Rare earth-doped mixed Ni–Cu–Zn ferrites as an effective photocatalytic agent for active degradation of Rhodamine B dye
In this study, a series of Gd3+-doped mixed Ni–Cu–Zn ferrites with composition of Zn0.5Ni0.3Cu0.2Fe2–xGdxO4 (x = 0, 0.025, 0.05, 0.075, 0.1) was prepared using self-ignition sol–gel method. The prepared nanoparticles with an average size ranging from 22 to 26 nm show a single-phase cubic structure b...
Saved in:
Published in | Journal of rare earths Vol. 42; no. 3; pp. 488 - 496 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.03.2024
|
Subjects | |
Online Access | Get full text |
ISSN | 1002-0721 2509-4963 |
DOI | 10.1016/j.jre.2023.03.004 |
Cover
Abstract | In this study, a series of Gd3+-doped mixed Ni–Cu–Zn ferrites with composition of Zn0.5Ni0.3Cu0.2Fe2–xGdxO4 (x = 0, 0.025, 0.05, 0.075, 0.1) was prepared using self-ignition sol–gel method. The prepared nanoparticles with an average size ranging from 22 to 26 nm show a single-phase cubic structure belonging to the spinel matrix. A rise in the Gd3+ concentration leads to an increase in crystallite size and lattice parameter. In Fourier transform infrared spectra, two main absorption bands belonging to the spinel structure are observed. The high-frequency bands (υ1) represent the tetrahedral complex, while the low-frequency bands (υ2) signify the octahedral complex. The optical bandgap of the nanoferrites is found within the range of 2.91 to 2.41 eV, depending on their size. The magnetic characteristics of the material, such as saturation magnetization and coercivity are significantly altered with the concentration of Gd3+ in the solution. Using Rhodamine B (RhB) as a model organic pollutant, an in-depth investigation of the photocatalytic activity of the compounds was carried out. The present outcomes show that adding an adequate amount of Gd3+ significantly enhances the number of hydroxyl radicals produced by the ferrite, in turn, increasing the photocatalytic activity of the material. Mechanism elucidated by scavenger studies reveals that •OH and holes are the primary reactive radicals responsible for the degradation process. Prepared photocatalysts show an insignificant performance loss in five consecutive cycles. Thus, it is concluded that these photocatalysts are highly suitable for the remediation of dye-contaminated wastewater.
When the photocatalyst Zn0.5Ni0.3Cu0.2Fe2–xGdxO4 absorbs the sun light, it produces pairs of electron and holes. The electron of the valence band of Zn0.5Ni0.3Cu0.2Fe2–xGdxO4 becomes excited when illuminated by the sunlight. The excess energy of this excited electron promotes the electron to go to the conduction band of Zn0.5Ni0.3Cu0.2Fe2–xGdxO4 which creates the negative electron e– and positive hole h+ pair. This stage is referred as the semiconductors photo excitation state. The positive hole of Zn0.5Ni0.3Cu0.2Fe2–xGdxO4 breaks apart the water molecules to form hydrogen gas and hydroxyl radical. The negative electron reacts with oxygen molecules to form super oxide anion. This reaction continues when sunlight is available. [Display omitted] |
---|---|
AbstractList | In this study, a series of Gd3+-doped mixed Ni–Cu–Zn ferrites with composition of Zn0.5Ni0.3Cu0.2Fe2–xGdxO4 (x = 0, 0.025, 0.05, 0.075, 0.1) was prepared using self-ignition sol–gel method. The prepared nanoparticles with an average size ranging from 22 to 26 nm show a single-phase cubic structure belonging to the spinel matrix. A rise in the Gd3+ concentration leads to an increase in crystallite size and lattice parameter. In Fourier transform infrared spectra, two main absorption bands belonging to the spinel structure are observed. The high-frequency bands (υ1) represent the tetrahedral complex, while the low-frequency bands (υ2) signify the octahedral complex. The optical bandgap of the nanoferrites is found within the range of 2.91 to 2.41 eV, depending on their size. The magnetic characteristics of the material, such as saturation magnetization and coercivity are significantly altered with the concentration of Gd3+ in the solution. Using Rhodamine B (RhB) as a model organic pollutant, an in-depth investigation of the photocatalytic activity of the compounds was carried out. The present outcomes show that adding an adequate amount of Gd3+ significantly enhances the number of hydroxyl radicals produced by the ferrite, in turn, increasing the photocatalytic activity of the material. Mechanism elucidated by scavenger studies reveals that •OH and holes are the primary reactive radicals responsible for the degradation process. Prepared photocatalysts show an insignificant performance loss in five consecutive cycles. Thus, it is concluded that these photocatalysts are highly suitable for the remediation of dye-contaminated wastewater.
When the photocatalyst Zn0.5Ni0.3Cu0.2Fe2–xGdxO4 absorbs the sun light, it produces pairs of electron and holes. The electron of the valence band of Zn0.5Ni0.3Cu0.2Fe2–xGdxO4 becomes excited when illuminated by the sunlight. The excess energy of this excited electron promotes the electron to go to the conduction band of Zn0.5Ni0.3Cu0.2Fe2–xGdxO4 which creates the negative electron e– and positive hole h+ pair. This stage is referred as the semiconductors photo excitation state. The positive hole of Zn0.5Ni0.3Cu0.2Fe2–xGdxO4 breaks apart the water molecules to form hydrogen gas and hydroxyl radical. The negative electron reacts with oxygen molecules to form super oxide anion. This reaction continues when sunlight is available. [Display omitted] |
Author | Zakde, Kranti Jadhav, K.M. Gawali, Sudarshan S. Jadhav, Swapnil A. Somvanshi, Sandeep B. |
Author_xml | – sequence: 1 givenname: Swapnil A. orcidid: 0000-0001-8164-2133 surname: Jadhav fullname: Jadhav, Swapnil A. email: phy.patil007@gmail.com organization: Department of Physics, Dr. Babasaheb Ambedkar Marathwada University, Aurangabad, 431004, Maharashtra, India – sequence: 2 givenname: Sandeep B. surname: Somvanshi fullname: Somvanshi, Sandeep B. email: ssomvans@purdue.edu organization: Department of Physics, Dr. Babasaheb Ambedkar Marathwada University, Aurangabad, 431004, Maharashtra, India – sequence: 3 givenname: Sudarshan S. surname: Gawali fullname: Gawali, Sudarshan S. organization: Department of Physics, Dr. Babasaheb Ambedkar Marathwada University, Aurangabad, 431004, Maharashtra, India – sequence: 4 givenname: Kranti surname: Zakde fullname: Zakde, Kranti organization: University Department of Basic and Applied Sciences, MGM University, Aurangabad, 431003, Maharashtra, India – sequence: 5 givenname: K.M. surname: Jadhav fullname: Jadhav, K.M. organization: Department of Physics, Dr. Babasaheb Ambedkar Marathwada University, Aurangabad, 431004, Maharashtra, India |
BookMark | eNp9kM9KAzEQh4NUsK0-gLe8wNYku5vdxZMW_0FRKHrxEqbJpE1pNyUbxeLFd_ANfRJT68mD8GPmMHzDzDcgvda3SMgpZyPOuDxbjpYBR4KJfMRSWHFA-qJkTVY0Mu-RPmdMZKwS_IgMum7JWF6VDeuT9ykEpAghLjLjN2jo2r2leu--Pj7HL6k8t9RiCC5iRyGlpWgt6uhekW4WPnoNEVbb6DSFObaRWh8o7OcG5wEMROdb6i2dLryBtWuRXlKzxWNyaGHV4clvH5Kn66vH8W02ebi5G19MMi2aKmamFLWueGlnWOaVLApZyrouZmZW1prVUlqUjagbMNhwAJHjTAqbayHLSkMF-ZBU-706-K4LaJV28eeoGMCtFGdq51AtVXKodg4VS2FFIvkfchPcGsL2X-Z8z2B66dVhUJ122Go0LiRtynj3D_0NhayPXw |
CitedBy_id | crossref_primary_10_1016_j_ccr_2024_216237 crossref_primary_10_1016_j_powtec_2023_118720 crossref_primary_10_1002_crat_202400183 crossref_primary_10_1088_1757_899X_1291_1_012007 crossref_primary_10_1007_s10751_024_01930_0 crossref_primary_10_1007_s10971_024_06600_9 crossref_primary_10_1007_s13538_023_01300_1 crossref_primary_10_1016_j_jre_2024_03_006 crossref_primary_10_1016_j_materresbull_2023_112598 crossref_primary_10_1007_s00339_024_07410_0 crossref_primary_10_1007_s10854_025_14227_x crossref_primary_10_1016_j_rineng_2025_104209 crossref_primary_10_1016_j_jre_2024_11_008 crossref_primary_10_1016_j_molstruc_2024_139927 crossref_primary_10_1007_s10854_024_13567_4 crossref_primary_10_1016_j_inoche_2023_110753 crossref_primary_10_1007_s11270_024_07619_y crossref_primary_10_1007_s10876_024_02754_2 crossref_primary_10_1088_1361_6528_ace3cb crossref_primary_10_1007_s10653_024_02213_x crossref_primary_10_1016_j_inoche_2024_113406 crossref_primary_10_1016_j_jics_2024_101194 crossref_primary_10_1007_s10853_024_10453_6 crossref_primary_10_1016_j_rsurfi_2024_100404 crossref_primary_10_1002_slct_202400179 crossref_primary_10_1016_j_inoche_2024_113694 crossref_primary_10_1016_j_jre_2025_01_004 crossref_primary_10_1142_S0217979225500419 crossref_primary_10_1016_j_jre_2024_12_012 crossref_primary_10_1016_j_surfin_2025_105917 crossref_primary_10_1016_j_inoche_2023_111590 crossref_primary_10_1016_j_rechem_2023_101208 crossref_primary_10_1038_s41598_024_81222_3 crossref_primary_10_1016_j_jre_2024_09_022 crossref_primary_10_1016_j_jre_2025_02_014 crossref_primary_10_1016_j_inoche_2023_111355 crossref_primary_10_1016_j_jallcom_2023_172205 crossref_primary_10_1016_j_inoche_2024_112907 crossref_primary_10_1016_j_jmrt_2024_10_229 crossref_primary_10_1016_j_matchemphys_2025_130690 crossref_primary_10_1007_s10854_024_13574_5 crossref_primary_10_1016_j_mseb_2023_116717 crossref_primary_10_1007_s10904_024_03197_y crossref_primary_10_1016_j_ijhydene_2024_08_163 crossref_primary_10_1016_j_ceramint_2024_09_046 crossref_primary_10_1016_j_optmat_2024_115904 |
Cites_doi | 10.1016/j.jmmm.2012.10.008 10.1007/s11356-019-07137-z 10.1016/j.ijbiomac.2020.08.074 10.1007/s10854-020-03897-4 10.1007/s10948-016-3458-6 10.1016/j.ceramint.2020.02.136 10.1016/j.ceramint.2022.01.057 10.1016/j.ceramint.2021.07.021 10.1016/S1002-0721(17)60998-0 10.1016/j.jmmm.2021.168229 10.1016/j.jclepro.2020.122636 10.1002/slct.202001305 10.1016/j.jhazmat.2020.122593 10.1016/j.jallcom.2020.155422 10.1680/jnaen.19.00006 10.1016/j.jmmm.2014.06.059 10.1016/j.jmmm.2021.168249 10.1016/j.mineng.2020.106540 10.1016/j.ceramint.2021.01.267 10.1007/s00339-020-3407-x 10.1016/j.ceramint.2020.04.090 10.1021/cr500134h 10.1016/j.synthmet.2020.116645 10.1021/cr100230z 10.1016/j.jmrt.2021.07.018 10.1016/j.jallcom.2013.08.114 10.1016/j.physb.2020.412051 10.1016/j.jhazmat.2018.03.011 10.1007/s10854-022-09332-0 10.1016/j.ceramint.2019.06.020 10.1016/S1002-0721(14)60440-3 10.2174/2666145413999200821161006 10.1016/j.chemosphere.2017.02.019 10.2174/1573411016666200131122244 10.1016/j.jre.2019.04.010 10.1007/s11356-020-10348-4 10.1016/j.ceramint.2020.02.091 |
ContentType | Journal Article |
Copyright | 2023 |
Copyright_xml | – notice: 2023 |
DBID | AAYXX CITATION |
DOI | 10.1016/j.jre.2023.03.004 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 2509-4963 |
EndPage | 496 |
ExternalDocumentID | 10_1016_j_jre_2023_03_004 S1002072123000741 |
GroupedDBID | --K --M .~1 0R~ 1B1 1~. 1~5 2B. 2C0 4.4 457 4G. 5GY 5VR 5VS 7-5 71M 8P~ 92H 92I 92R 93N AABNK AABXZ AACTN AAEDT AAEDW AAEPC AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AARLI AAXUO ABMAC ABXDB ABXRA ABYKQ ACDAQ ACGFS ACNNM ACRLP ADBBV ADECG ADEZE ADMUD AEBSH AEKER AENEX AEZYN AFKWA AFRZQ AFTJW AFUIB AFZHZ AGHFR AGUBO AGYEJ AIEXJ AIKHN AITUG AJBFU AJOXV AJSZI ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLXMC CCEZO CDRFL CHBEP CS3 CW9 DU5 EBS EFJIC EFLBG EJD EO9 EP2 EP3 FA0 FDB FIRID FLBIZ FNPLU FYGXN GBLVA HZ~ J1W KOM M41 MAGPM MO0 N9A O-L O9- OAUVE OZT P-8 P-9 PC. Q38 ROL SDC SDF SDG SES SPC SPCBC SSK SSM SSZ T5K TCJ TGT ~02 ~G- -SB -S~ 5XA 5XC AATTM AAXKI AAYWO AAYXX ABJNI ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CAJEB CITATION EFKBS Q-- U1G U5L ~HD |
ID | FETCH-LOGICAL-c297t-d528c715fbe537644656884bdb58c0866fe69289ade91aa23eb62f3c2657ca7a3 |
IEDL.DBID | .~1 |
ISSN | 1002-0721 |
IngestDate | Wed Oct 01 01:49:13 EDT 2025 Thu Apr 24 23:09:17 EDT 2025 Sat Mar 02 16:00:25 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Keywords | Gd3+ substitution Rare earths Photocatalysis Structural properties Spinel ferrite Magnetic properties |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c297t-d528c715fbe537644656884bdb58c0866fe69289ade91aa23eb62f3c2657ca7a3 |
ORCID | 0000-0001-8164-2133 |
PageCount | 9 |
ParticipantIDs | crossref_citationtrail_10_1016_j_jre_2023_03_004 crossref_primary_10_1016_j_jre_2023_03_004 elsevier_sciencedirect_doi_10_1016_j_jre_2023_03_004 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | March 2024 2024-03-00 |
PublicationDateYYYYMMDD | 2024-03-01 |
PublicationDate_xml | – month: 03 year: 2024 text: March 2024 |
PublicationDecade | 2020 |
PublicationTitle | Journal of rare earths |
PublicationYear | 2024 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Patade, Andhare, Somvanshi, Kharat, More, Jadhav (bib28) 2020; 9 Gopale, Khedkar, Jadhav, Raut, Karad, Kulkarni (bib39) 2022; 33 Torkian, Ghasemi, Razavi (bib41) 2016; 29 Owens (bib34) 2015 Khattab, Abdelrahman, Rehan (bib9) 2020; 27 Murshid, Gopinath, Prakash (bib10) 2021; 17 Baig, Yousuf, Warsi, Agboola, Sher, Shakir (bib32) 2019; 45 Kousar, Aadil, Zulfiqar, Warsi, Ejaz, Elnaggar (bib16) 2022; 48 Somvanshi, Patade, Andhare, Jadhav, Khedkar, Kharat (bib4) 2020; 835 Mirzaei, Chen, Haghighat, Yerushalmi (bib5) 2017; 174 Inyinbor, Bello, Dada, Oreofe (bib12) 2021 Naik, Hasolkar (bib38) 2020; 31 Oyewo, Elemike, Onwudiwe, Onyango (bib13) 2020; 164 Yaoguang, Gang, Yansong, Zhonghui (bib20) 2015; 33 Christie (bib7) 2007 Mohammadabadi, Masoudpanah, Alamolhoda, Koohdar (bib23) 2021; 14 Jadhav, Khedkar, Andhare, Gopale, Jadhav (bib22) 2021; 47 Ghobadi, Gharabaghi, Abdollahi, Boroumand, Moradian (bib31) 2018; 351 Guo, Li, Wu, Zhong, Tao, Wang (bib40) 2021; 538 Kadam, Shinde, Yadav, Patil, Rajpure (bib25) 2013; 329 Jadhav, Khedkar, Somvanshi, Jadhav (bib14) 2021; 47 Aadil, Zulfiqar, Sabeeh, Warsi, Shahid, Alsafari (bib43) 2020; 46 Rahman, Warsi, Shakir, Shahid, Zulfiqar (bib17) 2020; 394 Szytula, Leciejewicz (bib36) 1994 Aadil, Zulfiqar, Agboola, Aboud, Shakir, Warsi (bib42) 2021; 272 Gawas, Pednekar, Kothawale, Prasad, Alla (bib30) 2021; 5 Houshiar, Zebhi, Razi, Alidoust, Askari (bib35) 2014; 371 Rahman, Aadil, Akhtar, Warsi, Jamil, Shakir (bib15) 2020; 46 Wang, Li, Huo, Yue, Peng, Zhang (bib26) 2020; 157 Ali, Mahmood, Khan, Chughtai, Shahid, Shakir (bib18) 2014; 584 Anjum, Ilayas, Mustafa (bib29) 2020; 126 Hynes, Kumar, Kamyab, Sujana, Al-Khashman, Kuslu (bib11) 2020; 272 Kumar, Katyal, Nayak (bib1) 2020; 27 Peymani-Motlagh, Moeinian, Rostami, Fasihi-Ramandi, Sobhani-Nasab, Rahimi-Nasrabadi (bib21) 2019; 37 Andhare, Patade, Kounsalye, Jadhav (bib27) 2020; 583 Mondal (bib33) 2018 Somvanshi, Jadhav, Khedkar, Kharat, More, Jadhav (bib37) 2020; 46 Ashraf, Aadil, Zulfiqar, Sabeeh, Khan, Shakir (bib44) 2020; 5 Thomas, Grohens, Pottathara (bib6) 2019 Akah (bib19) 2017; 35 Shaikh, Toksha, Shirsath, Chatterjee, Tonde, Chishty (bib24) 2021; 537 Polshettiwar, Luque, Fihri, Zhu, Bouhrara, Basset (bib2) 2011; 111 Wang, Astruc (bib3) 2014; 114 Naha, Manickavachagam (bib8) 2021 Wang (10.1016/j.jre.2023.03.004_bib26) 2020; 157 Aadil (10.1016/j.jre.2023.03.004_bib42) 2021; 272 Somvanshi (10.1016/j.jre.2023.03.004_bib4) 2020; 835 Kousar (10.1016/j.jre.2023.03.004_bib16) 2022; 48 Houshiar (10.1016/j.jre.2023.03.004_bib35) 2014; 371 Kadam (10.1016/j.jre.2023.03.004_bib25) 2013; 329 Ali (10.1016/j.jre.2023.03.004_bib18) 2014; 584 Kumar (10.1016/j.jre.2023.03.004_bib1) 2020; 27 Mondal (10.1016/j.jre.2023.03.004_bib33) 2018 Khattab (10.1016/j.jre.2023.03.004_bib9) 2020; 27 Torkian (10.1016/j.jre.2023.03.004_bib41) 2016; 29 Andhare (10.1016/j.jre.2023.03.004_bib27) 2020; 583 Rahman (10.1016/j.jre.2023.03.004_bib15) 2020; 46 Rahman (10.1016/j.jre.2023.03.004_bib17) 2020; 394 Somvanshi (10.1016/j.jre.2023.03.004_bib37) 2020; 46 Mirzaei (10.1016/j.jre.2023.03.004_bib5) 2017; 174 Shaikh (10.1016/j.jre.2023.03.004_bib24) 2021; 537 Szytula (10.1016/j.jre.2023.03.004_bib36) 1994 Murshid (10.1016/j.jre.2023.03.004_bib10) 2021; 17 Naha (10.1016/j.jre.2023.03.004_bib8) 2021 Hynes (10.1016/j.jre.2023.03.004_bib11) 2020; 272 Jadhav (10.1016/j.jre.2023.03.004_bib14) 2021; 47 Aadil (10.1016/j.jre.2023.03.004_bib43) 2020; 46 Christie (10.1016/j.jre.2023.03.004_bib7) 2007 Yaoguang (10.1016/j.jre.2023.03.004_bib20) 2015; 33 Oyewo (10.1016/j.jre.2023.03.004_bib13) 2020; 164 Akah (10.1016/j.jre.2023.03.004_bib19) 2017; 35 Inyinbor (10.1016/j.jre.2023.03.004_bib12) 2021 Patade (10.1016/j.jre.2023.03.004_bib28) 2020; 9 Peymani-Motlagh (10.1016/j.jre.2023.03.004_bib21) 2019; 37 Owens (10.1016/j.jre.2023.03.004_bib34) 2015 Polshettiwar (10.1016/j.jre.2023.03.004_bib2) 2011; 111 Jadhav (10.1016/j.jre.2023.03.004_bib22) 2021; 47 Wang (10.1016/j.jre.2023.03.004_bib3) 2014; 114 Mohammadabadi (10.1016/j.jre.2023.03.004_bib23) 2021; 14 Anjum (10.1016/j.jre.2023.03.004_bib29) 2020; 126 Guo (10.1016/j.jre.2023.03.004_bib40) 2021; 538 Ashraf (10.1016/j.jre.2023.03.004_bib44) 2020; 5 Thomas (10.1016/j.jre.2023.03.004_bib6) 2019 Ghobadi (10.1016/j.jre.2023.03.004_bib31) 2018; 351 Gawas (10.1016/j.jre.2023.03.004_bib30) 2021; 5 Naik (10.1016/j.jre.2023.03.004_bib38) 2020; 31 Gopale (10.1016/j.jre.2023.03.004_bib39) 2022; 33 Baig (10.1016/j.jre.2023.03.004_bib32) 2019; 45 |
References_xml | – volume: 394 year: 2020 ident: bib17 article-title: Fabrication of Ce publication-title: J Hazard Mater – volume: 111 start-page: 3036 year: 2011 ident: bib2 article-title: Magnetically recoverable nanocatalysts publication-title: Chem Rev – volume: 45 year: 2019 ident: bib32 article-title: Surfactant assisted synthesis of rare earth Dy publication-title: Ceram Int – volume: 29 start-page: 1617 year: 2016 ident: bib41 article-title: Structural and magnetic consequences of Mn publication-title: J Supercond Nov Magnetism – volume: 351 start-page: 308 year: 2018 ident: bib31 article-title: MnFe publication-title: J Hazard Mater – year: 1994 ident: bib36 article-title: Handbook of crystal structures and magnetic properties of rare earth intermetallics – volume: 14 start-page: 1099 year: 2021 ident: bib23 article-title: Electromagnetic microwave absorption properties of high entropy spinel ferrite ((MnNiCuZn) publication-title: J Mater Res Technol – volume: 17 start-page: 166 year: 2021 ident: bib10 article-title: Current nanotechnology based solutions for sustainable wastewater treatment publication-title: Curr Anal Chem – volume: 164 start-page: 2477 year: 2020 ident: bib13 article-title: Metal oxide-cellulose nanocomposites for the removal of toxic metals and dyes from wastewater publication-title: Int J Biol Macromol – volume: 37 start-page: 1288 year: 2019 ident: bib21 article-title: Effect of Gd publication-title: J Rare Earths – year: 2021 ident: bib8 article-title: Textile industry and health hazards: impact of climate change issues and fertility potential. Climate Change and Its Impact on Fertility. Hershey: publication-title: IGI Global – volume: 126 start-page: 1 year: 2020 ident: bib29 article-title: Influence of antimony substitution on structural, magnetic and optical properties of cadmium spinel ferrite publication-title: Appl Phys A – volume: 583 year: 2020 ident: bib27 article-title: Effect of Zn doping on structural, magnetic and optical properties of cobalt ferrite nanoparticles synthesized via co-precipitation method publication-title: Physica B – year: 2019 ident: bib6 article-title: Industrial applications of nanomaterials – year: 2021 ident: bib12 article-title: Two-dimensional (2D) nanomaterials in separation science – volume: 27 start-page: 3803 year: 2020 ident: bib9 article-title: Textile dyeing industry: environmental impacts and remediation publication-title: Environ Sci Pollut Res – volume: 5 start-page: 8129 year: 2020 ident: bib44 article-title: Wafer-like CoS architectures and their nanocomposites with polypyrrole for electrochemical energy storage applications publication-title: ChemistrySelect – volume: 835 year: 2020 ident: bib4 article-title: Hyperthermic evaluation of oleic acid coated nano-spinel magnesium ferrite: enhancement via hydrophobic-to-hydrophilic surface transformation publication-title: J Alloys Compd – volume: 33 year: 2022 ident: bib39 article-title: Influence of Al publication-title: J Mater Sci Mater Electron – volume: 9 start-page: 8 year: 2020 ident: bib28 article-title: Preparation and characterisations of magnetic nanofluid of zinc ferrite for hyperthermia publication-title: Nanomater Energy – year: 2015 ident: bib34 article-title: Physics of magnetic nanostructures – volume: 33 start-page: 453 year: 2015 ident: bib20 article-title: Recent advances in rare-earth elements modification of inorganic semiconductor-based photocatalysts for efficient solar energy conversion: a review publication-title: J Rare Earths – volume: 5 start-page: 54 year: 2021 ident: bib30 article-title: Effect of Fe substitution on dielectric, electrical and photocatalytic behavior of ZnO nanoparticles publication-title: Current Smart Mater – volume: 46 year: 2020 ident: bib15 article-title: Magnetically recyclable Ni publication-title: Ceram Int – volume: 31 year: 2020 ident: bib38 article-title: Consequence of B-site substitution of rare earth (Gd publication-title: J Mater Sci Mater Electron – volume: 46 year: 2020 ident: bib43 article-title: Enhanced electrochemical energy storage properties of carbon coated Co publication-title: Ceram Int – volume: 329 start-page: 59 year: 2013 ident: bib25 article-title: Structural, morphological, electrical and magnetic properties of Dy doped Ni–Co substitutional spinel ferrite publication-title: J Magn Magn Mater – volume: 114 start-page: 6949 year: 2014 ident: bib3 article-title: Fast-growing field of magnetically recyclable nanocatalysts publication-title: Chem Rev – year: 2007 ident: bib7 article-title: Environmental aspects of textile dyeing – volume: 538 year: 2021 ident: bib40 article-title: Enhanced of the resonant frequency of NiZnCo ferrites induced by substitution of Fe ions with Gd ions publication-title: J Magn Magn Mater – volume: 35 start-page: 941 year: 2017 ident: bib19 article-title: Application of rare earths in fluid catalytic cracking: a review publication-title: J Rare Earths – year: 2018 ident: bib33 article-title: Study of the effect of rare earth ions on the structural, magnetic and electrical properties of Cu-Zn ferrites – volume: 27 year: 2020 ident: bib1 article-title: Removal of heavy metals and radionuclides from water using nanomaterials: current scenario and future prospects publication-title: Environ Sci Pollut Res – volume: 47 year: 2021 ident: bib22 article-title: Visible light photocatalytic activity of magnetically diluted Ni–Zn spinel ferrite for active degradation of rhodamine B publication-title: Ceram Int – volume: 371 start-page: 43 year: 2014 ident: bib35 article-title: Synthesis of cobalt ferrite (CoFe publication-title: J Magn Magn Mater – volume: 272 year: 2020 ident: bib11 article-title: Modern enabling techniques and adsorbents based dye removal with sustainability concerns in textile industrial sector–A comprehensive review publication-title: J Clean Prod – volume: 584 start-page: 363 year: 2014 ident: bib18 article-title: Impacts of Ni–Co substitution on the structural, magnetic and dielectric properties of magnesium nano-ferrites fabricated by micro-emulsion method publication-title: J Alloys Compd – volume: 48 year: 2022 ident: bib16 article-title: Wet-chemical synthesis of nanostructured Ce-doped mixed metal ferrites for the effective removal of azo dyes from industrial discharges publication-title: Ceram Int – volume: 537 year: 2021 ident: bib24 article-title: Microstructure, magnetic, and dielectric interplay in NiCuZn ferrite with rare earth doping for magneto-dielectric applications publication-title: J Magn Magn Mater – volume: 272 year: 2021 ident: bib42 article-title: Fabrication of graphene supported binary nanohybrid with multiple approaches for electrochemical energy storage applications publication-title: Synth Met – volume: 47 year: 2021 ident: bib14 article-title: Magnetically retrievable nanoscale nickel ferrites: an active photocatalyst for toxic dye removal applications publication-title: Ceram Int – volume: 157 year: 2020 ident: bib26 article-title: Magnetic Ni-Zn spinel ferrite nanopowder from toxic Zn-bearing electric arc furnace dust: a promising treatment process publication-title: Miner Eng – volume: 46 year: 2020 ident: bib37 article-title: Structural, thermal, spectral, optical and surface analysis of rare earth metal ion (Gd publication-title: Ceram Int – volume: 174 start-page: 665 year: 2017 ident: bib5 article-title: Removal of pharmaceuticals from water by homo/heterogonous Fenton-type processes–A review publication-title: Chemosphere – volume: 329 start-page: 59 year: 2013 ident: 10.1016/j.jre.2023.03.004_bib25 article-title: Structural, morphological, electrical and magnetic properties of Dy doped Ni–Co substitutional spinel ferrite publication-title: J Magn Magn Mater doi: 10.1016/j.jmmm.2012.10.008 – volume: 27 start-page: 3803 issue: 4 year: 2020 ident: 10.1016/j.jre.2023.03.004_bib9 article-title: Textile dyeing industry: environmental impacts and remediation publication-title: Environ Sci Pollut Res doi: 10.1007/s11356-019-07137-z – volume: 164 start-page: 2477 year: 2020 ident: 10.1016/j.jre.2023.03.004_bib13 article-title: Metal oxide-cellulose nanocomposites for the removal of toxic metals and dyes from wastewater publication-title: Int J Biol Macromol doi: 10.1016/j.ijbiomac.2020.08.074 – volume: 31 issue: 16 year: 2020 ident: 10.1016/j.jre.2023.03.004_bib38 article-title: Consequence of B-site substitution of rare earth (Gd3+) on electrical properties of manganese ferrite nanoparticles publication-title: J Mater Sci Mater Electron doi: 10.1007/s10854-020-03897-4 – volume: 29 start-page: 1617 issue: 6 year: 2016 ident: 10.1016/j.jre.2023.03.004_bib41 article-title: Structural and magnetic consequences of Mn0.6Zn0.4Fe2−xGdxO4 ferrite publication-title: J Supercond Nov Magnetism doi: 10.1007/s10948-016-3458-6 – volume: 46 issue: 9 year: 2020 ident: 10.1016/j.jre.2023.03.004_bib15 article-title: Magnetically recyclable Ni1–xCdxCeyFe2–yO4-rGO nanocomposite photocatalyst for visible light driven photocatalysis publication-title: Ceram Int doi: 10.1016/j.ceramint.2020.02.136 – volume: 48 issue: 8 year: 2022 ident: 10.1016/j.jre.2023.03.004_bib16 article-title: Wet-chemical synthesis of nanostructured Ce-doped mixed metal ferrites for the effective removal of azo dyes from industrial discharges publication-title: Ceram Int doi: 10.1016/j.ceramint.2022.01.057 – volume: 47 issue: 20 year: 2021 ident: 10.1016/j.jre.2023.03.004_bib14 article-title: Magnetically retrievable nanoscale nickel ferrites: an active photocatalyst for toxic dye removal applications publication-title: Ceram Int doi: 10.1016/j.ceramint.2021.07.021 – volume: 35 start-page: 941 issue: 10 year: 2017 ident: 10.1016/j.jre.2023.03.004_bib19 article-title: Application of rare earths in fluid catalytic cracking: a review publication-title: J Rare Earths doi: 10.1016/S1002-0721(17)60998-0 – volume: 537 year: 2021 ident: 10.1016/j.jre.2023.03.004_bib24 article-title: Microstructure, magnetic, and dielectric interplay in NiCuZn ferrite with rare earth doping for magneto-dielectric applications publication-title: J Magn Magn Mater doi: 10.1016/j.jmmm.2021.168229 – volume: 272 year: 2020 ident: 10.1016/j.jre.2023.03.004_bib11 article-title: Modern enabling techniques and adsorbents based dye removal with sustainability concerns in textile industrial sector–A comprehensive review publication-title: J Clean Prod doi: 10.1016/j.jclepro.2020.122636 – volume: 5 start-page: 8129 issue: 27 year: 2020 ident: 10.1016/j.jre.2023.03.004_bib44 article-title: Wafer-like CoS architectures and their nanocomposites with polypyrrole for electrochemical energy storage applications publication-title: ChemistrySelect doi: 10.1002/slct.202001305 – year: 2019 ident: 10.1016/j.jre.2023.03.004_bib6 – volume: 394 year: 2020 ident: 10.1016/j.jre.2023.03.004_bib17 article-title: Fabrication of Ce3+ substituted nickel ferrite-reduced graphene oxide heterojunction with high photocatalytic activity under visible light irradiation publication-title: J Hazard Mater doi: 10.1016/j.jhazmat.2020.122593 – volume: 835 year: 2020 ident: 10.1016/j.jre.2023.03.004_bib4 article-title: Hyperthermic evaluation of oleic acid coated nano-spinel magnesium ferrite: enhancement via hydrophobic-to-hydrophilic surface transformation publication-title: J Alloys Compd doi: 10.1016/j.jallcom.2020.155422 – year: 2021 ident: 10.1016/j.jre.2023.03.004_bib12 – volume: 9 start-page: 8 issue: 1 year: 2020 ident: 10.1016/j.jre.2023.03.004_bib28 article-title: Preparation and characterisations of magnetic nanofluid of zinc ferrite for hyperthermia publication-title: Nanomater Energy doi: 10.1680/jnaen.19.00006 – volume: 371 start-page: 43 year: 2014 ident: 10.1016/j.jre.2023.03.004_bib35 article-title: Synthesis of cobalt ferrite (CoFe2O4) nanoparticles using combustion, coprecipitation, and precipitation methods: a comparison study of size, structural, and magnetic properties publication-title: J Magn Magn Mater doi: 10.1016/j.jmmm.2014.06.059 – volume: 538 year: 2021 ident: 10.1016/j.jre.2023.03.004_bib40 article-title: Enhanced of the resonant frequency of NiZnCo ferrites induced by substitution of Fe ions with Gd ions publication-title: J Magn Magn Mater doi: 10.1016/j.jmmm.2021.168249 – volume: 157 year: 2020 ident: 10.1016/j.jre.2023.03.004_bib26 article-title: Magnetic Ni-Zn spinel ferrite nanopowder from toxic Zn-bearing electric arc furnace dust: a promising treatment process publication-title: Miner Eng doi: 10.1016/j.mineng.2020.106540 – volume: 47 issue: 10 year: 2021 ident: 10.1016/j.jre.2023.03.004_bib22 article-title: Visible light photocatalytic activity of magnetically diluted Ni–Zn spinel ferrite for active degradation of rhodamine B publication-title: Ceram Int doi: 10.1016/j.ceramint.2021.01.267 – volume: 126 start-page: 1 issue: 3 year: 2020 ident: 10.1016/j.jre.2023.03.004_bib29 article-title: Influence of antimony substitution on structural, magnetic and optical properties of cadmium spinel ferrite publication-title: Appl Phys A doi: 10.1007/s00339-020-3407-x – year: 2018 ident: 10.1016/j.jre.2023.03.004_bib33 – year: 1994 ident: 10.1016/j.jre.2023.03.004_bib36 – volume: 46 issue: 11 year: 2020 ident: 10.1016/j.jre.2023.03.004_bib43 article-title: Enhanced electrochemical energy storage properties of carbon coated Co3O4 nanoparticles-reduced graphene oxide ternary nano-hybrids publication-title: Ceram Int doi: 10.1016/j.ceramint.2020.04.090 – year: 2015 ident: 10.1016/j.jre.2023.03.004_bib34 – volume: 114 start-page: 6949 issue: 14 year: 2014 ident: 10.1016/j.jre.2023.03.004_bib3 article-title: Fast-growing field of magnetically recyclable nanocatalysts publication-title: Chem Rev doi: 10.1021/cr500134h – volume: 272 year: 2021 ident: 10.1016/j.jre.2023.03.004_bib42 article-title: Fabrication of graphene supported binary nanohybrid with multiple approaches for electrochemical energy storage applications publication-title: Synth Met doi: 10.1016/j.synthmet.2020.116645 – year: 2007 ident: 10.1016/j.jre.2023.03.004_bib7 – volume: 111 start-page: 3036 issue: 5 year: 2011 ident: 10.1016/j.jre.2023.03.004_bib2 article-title: Magnetically recoverable nanocatalysts publication-title: Chem Rev doi: 10.1021/cr100230z – volume: 14 start-page: 1099 year: 2021 ident: 10.1016/j.jre.2023.03.004_bib23 article-title: Electromagnetic microwave absorption properties of high entropy spinel ferrite ((MnNiCuZn)1−xCoxFe2O4)/graphene nanocomposites publication-title: J Mater Res Technol doi: 10.1016/j.jmrt.2021.07.018 – volume: 584 start-page: 363 year: 2014 ident: 10.1016/j.jre.2023.03.004_bib18 article-title: Impacts of Ni–Co substitution on the structural, magnetic and dielectric properties of magnesium nano-ferrites fabricated by micro-emulsion method publication-title: J Alloys Compd doi: 10.1016/j.jallcom.2013.08.114 – volume: 583 year: 2020 ident: 10.1016/j.jre.2023.03.004_bib27 article-title: Effect of Zn doping on structural, magnetic and optical properties of cobalt ferrite nanoparticles synthesized via co-precipitation method publication-title: Physica B doi: 10.1016/j.physb.2020.412051 – volume: 351 start-page: 308 year: 2018 ident: 10.1016/j.jre.2023.03.004_bib31 article-title: MnFe2O4-graphene oxide magnetic nanoparticles as a high-performance adsorbent for rare earth elements: synthesis, isotherms, kinetics, thermodynamics and desorption publication-title: J Hazard Mater doi: 10.1016/j.jhazmat.2018.03.011 – volume: 33 issue: 35 year: 2022 ident: 10.1016/j.jre.2023.03.004_bib39 article-title: Influence of Al3+-Gd3+ co-substitution on the structural, morphological, magnetic and optical properties of nickel ferrite nanoparticles publication-title: J Mater Sci Mater Electron doi: 10.1007/s10854-022-09332-0 – volume: 45 issue: 14 year: 2019 ident: 10.1016/j.jre.2023.03.004_bib32 article-title: Surfactant assisted synthesis of rare earth Dy3+ substituted MnFe2O4 nanoparticles publication-title: Ceram Int doi: 10.1016/j.ceramint.2019.06.020 – volume: 33 start-page: 453 issue: 5 year: 2015 ident: 10.1016/j.jre.2023.03.004_bib20 article-title: Recent advances in rare-earth elements modification of inorganic semiconductor-based photocatalysts for efficient solar energy conversion: a review publication-title: J Rare Earths doi: 10.1016/S1002-0721(14)60440-3 – volume: 5 start-page: 54 issue: 1 year: 2021 ident: 10.1016/j.jre.2023.03.004_bib30 article-title: Effect of Fe substitution on dielectric, electrical and photocatalytic behavior of ZnO nanoparticles publication-title: Current Smart Mater doi: 10.2174/2666145413999200821161006 – volume: 174 start-page: 665 year: 2017 ident: 10.1016/j.jre.2023.03.004_bib5 article-title: Removal of pharmaceuticals from water by homo/heterogonous Fenton-type processes–A review publication-title: Chemosphere doi: 10.1016/j.chemosphere.2017.02.019 – volume: 17 start-page: 166 issue: 2 year: 2021 ident: 10.1016/j.jre.2023.03.004_bib10 article-title: Current nanotechnology based solutions for sustainable wastewater treatment publication-title: Curr Anal Chem doi: 10.2174/1573411016666200131122244 – volume: 37 start-page: 1288 issue: 12 year: 2019 ident: 10.1016/j.jre.2023.03.004_bib21 article-title: Effect of Gd3+-, Pr3+- or Sm3+-substituted cobalt–zinc ferrite on photodegradation of methyl orange and cytotoxicity tests publication-title: J Rare Earths doi: 10.1016/j.jre.2019.04.010 – volume: 27 issue: 33 year: 2020 ident: 10.1016/j.jre.2023.03.004_bib1 article-title: Removal of heavy metals and radionuclides from water using nanomaterials: current scenario and future prospects publication-title: Environ Sci Pollut Res doi: 10.1007/s11356-020-10348-4 – year: 2021 ident: 10.1016/j.jre.2023.03.004_bib8 article-title: Textile industry and health hazards: impact of climate change issues and fertility potential. Climate Change and Its Impact on Fertility. Hershey: publication-title: IGI Global – volume: 46 issue: 9 year: 2020 ident: 10.1016/j.jre.2023.03.004_bib37 article-title: Structural, thermal, spectral, optical and surface analysis of rare earth metal ion (Gd3+) doped mixed Zn–Mg nano-spinel ferrites publication-title: Ceram Int doi: 10.1016/j.ceramint.2020.02.091 |
SSID | ssj0037590 |
Score | 2.5416107 |
Snippet | In this study, a series of Gd3+-doped mixed Ni–Cu–Zn ferrites with composition of Zn0.5Ni0.3Cu0.2Fe2–xGdxO4 (x = 0, 0.025, 0.05, 0.075, 0.1) was prepared using... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 488 |
SubjectTerms | Gd3+ substitution Magnetic properties Photocatalysis Rare earths Spinel ferrite Structural properties |
Title | Rare earth-doped mixed Ni–Cu–Zn ferrites as an effective photocatalytic agent for active degradation of Rhodamine B dye |
URI | https://dx.doi.org/10.1016/j.jre.2023.03.004 |
Volume | 42 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 2509-4963 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0037590 issn: 1002-0721 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Complete Freedom Collection [SCCMFC] customDbUrl: eissn: 2509-4963 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0037590 issn: 1002-0721 databaseCode: ACRLP dateStart: 20060201 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection customDbUrl: eissn: 2509-4963 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0037590 issn: 1002-0721 databaseCode: .~1 dateStart: 20060201 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals [SCFCJ] customDbUrl: eissn: 2509-4963 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0037590 issn: 1002-0721 databaseCode: AIKHN dateStart: 20060201 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 2509-4963 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0037590 issn: 1002-0721 databaseCode: AKRWK dateStart: 20060201 isFulltext: true providerName: Library Specific Holdings |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEA6iB72IT3wuOXgS6m7bJG2P66KsinvwAeKl5FV2xW2XpYIiiP_Bf-gvcaZpRUE9CCHQNqFlGmYm7TffR8ietcLoDudeqLX2GNPKk4lhXpD5ItKxMonB2uHzgehfs9MbfjNDek0tDMIqa9_vfHrlresz7dqa7clo1L5E8lBk94IkugqMWMHOBML6Dl4-YR5hxBPHSIBIWxjd_NmsMF53U2TKDELHc8p-jk1f4s3xElmsE0Xadc-yTGZsvkLme40-2yp5vpBTS2GhlkPPFBNr6Hj0CP1g9P761nuA7janGRIvQjZJJbScOvQGODg6GRZlUX27eYIbUIkVVhQSWCrddYMkEk5viRYZvRgWRo4hI6WH1DzZNXJ9fHTV63u1lIKngyQqPcODWEc-z5RF_paKJS2OmTKKxxp2NSKzIoG9lzQ28aUMQqtEkIU6EDzSMpLhOpnNi9xuEGpZgNp3qFJsGapPxjr0DZdChcr4Wm2STmPEVNc84yh3cZ82gLK7FOyeot3TDrQO2yT7n1MmjmTjr8GseTPpt5WSQhD4fdrW_6ZtkwU4Yg51tkNmy-mD3YU0pFStap21yFz35Kw_-AAJU97d |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEB5qPehFfGJ97sGTENoku3kctSj10R58gHgJ-wptsUkpERQv_gf_ob_E2WwiCupBWPaQzZAwGWZmNzPfB3CgdaBkhzHHl1I6lErh8FhRx0vdIJSRULEyvcP9QdC7ped37K4B3boXxpRVVr7f-vTSW1dX2pU229PRqH1twEMNuhcm0WVgnIN5ytAnN2H-6OyiN6gdsh-y2IISmGJbFKh_bpZlXuOZAcv0fAt1Sn8OT19CzukyLFW5Ijmyr7MCDZ2twkK3pmhbg5crPtMEbbUYOiqfakUmoyecB6P317fuI073GUkN9iImlITjyIgt4EAfR6bDvMjL45tnfADhpsmKYA5LuF1XBkfCUi6RPCVXw1zxCSal5JioZ70Ot6cnN92eU7EpONKLw8JRzItk6LJUaAPhUgKlRREVSrBI4sYmSHUQ4_aLKx27nHu-FoGX-tILWCh5yP0NaGZ5pjeBaOoZ-jtDVKypIaCMpO8qxgPhC-VK0YJOrcREVlDjhvHiIalrysYJ6j0xek86ODq0BYefIlOLs_HXzbT-Msk3Y0kwDvwutvU_sX1Y6N30L5PLs8HFNiziCrVFaDvQLGaPehezkkLsVVb3AaSf4Yg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Rare+earth-doped+mixed+Ni%E2%80%93Cu%E2%80%93Zn+ferrites+as+an+effective+photocatalytic+agent+for+active+degradation+of+Rhodamine+B+dye&rft.jtitle=Journal+of+rare+earths&rft.au=Jadhav%2C+Swapnil+A.&rft.au=Somvanshi%2C+Sandeep+B.&rft.au=Gawali%2C+Sudarshan+S.&rft.au=Zakde%2C+Kranti&rft.date=2024-03-01&rft.pub=Elsevier+B.V&rft.issn=1002-0721&rft.eissn=2509-4963&rft.volume=42&rft.issue=3&rft.spage=488&rft.epage=496&rft_id=info:doi/10.1016%2Fj.jre.2023.03.004&rft.externalDocID=S1002072123000741 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1002-0721&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1002-0721&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1002-0721&client=summon |