Rare earth-doped mixed Ni–Cu–Zn ferrites as an effective photocatalytic agent for active degradation of Rhodamine B dye

In this study, a series of Gd3+-doped mixed Ni–Cu–Zn ferrites with composition of Zn0.5Ni0.3Cu0.2Fe2–xGdxO4 (x = 0, 0.025, 0.05, 0.075, 0.1) was prepared using self-ignition sol–gel method. The prepared nanoparticles with an average size ranging from 22 to 26 nm show a single-phase cubic structure b...

Full description

Saved in:
Bibliographic Details
Published inJournal of rare earths Vol. 42; no. 3; pp. 488 - 496
Main Authors Jadhav, Swapnil A., Somvanshi, Sandeep B., Gawali, Sudarshan S., Zakde, Kranti, Jadhav, K.M.
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.03.2024
Subjects
Online AccessGet full text
ISSN1002-0721
2509-4963
DOI10.1016/j.jre.2023.03.004

Cover

Abstract In this study, a series of Gd3+-doped mixed Ni–Cu–Zn ferrites with composition of Zn0.5Ni0.3Cu0.2Fe2–xGdxO4 (x = 0, 0.025, 0.05, 0.075, 0.1) was prepared using self-ignition sol–gel method. The prepared nanoparticles with an average size ranging from 22 to 26 nm show a single-phase cubic structure belonging to the spinel matrix. A rise in the Gd3+ concentration leads to an increase in crystallite size and lattice parameter. In Fourier transform infrared spectra, two main absorption bands belonging to the spinel structure are observed. The high-frequency bands (υ1) represent the tetrahedral complex, while the low-frequency bands (υ2) signify the octahedral complex. The optical bandgap of the nanoferrites is found within the range of 2.91 to 2.41 eV, depending on their size. The magnetic characteristics of the material, such as saturation magnetization and coercivity are significantly altered with the concentration of Gd3+ in the solution. Using Rhodamine B (RhB) as a model organic pollutant, an in-depth investigation of the photocatalytic activity of the compounds was carried out. The present outcomes show that adding an adequate amount of Gd3+ significantly enhances the number of hydroxyl radicals produced by the ferrite, in turn, increasing the photocatalytic activity of the material. Mechanism elucidated by scavenger studies reveals that •OH and holes are the primary reactive radicals responsible for the degradation process. Prepared photocatalysts show an insignificant performance loss in five consecutive cycles. Thus, it is concluded that these photocatalysts are highly suitable for the remediation of dye-contaminated wastewater. When the photocatalyst Zn0.5Ni0.3Cu0.2Fe2–xGdxO4 absorbs the sun light, it produces pairs of electron and holes. The electron of the valence band of Zn0.5Ni0.3Cu0.2Fe2–xGdxO4 becomes excited when illuminated by the sunlight. The excess energy of this excited electron promotes the electron to go to the conduction band of Zn0.5Ni0.3Cu0.2Fe2–xGdxO4 which creates the negative electron e– and positive hole h+ pair. This stage is referred as the semiconductors photo excitation state. The positive hole of Zn0.5Ni0.3Cu0.2Fe2–xGdxO4 breaks apart the water molecules to form hydrogen gas and hydroxyl radical. The negative electron reacts with oxygen molecules to form super oxide anion. This reaction continues when sunlight is available. [Display omitted]
AbstractList In this study, a series of Gd3+-doped mixed Ni–Cu–Zn ferrites with composition of Zn0.5Ni0.3Cu0.2Fe2–xGdxO4 (x = 0, 0.025, 0.05, 0.075, 0.1) was prepared using self-ignition sol–gel method. The prepared nanoparticles with an average size ranging from 22 to 26 nm show a single-phase cubic structure belonging to the spinel matrix. A rise in the Gd3+ concentration leads to an increase in crystallite size and lattice parameter. In Fourier transform infrared spectra, two main absorption bands belonging to the spinel structure are observed. The high-frequency bands (υ1) represent the tetrahedral complex, while the low-frequency bands (υ2) signify the octahedral complex. The optical bandgap of the nanoferrites is found within the range of 2.91 to 2.41 eV, depending on their size. The magnetic characteristics of the material, such as saturation magnetization and coercivity are significantly altered with the concentration of Gd3+ in the solution. Using Rhodamine B (RhB) as a model organic pollutant, an in-depth investigation of the photocatalytic activity of the compounds was carried out. The present outcomes show that adding an adequate amount of Gd3+ significantly enhances the number of hydroxyl radicals produced by the ferrite, in turn, increasing the photocatalytic activity of the material. Mechanism elucidated by scavenger studies reveals that •OH and holes are the primary reactive radicals responsible for the degradation process. Prepared photocatalysts show an insignificant performance loss in five consecutive cycles. Thus, it is concluded that these photocatalysts are highly suitable for the remediation of dye-contaminated wastewater. When the photocatalyst Zn0.5Ni0.3Cu0.2Fe2–xGdxO4 absorbs the sun light, it produces pairs of electron and holes. The electron of the valence band of Zn0.5Ni0.3Cu0.2Fe2–xGdxO4 becomes excited when illuminated by the sunlight. The excess energy of this excited electron promotes the electron to go to the conduction band of Zn0.5Ni0.3Cu0.2Fe2–xGdxO4 which creates the negative electron e– and positive hole h+ pair. This stage is referred as the semiconductors photo excitation state. The positive hole of Zn0.5Ni0.3Cu0.2Fe2–xGdxO4 breaks apart the water molecules to form hydrogen gas and hydroxyl radical. The negative electron reacts with oxygen molecules to form super oxide anion. This reaction continues when sunlight is available. [Display omitted]
Author Zakde, Kranti
Jadhav, K.M.
Gawali, Sudarshan S.
Jadhav, Swapnil A.
Somvanshi, Sandeep B.
Author_xml – sequence: 1
  givenname: Swapnil A.
  orcidid: 0000-0001-8164-2133
  surname: Jadhav
  fullname: Jadhav, Swapnil A.
  email: phy.patil007@gmail.com
  organization: Department of Physics, Dr. Babasaheb Ambedkar Marathwada University, Aurangabad, 431004, Maharashtra, India
– sequence: 2
  givenname: Sandeep B.
  surname: Somvanshi
  fullname: Somvanshi, Sandeep B.
  email: ssomvans@purdue.edu
  organization: Department of Physics, Dr. Babasaheb Ambedkar Marathwada University, Aurangabad, 431004, Maharashtra, India
– sequence: 3
  givenname: Sudarshan S.
  surname: Gawali
  fullname: Gawali, Sudarshan S.
  organization: Department of Physics, Dr. Babasaheb Ambedkar Marathwada University, Aurangabad, 431004, Maharashtra, India
– sequence: 4
  givenname: Kranti
  surname: Zakde
  fullname: Zakde, Kranti
  organization: University Department of Basic and Applied Sciences, MGM University, Aurangabad, 431003, Maharashtra, India
– sequence: 5
  givenname: K.M.
  surname: Jadhav
  fullname: Jadhav, K.M.
  organization: Department of Physics, Dr. Babasaheb Ambedkar Marathwada University, Aurangabad, 431004, Maharashtra, India
BookMark eNp9kM9KAzEQh4NUsK0-gLe8wNYku5vdxZMW_0FRKHrxEqbJpE1pNyUbxeLFd_ANfRJT68mD8GPmMHzDzDcgvda3SMgpZyPOuDxbjpYBR4KJfMRSWHFA-qJkTVY0Mu-RPmdMZKwS_IgMum7JWF6VDeuT9ykEpAghLjLjN2jo2r2leu--Pj7HL6k8t9RiCC5iRyGlpWgt6uhekW4WPnoNEVbb6DSFObaRWh8o7OcG5wEMROdb6i2dLryBtWuRXlKzxWNyaGHV4clvH5Kn66vH8W02ebi5G19MMi2aKmamFLWueGlnWOaVLApZyrouZmZW1prVUlqUjagbMNhwAJHjTAqbayHLSkMF-ZBU-706-K4LaJV28eeoGMCtFGdq51AtVXKodg4VS2FFIvkfchPcGsL2X-Z8z2B66dVhUJ122Go0LiRtynj3D_0NhayPXw
CitedBy_id crossref_primary_10_1016_j_ccr_2024_216237
crossref_primary_10_1016_j_powtec_2023_118720
crossref_primary_10_1002_crat_202400183
crossref_primary_10_1088_1757_899X_1291_1_012007
crossref_primary_10_1007_s10751_024_01930_0
crossref_primary_10_1007_s10971_024_06600_9
crossref_primary_10_1007_s13538_023_01300_1
crossref_primary_10_1016_j_jre_2024_03_006
crossref_primary_10_1016_j_materresbull_2023_112598
crossref_primary_10_1007_s00339_024_07410_0
crossref_primary_10_1007_s10854_025_14227_x
crossref_primary_10_1016_j_rineng_2025_104209
crossref_primary_10_1016_j_jre_2024_11_008
crossref_primary_10_1016_j_molstruc_2024_139927
crossref_primary_10_1007_s10854_024_13567_4
crossref_primary_10_1016_j_inoche_2023_110753
crossref_primary_10_1007_s11270_024_07619_y
crossref_primary_10_1007_s10876_024_02754_2
crossref_primary_10_1088_1361_6528_ace3cb
crossref_primary_10_1007_s10653_024_02213_x
crossref_primary_10_1016_j_inoche_2024_113406
crossref_primary_10_1016_j_jics_2024_101194
crossref_primary_10_1007_s10853_024_10453_6
crossref_primary_10_1016_j_rsurfi_2024_100404
crossref_primary_10_1002_slct_202400179
crossref_primary_10_1016_j_inoche_2024_113694
crossref_primary_10_1016_j_jre_2025_01_004
crossref_primary_10_1142_S0217979225500419
crossref_primary_10_1016_j_jre_2024_12_012
crossref_primary_10_1016_j_surfin_2025_105917
crossref_primary_10_1016_j_inoche_2023_111590
crossref_primary_10_1016_j_rechem_2023_101208
crossref_primary_10_1038_s41598_024_81222_3
crossref_primary_10_1016_j_jre_2024_09_022
crossref_primary_10_1016_j_jre_2025_02_014
crossref_primary_10_1016_j_inoche_2023_111355
crossref_primary_10_1016_j_jallcom_2023_172205
crossref_primary_10_1016_j_inoche_2024_112907
crossref_primary_10_1016_j_jmrt_2024_10_229
crossref_primary_10_1016_j_matchemphys_2025_130690
crossref_primary_10_1007_s10854_024_13574_5
crossref_primary_10_1016_j_mseb_2023_116717
crossref_primary_10_1007_s10904_024_03197_y
crossref_primary_10_1016_j_ijhydene_2024_08_163
crossref_primary_10_1016_j_ceramint_2024_09_046
crossref_primary_10_1016_j_optmat_2024_115904
Cites_doi 10.1016/j.jmmm.2012.10.008
10.1007/s11356-019-07137-z
10.1016/j.ijbiomac.2020.08.074
10.1007/s10854-020-03897-4
10.1007/s10948-016-3458-6
10.1016/j.ceramint.2020.02.136
10.1016/j.ceramint.2022.01.057
10.1016/j.ceramint.2021.07.021
10.1016/S1002-0721(17)60998-0
10.1016/j.jmmm.2021.168229
10.1016/j.jclepro.2020.122636
10.1002/slct.202001305
10.1016/j.jhazmat.2020.122593
10.1016/j.jallcom.2020.155422
10.1680/jnaen.19.00006
10.1016/j.jmmm.2014.06.059
10.1016/j.jmmm.2021.168249
10.1016/j.mineng.2020.106540
10.1016/j.ceramint.2021.01.267
10.1007/s00339-020-3407-x
10.1016/j.ceramint.2020.04.090
10.1021/cr500134h
10.1016/j.synthmet.2020.116645
10.1021/cr100230z
10.1016/j.jmrt.2021.07.018
10.1016/j.jallcom.2013.08.114
10.1016/j.physb.2020.412051
10.1016/j.jhazmat.2018.03.011
10.1007/s10854-022-09332-0
10.1016/j.ceramint.2019.06.020
10.1016/S1002-0721(14)60440-3
10.2174/2666145413999200821161006
10.1016/j.chemosphere.2017.02.019
10.2174/1573411016666200131122244
10.1016/j.jre.2019.04.010
10.1007/s11356-020-10348-4
10.1016/j.ceramint.2020.02.091
ContentType Journal Article
Copyright 2023
Copyright_xml – notice: 2023
DBID AAYXX
CITATION
DOI 10.1016/j.jre.2023.03.004
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 2509-4963
EndPage 496
ExternalDocumentID 10_1016_j_jre_2023_03_004
S1002072123000741
GroupedDBID --K
--M
.~1
0R~
1B1
1~.
1~5
2B.
2C0
4.4
457
4G.
5GY
5VR
5VS
7-5
71M
8P~
92H
92I
92R
93N
AABNK
AABXZ
AACTN
AAEDT
AAEDW
AAEPC
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARLI
AAXUO
ABMAC
ABXDB
ABXRA
ABYKQ
ACDAQ
ACGFS
ACNNM
ACRLP
ADBBV
ADECG
ADEZE
ADMUD
AEBSH
AEKER
AENEX
AEZYN
AFKWA
AFRZQ
AFTJW
AFUIB
AFZHZ
AGHFR
AGUBO
AGYEJ
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AJSZI
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLXMC
CCEZO
CDRFL
CHBEP
CS3
CW9
DU5
EBS
EFJIC
EFLBG
EJD
EO9
EP2
EP3
FA0
FDB
FIRID
FLBIZ
FNPLU
FYGXN
GBLVA
HZ~
J1W
KOM
M41
MAGPM
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
PC.
Q38
ROL
SDC
SDF
SDG
SES
SPC
SPCBC
SSK
SSM
SSZ
T5K
TCJ
TGT
~02
~G-
-SB
-S~
5XA
5XC
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CAJEB
CITATION
EFKBS
Q--
U1G
U5L
~HD
ID FETCH-LOGICAL-c297t-d528c715fbe537644656884bdb58c0866fe69289ade91aa23eb62f3c2657ca7a3
IEDL.DBID .~1
ISSN 1002-0721
IngestDate Wed Oct 01 01:49:13 EDT 2025
Thu Apr 24 23:09:17 EDT 2025
Sat Mar 02 16:00:25 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords Gd3+ substitution
Rare earths
Photocatalysis
Structural properties
Spinel ferrite
Magnetic properties
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c297t-d528c715fbe537644656884bdb58c0866fe69289ade91aa23eb62f3c2657ca7a3
ORCID 0000-0001-8164-2133
PageCount 9
ParticipantIDs crossref_citationtrail_10_1016_j_jre_2023_03_004
crossref_primary_10_1016_j_jre_2023_03_004
elsevier_sciencedirect_doi_10_1016_j_jre_2023_03_004
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate March 2024
2024-03-00
PublicationDateYYYYMMDD 2024-03-01
PublicationDate_xml – month: 03
  year: 2024
  text: March 2024
PublicationDecade 2020
PublicationTitle Journal of rare earths
PublicationYear 2024
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Patade, Andhare, Somvanshi, Kharat, More, Jadhav (bib28) 2020; 9
Gopale, Khedkar, Jadhav, Raut, Karad, Kulkarni (bib39) 2022; 33
Torkian, Ghasemi, Razavi (bib41) 2016; 29
Owens (bib34) 2015
Khattab, Abdelrahman, Rehan (bib9) 2020; 27
Murshid, Gopinath, Prakash (bib10) 2021; 17
Baig, Yousuf, Warsi, Agboola, Sher, Shakir (bib32) 2019; 45
Kousar, Aadil, Zulfiqar, Warsi, Ejaz, Elnaggar (bib16) 2022; 48
Somvanshi, Patade, Andhare, Jadhav, Khedkar, Kharat (bib4) 2020; 835
Mirzaei, Chen, Haghighat, Yerushalmi (bib5) 2017; 174
Inyinbor, Bello, Dada, Oreofe (bib12) 2021
Naik, Hasolkar (bib38) 2020; 31
Oyewo, Elemike, Onwudiwe, Onyango (bib13) 2020; 164
Yaoguang, Gang, Yansong, Zhonghui (bib20) 2015; 33
Christie (bib7) 2007
Mohammadabadi, Masoudpanah, Alamolhoda, Koohdar (bib23) 2021; 14
Jadhav, Khedkar, Andhare, Gopale, Jadhav (bib22) 2021; 47
Ghobadi, Gharabaghi, Abdollahi, Boroumand, Moradian (bib31) 2018; 351
Guo, Li, Wu, Zhong, Tao, Wang (bib40) 2021; 538
Kadam, Shinde, Yadav, Patil, Rajpure (bib25) 2013; 329
Jadhav, Khedkar, Somvanshi, Jadhav (bib14) 2021; 47
Aadil, Zulfiqar, Sabeeh, Warsi, Shahid, Alsafari (bib43) 2020; 46
Rahman, Warsi, Shakir, Shahid, Zulfiqar (bib17) 2020; 394
Szytula, Leciejewicz (bib36) 1994
Aadil, Zulfiqar, Agboola, Aboud, Shakir, Warsi (bib42) 2021; 272
Gawas, Pednekar, Kothawale, Prasad, Alla (bib30) 2021; 5
Houshiar, Zebhi, Razi, Alidoust, Askari (bib35) 2014; 371
Rahman, Aadil, Akhtar, Warsi, Jamil, Shakir (bib15) 2020; 46
Wang, Li, Huo, Yue, Peng, Zhang (bib26) 2020; 157
Ali, Mahmood, Khan, Chughtai, Shahid, Shakir (bib18) 2014; 584
Anjum, Ilayas, Mustafa (bib29) 2020; 126
Hynes, Kumar, Kamyab, Sujana, Al-Khashman, Kuslu (bib11) 2020; 272
Kumar, Katyal, Nayak (bib1) 2020; 27
Peymani-Motlagh, Moeinian, Rostami, Fasihi-Ramandi, Sobhani-Nasab, Rahimi-Nasrabadi (bib21) 2019; 37
Andhare, Patade, Kounsalye, Jadhav (bib27) 2020; 583
Mondal (bib33) 2018
Somvanshi, Jadhav, Khedkar, Kharat, More, Jadhav (bib37) 2020; 46
Ashraf, Aadil, Zulfiqar, Sabeeh, Khan, Shakir (bib44) 2020; 5
Thomas, Grohens, Pottathara (bib6) 2019
Akah (bib19) 2017; 35
Shaikh, Toksha, Shirsath, Chatterjee, Tonde, Chishty (bib24) 2021; 537
Polshettiwar, Luque, Fihri, Zhu, Bouhrara, Basset (bib2) 2011; 111
Wang, Astruc (bib3) 2014; 114
Naha, Manickavachagam (bib8) 2021
Wang (10.1016/j.jre.2023.03.004_bib26) 2020; 157
Aadil (10.1016/j.jre.2023.03.004_bib42) 2021; 272
Somvanshi (10.1016/j.jre.2023.03.004_bib4) 2020; 835
Kousar (10.1016/j.jre.2023.03.004_bib16) 2022; 48
Houshiar (10.1016/j.jre.2023.03.004_bib35) 2014; 371
Kadam (10.1016/j.jre.2023.03.004_bib25) 2013; 329
Ali (10.1016/j.jre.2023.03.004_bib18) 2014; 584
Kumar (10.1016/j.jre.2023.03.004_bib1) 2020; 27
Mondal (10.1016/j.jre.2023.03.004_bib33) 2018
Khattab (10.1016/j.jre.2023.03.004_bib9) 2020; 27
Torkian (10.1016/j.jre.2023.03.004_bib41) 2016; 29
Andhare (10.1016/j.jre.2023.03.004_bib27) 2020; 583
Rahman (10.1016/j.jre.2023.03.004_bib15) 2020; 46
Rahman (10.1016/j.jre.2023.03.004_bib17) 2020; 394
Somvanshi (10.1016/j.jre.2023.03.004_bib37) 2020; 46
Mirzaei (10.1016/j.jre.2023.03.004_bib5) 2017; 174
Shaikh (10.1016/j.jre.2023.03.004_bib24) 2021; 537
Szytula (10.1016/j.jre.2023.03.004_bib36) 1994
Murshid (10.1016/j.jre.2023.03.004_bib10) 2021; 17
Naha (10.1016/j.jre.2023.03.004_bib8) 2021
Hynes (10.1016/j.jre.2023.03.004_bib11) 2020; 272
Jadhav (10.1016/j.jre.2023.03.004_bib14) 2021; 47
Aadil (10.1016/j.jre.2023.03.004_bib43) 2020; 46
Christie (10.1016/j.jre.2023.03.004_bib7) 2007
Yaoguang (10.1016/j.jre.2023.03.004_bib20) 2015; 33
Oyewo (10.1016/j.jre.2023.03.004_bib13) 2020; 164
Akah (10.1016/j.jre.2023.03.004_bib19) 2017; 35
Inyinbor (10.1016/j.jre.2023.03.004_bib12) 2021
Patade (10.1016/j.jre.2023.03.004_bib28) 2020; 9
Peymani-Motlagh (10.1016/j.jre.2023.03.004_bib21) 2019; 37
Owens (10.1016/j.jre.2023.03.004_bib34) 2015
Polshettiwar (10.1016/j.jre.2023.03.004_bib2) 2011; 111
Jadhav (10.1016/j.jre.2023.03.004_bib22) 2021; 47
Wang (10.1016/j.jre.2023.03.004_bib3) 2014; 114
Mohammadabadi (10.1016/j.jre.2023.03.004_bib23) 2021; 14
Anjum (10.1016/j.jre.2023.03.004_bib29) 2020; 126
Guo (10.1016/j.jre.2023.03.004_bib40) 2021; 538
Ashraf (10.1016/j.jre.2023.03.004_bib44) 2020; 5
Thomas (10.1016/j.jre.2023.03.004_bib6) 2019
Ghobadi (10.1016/j.jre.2023.03.004_bib31) 2018; 351
Gawas (10.1016/j.jre.2023.03.004_bib30) 2021; 5
Naik (10.1016/j.jre.2023.03.004_bib38) 2020; 31
Gopale (10.1016/j.jre.2023.03.004_bib39) 2022; 33
Baig (10.1016/j.jre.2023.03.004_bib32) 2019; 45
References_xml – volume: 394
  year: 2020
  ident: bib17
  article-title: Fabrication of Ce
  publication-title: J Hazard Mater
– volume: 111
  start-page: 3036
  year: 2011
  ident: bib2
  article-title: Magnetically recoverable nanocatalysts
  publication-title: Chem Rev
– volume: 45
  year: 2019
  ident: bib32
  article-title: Surfactant assisted synthesis of rare earth Dy
  publication-title: Ceram Int
– volume: 29
  start-page: 1617
  year: 2016
  ident: bib41
  article-title: Structural and magnetic consequences of Mn
  publication-title: J Supercond Nov Magnetism
– volume: 351
  start-page: 308
  year: 2018
  ident: bib31
  article-title: MnFe
  publication-title: J Hazard Mater
– year: 1994
  ident: bib36
  article-title: Handbook of crystal structures and magnetic properties of rare earth intermetallics
– volume: 14
  start-page: 1099
  year: 2021
  ident: bib23
  article-title: Electromagnetic microwave absorption properties of high entropy spinel ferrite ((MnNiCuZn)
  publication-title: J Mater Res Technol
– volume: 17
  start-page: 166
  year: 2021
  ident: bib10
  article-title: Current nanotechnology based solutions for sustainable wastewater treatment
  publication-title: Curr Anal Chem
– volume: 164
  start-page: 2477
  year: 2020
  ident: bib13
  article-title: Metal oxide-cellulose nanocomposites for the removal of toxic metals and dyes from wastewater
  publication-title: Int J Biol Macromol
– volume: 37
  start-page: 1288
  year: 2019
  ident: bib21
  article-title: Effect of Gd
  publication-title: J Rare Earths
– year: 2021
  ident: bib8
  article-title: Textile industry and health hazards: impact of climate change issues and fertility potential. Climate Change and Its Impact on Fertility. Hershey:
  publication-title: IGI Global
– volume: 126
  start-page: 1
  year: 2020
  ident: bib29
  article-title: Influence of antimony substitution on structural, magnetic and optical properties of cadmium spinel ferrite
  publication-title: Appl Phys A
– volume: 583
  year: 2020
  ident: bib27
  article-title: Effect of Zn doping on structural, magnetic and optical properties of cobalt ferrite nanoparticles synthesized via co-precipitation method
  publication-title: Physica B
– year: 2019
  ident: bib6
  article-title: Industrial applications of nanomaterials
– year: 2021
  ident: bib12
  article-title: Two-dimensional (2D) nanomaterials in separation science
– volume: 27
  start-page: 3803
  year: 2020
  ident: bib9
  article-title: Textile dyeing industry: environmental impacts and remediation
  publication-title: Environ Sci Pollut Res
– volume: 5
  start-page: 8129
  year: 2020
  ident: bib44
  article-title: Wafer-like CoS architectures and their nanocomposites with polypyrrole for electrochemical energy storage applications
  publication-title: ChemistrySelect
– volume: 835
  year: 2020
  ident: bib4
  article-title: Hyperthermic evaluation of oleic acid coated nano-spinel magnesium ferrite: enhancement via hydrophobic-to-hydrophilic surface transformation
  publication-title: J Alloys Compd
– volume: 33
  year: 2022
  ident: bib39
  article-title: Influence of Al
  publication-title: J Mater Sci Mater Electron
– volume: 9
  start-page: 8
  year: 2020
  ident: bib28
  article-title: Preparation and characterisations of magnetic nanofluid of zinc ferrite for hyperthermia
  publication-title: Nanomater Energy
– year: 2015
  ident: bib34
  article-title: Physics of magnetic nanostructures
– volume: 33
  start-page: 453
  year: 2015
  ident: bib20
  article-title: Recent advances in rare-earth elements modification of inorganic semiconductor-based photocatalysts for efficient solar energy conversion: a review
  publication-title: J Rare Earths
– volume: 5
  start-page: 54
  year: 2021
  ident: bib30
  article-title: Effect of Fe substitution on dielectric, electrical and photocatalytic behavior of ZnO nanoparticles
  publication-title: Current Smart Mater
– volume: 46
  year: 2020
  ident: bib15
  article-title: Magnetically recyclable Ni
  publication-title: Ceram Int
– volume: 31
  year: 2020
  ident: bib38
  article-title: Consequence of B-site substitution of rare earth (Gd
  publication-title: J Mater Sci Mater Electron
– volume: 46
  year: 2020
  ident: bib43
  article-title: Enhanced electrochemical energy storage properties of carbon coated Co
  publication-title: Ceram Int
– volume: 329
  start-page: 59
  year: 2013
  ident: bib25
  article-title: Structural, morphological, electrical and magnetic properties of Dy doped Ni–Co substitutional spinel ferrite
  publication-title: J Magn Magn Mater
– volume: 114
  start-page: 6949
  year: 2014
  ident: bib3
  article-title: Fast-growing field of magnetically recyclable nanocatalysts
  publication-title: Chem Rev
– year: 2007
  ident: bib7
  article-title: Environmental aspects of textile dyeing
– volume: 538
  year: 2021
  ident: bib40
  article-title: Enhanced of the resonant frequency of NiZnCo ferrites induced by substitution of Fe ions with Gd ions
  publication-title: J Magn Magn Mater
– volume: 35
  start-page: 941
  year: 2017
  ident: bib19
  article-title: Application of rare earths in fluid catalytic cracking: a review
  publication-title: J Rare Earths
– year: 2018
  ident: bib33
  article-title: Study of the effect of rare earth ions on the structural, magnetic and electrical properties of Cu-Zn ferrites
– volume: 27
  year: 2020
  ident: bib1
  article-title: Removal of heavy metals and radionuclides from water using nanomaterials: current scenario and future prospects
  publication-title: Environ Sci Pollut Res
– volume: 47
  year: 2021
  ident: bib22
  article-title: Visible light photocatalytic activity of magnetically diluted Ni–Zn spinel ferrite for active degradation of rhodamine B
  publication-title: Ceram Int
– volume: 371
  start-page: 43
  year: 2014
  ident: bib35
  article-title: Synthesis of cobalt ferrite (CoFe
  publication-title: J Magn Magn Mater
– volume: 272
  year: 2020
  ident: bib11
  article-title: Modern enabling techniques and adsorbents based dye removal with sustainability concerns in textile industrial sector–A comprehensive review
  publication-title: J Clean Prod
– volume: 584
  start-page: 363
  year: 2014
  ident: bib18
  article-title: Impacts of Ni–Co substitution on the structural, magnetic and dielectric properties of magnesium nano-ferrites fabricated by micro-emulsion method
  publication-title: J Alloys Compd
– volume: 48
  year: 2022
  ident: bib16
  article-title: Wet-chemical synthesis of nanostructured Ce-doped mixed metal ferrites for the effective removal of azo dyes from industrial discharges
  publication-title: Ceram Int
– volume: 537
  year: 2021
  ident: bib24
  article-title: Microstructure, magnetic, and dielectric interplay in NiCuZn ferrite with rare earth doping for magneto-dielectric applications
  publication-title: J Magn Magn Mater
– volume: 272
  year: 2021
  ident: bib42
  article-title: Fabrication of graphene supported binary nanohybrid with multiple approaches for electrochemical energy storage applications
  publication-title: Synth Met
– volume: 47
  year: 2021
  ident: bib14
  article-title: Magnetically retrievable nanoscale nickel ferrites: an active photocatalyst for toxic dye removal applications
  publication-title: Ceram Int
– volume: 157
  year: 2020
  ident: bib26
  article-title: Magnetic Ni-Zn spinel ferrite nanopowder from toxic Zn-bearing electric arc furnace dust: a promising treatment process
  publication-title: Miner Eng
– volume: 46
  year: 2020
  ident: bib37
  article-title: Structural, thermal, spectral, optical and surface analysis of rare earth metal ion (Gd
  publication-title: Ceram Int
– volume: 174
  start-page: 665
  year: 2017
  ident: bib5
  article-title: Removal of pharmaceuticals from water by homo/heterogonous Fenton-type processes–A review
  publication-title: Chemosphere
– volume: 329
  start-page: 59
  year: 2013
  ident: 10.1016/j.jre.2023.03.004_bib25
  article-title: Structural, morphological, electrical and magnetic properties of Dy doped Ni–Co substitutional spinel ferrite
  publication-title: J Magn Magn Mater
  doi: 10.1016/j.jmmm.2012.10.008
– volume: 27
  start-page: 3803
  issue: 4
  year: 2020
  ident: 10.1016/j.jre.2023.03.004_bib9
  article-title: Textile dyeing industry: environmental impacts and remediation
  publication-title: Environ Sci Pollut Res
  doi: 10.1007/s11356-019-07137-z
– volume: 164
  start-page: 2477
  year: 2020
  ident: 10.1016/j.jre.2023.03.004_bib13
  article-title: Metal oxide-cellulose nanocomposites for the removal of toxic metals and dyes from wastewater
  publication-title: Int J Biol Macromol
  doi: 10.1016/j.ijbiomac.2020.08.074
– volume: 31
  issue: 16
  year: 2020
  ident: 10.1016/j.jre.2023.03.004_bib38
  article-title: Consequence of B-site substitution of rare earth (Gd3+) on electrical properties of manganese ferrite nanoparticles
  publication-title: J Mater Sci Mater Electron
  doi: 10.1007/s10854-020-03897-4
– volume: 29
  start-page: 1617
  issue: 6
  year: 2016
  ident: 10.1016/j.jre.2023.03.004_bib41
  article-title: Structural and magnetic consequences of Mn0.6Zn0.4Fe2−xGdxO4 ferrite
  publication-title: J Supercond Nov Magnetism
  doi: 10.1007/s10948-016-3458-6
– volume: 46
  issue: 9
  year: 2020
  ident: 10.1016/j.jre.2023.03.004_bib15
  article-title: Magnetically recyclable Ni1–xCdxCeyFe2–yO4-rGO nanocomposite photocatalyst for visible light driven photocatalysis
  publication-title: Ceram Int
  doi: 10.1016/j.ceramint.2020.02.136
– volume: 48
  issue: 8
  year: 2022
  ident: 10.1016/j.jre.2023.03.004_bib16
  article-title: Wet-chemical synthesis of nanostructured Ce-doped mixed metal ferrites for the effective removal of azo dyes from industrial discharges
  publication-title: Ceram Int
  doi: 10.1016/j.ceramint.2022.01.057
– volume: 47
  issue: 20
  year: 2021
  ident: 10.1016/j.jre.2023.03.004_bib14
  article-title: Magnetically retrievable nanoscale nickel ferrites: an active photocatalyst for toxic dye removal applications
  publication-title: Ceram Int
  doi: 10.1016/j.ceramint.2021.07.021
– volume: 35
  start-page: 941
  issue: 10
  year: 2017
  ident: 10.1016/j.jre.2023.03.004_bib19
  article-title: Application of rare earths in fluid catalytic cracking: a review
  publication-title: J Rare Earths
  doi: 10.1016/S1002-0721(17)60998-0
– volume: 537
  year: 2021
  ident: 10.1016/j.jre.2023.03.004_bib24
  article-title: Microstructure, magnetic, and dielectric interplay in NiCuZn ferrite with rare earth doping for magneto-dielectric applications
  publication-title: J Magn Magn Mater
  doi: 10.1016/j.jmmm.2021.168229
– volume: 272
  year: 2020
  ident: 10.1016/j.jre.2023.03.004_bib11
  article-title: Modern enabling techniques and adsorbents based dye removal with sustainability concerns in textile industrial sector–A comprehensive review
  publication-title: J Clean Prod
  doi: 10.1016/j.jclepro.2020.122636
– volume: 5
  start-page: 8129
  issue: 27
  year: 2020
  ident: 10.1016/j.jre.2023.03.004_bib44
  article-title: Wafer-like CoS architectures and their nanocomposites with polypyrrole for electrochemical energy storage applications
  publication-title: ChemistrySelect
  doi: 10.1002/slct.202001305
– year: 2019
  ident: 10.1016/j.jre.2023.03.004_bib6
– volume: 394
  year: 2020
  ident: 10.1016/j.jre.2023.03.004_bib17
  article-title: Fabrication of Ce3+ substituted nickel ferrite-reduced graphene oxide heterojunction with high photocatalytic activity under visible light irradiation
  publication-title: J Hazard Mater
  doi: 10.1016/j.jhazmat.2020.122593
– volume: 835
  year: 2020
  ident: 10.1016/j.jre.2023.03.004_bib4
  article-title: Hyperthermic evaluation of oleic acid coated nano-spinel magnesium ferrite: enhancement via hydrophobic-to-hydrophilic surface transformation
  publication-title: J Alloys Compd
  doi: 10.1016/j.jallcom.2020.155422
– year: 2021
  ident: 10.1016/j.jre.2023.03.004_bib12
– volume: 9
  start-page: 8
  issue: 1
  year: 2020
  ident: 10.1016/j.jre.2023.03.004_bib28
  article-title: Preparation and characterisations of magnetic nanofluid of zinc ferrite for hyperthermia
  publication-title: Nanomater Energy
  doi: 10.1680/jnaen.19.00006
– volume: 371
  start-page: 43
  year: 2014
  ident: 10.1016/j.jre.2023.03.004_bib35
  article-title: Synthesis of cobalt ferrite (CoFe2O4) nanoparticles using combustion, coprecipitation, and precipitation methods: a comparison study of size, structural, and magnetic properties
  publication-title: J Magn Magn Mater
  doi: 10.1016/j.jmmm.2014.06.059
– volume: 538
  year: 2021
  ident: 10.1016/j.jre.2023.03.004_bib40
  article-title: Enhanced of the resonant frequency of NiZnCo ferrites induced by substitution of Fe ions with Gd ions
  publication-title: J Magn Magn Mater
  doi: 10.1016/j.jmmm.2021.168249
– volume: 157
  year: 2020
  ident: 10.1016/j.jre.2023.03.004_bib26
  article-title: Magnetic Ni-Zn spinel ferrite nanopowder from toxic Zn-bearing electric arc furnace dust: a promising treatment process
  publication-title: Miner Eng
  doi: 10.1016/j.mineng.2020.106540
– volume: 47
  issue: 10
  year: 2021
  ident: 10.1016/j.jre.2023.03.004_bib22
  article-title: Visible light photocatalytic activity of magnetically diluted Ni–Zn spinel ferrite for active degradation of rhodamine B
  publication-title: Ceram Int
  doi: 10.1016/j.ceramint.2021.01.267
– volume: 126
  start-page: 1
  issue: 3
  year: 2020
  ident: 10.1016/j.jre.2023.03.004_bib29
  article-title: Influence of antimony substitution on structural, magnetic and optical properties of cadmium spinel ferrite
  publication-title: Appl Phys A
  doi: 10.1007/s00339-020-3407-x
– year: 2018
  ident: 10.1016/j.jre.2023.03.004_bib33
– year: 1994
  ident: 10.1016/j.jre.2023.03.004_bib36
– volume: 46
  issue: 11
  year: 2020
  ident: 10.1016/j.jre.2023.03.004_bib43
  article-title: Enhanced electrochemical energy storage properties of carbon coated Co3O4 nanoparticles-reduced graphene oxide ternary nano-hybrids
  publication-title: Ceram Int
  doi: 10.1016/j.ceramint.2020.04.090
– year: 2015
  ident: 10.1016/j.jre.2023.03.004_bib34
– volume: 114
  start-page: 6949
  issue: 14
  year: 2014
  ident: 10.1016/j.jre.2023.03.004_bib3
  article-title: Fast-growing field of magnetically recyclable nanocatalysts
  publication-title: Chem Rev
  doi: 10.1021/cr500134h
– volume: 272
  year: 2021
  ident: 10.1016/j.jre.2023.03.004_bib42
  article-title: Fabrication of graphene supported binary nanohybrid with multiple approaches for electrochemical energy storage applications
  publication-title: Synth Met
  doi: 10.1016/j.synthmet.2020.116645
– year: 2007
  ident: 10.1016/j.jre.2023.03.004_bib7
– volume: 111
  start-page: 3036
  issue: 5
  year: 2011
  ident: 10.1016/j.jre.2023.03.004_bib2
  article-title: Magnetically recoverable nanocatalysts
  publication-title: Chem Rev
  doi: 10.1021/cr100230z
– volume: 14
  start-page: 1099
  year: 2021
  ident: 10.1016/j.jre.2023.03.004_bib23
  article-title: Electromagnetic microwave absorption properties of high entropy spinel ferrite ((MnNiCuZn)1−xCoxFe2O4)/graphene nanocomposites
  publication-title: J Mater Res Technol
  doi: 10.1016/j.jmrt.2021.07.018
– volume: 584
  start-page: 363
  year: 2014
  ident: 10.1016/j.jre.2023.03.004_bib18
  article-title: Impacts of Ni–Co substitution on the structural, magnetic and dielectric properties of magnesium nano-ferrites fabricated by micro-emulsion method
  publication-title: J Alloys Compd
  doi: 10.1016/j.jallcom.2013.08.114
– volume: 583
  year: 2020
  ident: 10.1016/j.jre.2023.03.004_bib27
  article-title: Effect of Zn doping on structural, magnetic and optical properties of cobalt ferrite nanoparticles synthesized via co-precipitation method
  publication-title: Physica B
  doi: 10.1016/j.physb.2020.412051
– volume: 351
  start-page: 308
  year: 2018
  ident: 10.1016/j.jre.2023.03.004_bib31
  article-title: MnFe2O4-graphene oxide magnetic nanoparticles as a high-performance adsorbent for rare earth elements: synthesis, isotherms, kinetics, thermodynamics and desorption
  publication-title: J Hazard Mater
  doi: 10.1016/j.jhazmat.2018.03.011
– volume: 33
  issue: 35
  year: 2022
  ident: 10.1016/j.jre.2023.03.004_bib39
  article-title: Influence of Al3+-Gd3+ co-substitution on the structural, morphological, magnetic and optical properties of nickel ferrite nanoparticles
  publication-title: J Mater Sci Mater Electron
  doi: 10.1007/s10854-022-09332-0
– volume: 45
  issue: 14
  year: 2019
  ident: 10.1016/j.jre.2023.03.004_bib32
  article-title: Surfactant assisted synthesis of rare earth Dy3+ substituted MnFe2O4 nanoparticles
  publication-title: Ceram Int
  doi: 10.1016/j.ceramint.2019.06.020
– volume: 33
  start-page: 453
  issue: 5
  year: 2015
  ident: 10.1016/j.jre.2023.03.004_bib20
  article-title: Recent advances in rare-earth elements modification of inorganic semiconductor-based photocatalysts for efficient solar energy conversion: a review
  publication-title: J Rare Earths
  doi: 10.1016/S1002-0721(14)60440-3
– volume: 5
  start-page: 54
  issue: 1
  year: 2021
  ident: 10.1016/j.jre.2023.03.004_bib30
  article-title: Effect of Fe substitution on dielectric, electrical and photocatalytic behavior of ZnO nanoparticles
  publication-title: Current Smart Mater
  doi: 10.2174/2666145413999200821161006
– volume: 174
  start-page: 665
  year: 2017
  ident: 10.1016/j.jre.2023.03.004_bib5
  article-title: Removal of pharmaceuticals from water by homo/heterogonous Fenton-type processes–A review
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2017.02.019
– volume: 17
  start-page: 166
  issue: 2
  year: 2021
  ident: 10.1016/j.jre.2023.03.004_bib10
  article-title: Current nanotechnology based solutions for sustainable wastewater treatment
  publication-title: Curr Anal Chem
  doi: 10.2174/1573411016666200131122244
– volume: 37
  start-page: 1288
  issue: 12
  year: 2019
  ident: 10.1016/j.jre.2023.03.004_bib21
  article-title: Effect of Gd3+-, Pr3+- or Sm3+-substituted cobalt–zinc ferrite on photodegradation of methyl orange and cytotoxicity tests
  publication-title: J Rare Earths
  doi: 10.1016/j.jre.2019.04.010
– volume: 27
  issue: 33
  year: 2020
  ident: 10.1016/j.jre.2023.03.004_bib1
  article-title: Removal of heavy metals and radionuclides from water using nanomaterials: current scenario and future prospects
  publication-title: Environ Sci Pollut Res
  doi: 10.1007/s11356-020-10348-4
– year: 2021
  ident: 10.1016/j.jre.2023.03.004_bib8
  article-title: Textile industry and health hazards: impact of climate change issues and fertility potential. Climate Change and Its Impact on Fertility. Hershey:
  publication-title: IGI Global
– volume: 46
  issue: 9
  year: 2020
  ident: 10.1016/j.jre.2023.03.004_bib37
  article-title: Structural, thermal, spectral, optical and surface analysis of rare earth metal ion (Gd3+) doped mixed Zn–Mg nano-spinel ferrites
  publication-title: Ceram Int
  doi: 10.1016/j.ceramint.2020.02.091
SSID ssj0037590
Score 2.5416107
Snippet In this study, a series of Gd3+-doped mixed Ni–Cu–Zn ferrites with composition of Zn0.5Ni0.3Cu0.2Fe2–xGdxO4 (x = 0, 0.025, 0.05, 0.075, 0.1) was prepared using...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 488
SubjectTerms Gd3+ substitution
Magnetic properties
Photocatalysis
Rare earths
Spinel ferrite
Structural properties
Title Rare earth-doped mixed Ni–Cu–Zn ferrites as an effective photocatalytic agent for active degradation of Rhodamine B dye
URI https://dx.doi.org/10.1016/j.jre.2023.03.004
Volume 42
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 2509-4963
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0037590
  issn: 1002-0721
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Complete Freedom Collection [SCCMFC]
  customDbUrl:
  eissn: 2509-4963
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0037590
  issn: 1002-0721
  databaseCode: ACRLP
  dateStart: 20060201
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection
  customDbUrl:
  eissn: 2509-4963
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0037590
  issn: 1002-0721
  databaseCode: .~1
  dateStart: 20060201
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals [SCFCJ]
  customDbUrl:
  eissn: 2509-4963
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0037590
  issn: 1002-0721
  databaseCode: AIKHN
  dateStart: 20060201
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 2509-4963
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0037590
  issn: 1002-0721
  databaseCode: AKRWK
  dateStart: 20060201
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEA6iB72IT3wuOXgS6m7bJG2P66KsinvwAeKl5FV2xW2XpYIiiP_Bf-gvcaZpRUE9CCHQNqFlGmYm7TffR8ietcLoDudeqLX2GNPKk4lhXpD5ItKxMonB2uHzgehfs9MbfjNDek0tDMIqa9_vfHrlresz7dqa7clo1L5E8lBk94IkugqMWMHOBML6Dl4-YR5hxBPHSIBIWxjd_NmsMF53U2TKDELHc8p-jk1f4s3xElmsE0Xadc-yTGZsvkLme40-2yp5vpBTS2GhlkPPFBNr6Hj0CP1g9P761nuA7janGRIvQjZJJbScOvQGODg6GRZlUX27eYIbUIkVVhQSWCrddYMkEk5viRYZvRgWRo4hI6WH1DzZNXJ9fHTV63u1lIKngyQqPcODWEc-z5RF_paKJS2OmTKKxxp2NSKzIoG9lzQ28aUMQqtEkIU6EDzSMpLhOpnNi9xuEGpZgNp3qFJsGapPxjr0DZdChcr4Wm2STmPEVNc84yh3cZ82gLK7FOyeot3TDrQO2yT7n1MmjmTjr8GseTPpt5WSQhD4fdrW_6ZtkwU4Yg51tkNmy-mD3YU0pFStap21yFz35Kw_-AAJU97d
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEB5qPehFfGJ97sGTENoku3kctSj10R58gHgJ-wptsUkpERQv_gf_ob_E2WwiCupBWPaQzZAwGWZmNzPfB3CgdaBkhzHHl1I6lErh8FhRx0vdIJSRULEyvcP9QdC7ped37K4B3boXxpRVVr7f-vTSW1dX2pU229PRqH1twEMNuhcm0WVgnIN5ytAnN2H-6OyiN6gdsh-y2IISmGJbFKh_bpZlXuOZAcv0fAt1Sn8OT19CzukyLFW5Ijmyr7MCDZ2twkK3pmhbg5crPtMEbbUYOiqfakUmoyecB6P317fuI073GUkN9iImlITjyIgt4EAfR6bDvMjL45tnfADhpsmKYA5LuF1XBkfCUi6RPCVXw1zxCSal5JioZ70Ot6cnN92eU7EpONKLw8JRzItk6LJUaAPhUgKlRREVSrBI4sYmSHUQ4_aLKx27nHu-FoGX-tILWCh5yP0NaGZ5pjeBaOoZ-jtDVKypIaCMpO8qxgPhC-VK0YJOrcREVlDjhvHiIalrysYJ6j0xek86ODq0BYefIlOLs_HXzbT-Msk3Y0kwDvwutvU_sX1Y6N30L5PLs8HFNiziCrVFaDvQLGaPehezkkLsVVb3AaSf4Yg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Rare+earth-doped+mixed+Ni%E2%80%93Cu%E2%80%93Zn+ferrites+as+an+effective+photocatalytic+agent+for+active+degradation+of+Rhodamine+B+dye&rft.jtitle=Journal+of+rare+earths&rft.au=Jadhav%2C+Swapnil+A.&rft.au=Somvanshi%2C+Sandeep+B.&rft.au=Gawali%2C+Sudarshan+S.&rft.au=Zakde%2C+Kranti&rft.date=2024-03-01&rft.pub=Elsevier+B.V&rft.issn=1002-0721&rft.eissn=2509-4963&rft.volume=42&rft.issue=3&rft.spage=488&rft.epage=496&rft_id=info:doi/10.1016%2Fj.jre.2023.03.004&rft.externalDocID=S1002072123000741
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1002-0721&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1002-0721&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1002-0721&client=summon