A block principal pivoting algorithm for vertical generalized LCP with a vertical block P-matrix
The Vertical Generalized Linear Complementarity Problem (VGLCP) is an extension of the well-known Linear Complementarity Problem (LCP) that has been discussed in the literature and has found many interesting applications in the past several years. A Block Principal Pivoting (BPP) algorithm was desig...
        Saved in:
      
    
          | Published in | Journal of computational and applied mathematics Vol. 404; p. 113913 | 
|---|---|
| Main Authors | , , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
            Elsevier B.V
    
        01.04.2022
     | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 0377-0427 1879-1778  | 
| DOI | 10.1016/j.cam.2021.113913 | 
Cover
| Summary: | The Vertical Generalized Linear Complementarity Problem (VGLCP) is an extension of the well-known Linear Complementarity Problem (LCP) that has been discussed in the literature and has found many interesting applications in the past several years. A Block Principal Pivoting (BPP) algorithm was designed for finding the unique solution of the LCP when the matrix of this problem is a P-matrix and shown to be quite efficient for solving large-scale LCPs. In this paper, we introduce an extension of this BPP algorithm for finding the unique solution of the VGLCP when its matrix is a vertical block P-matrix. A Least-Index Single Principal Pivoting (LISPP) algorithm is used as a safeguard to guarantee convergence for the BPP algorithm in a finite number of iterations. Computational experiments with a number of VGLCP test problems indicate that the new BPP algorithm is quite efficient for computing the unique solution of large-scale VGLCPs with vertical block P-matrices in practice. | 
|---|---|
| ISSN: | 0377-0427 1879-1778  | 
| DOI: | 10.1016/j.cam.2021.113913 |