Critical points of discrete periodic operators

We study the spectra of operators on periodic graphs using methods from combinatorial algebraic geometry. Our main result is a bound on the number of complex critical points of the Bloch variety, together with an effective criterion for when this bound is attained. We show that this criterion holds...

Full description

Saved in:
Bibliographic Details
Published inJournal of spectral theory Vol. 14; no. 1; pp. 1 - 35
Main Authors Faust, Matthew, Sottile, Frank
Format Journal Article
LanguageEnglish
Published European Mathematical Society Publishing House 01.01.2024
Subjects
Online AccessGet full text
ISSN1664-039X
1664-0403
1664-0403
DOI10.4171/jst/503

Cover

Abstract We study the spectra of operators on periodic graphs using methods from combinatorial algebraic geometry. Our main result is a bound on the number of complex critical points of the Bloch variety, together with an effective criterion for when this bound is attained. We show that this criterion holds for {\mathbb{Z}}^{2} - and {\mathbb{Z}}^{3} -periodic graphs with sufficiently many edges and use our results to establish the spectral edges conjecture for some {\mathbb{Z}}^{2} -periodic graphs.
AbstractList We study the spectra of operators on periodic graphs using methods from combinatorial algebraic geometry. Our main result is a bound on the number of complex critical points of the Bloch variety, together with an effective criterion for when this bound is attained. We show that this criterion holds for {\mathbb{Z}}^{2} - and {\mathbb{Z}}^{3} -periodic graphs with sufficiently many edges and use our results to establish the spectral edges conjecture for some {\mathbb{Z}}^{2} -periodic graphs.
We study the spectra of operators on periodic graphs using methods from combinatorial algebraic geometry. Our main result is a bound on the number of complex critical points of the Bloch variety, together with an effective criterion for when this bound is attained. We show that this criterion holds for [??]- and [??]-periodic graphs with sufficiently many edges and use our results to establish the spectral edges conjecture for some [??]-periodic graphs. Keywords: Bloch variety, Schrodinger operator, Kushnirenko Theorem, Toric variety, Newton polytope.
Audience Academic
Author Faust, Matthew
Sottile, Frank
Author_xml – sequence: 1
  givenname: Matthew
  orcidid: 0000-0001-9385-2744
  surname: Faust
  fullname: Faust, Matthew
– sequence: 2
  givenname: Frank
  orcidid: 0000-0003-0087-7120
  surname: Sottile
  fullname: Sottile, Frank
BookMark eNp9UMFKxDAQDbKC67r4C73ppbtJ0zTpcVl0FRa8KHgraZqRWbpNSSKyf2-kelGQOczw5s2beXNJZoMbLCHXjK5KJtn6EOJaUH5G5qyqypyWlM9-al6_XpBlCAdKaUJk6s3JausxotF9NjocYsgcZB0G42202Wg9ug5N5lKlo_PhipyD7oNdfucFebm_e94-5Pun3eN2s89NUcuYd4ILUFS0CoSEUlIFqqJKcWUZqLZtyy6dU4IpVGWNkFwKxbm1TAMwwVq-ILeT7vsw6tOH7vtm9HjU_tQw2nxZbZLVJllN1NVEfdO9bXAAF702KTp7RJPeA5jwjSqKgjGh6jRwMw0Y70LwFv6Rzn8xDUYd0Q1pBfZ_-J_IenTW
CitedBy_id crossref_primary_10_1137_23M1600256
ContentType Journal Article
Copyright COPYRIGHT 2024 European Mathematical Society Publishing House
Copyright_xml – notice: COPYRIGHT 2024 European Mathematical Society Publishing House
DBID AAYXX
CITATION
ADTOC
UNPAY
DOI 10.4171/jst/503
DatabaseName CrossRef
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
DatabaseTitleList CrossRef

Database_xml – sequence: 1
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
EISSN 1664-0403
EndPage 35
ExternalDocumentID 10.4171/jst/503
A822211589
10_4171_jst_503
GeographicLocations United States
GeographicLocations_xml – name: United States
GroupedDBID AAFWJ
AAYXX
AENEX
AFPKN
AKZPS
ALMA_UNASSIGNED_HOLDINGS
AMVHM
AUREJ
CITATION
FEDTE
GROUPED_DOAJ
H13
HVGLF
IAO
IGS
ITC
J9A
OK1
REW
VH7
ADTOC
UNPAY
ID FETCH-LOGICAL-c297t-d535f805b8f57f4708f8608838e1f8bbb4d0394fc286ec57375833ee1aff151b3
IEDL.DBID UNPAY
ISSN 1664-039X
1664-0403
IngestDate Mon Sep 15 08:26:07 EDT 2025
Tue Jun 10 21:00:59 EDT 2025
Thu Apr 24 22:57:46 EDT 2025
Wed Oct 01 05:16:10 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c297t-d535f805b8f57f4708f8608838e1f8bbb4d0394fc286ec57375833ee1aff151b3
ORCID 0000-0003-0087-7120
0000-0001-9385-2744
OpenAccessLink https://proxy.k.utb.cz/login?url=https://doi.org/10.4171/jst/503
PageCount 35
ParticipantIDs unpaywall_primary_10_4171_jst_503
gale_infotracacademiconefile_A822211589
crossref_primary_10_4171_jst_503
crossref_citationtrail_10_4171_jst_503
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-01-01
PublicationDateYYYYMMDD 2024-01-01
PublicationDate_xml – month: 01
  year: 2024
  text: 2024-01-01
  day: 01
PublicationDecade 2020
PublicationTitle Journal of spectral theory
PublicationYear 2024
Publisher European Mathematical Society Publishing House
Publisher_xml – name: European Mathematical Society Publishing House
SSID ssj0001667403
Score 2.3058014
Snippet We study the spectra of operators on periodic graphs using methods from combinatorial algebraic geometry. Our main result is a bound on the number of complex...
SourceID unpaywall
gale
crossref
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
StartPage 1
SubjectTerms Graph theory
Mathematical research
Schrodinger equation
Title Critical points of discrete periodic operators
URI https://doi.org/10.4171/jst/503
UnpaywallVersion publishedVersion
Volume 14
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1664-0403
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001667403
  issn: 1664-039X
  databaseCode: DOA
  dateStart: 20210101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NS8MwFA9jO-jF-YnzY0YQPXVrmzRJj0OUITg8OJin0nzBdLRl6xD9603WbE5F8dbDawjvNXm_X5P3ewBcaMJUSAT2GOOxIShYeykKI0-GMiSGjwgV2Grk-wHpD_HdKBrVwNmyFmbt_B4HNOg-z8puZNU8G8SeINVBYzh46D1ZGkUI9nwUj1bP2EdVWez6m1_yjdt1N-ZZkb69ppPJWi65bX5qCVRXSF4685J3xPs3gcY_prkNthyOhL0q8DugprJd0HSYEroVO9sDnWUvA1jk46ycwVxDW4k7NWAZWpXjXI4FzAu1OG6f7YPh7c3jdd9zPRI8Eca09GSEIs38iDMdUY2pzzQjZudATAWacc6xND7CWoSMKBFRRG2ZlVJBqrVJ9hwdgHqWZ-oQQEqDVIpAStsZXEjNtaGDMU9DHyFtSHQLXC49mQgnIG77WEwSQySsFxLjhcR4oQXgyrCoNDN-mlzZUCR2FZkxROqKAcxMrB5V0rO4xYBVFrfA-Spav4129A-bY7AZGjxS_T05AfVyOlenBk-UvL3g4W33ZX0AeanIlA
linkProvider Unpaywall
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8NAEF5Ke9CL9Yn1uYLoKW2SfWRzLKIUweLBQj2F7AuqJQlNiuivd9dsa1UUbzlMlmUmu_N92Z1vADjXlKmQCuwxxmNDULD2UhQST4YypIaPCBXYauS7IR2M8O2YjBvgdFELs3J-j4Mo6D2VVY9YNc8WtSdITdAaDe_7j5ZGUYo9H8Xj5TP2UV0Wu_rml3zjdt21eVakry_pdLqSS27an1oC9RWS5-684l3x9k2g8Y9pboINhyNhvw78FmiobBu0HaaEbsWWO6C76GUAi3ySVSXMNbSVuDMDlqFVOc7lRMC8UB_H7eUuGN1cP1wNPNcjwRNhHFWeJIho5hPONIk0jnymGTU7B2Iq0IxzjqXxEdYiZFQJEqHIllkpFaRam2TP0R5oZnmm9gGMoiCVIpDSdgYXUnNt6GDM09BHSBsS3QEXC08mwgmI2z4W08QQCeuFxHghMV7oALg0LGrNjJ8mlzYUiV1FZgyRumIAMxOrR5X0LW4xYJXFHXC2jNZvox38w-YQrIcGj9R_T45As5rN1bHBExU_cd_UO8uxx58
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Critical+points+of+discrete+periodic+operators&rft.jtitle=Journal+of+spectral+theory&rft.au=Faust%2C+Matthew&rft.au=Sottile%2C+Frank&rft.date=2024-01-01&rft.issn=1664-039X&rft.eissn=1664-0403&rft.volume=14&rft.issue=1&rft.spage=1&rft.epage=35&rft_id=info:doi/10.4171%2Fjst%2F503&rft.externalDBID=n%2Fa&rft.externalDocID=10_4171_jst_503
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1664-039X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1664-039X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1664-039X&client=summon