006
  end-page: 1633
  ident: b0310
  article-title: An efficient enhanced K-means clustering algorithm
  publication-title: Journal of Zhejiang University-Science A
– volume: 18
  start-page: 67
  year: 2009
  end-page: 79
  ident: b0430
  article-title: Fuzzy PCA-guided robust K-means clustering
  publication-title: IEEE Trans. Fuzzy Syst.
– volume: 23
  start-page: 5
  year: 2004
  end-page: 16
  ident: b0645
  article-title: Interval set clustering of web users with rough K-means
  publication-title: J. Intell. Inf. Syst.
– start-page: 836
  year: 2016
  end-page: 839
  ident: b0380
  article-title: A novel locality sensitive K-means clustering algorithm based on subtractive clustering
  publication-title: In 2016 7th IEEE International Conference on Software Engineering and Service Science (ICSESS)
– volume: 29
  start-page: 37
  year: 2014
  end-page: 50
  ident: b0570
  article-title: Music and timbre segmentation by recursive constrained K-means clustering
  publication-title: Comput. Stat.
– volume: 3
  start-page: 2249
  year: 2014
  end-page: 8958
  ident: b0925
  article-title: K-mean Clustering and PSO: A review
  publication-title: Internat. J. Eng. Adv. Technol. (IJEAT) ISSN
– volume: 70
  start-page: 1249
  year: 2014
  end-page: 1259
  ident: b0240
  article-title: Optimized big data K-means clustering using MapReduce
  publication-title: J. Supercomput.
– volume: 6
  start-page: 392
  year: 2017
  ident: b1220
  article-title: An automatic K-means clustering algorithm of GPS data combining a novel niche genetic algorithm with noise and density
  publication-title: ISPRS Int. J. Geo Inf.
– volume: 195
  year: 2020
  ident: b0860
  article-title: A meta-learning approach for recommending the number of clusters for clustering algorithms
  publication-title: Knowl.-Based Syst.
– volume: 10
  start-page: 3827
  year: 2020
  ident: b0015
  article-title: A comprehensive survey of the harmony search algorithm in clustering applications
  publication-title: Appl. Sci.
– start-page: 1
  year: 2017
  end-page: 6
  ident: b0525
  article-title: A comparative study of K-means, K-means++ and Fuzzy C-Means clustering algorithms
  publication-title: 2017 3rd international conference on computational intelligence and communication technology (CICT)
– reference: Min, W., & Siqing, Y. (2010). Improved K-means clustering based on genetic algorithm. In
– start-page: 1
  year: 2022
  end-page: 14
  ident: b0550
  article-title: Quantum K-means clustering method for detecting heart disease using quantum circuit approach
  publication-title: Soft. Comput.
– reference: 158-163.
– year: 2021
  ident: b0890
  article-title: A strong reinforcement parallel implementation of K-means algorithm using message passing interface
  publication-title: Mater. Today: Proc.
– volume: 68
  year: 2018
  ident: b0930
  article-title: Aerodynamic parameters estimation using radial basis function neural partial differentiation method
  publication-title: Def. Sci. J.
– start-page: 947
  year: 2016
  end-page: 952
  ident: b0220
  article-title: Faster Mahalanobis K-means clustering for Gaussian distributions
  publication-title: 2016 International Conference on Advances in Computing, Communications, and Informatics, (ICACCI)
– year: 2019
  ident: b0020
  article-title: Feature selection and enhanced krill herd algorithm for text document clustering
– start-page: 674
  year: 2009
  end-page: 679
  ident: b1205
  article-title: Parallel K-means clustering based on mapreduce
  publication-title: IEEE international conference on cloud computing
– start-page: 1146
  year: 2012
  end-page: 1456
  ident: b0325
  article-title: A K-means clustering algorithm based on the maximum triangle rule
  publication-title: 2012 IEEE International Conference on Mechatronics and Automation
– reference: 1-9.
– volume: 214
  year: 2021
  ident: b0145
  article-title: A unified form of fuzzy C-means and K-means algorithms and its partitional implementation
  publication-title: Knowl.-Based Syst.
– reference: 7-11.
– start-page: 31
  year: 2019
  end-page: 41
  ident: b0980
  article-title: U-control chart based differential evolution clustering for determining the number of clusters in K-means
  publication-title: International Conference on Green, Pervasive, and Cloud Computing
– year: 2000
  ident: b1010
  article-title: A comparison of document clustering techniques KDD workshop on text mining
– volume: 2014
  year: 2014
  ident: b0105
  article-title: Optimized k-means algorithm
  publication-title: Math. Probl. Eng.
– start-page: 171
  year: 2020
  end-page: 180
  ident: b0945
  article-title: Performance analysis of evolutionary technique based partitional clustering algorithms for wireless sensor networks
  publication-title: Soft Computing: Theories and Applications
– reference: , 43-46.
– volume: 13
  start-page: 761
  year: 2012
  end-page: 768
  ident: b0605
  article-title: An accelerated K-means clustering algorithm using selection and erasure rules
  publication-title: J. Zhejiang Univ. Sci. C
– start-page: 115
  year: 2019
  end-page: 118
  ident: b0650
  article-title: Online retail sales prediction with integrated framework of K-means and neural network
  publication-title: Proceedings of the 2019 10th International Conference on E-business, Management and Economics
– reference: 1-12. (1295).
– volume: 78
  start-page: 5181
  year: 2022
  end-page: 5202
  ident: b0690
  article-title: A MapReduce-based K-means clustering algorithm
  publication-title: J. Supercomput.
– reference: Pelleg, D., & Moore, A. W. (2000). X-means: Extending K-means with efficient estimation of the number of clusters. In
– volume: 52
  start-page: 217
  year: 2003
  end-page: 237
  ident: b0725
  article-title: Feature weighting in K-means clustering
  publication-title: Mach. Learn.
– volume: 12
  start-page: 14238
  year: 2017
  end-page: 14245
  ident: b1165
  article-title: Combination of K-means clustering with genetic algorithm: A review
  publication-title: Int. J. Appl. Eng. Res.
– start-page: 202
  year: 2016
  end-page: 206
  ident: b0520
  article-title: On K-means data clustering algorithm with genetic algorithm
  publication-title: 2016 Fourth International Conference on Parallel
– reference: 151(158), 11-11 Dec. 2011.
– year: 1988
  ident: b0480
  article-title: Algorithms for clustering data
– volume: 34
  start-page: 137
  year: 2020
  end-page: 156
  ident: b0735
  article-title: Student engagement level in an e-learning environment: Clustering using K-means
  publication-title: Am. J. Dist. Educ.
– volume: 91
  start-page: 402
  year: 2018
  end-page: 417
  ident: b0465
  article-title: Combining K-means and a genetic algorithm through a novel arrangement of genetic operators for high quality clustering
  publication-title: Expert Syst. Appl.
– volume: 2
  year: 2013
  ident: b0995
  article-title: Analysis and study of K-means clustering algorithm
  publication-title: Internat. J. Eng. Res. Technol.
– volume: 30
  year: 2017
  ident: b1055
  article-title: Clustering stable instances of Euclidean K-means
  publication-title: Adv. Neural Inf. Proces. Syst.
– volume: 118
  start-page: 20
  year: 2019
  end-page: 34
  ident: b0450
  article-title: A K-means based co-clustering (kCC) algorithm for sparse, high dimensional data
  publication-title: Expert Syst. Appl.
– start-page: 405
  year: 1987
  end-page: 416
  ident: b0530
  article-title: Clustering by means of medoids
  publication-title: Statistical Data Analysis Based on the L1 - Norm and Related Methods
– reference: Wang, B., Lv, Z., Zhao, J., Wang, X., & Zhang, T. (2016). An adaptively disperse centroids K-means algorithm based on mapreduce model. In
– volume: 8
  start-page: 217416
  year: 2020
  end-page: 217424
  ident: b0355
  article-title: An improved K-means algorithm based on fuzzy metrics
  publication-title: IEEE Access
– reference: 29.
– reference: Biswas, C., Ganguly, D., Roy, D., & Bhattacharya, U. (2019). Privacy preserving approximate K-means clustering.
– reference: Ahmed, M., Seraj, R., & Islam, S. M. S. (2020). The K-means algorithm: A comprehensive survey and performance evaluation.
– reference: .
– reference: Zhang, Y., Zhang, D., & Shi, H. (2012). K-means clustering based on self-adaptive weight. In
– volume: 16
  start-page: 38
  year: 2021
  end-page: 49
  ident: b0885
  article-title: KText: Arbitrary shape text detection using modified K-means
  publication-title: IET Comput. Vis.
– year: 2013
  ident: b0085
  article-title: UCI machine learning repository
– reference: , 46-56.
– volume: 24
  start-page: 907
  year: 2014
  end-page: 919
  ident: b0315
  article-title: Snipping for robust K-means clustering under component-wise contamination
  publication-title: Stat. Comput.
– volume: 12
  start-page: 223
  year: 2019
  end-page: 233
  ident: b0120
  article-title: TiK-means: Transformation-infused K-means clustering for skewed groups
  publication-title: Stat. Anal. Data Mining: ASA Data Sci. J.
– start-page: 591
  year: 2011
  end-page: 596
  ident: b0125
  article-title: The Million-Song Dataset
– volume: 2
  start-page: 63
  year: 2007
  end-page: 65
  ident: b0630
  article-title: An improved algorithm of K-means
  publication-title: J. Beijing Inst. Graph. Commun.
– volume: 41
  start-page: 192
  year: 2016
  end-page: 213
  ident: b0495
  article-title: Automatic clustering using nature-inspired metaheuristics: A survey
  publication-title: Appl. Soft Comput.
– volume: 402
  year: 2021
  ident: b0190
  article-title: Fast kernel K-means clustering using incomplete Cholesky factorization
  publication-title: Appl. Math Comput.
– start-page: 346
  year: 2012
  end-page: 350
  ident: b0560
  article-title: Dynamic load balancing on GPU clusters for large-scale K-means clustering
  publication-title: 2012 IEEE International Joint Conference on Computer Science and Software Engineering (JCSSE)
– volume: 33
  start-page: 16142
  year: 2020
  end-page: 16152
  ident: b0685
  article-title: Improved guarantees for K-means++ and K-means++ Parallel
  publication-title: Adv. Neural Inf. Proces. Syst.
– volume: 20
  start-page: 260
  year: 2019
  end-page: 272
  ident: b0640
  article-title: The selection of vertiport location for on-demand mobility and its application to Seoul metro area
  publication-title: Int. J. Aeronaut. Space Sci.
– start-page: 647
  year: 2012
  end-page: 650
  ident: b0680
  article-title: Improvement of K-means clustering algorithm with better initial centroids based on weighted average
  publication-title: 2012 7th International Conference on Electrical and Computer Engineering
– reference: Rajah, V., & Ezugwu, A. E. (2020). Hybrid symbiotic organism search algorithms for automatic data clustering.
– start-page: 106
  year: 2012
  end-page: 110
  ident: b0720
  article-title: Far efficient K-means clustering algorithm
  publication-title: Proceedings of the International Conference on Advances in Computing, Communications, and Informatics
– reference: Vij, R., & Kumar, S. (2012). Improved K-means clustering algorithm for two-dimensional data. In
– reference: Cai, J., Liao, D., Chen, J., Chen, X., Liu, T., & Xi, J. (2020). Research on data security protection method based on improved K-means clustering algorithm. In
– reference: Couto, J. (2005, September). Kernel K-means for categorical data. In
– reference: Niu, K., Gao, Z., Jiao, H., & Deng, N. (2016). K-means+: A developed clustering algorithm for big data. In
– volume: 13
  start-page: 0201874
  year: 2018
  ident: b0850
  article-title: Balancing effort and benefit of K-means clustering algorithms in big data realms
  publication-title: PLoS One
– volume: 8
  start-page: 80716
  year: 2020
  end-page: 80727
  ident: b0985
  article-title: Unsupervised K-means clustering algorithm.
  publication-title: Access
– volume: 31
  year: 2018
  ident: b0215
  article-title: Query k-means clustering and the double dixie cup problem
  publication-title: Adv. Neural Inf. Proces. Syst.
– volume: 3
  start-page: 27
  year: 2019
  ident: b0060
  article-title: Automatic human brain tumor detection in MRI image using template-based K means and improved fuzzy C means clustering algorithm
  publication-title: Big Data Cognit. Comput.
– volume: 9
  start-page: 879
  year: 2021
  ident: b0350
  article-title: Markov chain K-means cluster models and their use for companies’ credit quality and default probability estimation
  publication-title: Mathematics
– volume: 11
  start-page: 681
  year: 2014
  end-page: 692
  ident: b0455
  article-title: A simple but powerful heuristic method for accelerating K-Means clustering of large-scale data in life science
  publication-title: IEEE/ACM Trans. Comput. Biol. Bioinf.
– volume: 165
  year: 2021
  ident: b0830
  article-title: Borrowers’ credit quality scoring model and applications, with default discriminant analysis based on the extreme learning machine
  publication-title: Technol. Forecast. Soc. Chang.
– volume: 4
  start-page: 1213
  year: 2017
  end-page: 1216
  ident: b0965
  article-title: Review of existing methods in K-means clustering algorithm
  publication-title: Internat. Res. J. Eng. Technol.
– volume: 11
  start-page: 296
  year: 2018
  end-page: 311
  ident: b0655
  article-title: An efficient K-means-type algorithm for clustering datasets with incomplete records
  publication-title: Stat. Anal. Data Mining: ASA Data Sci. J.
– volume: 501
  start-page: 609
  year: 2022
  end-page: 617
  ident: b0665
  article-title: A multi-view clustering framework via integrating K-means and graph-cut
  publication-title: Neurocomputing
– volume: 8
  start-page: 23069
  year: 2020
  end-page: 23081
  ident: b1075
  article-title: Study on the location of private clinics based on K-means clustering method and an integrated evaluation model
  publication-title: IEEE Access
– volume: 24
  start-page: 2883
  year: 2003
  end-page: 2893
  ident: b0210
  article-title: K∗-Means: A new generalized
  publication-title: Pattern Recogn. Lett.
– reference: Cleuziou, G. (2008, December). An extended version of the K-means method for overlapping clustering. In
– volume: 15
  start-page: 5483
  year: 2015
  end-page: 5493
  ident: b0410
  article-title: An enhanced K-means and ANOVA-based clustering approach for similarity aggregation in underwater wireless sensor networks
  publication-title: IEEE Sens. J.
– start-page: 2
  year: 2013
  ident: b0545
  article-title: Statistically refining the initial points for K-means clustering algorithm
  publication-title: International Journal of Advanced Research in Computer Engineering and Technology (IJARCET)
– volume: 74
  start-page: 1562
  year: 2018
  end-page: 1579
  ident: b1005
  article-title: A hybrid MapReduce-based K-means clustering using genetic algorithm for distributed datasets
  publication-title: J. Supercomput.
– start-page: 1
  year: 2020
  end-page: 4
  ident: b0870
  article-title: Selection of optimal number of clusters and centroids for K-means and fuzzy C-means clustering: A review
  publication-title: 2020 5th International Conference on Computing, Communication and Security (ICCCS)
– volume: 16
  year: 2003
  ident: b0400
  article-title: Learning the k in K-means
  publication-title: Adv. Neural Inf. Proces. Syst.
– reference: Ren, S., & Fan, A. (2011). K-means clustering algorithm based on coefficient of variation. In
– volume: 54
  year: 2007
  ident: b0225
  article-title: A generalization of K-means for overlapping clustering
  publication-title: Rapport Technique
– year: 2013
  ident: b0335
  article-title: Introduction to statistical pattern recognition
  publication-title: Elsevier
– reference: Kao, Y., & Lee, S. Y. (2009). Combining K-means and particle swarm optimization for dynamic data clustering problems. In
– volume: 100
  year: 2018
  ident: b0385
  article-title: Reuse-centric K-means configuration
  publication-title: Inf. Syst.
– volume: 31
  year: 2018
  ident: b1030
  article-title: Differentially private K-means with constant multiplicative error
  publication-title: Adv. Neural Inf. Proces. Syst.
– volume: 64
  start-page: 115
  year: 2022
  end-page: 142
  ident: b0975
  article-title: Adapting k-means for graph clustering
  publication-title: Knowl. Inf. Syst.
– volume: 176
  year: 2021
  ident: b0205
  article-title: MK-means: Detecting evolutionary communities in dynamic networks
  publication-title: Expert Syst. Appl.
– volume: 101
  year: 2021
  ident: b0115
  article-title: A new scalable distributed K-means algorithm based on Cloud micro-services for high-performance computing
  publication-title: Parallel Comput.
– start-page: 63
  year: 2010
  end-page: 67
  ident: b0750
  article-title: Research on K-means clustering algorithm: An improved K-means clustering algorithm
  publication-title: 2010 Third International Symposium on intelligent information technology and security informatics
– reference: Yuan, F., Meng, Z. H., Zhang, H. X., & Dong, C. R. (2004). A new algorithm to get the initial centroids. In
– volume: 80
  start-page: 7397
  year: 2021
  end-page: 7410
  ident: b0345
  article-title: Skin lesion segmentation using K-means and optimized firefly algorithm
  publication-title: Multimed. Tools Appl.
– volume: 2022
  year: 2022
  ident: b1250
  article-title: An improved K-means clustering algorithm towards an efficient data-drivenmModeling
  publication-title: Annals of Data Science
– volume: 5
  start-page: 10562
  year: 2017
  end-page: 10582
  ident: b0700
  article-title: Privacy-preserving data mining: methods, metrics, and applications
  publication-title: IEEE Access
– reference: IEEE, 344-349.
– start-page: 81
  year: 2016
  end-page: 116
  ident: b0140
  article-title: Theoretical analysis of the K-means algorithm–a survey
  publication-title: Algorithm Engineering
– reference: Olukanmi, P. O., & Twala, B. (2017). K-means-sharp: modified centroid update for outlier-robust K-means clustering.
– volume: 17
  start-page: 2524
  year: 2022
  end-page: 2537
  ident: b1150
  article-title: K-means clustering with local d χ-privacy for privacy-preserving data analysis
  publication-title: IEEE Trans. Inf. Forensics Secur.
– volume: 8
  start-page: 121089
  year: 2020
  end-page: 121118
  ident: b0295
  article-title: A comparative performance study of hybrid firefly algorithms for automatic data clustering
  publication-title: IEEE Access
– reference: ,
– volume: 11
  start-page: 11246
  year: 2021
  ident: b0460
  article-title: K-Means-based nature-inspired metaheuristic algorithms for automatic data clustering problems: Recent advances and future directions
  publication-title: Appl. Sci.
– reference: IEEE, 26-32.
– reference: Elkan, C. (2003). Using the triangle inequality to accelerate K-means. In
– start-page: 129
  year: 1982
  end-page: 137
  ident: b0660
  article-title: Least squares quantization in PCM
  publication-title: Bell Telephone Labs Memorandum, Murray Hill NJ. Reprinted In: IEEE Trans. Information Theory IT-28 2
– volume: 14
  start-page: 1003
  year: 2002
  end-page: 1016
  ident: b0795
  article-title: CLARANS: A method for clustering objects for spatial data mining
  publication-title: IEEE Trans. Knowl. Data Eng.
– reference: Wang, J., & Su, X. (2011). An improved K-means clustering algorithm. In
– reference: Mirkin, B. (2005), Clustering for data mining: A data recovery approach. Boca Raton FL: Chapman and Hall/CRC
– reference: Casper, E., Hung, C. C., Jung, E., & Yang, M. (2012). A quantum-modeled K-means clustering algorithm for multi-band image segmentation. In
– reference: Newling, J., & Fleuret, F. (2016). Nested mini-batch K-means.
– start-page: 1047
  year: 2014
  end-page: 1051
  ident: b0820
  article-title: A linear time-complexity k-means algorithm using cluster shifting
  publication-title: 2014 international conference on computational intelligence and communication networks
– year: 2009
  ident: b0575
  article-title: Learning multiple layers of features from tiny images
– volume: 154
  year: 2020
  ident: b0555
  article-title: Survey and taxonomy of clustering algorithms in 5G
  publication-title: J. Netw. Comput. Appl.
– start-page: 287
  year: 2015
  end-page: 298
  ident: b1040
  article-title: Fast K-means clustering for very large datasets based on mapreduce combined with a new cutting method
  publication-title: Knowledge and Systems Engineering
– reference: , 832-835.
– volume: 38
  start-page: e12526
  year: 2021
  ident: b1000
  article-title: An intelligent hybrid approach for hepatitis disease diagnosis: Combining enhanced K-means clustering and improved ensemble learning
  publication-title: Expert. Syst.
– reference: Arthur, D., & Vassilvitskii, S. (2007). K-means++: The advantages of careful seeding.
– volume: 16
  start-page: 48
  year: 2021
  end-page: 59
  ident: b0730
  article-title: An improved K-means algorithm for big data
  publication-title: IET Softw.
– volume: 151
  year: 2020
  ident: b0740
  article-title: A comparison of clustering algorithms for automatic modulation classification
  publication-title: Expert Syst. Appl.
– reference: Wei, D. (2016). A constant-factor bi-criteria approximation guarantee for K-means++.
– volume: 51
  start-page: 7
  year: 2009
  end-page: 15
  ident: b0565
  article-title: Systematic literature reviews in software engineering–a systematic literature review
  publication-title: Inf. Softw. Technol.
– reference: Nazeer, K. A., & Sebastian, M. P. (2009). Improving the accuracy and efficiency of the k-means clustering algorithm. In
– volume: 34
  start-page: 6365
  year: 2021
  end-page: 6376
  ident: b0970
  article-title: An adaptive outlier removal aided K-means clustering algorithm
  publication-title: J. King Saud Univ.-Comput. Inform. Sci.
– reference: Fatta G. D., Blasa, F., Cafiero, S., & Fortino, G. (2011). Epidemic K-means clustering.
– start-page: 1710
  year: 2011
  end-page: 1714
  ident: b0425
  article-title: PCA-guided K-means clustering with incomplete data
  publication-title: 2011 IEEE International Conference on Fuzzy Systems (FUZZ)
– year: 2017
  ident: b0950
  article-title: Compressed K-means for large-scale clustering
  publication-title: Thirty-first AAAI Conference on Artificial Intelligence
– volume: 54
  start-page: 2411
  year: 2021
  end-page: 2443
  ident: b0245
  article-title: A survey on parallel clustering algorithms for big data
  publication-title: Artif. Intell. Rev.
– year: 2004
  ident: b0415
  article-title: Initialization of cluster refinement algorithms: A review and comparative study
  publication-title: IEEE International Joint Conference Neural Networks
– volume: 4
  year: 2008
  ident: b0405
  article-title: Origins and extensions of the K-means algorithm in cluster analysis
  publication-title: Journal Electronique d’Histoire des Probabilités et de la Statistique Electron. J. History Prob. Stat.
– volume: 14
  start-page: 1
  year: 2008
  end-page: 37
  ident: b1085
  article-title: Top 10 algorithms in data mining
  publication-title: Knowl. Inf. Syst.
– reference: 242-249.
– start-page: 3037
  year: 2012
  end-page: 3044
  ident: b1060
  article-title: Fast approximate K-means via cluster closures
  publication-title: IEEE Conference on Computer Vision and Pattern Recognition, Providence, RI, USA
– volume: 93
  start-page: 95
  year: 2019
  end-page: 112
  ident: b0330
  article-title: How much can K-means be improved by using better initialization and repeats?
  publication-title: Pattern Recogn.
– volume: 8
  year: 2017
  ident: b0375
  article-title: A review on K-mode clustering algorithm
  publication-title: Int. J. Adv. Res. Comput. Sci.
– reference: (Vol. 1, pp. 731-738), doi: 10.1109/CVPR.2005.210.
– reference: Shindler, M., Wong, A., & Meyerson, A. (2011). Fast and accurate K-means for large datasets.
– volume: 67
  start-page: 58
  year: 1960
  end-page: 61
  ident: b0790
  article-title: The double dixie cup problem
  publication-title: Am. Math. Mon.
– reference: 147-153.
– volume: 24
  start-page: 881
  year: 2002
  end-page: 892
  ident: b0510
  article-title: An efficient K-means clustering algorithm: Analysis and implementation
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– start-page: 29
  year: 2004
  ident: b0260
  article-title: K-means clustering via principal component analysis
  publication-title: Proceedings of the twenty-first international conference on machine learning
– reference: Zhang, H., & Zhou, X. (2018). A novel clustering algorithm combining niche genetic algorithm with canopy and K-means.
– volume: 13
  start-page: 72
  year: 2022
  end-page: 80
  ident: b1090
  article-title: Research on image text recognition based on canny edge detection algorithm and k-means algorithm
  publication-title: Internat. J. Syst. Assur. Eng. Manage.
– volume: 2
  start-page: 283
  year: 1998
  end-page: 304
  ident: b0445
  article-title: Extensions to the K-means algorithm for clustering large data sets with categorical values
  publication-title: Data Min. Knowl. Disc.
– reference: , 1540-1544.
– reference: 1177-1178.
– year: 2011
  ident: b0775
  article-title: Enhancing the k-means clustering algorithm by using a O (n logn) heuristic method for finding better initial centroids
  publication-title: 2011 Second International Conference on Emerging Applications of Information Technology 261–264
– reference: Zhuang, Y., Mao, Y., & Chen, X. (2016). A limited-iteration bisecting K-means for fast clustering large datasets. In
– volume: 39
  start-page: e12886
  year: 2022
  ident: b0365
  article-title: Spherical fuzzy extension of AHP-ARAS methods integrated with modified k-means clustering for logistics hub location problem
  publication-title: Expert. Syst.
– volume: 31
  year: 2018
  ident: b0165
  article-title: Statistical and computational trade-offs in kernel k-means
  publication-title: Adv. Neural Inf. Proces. Syst.
– volume: 34
  start-page: 5939
  year: 2022
  end-page: 5958
  ident: b0815
  article-title: Automatic detection of outliers and the number of clusters in k-means clustering via Chebyshev-type inequalities
  publication-title: Neural Comput. & Applic.
– reference: Dai, W., Jiao, C., & He, T. (2007). Research of K-means clustering method based on parallel genetic algorithm. In
– reference: Ye, J., Zhao, Z., & Wu, M. (2007). Discriminative K-means for clustering.
– reference: IEEE,
– volume: 71
  start-page: 345
  year: 2014
  end-page: 365
  ident: b0895
  article-title: A hybrid clustering technique combining a novel genetic algorithm with K-means
  publication-title: Knowl.-Based Syst.
– volume: 213
  year: 2021
  ident: b0915
  article-title: GBK-means clustering algorithm: An improvement to the K-means algorithm based on the bargaining game
  publication-title: Knowl.-Based Syst.
– reference: Georgogiannis, A. (2016). Robust K-means: a theoretical revisit.
– volume: 110
  year: 2021
  ident: b0920
  article-title: CNAK: Cluster number assisted K-means
  publication-title: Pattern Recogn.
– start-page: 265
  year: 2016
  end-page: 268
  ident: b1110
  article-title: An improved K-means text clustering algorithm by optimizing initial cluster centers
  publication-title: 2016 7th International Conference on Cloud Computing and Big Data (CCBD)
– volume: 491
  start-page: 34
  year: 2022
  end-page: 43
  ident: b1210
  article-title: Improving projected fuzzy K-means clustering via robust learning
  publication-title: Neurocomputing
– volume: 571
  start-page: 418
  year: 2021
  end-page: 442
  ident: b0265
  article-title: Clustering mixed numerical and categorical data with missing values
  publication-title: Inf. Sci.
– volume: 7
  start-page: 222
  year: 2016
  end-page: 228
  ident: b0505
  article-title: An improved K-means clustering with Atkinson index to classify liver patient dataset
  publication-title: Internat. J. Syst. Assurance Eng. Manage.
– reference: 4, 2076-2079.
– start-page: 281
  year: 1967
  end-page: 297
  ident: b0675
  article-title: Some methods for classification and analysis of multivariate observations
  publication-title: Fifth Berkeley Symposium on Mathematics. Statistics and Probability
– volume: 30
  year: 2017
  ident: b0785
  article-title: K-medoids for K-means seeding
  publication-title: Adv. Neural Inf. Proces. Syst.
– reference: , 10-18.
– volume: 117
  year: 2021
  ident: b0440
  article-title: Robust deep K-means: An effective and simple method for data clustering
  publication-title: Pattern Recogn.
– reference: 1, 757-761.
– reference: Nandapala, E. Y. L., & Jayasena, K. P. N. (2020). The practical approach in customers segmentation by using the K-means algorithm.
– volume: 8
  start-page: 31171
  year: 2020
  end-page: 31179
  ident: b1095
  article-title: An enhanced regularized K-means type clustering algorithm with adaptive weights
  publication-title: IEEE Access
– volume: 33
  start-page: 10148
  year: 2020
  end-page: 10160
  ident: b1200
  article-title: Simple and scalable sparse K-means clustering via feature ranking
  publication-title: Adv. Neural Inf. Proces. Syst.
– volume: 33
  start-page: 6247
  year: 2021
  end-page: 6306
  ident: b0305
  article-title: Automatic clustering algorithms: A systematic review and bibliometric analysis of relevant literature
  publication-title: Neural Comput. & Applic.
– volume: 81
  start-page: 19321
  year: 2022
  end-page: 19339
  ident: b0865
  article-title: An efficient hybrid approach based on PSO, ABC and k-means for cluster analysis
  publication-title: Multimed. Tools Appl.
– volume: 4
  start-page: 636
  year: 1993
  end-page: 649
  ident: b1125
  article-title: Rival penalized competitive learning for clustering analysis, RBF net, and curve detection
  publication-title: IEEE Trans. Neural Netw.
– volume: 17
  year: 2019
  ident: b1225
  article-title: Improved logistic regression model for diabetes prediction by integrating PCA and K-means techniques
  publication-title: Inf. Med. Unlocked
– volume: 37
  start-page: 4966
  year: 2010
  end-page: 4973
  ident: b1100
  article-title: A quantum-inspired genetic algorithm for K-means clustering
  publication-title: Expert Syst. Appl.
– reference: Qi, J., Yu, Y., Wang, L., & Liu, J. (2016). K*-means: An effective and efficient K-means clustering algorithm. In
– volume: 4
  start-page: 218
  year: 2017
  end-page: 221
  ident: b0010
  article-title: Survey report on K-means clustering algorithm
  publication-title: Int. J. Mod. Trends Eng. Res
– reference: , 142-146.
– volume: 32
  year: 2019
  ident: b0695
  article-title: K-means clustering of lines for big data
  publication-title: Adv. Neural Inf. Proces. Syst.
– volume: 43
  year: 1997
  ident: b0075
  article-title: An efficient k-means clustering algorithm.
  publication-title: Science
– reference: 2, 1191-1193.
– reference: Yang, K. C., & Chao, W. P. (2020). Applying K-means technique and decision tree analysis to predict Taiwan ETF performance. In
– start-page: 1
  year: 2020
  end-page: 36
  ident: b0170
  article-title: An efficient K-means clustering algorithm for tall data
  publication-title: Data Min. Knowl. Disc.
– volume: 94
  start-page: 663
  year: 2017
  end-page: 675
  ident: b1190
  article-title: Improved rough K-means clustering algorithm based on weighted distance measure with Gaussian function
  publication-title: Int. J. Comput. Math.
– volume: 10
  start-page: 191
  year: 1984
  end-page: 203
  ident: b0130
  article-title: FCM: The fuzzy c-means clustering algorithm
  publication-title: Comput. Geosci.
– volume: 14
  start-page: 127
  year: 1966
  end-page: 130
  ident: b0490
  article-title: Multidimensional group analysis
  publication-title: Aust. J. Bot.
– volume: 23
  start-page: 6361
  year: 2019
  end-page: 6378
  ident: b0745
  article-title: A hybrid approach using genetic algorithm and the differential evolution heuristic for enhanced initialization of the K-means algorithm with applications in text clustering
  publication-title: Soft. Comput.
– volume: 25
  start-page: 932
  year: 2011
  end-page: 944
  ident: b0200
  article-title: TW-K-means: Automated two-level variable weighting clustering algorithm for multiview data
  publication-title: IEEE Trans. Knowl. Data Eng.
– start-page: 103
  year: 2001
  end-page: 110
  ident: b0290
  article-title: Algorithmic transformations in the implementation of k-means clustering on reconfigurable hardware
  publication-title: Proceedings of the 2001 ACM/SIGDA ninth international symposium on Field programmable gate arrays
– volume: 12
  start-page: 22
  year: 2019
  end-page: 29
  ident: b0500
  article-title: Mammography images segmentation via fuzzy C-mean and K-means
  publication-title: Internat. J. Intell. Eng. Syst.
– reference: , 1-3. London, UK: Association of Engineers.
– reference: , 635-639.
– reference: IEEE, 6, 636.
– reference: Rathore, P., & Shukla, D. (2015). Analysis and performance improvement of K-means clustering in big data environment. In
– start-page: 251
  year: 2014
  end-page: 258
  ident: b0390
  article-title: K-intervals: A new extension of the K-means algorithm
  publication-title: 2014 IEEE 26th International Conference on Tools with Artificial Intelligence
– reference: (550), 22-24.
– reference: 1207-1215.
– reference: https://doi.org/10.1201/9781420034912.
– volume: 24
  start-page: 99
  year: 2007
  end-page: 121
  ident: b1020
  article-title: Initializing K-means batch clustering: A critical evaluation of several techniques
  publication-title: J. Classif.
– volume: 13
  start-page: 2272
  year: 2020
  end-page: 2284
  ident: b1235
  article-title: Privacy-preserving K-means clustering with local synchronization in peer-to-peer networks
  publication-title: Peer-to-Peer Networking and Applications
– volume: 14
  start-page: 641
  year: 2017
  end-page: 643
  ident: b0620
  article-title: Points of significance: Principal component analysis
  publication-title: Nat. Methods
– volume: 25
  start-page: 456
  year: 2018
  end-page: 466
  ident: b0025
  article-title: A new feature selection method to improve the document clustering using particle swarm optimization algorithm
  publication-title: J. Comput. Sci.
– volume: 10
  start-page: 757
  year: 2017
  end-page: 768
  ident: b0395
  article-title: Local search methods for K-means with outliers
  publication-title: Proceedings of the VLDB Endowment
– volume: 54
  start-page: 50
  year: 2015
  end-page: 55
  ident: b1130
  article-title: PCA-guided search for K-means
  publication-title: Pattern Recogn. Lett.
– reference: , 1-4.
– start-page: 1
  year: 2015
  end-page: 6
  ident: b0150
  article-title: An improved MapReduce design of Kmeans for clustering very large datasets
  publication-title: 2015 IEEE/ACS 12th International Conference of Computer Systems and Applications (AICCSA)
– volume: 79
  start-page: 402
  year: 2018
  end-page: 413
  ident: b0470
  article-title: IK-means−+: An iterative clustering algorithm based on an enhanced version of the K-means
  publication-title: Pattern Recogn.
– volume: 40
  start-page: 257
  year: 1992
  end-page: 265
  ident: b0955
  article-title: A PCA-like method for multivariate data with missing values
  publication-title: Jpn. J. Educ. Psychol.
– year: 2009
  ident: b0535
  article-title: Finding groups in data: An introduction to cluster analysis
– reference: Ailon, N., Jaiswal, R., & Monteleoni, C. (2009). Streaming K-means approximation. NIPS'09: Proceedings of the 22nd International Conference on Neural Information Processing Systems
– volume: Vol. 3
  start-page: 731
  year: 1973
  end-page: 739
  ident: b0275
  publication-title: Pattern classification and scene analysis
– volume: 28
  start-page: 374
  year: 2017
  end-page: 384
  ident: b1135
  article-title: Tag clustering algorithm LMMSK: Improved K-means algorithm based on latent semantic analysis
  publication-title: J. Syst. Eng. Electron.
– volume: 52
  start-page: 303
  year: 2021
  ident: 10.1016/j.ins.2022.11.139_b0195
  article-title: Diffusion K-means clustering on manifolds: Provable exact recovery via semidefinite relaxations
  publication-title: Appl. Comput. Harmon. Anal.
  doi: 10.1016/j.acha.2020.03.002
– volume: 8
  start-page: 23069
  year: 2020
  ident: 10.1016/j.ins.2022.11.139_b1075
  article-title: Study on the location of private clinics based on K-means clustering method and an integrated evaluation model
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.2967797
– volume: 42
  start-page: 2551
  issue: 11
  year: 2009
  ident: 10.1016/j.ins.2022.11.139_b0590
  article-title: A fast K-means clustering algorithm using cluster center displacement
  publication-title: Pattern Recogn.
  doi: 10.1016/j.patcog.2009.02.014
– volume: 8
  start-page: 31171
  year: 2020
  ident: 10.1016/j.ins.2022.11.139_b1095
  article-title: An enhanced regularized K-means type clustering algorithm with adaptive weights
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.2972333
– volume: 6
  start-page: 392
  issue: 12
  year: 2017
  ident: 10.1016/j.ins.2022.11.139_b1220
  article-title: An automatic K-means clustering algorithm of GPS data combining a novel niche genetic algorithm with noise and density
  publication-title: ISPRS Int. J. Geo Inf.
  doi: 10.3390/ijgi6120392
– ident: 10.1016/j.ins.2022.11.139_b0960
– volume: 2014
  year: 2014
  ident: 10.1016/j.ins.2022.11.139_b0105
  article-title: Optimized k-means algorithm
  publication-title: Math. Probl. Eng.
  doi: 10.1155/2014/506480
– ident: 10.1016/j.ins.2022.11.139_b0580
  doi: 10.1109/ICCAE.2010.5451883
– volume: 33
  start-page: 6247
  issue: 11
  year: 2021
  ident: 10.1016/j.ins.2022.11.139_b0305
  article-title: Automatic clustering algorithms: A systematic review and bibliometric analysis of relevant literature
  publication-title: Neural Comput. & Applic.
  doi: 10.1007/s00521-020-05395-4
– volume: 31
  start-page: 651
  issue: 8
  year: 2010
  ident: 10.1016/j.ins.2022.11.139_b0475
  article-title: Data clustering: 50 years beyond K-means
  publication-title: Pattern Recogn. Lett.
  doi: 10.1016/j.patrec.2009.09.011
– volume: 37
  start-page: 4966
  issue: 7
  year: 2010
  ident: 10.1016/j.ins.2022.11.139_b1100
  article-title: A quantum-inspired genetic algorithm for K-means clustering
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2009.12.017
– volume: 8
  start-page: 121089
  year: 2020
  ident: 10.1016/j.ins.2022.11.139_b0295
  article-title: A comparative performance study of hybrid firefly algorithms for automatic data clustering
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.3006173
– volume: 30
  year: 2017
  ident: 10.1016/j.ins.2022.11.139_b1055
  article-title: Clustering stable instances of Euclidean K-means
  publication-title: Adv. Neural Inf. Proces. Syst.
– volume: 8
  start-page: 80716
  year: 2020
  ident: 10.1016/j.ins.2022.11.139_b0985
  article-title: Unsupervised K-means clustering algorithm. IEEE
  publication-title: Access
  doi: 10.1109/ACCESS.2020.2988796
– volume: 4
  start-page: 1213
  issue: 2
  year: 2017
  ident: 10.1016/j.ins.2022.11.139_b0965
  article-title: Review of existing methods in K-means clustering algorithm
  publication-title: Internat. Res. J. Eng. Technol.
– volume: 9
  start-page: 67736
  year: 2021
  ident: 10.1016/j.ins.2022.11.139_b0990
  article-title: Entropy K-means clustering with feature reduction under unknown number of clusters
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2021.3077622
– volume: 52
  start-page: 217
  issue: 3
  year: 2003
  ident: 10.1016/j.ins.2022.11.139_b0725
  article-title: Feature weighting in K-means clustering
  publication-title: Mach. Learn.
  doi: 10.1023/A:1024016609528
– volume: 117
  year: 2021
  ident: 10.1016/j.ins.2022.11.139_b0440
  article-title: Robust deep K-means: An effective and simple method for data clustering
  publication-title: Pattern Recogn.
  doi: 10.1016/j.patcog.2021.107996
– volume: 23
  start-page: 199
  issue: 2
  year: 2013
  ident: 10.1016/j.ins.2022.11.139_b0610
  article-title: Fast K-means clustering using deletion by center displacement and norms product (CDNP)
  publication-title: Pattern Recognit Image Anal.
  doi: 10.1134/S1054661813020144
– volume: 213
  year: 2021
  ident: 10.1016/j.ins.2022.11.139_b0915
  article-title: GBK-means clustering algorithm: An improvement to the K-means algorithm based on the bargaining game
  publication-title: Knowl.-Based Syst.
– volume: 64
  start-page: 115
  issue: 1
  year: 2022
  ident: 10.1016/j.ins.2022.11.139_b0975
  article-title: Adapting k-means for graph clustering
  publication-title: Knowl. Inf. Syst.
  doi: 10.1007/s10115-021-01623-y
– year: 2009
  ident: 10.1016/j.ins.2022.11.139_b0575
– start-page: 63
  year: 2010
  ident: 10.1016/j.ins.2022.11.139_b0750
  article-title: Research on K-means clustering algorithm: An improved K-means clustering algorithm
– start-page: 103
  year: 2001
  ident: 10.1016/j.ins.2022.11.139_b0290
  article-title: Algorithmic transformations in the implementation of k-means clustering on reconfigurable hardware
– start-page: 171
  year: 2020
  ident: 10.1016/j.ins.2022.11.139_b0945
  article-title: Performance analysis of evolutionary technique based partitional clustering algorithms for wireless sensor networks
– volume: 12
  start-page: 14238
  issue: 24
  year: 2017
  ident: 10.1016/j.ins.2022.11.139_b1165
  article-title: Combination of K-means clustering with genetic algorithm: A review
  publication-title: Int. J. Appl. Eng. Res.
– year: 2013
  ident: 10.1016/j.ins.2022.11.139_b0085
– year: 2022
  ident: 10.1016/j.ins.2022.11.139_b1185
  article-title: Privacy-Preserving and Outsourced multi-party K-means clustering based on multi-key fully homomorphic encryption
  publication-title: IEEE Trans. Dependable Secure Comput.
  doi: 10.1109/TDSC.2022.3181667
– volume: 40
  start-page: 200
  issue: 1
  year: 2013
  ident: 10.1016/j.ins.2022.11.139_b0180
  article-title: A comparative study of efficient initialization methods for the K-means clustering algorithm
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2012.07.021
– volume: 5
  start-page: 10562
  year: 2017
  ident: 10.1016/j.ins.2022.11.139_b0700
  article-title: Privacy-preserving data mining: methods, metrics, and applications
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2017.2706947
– volume: 165
  year: 2021
  ident: 10.1016/j.ins.2022.11.139_b0830
  article-title: Borrowers’ credit quality scoring model and applications, with default discriminant analysis based on the extreme learning machine
  publication-title: Technol. Forecast. Soc. Chang.
  doi: 10.1016/j.techfore.2020.120462
– volume: 28
  start-page: 374
  issue: 2
  year: 2017
  ident: 10.1016/j.ins.2022.11.139_b1135
  article-title: Tag clustering algorithm LMMSK: Improved K-means algorithm based on latent semantic analysis
  publication-title: J. Syst. Eng. Electron.
  doi: 10.21629/JSEE.2017.02.18
– start-page: 106
  year: 2012
  ident: 10.1016/j.ins.2022.11.139_b0720
  article-title: Far efficient K-means clustering algorithm
– volume: 54
  start-page: 50
  year: 2015
  ident: 10.1016/j.ins.2022.11.139_b1130
  article-title: PCA-guided search for K-means
  publication-title: Pattern Recogn. Lett.
  doi: 10.1016/j.patrec.2014.11.017
– volume: e5255
  year: 2022
  ident: 10.1016/j.ins.2022.11.139_b0110
  article-title: Energy efficient grid-based k-means clustering algorithm for large scale wireless sensor networks
  publication-title: Int. J. Commun Syst
– ident: 10.1016/j.ins.2022.11.139_b0135
  doi: 10.1145/3357384.3357969
– volume: 195
  year: 2020
  ident: 10.1016/j.ins.2022.11.139_b0860
  article-title: A meta-learning approach for recommending the number of clusters for clustering algorithms
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2020.105682
– volume: 23
  start-page: 6361
  issue: 15
  year: 2019
  ident: 10.1016/j.ins.2022.11.139_b0745
  article-title: A hybrid approach using genetic algorithm and the differential evolution heuristic for enhanced initialization of the K-means algorithm with applications in text clustering
  publication-title: Soft. Comput.
  doi: 10.1007/s00500-018-3289-4
– volume: 25
  start-page: 456
  year: 2018
  ident: 10.1016/j.ins.2022.11.139_b0025
  article-title: A new feature selection method to improve the document clustering using particle swarm optimization algorithm
  publication-title: J. Comput. Sci.
  doi: 10.1016/j.jocs.2017.07.018
– volume: 10
  start-page: 3827
  issue: 11
  year: 2020
  ident: 10.1016/j.ins.2022.11.139_b0015
  article-title: A comprehensive survey of the harmony search algorithm in clustering applications
  publication-title: Appl. Sci.
  doi: 10.3390/app10113827
– ident: 10.1016/j.ins.2022.11.139_b0840
– volume: 14
  start-page: 1
  issue: 1
  year: 2008
  ident: 10.1016/j.ins.2022.11.139_b1085
  article-title: Top 10 algorithms in data mining
  publication-title: Knowl. Inf. Syst.
  doi: 10.1007/s10115-007-0114-2
– volume: 81
  start-page: 19321
  issue: 14
  year: 2022
  ident: 10.1016/j.ins.2022.11.139_b0865
  article-title: An efficient hybrid approach based on PSO, ABC and k-means for cluster analysis
  publication-title: Multimed. Tools Appl.
  doi: 10.1007/s11042-021-11016-6
– volume: 491
  start-page: 34
  year: 2022
  ident: 10.1016/j.ins.2022.11.139_b1210
  article-title: Improving projected fuzzy K-means clustering via robust learning
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2022.03.043
– volume: 59
  start-page: 1
  issue: 1
  year: 2006
  ident: 10.1016/j.ins.2022.11.139_b1025
  article-title: K-means clustering: a half-century synthesis
  publication-title: Br. J. Math. Stat. Psychol.
  doi: 10.1348/000711005X48266
– volume: 9
  start-page: 879
  issue: 8
  year: 2021
  ident: 10.1016/j.ins.2022.11.139_b0350
  article-title: Markov chain K-means cluster models and their use for companies’ credit quality and default probability estimation
  publication-title: Mathematics
  doi: 10.3390/math9080879
– ident: 10.1016/j.ins.2022.11.139_b0905
  doi: 10.1109/ICCN.2015.9
– start-page: 287
  year: 2015
  ident: 10.1016/j.ins.2022.11.139_b1040
  article-title: Fast K-means clustering for very large datasets based on mapreduce combined with a new cutting method
– volume: 13
  start-page: 761
  issue: 10
  year: 2012
  ident: 10.1016/j.ins.2022.11.139_b0605
  article-title: An accelerated K-means clustering algorithm using selection and erasure rules
  publication-title: J. Zhejiang Univ. Sci. C
  doi: 10.1631/jzus.C1200078
– start-page: 346
  year: 2012
  ident: 10.1016/j.ins.2022.11.139_b0560
  article-title: Dynamic load balancing on GPU clusters for large-scale K-means clustering
– ident: 10.1016/j.ins.2022.11.139_b1050
  doi: 10.1145/2393216.2393327
– volume: 41
  start-page: 192
  year: 2016
  ident: 10.1016/j.ins.2022.11.139_b0495
  article-title: Automatic clustering using nature-inspired metaheuristics: A survey
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2015.12.001
– start-page: 1710
  year: 2011
  ident: 10.1016/j.ins.2022.11.139_b0425
  article-title: PCA-guided K-means clustering with incomplete data
– volume: 10
  start-page: 191
  issue: 2–3
  year: 1984
  ident: 10.1016/j.ins.2022.11.139_b0130
  article-title: FCM: The fuzzy c-means clustering algorithm
  publication-title: Comput. Geosci.
  doi: 10.1016/0098-3004(84)90020-7
– volume: 163
  start-page: 546
  year: 2019
  ident: 10.1016/j.ins.2022.11.139_b1215
  article-title: Automatic data clustering using nature-inspired symbiotic organism search algorithm
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2018.09.013
– volume: 34
  start-page: 137
  issue: 2
  year: 2020
  ident: 10.1016/j.ins.2022.11.139_b0735
  article-title: Student engagement level in an e-learning environment: Clustering using K-means
  publication-title: Am. J. Dist. Educ.
  doi: 10.1080/08923647.2020.1696140
– volume: 403
  start-page: 503
  year: 2000
  ident: 10.1016/j.ins.2022.11.139_b0070
  article-title: Distinct types of diffuse large B-celllymphoma identified by gene expression profiling
  publication-title: Nature
  doi: 10.1038/35000501
– ident: 10.1016/j.ins.2022.11.139_b1245
  doi: 10.1109/TrustCom.2016.0348
– volume: 33
  start-page: 152
  issue: 2
  year: 2019
  ident: 10.1016/j.ins.2022.11.139_b0755
  article-title: A K-means-galactic swarm optimization-based clustering algorithm with Otsu’s entropy for brain tumor detection
  publication-title: Appl. Artif. Intell.
  doi: 10.1080/08839514.2018.1530869
– ident: 10.1016/j.ins.2022.11.139_b0935
  doi: 10.1109/RAICS.2011.6069372
– ident: 10.1016/j.ins.2022.11.139_b0230
  doi: 10.1109/ICPR.2008.4761079
– volume: 4
  start-page: 636
  issue: 4
  year: 1993
  ident: 10.1016/j.ins.2022.11.139_b1125
  article-title: Rival penalized competitive learning for clustering analysis, RBF net, and curve detection
  publication-title: IEEE Trans. Neural Netw.
  doi: 10.1109/72.238318
– volume: 12
  start-page: 22
  issue: 1
  year: 2019
  ident: 10.1016/j.ins.2022.11.139_b0500
  article-title: Mammography images segmentation via fuzzy C-mean and K-means
  publication-title: Internat. J. Intell. Eng. Syst.
– volume: 8
  issue: 8
  year: 2019
  ident: 10.1016/j.ins.2022.11.139_b0825
  article-title: Improved K-means map reduce algorithm for big data cluster analysis
  publication-title: Internat. J. Innov. Technol. Explor. Eng. (IJITEE)
– volume: 40
  start-page: 257
  year: 1992
  ident: 10.1016/j.ins.2022.11.139_b0955
  article-title: A PCA-like method for multivariate data with missing values
  publication-title: Jpn. J. Educ. Psychol.
  doi: 10.5926/jjep1953.40.3_257
– volume: 118
  start-page: 20
  year: 2019
  ident: 10.1016/j.ins.2022.11.139_b0450
  article-title: A K-means based co-clustering (kCC) algorithm for sparse, high dimensional data
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2018.09.006
– volume: 3
  start-page: 801
  issue: 12
  year: 1956
  ident: 10.1016/j.ins.2022.11.139_b1015
  article-title: Sur la division des corps matériels en parties
  publication-title: Bulletin de l'Académie Polonaise des Sciences. Classe
– volume: 8
  issue: 7
  year: 2017
  ident: 10.1016/j.ins.2022.11.139_b0375
  article-title: A review on K-mode clustering algorithm
  publication-title: Int. J. Adv. Res. Comput. Sci.
– volume: 16
  year: 2003
  ident: 10.1016/j.ins.2022.11.139_b0400
  article-title: Learning the k in K-means
  publication-title: Adv. Neural Inf. Proces. Syst.
– volume: 501
  start-page: 609
  year: 2022
  ident: 10.1016/j.ins.2022.11.139_b0665
  article-title: A multi-view clustering framework via integrating K-means and graph-cut
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2022.05.120
– ident: 10.1016/j.ins.2022.11.139_b1065
  doi: 10.1109/CIS.2016.0041
– volume: 38
  start-page: e12526
  issue: 1
  year: 2021
  ident: 10.1016/j.ins.2022.11.139_b1000
  article-title: An intelligent hybrid approach for hepatitis disease diagnosis: Combining enhanced K-means clustering and improved ensemble learning
  publication-title: Expert. Syst.
  doi: 10.1111/exsy.12526
– volume: 32
  year: 2019
  ident: 10.1016/j.ins.2022.11.139_b0695
  article-title: K-means clustering of lines for big data
  publication-title: Adv. Neural Inf. Proces. Syst.
– year: 2019
  ident: 10.1016/j.ins.2022.11.139_b0855
  article-title: The K-means algorithm evolution
– volume: 101
  year: 2021
  ident: 10.1016/j.ins.2022.11.139_b0115
  article-title: A new scalable distributed K-means algorithm based on Cloud micro-services for high-performance computing
  publication-title: Parallel Comput.
  doi: 10.1016/j.parco.2020.102736
– ident: 10.1016/j.ins.2022.11.139_b0185
  doi: 10.1137/1.9781611972832.21
– start-page: 265
  year: 2016
  ident: 10.1016/j.ins.2022.11.139_b1110
  article-title: An improved K-means text clustering algorithm by optimizing initial cluster centers
– ident: 10.1016/j.ins.2022.11.139_b0055
– volume: 18
  start-page: 67
  issue: 1
  year: 2009
  ident: 10.1016/j.ins.2022.11.139_b0430
  article-title: Fuzzy PCA-guided robust K-means clustering
  publication-title: IEEE Trans. Fuzzy Syst.
  doi: 10.1109/TFUZZ.2009.2036603
– volume: 402
  year: 2021
  ident: 10.1016/j.ins.2022.11.139_b0190
  article-title: Fast kernel K-means clustering using incomplete Cholesky factorization
  publication-title: Appl. Math Comput.
– volume: 7
  start-page: 114472
  year: 2019
  ident: 10.1016/j.ins.2022.11.139_b1145
  article-title: A feature-reduction multi-view K-means clustering algorithm
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2934179
– volume: 23
  start-page: 5
  issue: 1
  year: 2004
  ident: 10.1016/j.ins.2022.11.139_b0645
  article-title: Interval set clustering of web users with rough K-means
  publication-title: J. Intell. Inf. Syst.
  doi: 10.1023/B:JIIS.0000029668.88665.1a
– volume: 67
  start-page: 58
  issue: 1
  year: 1960
  ident: 10.1016/j.ins.2022.11.139_b0790
  article-title: The double dixie cup problem
  publication-title: Am. Math. Mon.
  doi: 10.2307/2308930
– volume: 20
  start-page: 367
  year: 2016
  ident: 10.1016/j.ins.2022.11.139_b0270
  article-title: The coupon collector’s problem revisited: generalizing the double dixie cup problem of newman and shepp
  publication-title: ESAIM: Probab. Stat.
  doi: 10.1051/ps/2016016
– ident: 10.1016/j.ins.2022.11.139_b0760
  doi: 10.1109/ICIIS51140.2020.9342639
– volume: 34
  start-page: e6621
  issue: 14
  year: 2022
  ident: 10.1016/j.ins.2022.11.139_b0420
  article-title: Parallel and accurate k-means algorithm on CPU-GPU architectures for spectral clustering
  publication-title: Concurr. Comput. Pract. Exp.
  doi: 10.1002/cpe.6621
– volume: 24
  start-page: 99
  year: 2007
  ident: 10.1016/j.ins.2022.11.139_b1020
  article-title: Initializing K-means batch clustering: A critical evaluation of several techniques
  publication-title: J. Classif.
  doi: 10.1007/s00357-007-0003-0
– volume: 24
  start-page: 907
  issue: 6
  year: 2014
  ident: 10.1016/j.ins.2022.11.139_b0315
  article-title: Snipping for robust K-means clustering under component-wise contamination
  publication-title: Stat. Comput.
  doi: 10.1007/s11222-013-9410-8
– volume: 27
  year: 2014
  ident: 10.1016/j.ins.2022.11.139_b0370
  article-title: Localized data fusion for kernel K-means clustering with application to cancer biology
  publication-title: Adv. Neural Inf. Proces. Syst.
– volume: 9
  start-page: 368
  year: 1997
  ident: 10.1016/j.ins.2022.11.139_b0155
  article-title: Clustering via concave minimization
  publication-title: Adv. Neural Inf. Proces. Syst.
– volume: 36
  start-page: 451
  issue: 2
  year: 2003
  ident: 10.1016/j.ins.2022.11.139_b0635
  article-title: The global K-means clustering algorithm
  publication-title: Pattern Recogn.
  doi: 10.1016/S0031-3203(02)00060-2
– volume: 79
  start-page: 402
  year: 2018
  ident: 10.1016/j.ins.2022.11.139_b0470
  article-title: IK-means−+: An iterative clustering algorithm based on an enhanced version of the K-means
  publication-title: Pattern Recogn.
  doi: 10.1016/j.patcog.2018.02.015
– volume: 110
  year: 2021
  ident: 10.1016/j.ins.2022.11.139_b0920
  article-title: CNAK: Cluster number assisted K-means
  publication-title: Pattern Recogn.
  doi: 10.1016/j.patcog.2020.107625
– ident: 10.1016/j.ins.2022.11.139_b1170
– ident: 10.1016/j.ins.2022.11.139_b0900
  doi: 10.1109/ICTAS47918.2020.234001
– volume: 95
  year: 2020
  ident: 10.1016/j.ins.2022.11.139_b0100
  article-title: Space–time series clustering: Algorithms, taxonomy, and case study on urban smart cities
  publication-title: Eng. Appl. Artif. Intel.
  doi: 10.1016/j.engappai.2020.103857
– volume: 100
  year: 2018
  ident: 10.1016/j.ins.2022.11.139_b0385
  article-title: Reuse-centric K-means configuration
  publication-title: Inf. Syst.
– year: 1988
  ident: 10.1016/j.ins.2022.11.139_b0480
– ident: 10.1016/j.ins.2022.11.139_b1140
  doi: 10.1109/IEEM45057.2020.9309769
– volume: 5
  start-page: 285
  issue: 3
  year: 2019
  ident: 10.1016/j.ins.2022.11.139_b0875
  article-title: Anomaly detection on flight route using similarity and grouping approach based-on automatic dependent surveillance-broadcast
  publication-title: Internat. J. Adv. Intell. Inform.
– volume: 33
  start-page: 10148
  year: 2020
  ident: 10.1016/j.ins.2022.11.139_b1200
  article-title: Simple and scalable sparse K-means clustering via feature ranking
  publication-title: Adv. Neural Inf. Proces. Syst.
– volume: 54
  start-page: 2411
  issue: 4
  year: 2021
  ident: 10.1016/j.ins.2022.11.139_b0245
  article-title: A survey on parallel clustering algorithms for big data
  publication-title: Artif. Intell. Rev.
  doi: 10.1007/s10462-020-09918-2
– ident: 10.1016/j.ins.2022.11.139_b0770
– volume: 20
  start-page: 260
  issue: 1
  year: 2019
  ident: 10.1016/j.ins.2022.11.139_b0640
  article-title: The selection of vertiport location for on-demand mobility and its application to Seoul metro area
  publication-title: Int. J. Aeronaut. Space Sci.
  doi: 10.1007/s42405-018-0117-0
– ident: 10.1016/j.ins.2022.11.139_b1160
  doi: 10.1109/ICMLC.2004.1382371
– volume: 8
  start-page: 217416
  year: 2020
  ident: 10.1016/j.ins.2022.11.139_b0355
  article-title: An improved K-means algorithm based on fuzzy metrics
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.3040745
– volume: 2
  start-page: 63
  year: 2007
  ident: 10.1016/j.ins.2022.11.139_b0630
  article-title: An improved algorithm of K-means
  publication-title: J. Beijing Inst. Graph. Commun.
– year: 2021
  ident: 10.1016/j.ins.2022.11.139_b0890
  article-title: A strong reinforcement parallel implementation of K-means algorithm using message passing interface
  publication-title: Mater. Today: Proc.
– volume: 12
  start-page: 223
  issue: 3
  year: 2019
  ident: 10.1016/j.ins.2022.11.139_b0120
  article-title: TiK-means: Transformation-infused K-means clustering for skewed groups
  publication-title: Stat. Anal. Data Mining: ASA Data Sci. J.
  doi: 10.1002/sam.11416
– ident: 10.1016/j.ins.2022.11.139_b1070
  doi: 10.1109/ICCSN.2011.6014384
– volume: 34
  start-page: 5939
  issue: 8
  year: 2022
  ident: 10.1016/j.ins.2022.11.139_b0815
  article-title: Automatic detection of outliers and the number of clusters in k-means clustering via Chebyshev-type inequalities
  publication-title: Neural Comput. & Applic.
  doi: 10.1007/s00521-021-06689-x
– volume: 11
  start-page: 27
  issue: 1
  year: 2020
  ident: 10.1016/j.ins.2022.11.139_b1175
  article-title: K-Means clustering-based electrical equipment identification for smart building application
  publication-title: Information
  doi: 10.3390/info11010027
– volume: 30
  year: 2017
  ident: 10.1016/j.ins.2022.11.139_b0785
  article-title: K-medoids for K-means seeding
  publication-title: Adv. Neural Inf. Proces. Syst.
– volume: 3
  start-page: 2249
  issue: 5
  year: 2014
  ident: 10.1016/j.ins.2022.11.139_b0925
  article-title: K-mean Clustering and PSO: A review
  publication-title: Internat. J. Eng. Adv. Technol. (IJEAT) ISSN
– volume: 29
  start-page: 37
  issue: 1
  year: 2014
  ident: 10.1016/j.ins.2022.11.139_b0570
  article-title: Music and timbre segmentation by recursive constrained K-means clustering
  publication-title: Comput. Stat.
  doi: 10.1007/s00180-012-0358-5
– volume: 14
  start-page: 127
  year: 1966
  ident: 10.1016/j.ins.2022.11.139_b0490
  article-title: Multidimensional group analysis
  publication-title: Aust. J. Bot.
  doi: 10.1071/BT9660127
– volume: 71
  start-page: 608
  year: 2018
  ident: 10.1016/j.ins.2022.11.139_b1230
  article-title: An effective partitional clustering algorithm based on new clustering validity index
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2018.07.026
– volume: 31
  start-page: 264
  issue: 3
  year: 1999
  ident: 10.1016/j.ins.2022.11.139_b0485
  article-title: Data clustering: A review
  publication-title: ACM Comput. Surveys (CSUR)
  doi: 10.1145/331499.331504
– volume: 214
  year: 2021
  ident: 10.1016/j.ins.2022.11.139_b0145
  article-title: A unified form of fuzzy C-means and K-means algorithms and its partitional implementation
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2020.106731
– volume: 571
  start-page: 418
  year: 2021
  ident: 10.1016/j.ins.2022.11.139_b0265
  article-title: Clustering mixed numerical and categorical data with missing values
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2021.04.076
– volume: 70
  start-page: 1249
  issue: 3
  year: 2014
  ident: 10.1016/j.ins.2022.11.139_b0240
  article-title: Optimized big data K-means clustering using MapReduce
  publication-title: J. Supercomput.
  doi: 10.1007/s11227-014-1225-7
– volume: 20
  start-page: 1027
  year: 1999
  ident: 10.1016/j.ins.2022.11.139_b0845
  article-title: An empirical comparison of four initialization methods for the K-means algorithm
  publication-title: Pattern Recogn. Lett.
  doi: 10.1016/S0167-8655(99)00069-0
– volume: 10
  start-page: 757
  issue: 7
  year: 2017
  ident: 10.1016/j.ins.2022.11.139_b0395
  article-title: Local search methods for K-means with outliers
  publication-title: Proceedings of the VLDB Endowment
  doi: 10.14778/3067421.3067425
– volume: 14
  start-page: 1003
  issue: 5
  year: 2002
  ident: 10.1016/j.ins.2022.11.139_b0795
  article-title: CLARANS: A method for clustering objects for spatial data mining
  publication-title: IEEE Trans. Knowl. Data Eng.
  doi: 10.1109/TKDE.2002.1033770
– ident: 10.1016/j.ins.2022.11.139_b0285
– volume: 2
  start-page: 165
  issue: 2
  year: 2015
  ident: 10.1016/j.ins.2022.11.139_b1120
  article-title: A comprehensive survey of clustering algorithms
  publication-title: Ann. Data Sci.
  doi: 10.1007/s40745-015-0040-1
– volume: 91
  start-page: 402
  year: 2018
  ident: 10.1016/j.ins.2022.11.139_b0465
  article-title: Combining K-means and a genetic algorithm through a novel arrangement of genetic operators for high quality clustering
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2017.09.005
– start-page: 1
  year: 2017
  ident: 10.1016/j.ins.2022.11.139_b0525
  article-title: A comparative study of K-means, K-means++ and Fuzzy C-Means clustering algorithms
– volume: 60
  start-page: 423
  year: 2017
  ident: 10.1016/j.ins.2022.11.139_b0030
  article-title: A novel hybridization strategy for krill herd algorithm applied to clustering techniques
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2017.06.059
– ident: 10.1016/j.ins.2022.11.139_b0600
  doi: 10.1109/CVPR.2005.210
– volume: 13
  start-page: 0201874
  issue: 9
  year: 2018
  ident: 10.1016/j.ins.2022.11.139_b0850
  article-title: Balancing effort and benefit of K-means clustering algorithms in big data realms
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0201874
– volume: 31
  year: 2018
  ident: 10.1016/j.ins.2022.11.139_b1030
  article-title: Differentially private K-means with constant multiplicative error
  publication-title: Adv. Neural Inf. Proces. Syst.
– ident: 10.1016/j.ins.2022.11.139_b0940
  doi: 10.1145/1772690.1772862
– volume: 34
  start-page: 6365
  issue: 8
  year: 2021
  ident: 10.1016/j.ins.2022.11.139_b0970
  article-title: An adaptive outlier removal aided K-means clustering algorithm
  publication-title: J. King Saud Univ.-Comput. Inform. Sci.
  doi: 10.1016/j.jksuci.2021.07.003
– start-page: 674
  year: 2009
  ident: 10.1016/j.ins.2022.11.139_b1205
  article-title: Parallel K-means clustering based on mapreduce
– volume: 80
  start-page: 7397
  issue: 5
  year: 2021
  ident: 10.1016/j.ins.2022.11.139_b0345
  article-title: Skin lesion segmentation using K-means and optimized firefly algorithm
  publication-title: Multimed. Tools Appl.
  doi: 10.1007/s11042-020-10064-8
– start-page: 1
  year: 2020
  ident: 10.1016/j.ins.2022.11.139_b0170
  article-title: An efficient K-means clustering algorithm for tall data
  publication-title: Data Min. Knowl. Disc.
– ident: 10.1016/j.ins.2022.11.139_b0515
  doi: 10.1109/ICICISYS.2009.5358020
– volume: 74
  start-page: 1562
  issue: 4
  year: 2018
  ident: 10.1016/j.ins.2022.11.139_b1005
  article-title: A hybrid MapReduce-based K-means clustering using genetic algorithm for distributed datasets
  publication-title: J. Supercomput.
  doi: 10.1007/s11227-017-2182-8
– start-page: 162
  year: 2010
  ident: 10.1016/j.ins.2022.11.139_b0670
  article-title: Parallel K-means clustering of remote sensing images based on MapReduce
– volume: 7
  start-page: 31883
  year: 2019
  ident: 10.1016/j.ins.2022.11.139_b0045
  article-title: Survey of state-of-the-art mixed data clustering algorithms
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2903568
– volume: 64
  start-page: 651
  year: 2020
  ident: 10.1016/j.ins.2022.11.139_b0340
  article-title: Data clustering: theory, algorithms, and applications
  publication-title: Biometrics
– volume: 152
  year: 2021
  ident: 10.1016/j.ins.2022.11.139_b0065
  article-title: Parallel batch K-means for big data clustering
  publication-title: Comput. Ind. Eng.
  doi: 10.1016/j.cie.2020.107023
– volume: 110
  year: 2022
  ident: 10.1016/j.ins.2022.11.139_b0300
  article-title: A comprehensive survey of clustering algorithms: State-of-the-art machine learning applications, taxonomy, challenges, and future research prospects
  publication-title: Eng. Appl. Artif. Intel.
  doi: 10.1016/j.engappai.2022.104743
– ident: 10.1016/j.ins.2022.11.139_b0880
  doi: 10.1109/BDCloud-SocialCom-SustainCom.2016.46
– start-page: 2
  year: 2013
  ident: 10.1016/j.ins.2022.11.139_b0545
  article-title: Statistically refining the initial points for K-means clustering algorithm
– volume: 14
  start-page: 1
  issue: 8
  year: 2022
  ident: 10.1016/j.ins.2022.11.139_b0800
  article-title: An effective and efficient algorithm for K-means clustering with new formulation
  publication-title: IEEE Trans. Knowl. Data Eng.
  doi: 10.1109/TKDE.2022.3179554
– start-page: 129
  year: 1982
  ident: 10.1016/j.ins.2022.11.139_b0660
  article-title: Least squares quantization in PCM
– volume: 13
  start-page: 2272
  issue: 6
  year: 2020
  ident: 10.1016/j.ins.2022.11.139_b1235
  article-title: Privacy-preserving K-means clustering with local synchronization in peer-to-peer networks
  publication-title: Peer-to-Peer Networking and Applications
  doi: 10.1007/s12083-020-00881-x
– volume: 207
  year: 2022
  ident: 10.1016/j.ins.2022.11.139_b0005
  article-title: The incremental online k-means clustering algorithm and its application to color quantization
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2022.117927
– volume: 31
  year: 2018
  ident: 10.1016/j.ins.2022.11.139_b0165
  article-title: Statistical and computational trade-offs in kernel k-means
  publication-title: Adv. Neural Inf. Proces. Syst.
– start-page: 115
  year: 2019
  ident: 10.1016/j.ins.2022.11.139_b0650
  article-title: Online retail sales prediction with integrated framework of K-means and neural network
– year: 2019
  ident: 10.1016/j.ins.2022.11.139_b0020
– ident: 10.1016/j.ins.2022.11.139_b1080
– volume: 68
  issue: 3
  year: 2018
  ident: 10.1016/j.ins.2022.11.139_b0930
  article-title: Aerodynamic parameters estimation using radial basis function neural partial differentiation method
  publication-title: Def. Sci. J.
  doi: 10.14429/dsj.68.11843
– ident: 10.1016/j.ins.2022.11.139_b0585
  doi: 10.1007/978-981-4451-98-7_143
– start-page: 464
  year: 2017
  ident: 10.1016/j.ins.2022.11.139_b0435
  article-title: Improved K-means algorithm based on hybrid fruit fly optimization and differential evolution
– ident: 10.1016/j.ins.2022.11.139_b0780
– start-page: 647
  year: 2012
  ident: 10.1016/j.ins.2022.11.139_b0680
  article-title: Improvement of K-means clustering algorithm with better initial centroids based on weighted average
– volume: Vol. 3
  start-page: 731
  year: 1973
  ident: 10.1016/j.ins.2022.11.139_b0275
  publication-title: Pattern classification and scene analysis
– start-page: 836
  year: 2016
  ident: 10.1016/j.ins.2022.11.139_b0380
  article-title: A novel locality sensitive K-means clustering algorithm based on subtractive clustering
– ident: 10.1016/j.ins.2022.11.139_b0805
  doi: 10.1109/CCIS.2016.7790241
– year: 2009
  ident: 10.1016/j.ins.2022.11.139_b0535
– start-page: 1146
  year: 2012
  ident: 10.1016/j.ins.2022.11.139_b0325
  article-title: A K-means clustering algorithm based on the maximum triangle rule
– volume: 42
  start-page: 1
  issue: 1
  year: 2018
  ident: 10.1016/j.ins.2022.11.139_b0765
  article-title: Enhanced K-means clustering algorithm for malaria image segmentation
  publication-title: J. Adv. Res. Fluid Mech. Thermal Sci.
– year: 2000
  ident: 10.1016/j.ins.2022.11.139_b1010
– ident: 10.1016/j.ins.2022.11.139_b1240
  doi: 10.1155/2021/5571683
– volume: 14
  start-page: 641
  issue: 7
  year: 2017
  ident: 10.1016/j.ins.2022.11.139_b0620
  article-title: Points of significance: Principal component analysis
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.4346
– volume: 78
  start-page: 5181
  issue: 4
  year: 2022
  ident: 10.1016/j.ins.2022.11.139_b0690
  article-title: A MapReduce-based K-means clustering algorithm
  publication-title: J. Supercomput.
  doi: 10.1007/s11227-021-04078-8
– ident: 10.1016/j.ins.2022.11.139_b0715
  doi: 10.1201/9781420034912
– volume: 4
  start-page: 218
  year: 2017
  ident: 10.1016/j.ins.2022.11.139_b0010
  article-title: Survey report on K-means clustering algorithm
  publication-title: Int. J. Mod. Trends Eng. Res
  doi: 10.21884/IJMTER.2017.4143.LGJZD
– volume: 62
  year: 2020
  ident: 10.1016/j.ins.2022.11.139_b1035
  article-title: Integrated framework for identifying sustainable manufacturing layouts based on big data, machine learning, meta-heuristic, and data envelopment analysis
  publication-title: Sustain. Cities Soc.
  doi: 10.1016/j.scs.2020.102383
– volume: 11
  start-page: 296
  issue: 6
  year: 2018
  ident: 10.1016/j.ins.2022.11.139_b0655
  article-title: An efficient K-means-type algorithm for clustering datasets with incomplete records
  publication-title: Stat. Anal. Data Mining: ASA Data Sci. J.
  doi: 10.1002/sam.11392
– volume: 51
  start-page: 7
  issue: 1
  year: 2009
  ident: 10.1016/j.ins.2022.11.139_b0565
  article-title: Systematic literature reviews in software engineering–a systematic literature review
  publication-title: Inf. Softw. Technol.
  doi: 10.1016/j.infsof.2008.09.009
– volume: 13
  start-page: 72
  issue: 1
  year: 2022
  ident: 10.1016/j.ins.2022.11.139_b1090
  article-title: Research on image text recognition based on canny edge detection algorithm and k-means algorithm
  publication-title: Internat. J. Syst. Assur. Eng. Manage.
  doi: 10.1007/s13198-021-01262-0
– volume: 176
  year: 2021
  ident: 10.1016/j.ins.2022.11.139_b0205
  article-title: MK-means: Detecting evolutionary communities in dynamic networks
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2021.114807
– volume: 251
  year: 2022
  ident: 10.1016/j.ins.2022.11.139_b0710
  article-title: A new metaheuristic optimization based on K-means clustering algorithm and its application for structural damage identification in a complex 3D concrete structure
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2022.109189
– ident: 10.1016/j.ins.2022.11.139_b0050
  doi: 10.3390/electronics9081295
– volume: 54
  year: 2007
  ident: 10.1016/j.ins.2022.11.139_b0225
  article-title: A generalization of K-means for overlapping clustering
  publication-title: Rapport Technique
– volume: 61
  start-page: 36
  year: 2020
  ident: 10.1016/j.ins.2022.11.139_b0095
  article-title: A multiple K-means clustering ensemble algorithm to find nonlinearly separable clusters
  publication-title: Inform. Fusion
  doi: 10.1016/j.inffus.2020.03.009
– volume: 31
  year: 2018
  ident: 10.1016/j.ins.2022.11.139_b0215
  article-title: Query k-means clustering and the double dixie cup problem
  publication-title: Adv. Neural Inf. Proces. Syst.
– ident: 10.1016/j.ins.2022.11.139_b0080
– year: 2011
  ident: 10.1016/j.ins.2022.11.139_b0775
  article-title: Enhancing the k-means clustering algorithm by using a O (n logn) heuristic method for finding better initial centroids
– volume: 39
  start-page: e12886
  issue: 2
  year: 2022
  ident: 10.1016/j.ins.2022.11.139_b0365
  article-title: Spherical fuzzy extension of AHP-ARAS methods integrated with modified k-means clustering for logistics hub location problem
  publication-title: Expert. Syst.
  doi: 10.1111/exsy.12886
– volume: 22
  start-page: 1349
  issue: 7
  year: 2013
  ident: 10.1016/j.ins.2022.11.139_b0595
  article-title: PSO-based K-means clustering with enhanced cluster matching for gene expression data
  publication-title: Neural Comput. Appl.
  doi: 10.1007/s00521-012-0959-5
– start-page: 29
  year: 2004
  ident: 10.1016/j.ins.2022.11.139_b0260
  article-title: K-means clustering via principal component analysis
– start-page: 281
  year: 1967
  ident: 10.1016/j.ins.2022.11.139_b0675
  article-title: Some methods for classification and analysis of multivariate observations
– volume: 151
  year: 2020
  ident: 10.1016/j.ins.2022.11.139_b0740
  article-title: A comparison of clustering algorithms for automatic modulation classification
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2020.113317
– year: 2008
  ident: 10.1016/j.ins.2022.11.139_b0540
– volume: 7
  start-page: 222
  issue: 1
  year: 2016
  ident: 10.1016/j.ins.2022.11.139_b0505
  article-title: An improved K-means clustering with Atkinson index to classify liver patient dataset
  publication-title: Internat. J. Syst. Assurance Eng. Manage.
  doi: 10.1007/s13198-015-0365-3
– ident: 10.1016/j.ins.2022.11.139_b0160
  doi: 10.1145/3445945.3445947
– start-page: 591
  year: 2011
  ident: 10.1016/j.ins.2022.11.139_b0125
– start-page: 1
  year: 2010
  ident: 10.1016/j.ins.2022.11.139_b0255
  article-title: MK-means-modified K-means clustering algorithm
– volume: 16
  start-page: 38
  issue: 1
  year: 2021
  ident: 10.1016/j.ins.2022.11.139_b0885
  article-title: KText: Arbitrary shape text detection using modified K-means
  publication-title: IET Comput. Vis.
  doi: 10.1049/cvi2.12052
– volume: 15
  start-page: 5483
  issue: 10
  year: 2015
  ident: 10.1016/j.ins.2022.11.139_b0410
  article-title: An enhanced K-means and ANOVA-based clustering approach for similarity aggregation in underwater wireless sensor networks
  publication-title: IEEE Sens. J.
  doi: 10.1109/JSEN.2015.2443380
– volume: 154
  year: 2020
  ident: 10.1016/j.ins.2022.11.139_b0555
  article-title: Survey and taxonomy of clustering algorithms in 5G
  publication-title: J. Netw. Comput. Appl.
  doi: 10.1016/j.jnca.2020.102539
– volume: 7
  start-page: 184963
  year: 2019
  ident: 10.1016/j.ins.2022.11.139_b0035
  article-title: Automatic data clustering using hybrid firefly particle swarm optimization algorithm
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2960925
– year: 2013
  ident: 10.1016/j.ins.2022.11.139_b0335
  article-title: Introduction to statistical pattern recognition
  publication-title: Elsevier
– ident: 10.1016/j.ins.2022.11.139_b0250
  doi: 10.1109/IIH-MSP.2007.259
– volume: 99
  start-page: 291
  year: 1999
  ident: 10.1016/j.ins.2022.11.139_b0280
  article-title: Clustering in large graphs and matrices
  publication-title: SODA
– start-page: 947
  year: 2016
  ident: 10.1016/j.ins.2022.11.139_b0220
  article-title: Faster Mahalanobis K-means clustering for Gaussian distributions
– start-page: 31
  year: 2019
  ident: 10.1016/j.ins.2022.11.139_b0980
  article-title: U-control chart based differential evolution clustering for determining the number of clusters in K-means
– volume: 94
  start-page: 663
  issue: 4
  year: 2017
  ident: 10.1016/j.ins.2022.11.139_b1190
  article-title: Improved rough K-means clustering algorithm based on weighted distance measure with Gaussian function
  publication-title: Int. J. Comput. Math.
  doi: 10.1080/00207160.2015.1124099
– start-page: 1
  year: 2015
  ident: 10.1016/j.ins.2022.11.139_b0150
  article-title: An improved MapReduce design of Kmeans for clustering very large datasets
– volume: 17
  start-page: 2524
  year: 2022
  ident: 10.1016/j.ins.2022.11.139_b1150
  article-title: K-means clustering with local d χ-privacy for privacy-preserving data analysis
  publication-title: IEEE Trans. Inf. Forensics Secur.
  doi: 10.1109/TIFS.2022.3189532
– start-page: 1
  year: 2022
  ident: 10.1016/j.ins.2022.11.139_b0550
  article-title: Quantum K-means clustering method for detecting heart disease using quantum circuit approach
  publication-title: Soft. Comput.
– volume: 7
  start-page: 1626
  issue: 10
  year: 2006
  ident: 10.1016/j.ins.2022.11.139_b0310
  article-title: An efficient enhanced K-means clustering algorithm
  publication-title: Journal of Zhejiang University-Science A
  doi: 10.1631/jzus.2006.A1626
– volume: 36
  start-page: 3336
  issue: 2
  year: 2009
  ident: 10.1016/j.ins.2022.11.139_b0835
  article-title: A simple and fast algorithm for K-medoids clustering
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2008.01.039
– volume: 2
  start-page: 283
  issue: 3
  year: 1998
  ident: 10.1016/j.ins.2022.11.139_b0445
  article-title: Extensions to the K-means algorithm for clustering large data sets with categorical values
  publication-title: Data Min. Knowl. Disc.
  doi: 10.1023/A:1009769707641
– ident: 10.1016/j.ins.2022.11.139_b0235
  doi: 10.1007/11552253_5
– start-page: 1
  year: 2020
  ident: 10.1016/j.ins.2022.11.139_b0870
  article-title: Selection of optimal number of clusters and centroids for K-means and fuzzy C-means clustering: A review
– volume: 63
  start-page: 503
  year: 2007
  ident: 10.1016/j.ins.2022.11.139_b0040
  article-title: A K-mean clustering algorithm for mixed numeric and categorical data
  publication-title: Data Knowl. Eng.
  doi: 10.1016/j.datak.2007.03.016
– ident: 10.1016/j.ins.2022.11.139_b0810
  doi: 10.1109/RoboMech.2017.8261116
– start-page: 81
  year: 2016
  ident: 10.1016/j.ins.2022.11.139_b0140
  article-title: Theoretical analysis of the K-means algorithm–a survey
– ident: 10.1016/j.ins.2022.11.139_b0320
  doi: 10.1109/ICDMW.2011.76
– volume: 75
  start-page: 12043
  issue: 19
  year: 2016
  ident: 10.1016/j.ins.2022.11.139_b0615
  article-title: Robust K-means algorithm with automatically splitting and merging clusters and its applications for surveillance data
  publication-title: Multimed. Tools Appl.
  doi: 10.1007/s11042-016-3322-5
– volume: 12
  start-page: 1573
  year: 2019
  ident: 10.1016/j.ins.2022.11.139_b0625
  article-title: K-means clustering of overweight and obese population using quantile-transformed metabolic data
  publication-title: Diabetes Metab. Syndrome Obes. Targets Ther.
  doi: 10.2147/DMSO.S206640
– ident: 10.1016/j.ins.2022.11.139_b0910
  doi: 10.1109/CISP.2011.6100578
– year: 2004
  ident: 10.1016/j.ins.2022.11.139_b0415
  article-title: Initialization of cluster refinement algorithms: A review and comparative study
– volume: 5
  start-page: 1
  issue: 1
  year: 2020
  ident: 10.1016/j.ins.2022.11.139_b1105
  article-title: Improvement of the fast-clustering algorithm improved by K-means in the big data
  publication-title: Appl. Math. Nonlinear Sci.
  doi: 10.2478/amns.2020.1.00001
– volume: 24
  start-page: 881
  issue: 7
  year: 2002
  ident: 10.1016/j.ins.2022.11.139_b0510
  article-title: An efficient K-means clustering algorithm: Analysis and implementation
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2002.1017616
– volume: 33
  start-page: 16142
  year: 2020
  ident: 10.1016/j.ins.2022.11.139_b0685
  article-title: Improved guarantees for K-means++ and K-means++ Parallel
  publication-title: Adv. Neural Inf. Proces. Syst.
– ident: 10.1016/j.ins.2022.11.139_b0360
– volume: 17
  year: 2019
  ident: 10.1016/j.ins.2022.11.139_b1225
  article-title: Improved logistic regression model for diabetes prediction by integrating PCA and K-means techniques
  publication-title: Inf. Med. Unlocked
– volume: 2022
  year: 2022
  ident: 10.1016/j.ins.2022.11.139_b1250
  article-title: An improved K-means clustering algorithm towards an efficient data-drivenmModeling
  publication-title: Annals of Data Science
– volume: 2
  year: 2013
  ident: 10.1016/j.ins.2022.11.139_b0995
  article-title: Analysis and study of K-means clustering algorithm
  publication-title: Internat. J. Eng. Res. Technol.
– ident: 10.1016/j.ins.2022.11.139_b1180
  doi: 10.1109/ICAIBD.2018.8396161
– ident: 10.1016/j.ins.2022.11.139_b1195
  doi: 10.1109/ICCSNT.2012.6526212
– volume: 24
  start-page: 2883
  issue: 15
  year: 2003
  ident: 10.1016/j.ins.2022.11.139_b0210
  article-title: K∗-Means: A new generalized K-means clustering algorithm
  publication-title: Pattern Recogn. Lett.
  doi: 10.1016/S0167-8655(03)00146-6
– ident: 10.1016/j.ins.2022.11.139_b0705
  doi: 10.1109/ICCASM.2010.5620383
– volume: 43
  year: 1997
  ident: 10.1016/j.ins.2022.11.139_b0075
  article-title: An efficient k-means clustering algorithm. Electrical Engineering and Computer
  publication-title: Science
– start-page: 3037
  year: 2012
  ident: 10.1016/j.ins.2022.11.139_b1060
  article-title: Fast approximate K-means via cluster closures
– volume: 25
  start-page: 932
  issue: 4
  year: 2011
  ident: 10.1016/j.ins.2022.11.139_b0200
  article-title: TW-K-means: Automated two-level variable weighting clustering algorithm for multiview data
  publication-title: IEEE Trans. Knowl. Data Eng.
  doi: 10.1109/TKDE.2011.262
– volume: 11
  start-page: 681
  issue: 4
  year: 2014
  ident: 10.1016/j.ins.2022.11.139_b0455
  article-title: A simple but powerful heuristic method for accelerating K-Means clustering of large-scale data in life science
  publication-title: IEEE/ACM Trans. Comput. Biol. Bioinf.
  doi: 10.1109/TCBB.2014.2306200
– start-page: 202
  year: 2016
  ident: 10.1016/j.ins.2022.11.139_b0520
  article-title: On K-means data clustering algorithm with genetic algorithm
– volume: 34
  start-page: 554
  issue: 2
  year: 2021
  ident: 10.1016/j.ins.2022.11.139_b1115
  article-title: Helicopter maritime search area planning based on a minimum bounding rectangle and K-means clustering
  publication-title: Chin. J. Aeronaut.
  doi: 10.1016/j.cja.2020.08.047
– start-page: 251
  year: 2014
  ident: 10.1016/j.ins.2022.11.139_b0390
  article-title: K-intervals: A new extension of the K-means algorithm
– volume: 11
  start-page: 11246
  issue: 23
  year: 2021
  ident: 10.1016/j.ins.2022.11.139_b0460
  article-title: K-Means-based nature-inspired metaheuristic algorithms for automatic data clustering problems: Recent advances and future directions
  publication-title: Appl. Sci.
  doi: 10.3390/app112311246
– volume: 16
  start-page: 48
  issue: 1
  year: 2021
  ident: 10.1016/j.ins.2022.11.139_b0730
  article-title: An improved K-means algorithm for big data
  publication-title: IET Softw.
  doi: 10.1049/sfw2.12032
– volume: 93
  start-page: 95
  year: 2019
  ident: 10.1016/j.ins.2022.11.139_b0330
  article-title: How much can K-means be improved by using better initialization and repeats?
  publication-title: Pattern Recogn.
  doi: 10.1016/j.patcog.2019.04.014
– volume: 3
  start-page: 27
  issue: 2
  year: 2019
  ident: 10.1016/j.ins.2022.11.139_b0060
  article-title: Automatic human brain tumor detection in MRI image using template-based K means and improved fuzzy C means clustering algorithm
  publication-title: Big Data Cognit. Comput.
  doi: 10.3390/bdcc3020027
– ident: 10.1016/j.ins.2022.11.139_b1155
– volume: 4
  issue: 2
  year: 2008
  ident: 10.1016/j.ins.2022.11.139_b0405
  article-title: Origins and extensions of the K-means algorithm in cluster analysis
  publication-title: Journal Electronique d’Histoire des Probabilités et de la Statistique Electron. J. History Prob. Stat.
– year: 2017
  ident: 10.1016/j.ins.2022.11.139_b0950
  article-title: Compressed K-means for large-scale clustering
– ident: 10.1016/j.ins.2022.11.139_b0090
– volume: 71
  start-page: 345
  year: 2014
  ident: 10.1016/j.ins.2022.11.139_b0895
  article-title: A hybrid clustering technique combining a novel genetic algorithm with K-means
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2014.08.011
– volume: 33
  start-page: 50
  issue: 1
  year: 2004
  ident: 10.1016/j.ins.2022.11.139_b1045
  article-title: State-of-the-art in privacy preserving data mining
  publication-title: ACM SIGMOD Rec.
  doi: 10.1145/974121.974131
– start-page: 405
  year: 1987
  ident: 10.1016/j.ins.2022.11.139_b0530
  article-title: Clustering by means of medoids
– start-page: 1047
  year: 2014
  ident: 10.1016/j.ins.2022.11.139_b0820
  article-title: A linear time-complexity k-means algorithm using cluster shifting
– ident: 10.1016/j.ins.2022.11.139_b0175
  doi: 10.1145/2401603.2401639
SSID ssj0004766
Score 2.7596328
Snippet Advances in recent techniques for scientific data collection in the era of big data allow for the systematic accumulation of large quantities of data at...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 178
SubjectTerms Big data clustering
Clustering algorithm
Improved k-means
K-means
K-means variants
Modified k-means
Perspectives on big data clustering
Title K-means clustering algorithms: A comprehensive review, variants analysis, and advances in the era of big data
URI https://dx.doi.org/10.1016/j.ins.2022.11.139
Volume 622
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1872-6291
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004766
  issn: 0020-0255
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals [SCFCJ]
  customDbUrl:
  eissn: 1872-6291
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004766
  issn: 0020-0255
  databaseCode: AIKHN
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect (Elsevier)
  customDbUrl:
  eissn: 1872-6291
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004766
  issn: 0020-0255
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect Freedom Collection Journals
  customDbUrl:
  eissn: 1872-6291
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004766
  issn: 0020-0255
  databaseCode: ACRLP
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1872-6291
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004766
  issn: 0020-0255
  databaseCode: AKRWK
  dateStart: 19681201
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NS8QwEA2iFz2IrorfzEE8iNVumjSpt2VRVkVPCt5Kskm1stuVdfXob3dmm_oB6sFbKRkomXTmDXnzhrE9LJHTVHEZGa1NJBDgR9pxHRVKeu7aSVv06Ub36jrt3YqLO3k3w7pNLwzRKkPsr2P6NFqHN8dhN4-fypJ6fPkUEXNOAigJKX4KoWiKwdHbJ81DqPq-ksokWt3cbE45XmVFit2cY-A4atO88J9y05d8c7bEFgNQhE79LctsxlcttvBFPrDFdkLTAexD6CqiXYbwu66w4WU09JiKoD94IT0ENAIzuB-Ny8nD8PkEOkCE8rF_qEnsULexHMIr1s9EjwETFEsO8clBoAs8Q1kBwkbwYwOjAmx5D8QzXWW3Z6c33V4UxitEfZ6pSeS0Ml7p1BXWZpaQiZeUz4Q0lheJcrHkXmhrTYru8zxVpMVuCotbGussTtbYbDWq_DoD5522mdRF7LxwNrYIA3xmEV3IJJOivcHiZmPzftAepxEYg7whmT3m6IucfIE1SY6-2GAHHyZPtfDGX4tF46382-nJMTH8brb5P7MtNk9D52v-zjabnYxf_A5Ck4ndnZ69XTbXOb_sXb8D0p3iAg
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3BTtwwEB1Remh7qCht1aWFzqHqoSKQdezY6Q2tQNsucAKJW2SvHTZoN4uWhSPfzszGaUFqe-gtijxS5HFm3shv3gB8oRI5z7VQiTXGJpIAfmK8MEmlVRC-n_XlmG90T07z4bn8eaEu1mDQ9cIwrTLG_jamr6J1fLMfd3P_uq65x1esELEQLICSZc_guVRCcwW2d_-b5yF1e2HJdRIv7642VySvumHJbiEocuz1eWD4n5LTo4RztAGvI1LEg_Zj3sBaaDbh1SP9wE3Yjl0H-BVjWxFvM8b_9S3MRsksUC7C8fSWBRHICO30cr6ol5PZzXc8QGaUL8KkZbFj28eyi3dUQDM_Bm2ULNmlJ4-RL3CDdYOEGzEsLM4rdPUlMtH0HZwfHZ4Nhkmcr5CMRaGXiTfaBm1yXzlXOIYmQXFCk8o6UWXap0oEaZyzOfkviFyzGLutHG1paoo0ew_rzbwJHwB98MYVylSpD9K71BEOCIUjeKGyQsl-D9JuY8txFB_nGRjTsmOZXZXki5J9QUVJSb7owbdfJtet8sa_FsvOW-WT41NSZvi72db_mX2GF8Ozk-Py-Mfp6CO85An0LZnnE6wvF7dhm3DK0u2szuEDJVLjlw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=K-means+clustering+algorithms%3A+A+comprehensive+review%2C+variants+analysis%2C+and+advances+in+the+era+of+big+data&rft.jtitle=Information+sciences&rft.au=Ikotun%2C+Abiodun+M.&rft.au=Ezugwu%2C+Absalom+E.&rft.au=Abualigah%2C+Laith&rft.au=Abuhaija%2C+Belal&rft.date=2023-04-01&rft.issn=0020-0255&rft.volume=622&rft.spage=178&rft.epage=210&rft_id=info:doi/10.1016%2Fj.ins.2022.11.139&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_ins_2022_11_139
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0020-0255&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0020-0255&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0020-0255&client=summon