Robust detection of unknown DoS/DDoS attacks in IoT networks using a hybrid learning model

The fourth industrial revolution is marked by the rapid growth of Internet of Things (IoT) technology, leading to an increase in the number of IoT devices. Unfortunately, this also makes these devices more susceptible to cyber threats, especially DoS/DDoS attacks. While supervised learning models ha...

Full description

Saved in:
Bibliographic Details
Published inInternet of things (Amsterdam. Online) Vol. 23; p. 100851
Main Authors Nguyen, Xuan-Ha, Le, Kim-Hung
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.10.2023
Subjects
Online AccessGet full text
ISSN2542-6605
2542-6605
DOI10.1016/j.iot.2023.100851

Cover

Abstract The fourth industrial revolution is marked by the rapid growth of Internet of Things (IoT) technology, leading to an increase in the number of IoT devices. Unfortunately, this also makes these devices more susceptible to cyber threats, especially DoS/DDoS attacks. While supervised learning models have been adopted to detect and mitigate these threats, they have limitations in detecting unknown attacks that can cause severe consequences. This research aims to address those limitations and provide better protection for IoT networks against DoS/DDoS attacks. We propose a new approach that combines a soft-ordering convolutional neural network (SOCNN) model with local outlier factor (LOF) and isolation-based anomaly detection using nearest-neighbor ensembles (iNNE) models that use both supervised and unsupervised learning methods. We evaluated our approach on three benchmark datasets with varying unknown attack scenarios, and our hybrid model achieved high accuracy in detecting unknown attacks with an average F1-score of 98.94%, 91.68%, and 96.07%, respectively, on BoT-IoT, CIC-IDS-2017, and CIC-IDS-2018 datasets, outperforming state-of-the-art competitors. Our model also showed resilience against adversarial attacks such as the fast gradient sign method (FGSM) and Carlini Wagner (CW) adversarial attacks, highlighting the potential of our approach to enhance IoT network security against DoS/DDoS attacks in unknown attack scenarios.
AbstractList The fourth industrial revolution is marked by the rapid growth of Internet of Things (IoT) technology, leading to an increase in the number of IoT devices. Unfortunately, this also makes these devices more susceptible to cyber threats, especially DoS/DDoS attacks. While supervised learning models have been adopted to detect and mitigate these threats, they have limitations in detecting unknown attacks that can cause severe consequences. This research aims to address those limitations and provide better protection for IoT networks against DoS/DDoS attacks. We propose a new approach that combines a soft-ordering convolutional neural network (SOCNN) model with local outlier factor (LOF) and isolation-based anomaly detection using nearest-neighbor ensembles (iNNE) models that use both supervised and unsupervised learning methods. We evaluated our approach on three benchmark datasets with varying unknown attack scenarios, and our hybrid model achieved high accuracy in detecting unknown attacks with an average F1-score of 98.94%, 91.68%, and 96.07%, respectively, on BoT-IoT, CIC-IDS-2017, and CIC-IDS-2018 datasets, outperforming state-of-the-art competitors. Our model also showed resilience against adversarial attacks such as the fast gradient sign method (FGSM) and Carlini Wagner (CW) adversarial attacks, highlighting the potential of our approach to enhance IoT network security against DoS/DDoS attacks in unknown attack scenarios.
ArticleNumber 100851
Author Nguyen, Xuan-Ha
Le, Kim-Hung
Author_xml – sequence: 1
  givenname: Xuan-Ha
  surname: Nguyen
  fullname: Nguyen, Xuan-Ha
  email: hanx@uit.edu.vn
– sequence: 2
  givenname: Kim-Hung
  orcidid: 0000-0002-2781-8043
  surname: Le
  fullname: Le, Kim-Hung
  email: hunglk@uit.edu.vn
BookMark eNp9kM9KAzEQh4NUsNY-gLe8QNsku8lu8SStfwoFQevFS0iTWU27TSRJLX17s9SDePAyM7-Bb2C-S9Rz3gFC15SMKaFishlbn8aMsCJnUnN6hvqMl2wkBOG9X_MFGsa4IYSwqShYUfXR27Nf72PCBhLoZL3DvsF7t3X-4PDcv0zmuWCVktLbiK3DC7_CDtLBh5z30bp3rPDHcR2swS2o4LrNzhtor9B5o9oIw58-QK_3d6vZ42j59LCY3S5Hmk2rNNJQC6pLYYghvFFgVA6N0YqUQjS8ZqqmvDY6TwUvDReqErqgQqyJAVrwYoDo6a4OPsYAjfwMdqfCUVIiOz9yI7Mf2fmRJz-Zqf4w2ibV_Z-Csu2_5M2JhPzSl4Ugo7bgNBgbskFpvP2H_gb_hYHl
CitedBy_id crossref_primary_10_1016_j_comnet_2024_110828
crossref_primary_10_1016_j_eswa_2024_124982
crossref_primary_10_1016_j_comnet_2024_110937
crossref_primary_10_1016_j_cose_2024_103898
crossref_primary_10_1002_ett_5056
crossref_primary_10_3233_JHS_230142
crossref_primary_10_33889_IJMEMS_2024_9_1_010
crossref_primary_10_1007_s42979_024_03429_5
crossref_primary_10_3390_s25051346
crossref_primary_10_1007_s44196_025_00741_7
crossref_primary_10_1016_j_cosrev_2024_100631
crossref_primary_10_1016_j_compeleceng_2024_109716
crossref_primary_10_1016_j_jnca_2025_104128
crossref_primary_10_1007_s10207_023_00807_7
crossref_primary_10_1016_j_jnca_2024_103946
crossref_primary_10_3390_su151813887
crossref_primary_10_1016_j_iot_2024_101231
crossref_primary_10_1109_ACCESS_2024_3388149
crossref_primary_10_1515_jisys_2024_0153
crossref_primary_10_1109_ACCESS_2025_3542275
crossref_primary_10_1016_j_iot_2023_101015
crossref_primary_10_1016_j_iot_2024_101336
crossref_primary_10_3390_fi16120458
crossref_primary_10_1016_j_eswa_2023_122198
Cites_doi 10.1016/j.sigpro.2013.12.026
10.1007/s42979-021-00516-9
10.1186/s13677-023-00412-y
10.1038/s41598-023-34354-x
10.1109/TNSM.2021.3075503
10.1145/3469659
10.1016/j.cose.2019.06.005
10.1016/j.eswa.2020.114520
10.7717/peerj-cs.1308
10.1016/j.eswa.2022.119330
10.1109/ACCESS.2019.2932438
10.1201/9781003196686-8
10.1016/j.comcom.2019.09.014
10.1007/s11831-020-09496-0
10.1007/s10489-021-02205-9
10.3390/electronics12030677
10.1109/COMST.2018.2844742
10.1109/ACCESS.2020.2976908
10.1002/cpe.6662
10.3390/s22020432
10.1109/COMST.2018.2854724
10.1145/342009.335388
10.1109/TIFS.2020.2991876
10.1109/CVPR.2019.01181
10.3390/electronics9060916
10.1016/j.procs.2020.03.330
10.1109/ACCESS.2020.3033494
10.1109/JIOT.2020.2993782
10.3390/s19143188
10.1109/TNSM.2020.2971776
10.1016/j.cose.2023.103107
10.1109/ACCESS.2021.3137201
10.1109/ACCESS.2020.3033942
10.1109/ACCESS.2021.3097247
10.1109/JIOT.2020.3048038
10.1109/ACCESS.2021.3123791
10.1109/JIOT.2020.2970501
10.1016/j.knosys.2021.107086
10.1016/j.icte.2021.04.012
10.1016/j.inffus.2021.11.011
10.1109/ACCESS.2020.2980136
ContentType Journal Article
Copyright 2023 Elsevier B.V.
Copyright_xml – notice: 2023 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.iot.2023.100851
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2542-6605
ExternalDocumentID 10_1016_j_iot_2023_100851
S2542660523001749
GroupedDBID 0R~
AAEDW
AAKOC
AALRI
AAQFI
AATTM
AAXUO
AAYFN
AAYWO
ABJNI
ABMAC
ACDAQ
ACHRH
ACRLP
ACVFH
ADCNI
AEBSH
AEIPS
AEUPX
AFJKZ
AFPUW
AFTJW
AGCQF
AGUBO
AGUMN
AIALX
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
AOUOD
APXCP
AXJTR
BELTK
BJAXD
BKOJK
EBS
EFJIC
EFKBS
EJD
FDB
FYGXN
KOM
M41
ROL
SPC
SPCBC
SSB
SSL
SSR
SST
SSV
SSZ
T5K
~G-
AAYXX
ACLOT
CITATION
EFLBG
ID FETCH-LOGICAL-c297t-ce861c46d0d05faedac46fdca0466f582a8158dc582354d56a76c3166b0de1353
IEDL.DBID AIKHN
ISSN 2542-6605
IngestDate Thu Apr 24 22:57:12 EDT 2025
Wed Oct 01 05:47:48 EDT 2025
Sat Aug 16 17:01:45 EDT 2025
IsPeerReviewed true
IsScholarly true
Keywords Deep learning
Unknown attack
Adversarial attack
Intrusion detection system
DoS/DDoS attack
Machine learning
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c297t-ce861c46d0d05faedac46fdca0466f582a8158dc582354d56a76c3166b0de1353
ORCID 0000-0002-2781-8043
ParticipantIDs crossref_primary_10_1016_j_iot_2023_100851
crossref_citationtrail_10_1016_j_iot_2023_100851
elsevier_sciencedirect_doi_10_1016_j_iot_2023_100851
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate October 2023
2023-10-00
PublicationDateYYYYMMDD 2023-10-01
PublicationDate_xml – month: 10
  year: 2023
  text: October 2023
PublicationDecade 2020
PublicationTitle Internet of things (Amsterdam. Online)
PublicationYear 2023
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Nguyen, Phan, Nguyen, So-In, Baig, Sanguanpong (b3) 2019; 7
Laghari, Khan, Alkanhel, Elmannai, Bourouis (b36) 2023; 12
Binbusayyis, Vaiyapuri (b11) 2021; 51
Carlini, Wagner (b64) 2017
Selvarajan, Srivastava, Khadidos, Khadidos, Baza, Alshehri, Lin (b39) 2023; 12
M.M. Breunig, H.-P. Kriegel, R.T. Ng, J. Sander, LOF: identifying density-based local outliers, in: Proceedings of the 2000 ACM SIGMOD International Conference on Management of Data, 2000, pp. 93–104.
Bezerra, da Costa, Barbon Junior, Miani, Zarpelão (b50) 2019; 19
Nazir, Laghari, Kumar, David, Ali (b33) 2021
Gopalan, Ravikumar, Linekar, Raza, Hasib (b7) 2021
Nguyen, Nguyen, Huynh, Le (b8) 2022; 22
Shareena, Ramdas, AP (b56) 2021; 2
Hindy, Tachtatzis, Atkinson, Brosset, Bures, Andonovic, Michie, Bellekens (b25) 2022
Khanday, Fatima, Rakesh (b57) 2023; 215
Alamri, Thayananthan (b19) 2020; 8
Pontes, de Souza, Gondim, Bishop, Marotta (b23) 2021; 18
Cil, Yildiz, Buldu (b20) 2021; 169
Singh Samom, Taggu (b9) 2021
Laghari, Wu, Laghari, Ali, Khan (b32) 2021
Selvarajan, Mouratidis (b41) 2023; 13
Nimbalkar, Kshirsagar (b55) 2021; 7
Doriguzzi-Corin, Millar, Scott-Hayward, Martinez-del Rincon, Siracusa (b61) 2020; 17
Yu, Bian (b21) 2020; 8
Benkhelifa, Welsh, Hamouda (b5) 2018; 20
Lansky, Ali, Mohammadi, Majeed, Karim, Rashidi, Hosseinzadeh, Rahmani (b31) 2021; 9
Mummadi, Yadav, Sadhwika, Shitharth (b38) 2022
Pimentel, Clifton, Clifton, Tarassenko (b45) 2014; 99
Papernot, Faghri, Carlini, Goodfellow, Feinman, Kurakin, Xie, Sharma, Brown, Roy, Matyasko, Behzadan, Hambardzumyan, Zhang, Juang, Li, Sheatsley, Garg, Uesato, Gierke, Dong, Berthelot, Hendricks, Rauber, Long (b54) 2018
Thakkar, Lohiya (b6) 2020; 167
Yang, Zhou, Li, Liu (b43) 2021
Sanders (b46) 2017
Soltani, Ousat, Siavoshani, Jahangir (b27) 2021
Ahmad, Alsmadi, Alhamdani, Tawalbeh (b42) 2022; 67
Apruzzese, Andreolini, Ferretti, Marchetti, Colajanni (b15) 2022; 3
Eskandari, Janjua, Vecchio, Antonelli (b51) 2020; 7
Merino (b47) 2013
Wei, Jang-Jaccard, Sabrina, Singh, Xu, Camtepe (b18) 2021; 9
Al-Qaseemi, Almulhim, Almulhim, Chaudhry (b2) 2016
Can, Le, Ha (b24) 2021
Huang, Lee, Chang, Lin, Horng (b16) 2018
Huang, Lu, Shafiq, Ali Laghari, Yadav (b35) 2021; 2021
openargus (b53) 2023
Zhang, Liu, Qiu, Zhou, Zhang (b13) 2020; 8
Qiu, Dong, Zhang, Lu, Memmi, Qiu (b17) 2020; 8
Shwartz-Ziv, Armon (b28) 2022; 81
Thakkar, Lohiya (b30) 2021
Alvarez, Verdier, Nkashama, Frappier, Tardif, Kabanza (b12) 2022
Nguyen, Nguyen, Le (b62) 2022
Thakkar, Lohiya (b4) 2021; 28
P. Perera, V.M. Patel, Deep transfer learning for multiple class novelty detection, in: Proceedings of the Ieee/Cvf Conference on Computer Vision and Pattern Recognition, 2019, pp. 11544–11552.
Nisioti, Mylonas, Yoo, Katos (b29) 2018; 20
Waqas, Kumar, Laghari, Saeed, Rind, Shaikh, Hussain, Rai, Qazi (b37) 2022; 34
Haider, Akhunzada, Mustafa, Patel, Fernandez, Choo, Iqbal (b59) 2020; 8
Chen, Ashizawa, Yeo, Yanai, Yean (b22) 2021; 224
Zeeshan, Riaz, Bilal, Shahzad, Jabeen, Haider, Rahim (b1) 2021; 10
Goodfellow, Shlens, Szegedy (b63) 2014
Ring, Wunderlich, Scheuring, Landes, Hotho (b52) 2019; 86
Jia, Zhong, Alrawais, Gong, Cheng (b10) 2020; 7
A.A. Khan, A.A. Laghari, A.A. Shaikh, Z.A. Shaikh, A.K. Jumani, Innovation in Multimedia Using IoT Systems, Multimed. Comput. Syst. Virtual Real. 171–187.
Lashkari, Zang, Owhuo, Mamun, Gil (b48) 2017
Xu, Shen, Du (b26) 2020; 15
Kim, Kim, Kim, Shim, Choi (b60) 2020; 9
Krishnan, Duttagupta, Achuthan (b58) 2019; 148
Zoppi, Ceccarelli, Puccetti, Bondavalli (b14) 2023
Aluvalu, Thirumalaisamy, Basheer, Selvarajan (b40) 2023; 9
Nimbalkar (10.1016/j.iot.2023.100851_b55) 2021; 7
Kim (10.1016/j.iot.2023.100851_b60) 2020; 9
Aluvalu (10.1016/j.iot.2023.100851_b40) 2023; 9
Mummadi (10.1016/j.iot.2023.100851_b38) 2022
Merino (10.1016/j.iot.2023.100851_b47) 2013
Apruzzese (10.1016/j.iot.2023.100851_b15) 2022; 3
Benkhelifa (10.1016/j.iot.2023.100851_b5) 2018; 20
Shareena (10.1016/j.iot.2023.100851_b56) 2021; 2
Papernot (10.1016/j.iot.2023.100851_b54) 2018
10.1016/j.iot.2023.100851_b34
Lashkari (10.1016/j.iot.2023.100851_b48) 2017
Selvarajan (10.1016/j.iot.2023.100851_b41) 2023; 13
Selvarajan (10.1016/j.iot.2023.100851_b39) 2023; 12
Hindy (10.1016/j.iot.2023.100851_b25) 2022
Cil (10.1016/j.iot.2023.100851_b20) 2021; 169
Zoppi (10.1016/j.iot.2023.100851_b14) 2023
Shwartz-Ziv (10.1016/j.iot.2023.100851_b28) 2022; 81
Yang (10.1016/j.iot.2023.100851_b43) 2021
openargus (10.1016/j.iot.2023.100851_b53) 2023
Khanday (10.1016/j.iot.2023.100851_b57) 2023; 215
Goodfellow (10.1016/j.iot.2023.100851_b63) 2014
Thakkar (10.1016/j.iot.2023.100851_b30) 2021
Chen (10.1016/j.iot.2023.100851_b22) 2021; 224
Pontes (10.1016/j.iot.2023.100851_b23) 2021; 18
Lansky (10.1016/j.iot.2023.100851_b31) 2021; 9
Thakkar (10.1016/j.iot.2023.100851_b6) 2020; 167
Qiu (10.1016/j.iot.2023.100851_b17) 2020; 8
Laghari (10.1016/j.iot.2023.100851_b32) 2021
Zeeshan (10.1016/j.iot.2023.100851_b1) 2021; 10
10.1016/j.iot.2023.100851_b49
Krishnan (10.1016/j.iot.2023.100851_b58) 2019; 148
10.1016/j.iot.2023.100851_b44
Bezerra (10.1016/j.iot.2023.100851_b50) 2019; 19
Jia (10.1016/j.iot.2023.100851_b10) 2020; 7
Nguyen (10.1016/j.iot.2023.100851_b62) 2022
Nguyen (10.1016/j.iot.2023.100851_b8) 2022; 22
Huang (10.1016/j.iot.2023.100851_b16) 2018
Pimentel (10.1016/j.iot.2023.100851_b45) 2014; 99
Soltani (10.1016/j.iot.2023.100851_b27) 2021
Ahmad (10.1016/j.iot.2023.100851_b42) 2022; 67
Gopalan (10.1016/j.iot.2023.100851_b7) 2021
Carlini (10.1016/j.iot.2023.100851_b64) 2017
Nazir (10.1016/j.iot.2023.100851_b33) 2021
Singh Samom (10.1016/j.iot.2023.100851_b9) 2021
Sanders (10.1016/j.iot.2023.100851_b46) 2017
Xu (10.1016/j.iot.2023.100851_b26) 2020; 15
Nguyen (10.1016/j.iot.2023.100851_b3) 2019; 7
Thakkar (10.1016/j.iot.2023.100851_b4) 2021; 28
Huang (10.1016/j.iot.2023.100851_b35) 2021; 2021
Binbusayyis (10.1016/j.iot.2023.100851_b11) 2021; 51
Zhang (10.1016/j.iot.2023.100851_b13) 2020; 8
Can (10.1016/j.iot.2023.100851_b24) 2021
Laghari (10.1016/j.iot.2023.100851_b36) 2023; 12
Doriguzzi-Corin (10.1016/j.iot.2023.100851_b61) 2020; 17
Yu (10.1016/j.iot.2023.100851_b21) 2020; 8
Eskandari (10.1016/j.iot.2023.100851_b51) 2020; 7
Waqas (10.1016/j.iot.2023.100851_b37) 2022; 34
Ring (10.1016/j.iot.2023.100851_b52) 2019; 86
Alvarez (10.1016/j.iot.2023.100851_b12) 2022
Nisioti (10.1016/j.iot.2023.100851_b29) 2018; 20
Haider (10.1016/j.iot.2023.100851_b59) 2020; 8
Wei (10.1016/j.iot.2023.100851_b18) 2021; 9
Alamri (10.1016/j.iot.2023.100851_b19) 2020; 8
Al-Qaseemi (10.1016/j.iot.2023.100851_b2) 2016
References_xml – year: 2018
  ident: b54
  article-title: Technical report on the CleverHans v2.1.0 adversarial examples library
– volume: 81
  start-page: 84
  year: 2022
  end-page: 90
  ident: b28
  article-title: Tabular data: Deep learning is not all you need
  publication-title: Inf. Fusion
– start-page: 386
  year: 2021
  end-page: 398
  ident: b24
  article-title: Detection of distributed denial of service attacks using automatic feature selection with enhancement for imbalance dataset
  publication-title: Asian Conference on Intelligent Information and Database Systems
– volume: 18
  start-page: 1125
  year: 2021
  end-page: 1136
  ident: b23
  article-title: A new method for flow-based network intrusion detection using the inverse potts model
  publication-title: IEEE Trans. Netw. Serv. Manag.
– year: 2017
  ident: b48
  article-title: CICFlowMeter
– start-page: 1
  year: 2021
  end-page: 111
  ident: b30
  article-title: A survey on intrusion detection system: feature selection, model, performance measures, application perspective, challenges, and future research directions
  publication-title: Artif. Intell. Rev.
– volume: 7
  start-page: 6882
  year: 2020
  end-page: 6897
  ident: b51
  article-title: Passban IDS: An intelligent anomaly-based intrusion detection system for IoT edge devices
  publication-title: IEEE Internet Things J.
– volume: 8
  start-page: 10327
  year: 2020
  end-page: 10335
  ident: b17
  article-title: Adversarial attacks against network intrusion detection in iot systems
  publication-title: IEEE Internet Things J.
– volume: 7
  start-page: 107678
  year: 2019
  end-page: 107694
  ident: b3
  article-title: Search: A collaborative and intelligent nids architecture for sdn-based cloud iot networks
  publication-title: IEEE Access
– start-page: 181
  year: 2018
  end-page: 191
  ident: b16
  article-title: Adversarial attacks on SDN-based deep learning IDS system
  publication-title: International Conference on Mobile and Wireless Technology
– volume: 148
  start-page: 215
  year: 2019
  end-page: 239
  ident: b58
  article-title: VARMAN: Multi-plane security framework for software defined networks
  publication-title: Comput. Commun.
– volume: 51
  start-page: 7094
  year: 2021
  end-page: 7108
  ident: b11
  article-title: Unsupervised deep learning approach for network intrusion detection combining convolutional autoencoder and one-class SVM
  publication-title: Appl. Intell.
– year: 2021
  ident: b27
  article-title: An adaptable deep learning-based intrusion detection system to zero-day attacks
– reference: A.A. Khan, A.A. Laghari, A.A. Shaikh, Z.A. Shaikh, A.K. Jumani, Innovation in Multimedia Using IoT Systems, Multimed. Comput. Syst. Virtual Real. 171–187.
– volume: 215
  year: 2023
  ident: b57
  article-title: Implementation of intrusion detection model for DDoS attacks in lightweight IoT networks
  publication-title: Expert Syst. Appl.
– volume: 9
  start-page: 916
  year: 2020
  ident: b60
  article-title: CNN-based network intrusion detection against denial-of-service attacks
  publication-title: Electronics
– volume: 34
  year: 2022
  ident: b37
  article-title: Botnet attack detection in Internet of Things devices over cloud environment via machine learning
  publication-title: Concurr. Comput.: Pract. Exper.
– volume: 9
  year: 2023
  ident: b40
  article-title: Efficient data transmission on wireless communication through a privacy-enhanced blockchain process
  publication-title: PeerJ Comput. Sci.
– start-page: 382
  year: 2022
  end-page: 396
  ident: b62
  article-title: Preventing adversarial attacks against deep learning-based intrusion detection system
  publication-title: Information Security Practice and Experience: 17th International Conference, ISPEC 2022, Taipei, Taiwan, November 23–25, 2022, Proceedings
– start-page: 731
  year: 2016
  end-page: 738
  ident: b2
  article-title: IoT architecture challenges and issues: Lack of standardization
  publication-title: 2016 Future Technologies Conference
– year: 2022
  ident: b12
  article-title: A revealing large-scale evaluation of unsupervised anomaly detection algorithms
– start-page: 39
  year: 2017
  end-page: 57
  ident: b64
  article-title: Towards evaluating the robustness of neural networks
  publication-title: 2017 Ieee Symposium on Security and Privacy (Sp)
– start-page: 1
  year: 2022
  end-page: 30
  ident: b25
  article-title: Leveraging siamese networks for one-shot intrusion detection model
  publication-title: J. Intell. Inf. Syst.
– year: 2017
  ident: b46
  article-title: Practical Packet Analysis, 3E: Using Wireshark To Solve Real-World Network Problems
– start-page: 1
  year: 2021
  end-page: 20
  ident: b33
  article-title: Survey on wireless network security
  publication-title: Arch. Comput. Methods Eng.
– volume: 86
  start-page: 147
  year: 2019
  end-page: 167
  ident: b52
  article-title: A survey of network-based intrusion detection data sets
  publication-title: Comput. Secur.
– volume: 20
  start-page: 3496
  year: 2018
  end-page: 3509
  ident: b5
  article-title: A critical review of practices and challenges in intrusion detection systems for IoT: Toward universal and resilient systems
  publication-title: IEEE Commun. Surv. Tutor.
– reference: P. Perera, V.M. Patel, Deep transfer learning for multiple class novelty detection, in: Proceedings of the Ieee/Cvf Conference on Computer Vision and Pattern Recognition, 2019, pp. 11544–11552.
– volume: 19
  start-page: 3188
  year: 2019
  ident: b50
  article-title: IoTDS: A one-class classification approach to detect botnets in internet of things devices
  publication-title: Sensors
– volume: 8
  start-page: 49730
  year: 2020
  end-page: 49740
  ident: b21
  article-title: An intrusion detection method using few-shot learning
  publication-title: IEEE Access
– volume: 67
  year: 2022
  ident: b42
  article-title: A deep learning ensemble approach to detecting unknown network attacks
  publication-title: J. Inform. Secur. Appl.
– volume: 10
  start-page: 2269
  year: 2021
  end-page: 2283
  ident: b1
  article-title: Protocol-based deep intrusion detection for DoS and DDoS attacks using UNSW-NB15 and bot-IoT data-sets
  publication-title: IEEE Access
– year: 2023
  ident: b14
  article-title: Which algorithm can detect unknown attacks? Comparison of supervised, unsupervised and meta-learning algorithms for intrusion detection
  publication-title: Comput. Secur.
– year: 2021
  ident: b43
  article-title: Generalized out-of-distribution detection: A survey
– year: 2013
  ident: b47
  article-title: Instant Traffic Analysis with Tshark how-To
– volume: 22
  start-page: 432
  year: 2022
  ident: b8
  article-title: Realguard: A lightweight network intrusion detection system for IoT gateways
  publication-title: Sensors
– volume: 17
  start-page: 876
  year: 2020
  end-page: 889
  ident: b61
  article-title: LUCID: A practical, lightweight deep learning solution for DDoS attack detection
  publication-title: IEEE Trans. Netw. Serv. Manag.
– volume: 8
  start-page: 194269
  year: 2020
  end-page: 194288
  ident: b19
  article-title: Bandwidth control mechanism and extreme gradient boosting algorithm for protecting software-defined networks against DDoS attacks
  publication-title: IEEE Access
– start-page: 1
  year: 2021
  end-page: 19
  ident: b32
  article-title: A review and state of art of Internet of Things (IoT)
  publication-title: Arch. Comput. Methods Eng.
– volume: 12
  start-page: 38
  year: 2023
  ident: b39
  article-title: An artificial intelligence lightweight blockchain security model for security and privacy in IIoT systems
  publication-title: J. Cloud Comput.
– volume: 28
  start-page: 3211
  year: 2021
  end-page: 3243
  ident: b4
  article-title: A review on machine learning and deep learning perspectives of IDS for IoT: recent updates, security issues, and challenges
  publication-title: Arch. Comput. Methods Eng.
– start-page: 27
  year: 2022
  end-page: 40
  ident: b38
  article-title: An appraisal of cyber-attacks and countermeasures using machine learning algorithms
  publication-title: Artificial Intelligence and Data Science: First International Conference, ICAIDS 2021, Hyderabad, India, December 17–18, 2021, Revised Selected Papers
– volume: 9
  start-page: 146810
  year: 2021
  end-page: 146821
  ident: b18
  article-title: Ae-mlp: A hybrid deep learning approach for DDoS detection and classification
  publication-title: IEEE Access
– reference: M.M. Breunig, H.-P. Kriegel, R.T. Ng, J. Sander, LOF: identifying density-based local outliers, in: Proceedings of the 2000 ACM SIGMOD International Conference on Management of Data, 2000, pp. 93–104.
– volume: 224
  year: 2021
  ident: b22
  article-title: Multi-scale self-organizing map assisted deep autoencoding Gaussian mixture model for unsupervised intrusion detection
  publication-title: Knowl.-Based Syst.
– year: 2014
  ident: b63
  article-title: Explaining and harnessing adversarial examples
– volume: 2
  start-page: 205
  year: 2021
  ident: b56
  article-title: Intrusion detection system for iot botnet attacks using deep learning
  publication-title: SN Comput. Sci.
– start-page: 1
  year: 2021
  end-page: 6
  ident: b7
  article-title: Balancing approaches towards ML for IDS: a survey for the CSE-CIC IDS dataset
  publication-title: 2020 International Conference on Communications, Signal Processing, and their Applications
– volume: 8
  start-page: 53972
  year: 2020
  end-page: 53983
  ident: b59
  article-title: A deep CNN ensemble framework for efficient DDoS attack detection in software defined networks
  publication-title: Ieee Access
– volume: 7
  start-page: 9552
  year: 2020
  end-page: 9562
  ident: b10
  article-title: Flowguard: an intelligent edge defense mechanism against IoT DDoS attacks
  publication-title: IEEE Internet Things J.
– volume: 2021
  start-page: 1
  year: 2021
  end-page: 8
  ident: b35
  article-title: A generative adversarial network model based on intelligent data analytics for music emotion recognition under IoT
  publication-title: Mob. Inf. Syst.
– year: 2023
  ident: b53
  article-title: Argus tool
– volume: 167
  start-page: 636
  year: 2020
  end-page: 645
  ident: b6
  article-title: A review of the advancement in intrusion detection datasets
  publication-title: Procedia Comput. Sci.
– volume: 9
  start-page: 101574
  year: 2021
  end-page: 101599
  ident: b31
  article-title: Deep learning-based intrusion detection systems: a systematic review
  publication-title: IEEE Access
– volume: 3
  start-page: 1
  year: 2022
  end-page: 19
  ident: b15
  article-title: Modeling realistic adversarial attacks against network intrusion detection systems
  publication-title: Digital Threats Res. Pract. (DTRAP)
– volume: 15
  start-page: 3540
  year: 2020
  end-page: 3552
  ident: b26
  article-title: A method of few-shot network intrusion detection based on meta-learning framework
  publication-title: IEEE Trans. Inf. Forensics Secur.
– volume: 13
  start-page: 7107
  year: 2023
  ident: b41
  article-title: A quantum trust and consultative transaction-based blockchain cybersecurity model for healthcare systems
  publication-title: Sci. Rep.
– volume: 20
  start-page: 3369
  year: 2018
  end-page: 3388
  ident: b29
  article-title: From intrusion detection to attacker attribution: A comprehensive survey of unsupervised methods
  publication-title: IEEE Commun. Surv. Tutor.
– volume: 8
  start-page: 193981
  year: 2020
  end-page: 193991
  ident: b13
  article-title: Unknown attack detection based on zero-shot learning
  publication-title: IEEE Access
– start-page: 75
  year: 2021
  end-page: 87
  ident: b9
  article-title: Distributed denial of service (DDoS) attacks detection: A machine learning approach
  publication-title: Applied Soft Computing and Communication Networks
– volume: 99
  start-page: 215
  year: 2014
  end-page: 249
  ident: b45
  article-title: A review of novelty detection
  publication-title: Signal Process.
– volume: 169
  year: 2021
  ident: b20
  article-title: Detection of DDoS attacks with feed forward based deep neural network model
  publication-title: Expert Syst. Appl.
– volume: 7
  start-page: 177
  year: 2021
  end-page: 181
  ident: b55
  article-title: Feature selection for intrusion detection system in internet-of-things (IoT)
  publication-title: ICT Express
– volume: 12
  start-page: 677
  year: 2023
  ident: b36
  article-title: Lightweight-BIoV: blockchain distributed ledger technology (BDLT) for internet of vehicles (IoVs)
  publication-title: Electronics
– volume: 99
  start-page: 215
  year: 2014
  ident: 10.1016/j.iot.2023.100851_b45
  article-title: A review of novelty detection
  publication-title: Signal Process.
  doi: 10.1016/j.sigpro.2013.12.026
– year: 2014
  ident: 10.1016/j.iot.2023.100851_b63
– volume: 2
  start-page: 205
  issue: 3
  year: 2021
  ident: 10.1016/j.iot.2023.100851_b56
  article-title: Intrusion detection system for iot botnet attacks using deep learning
  publication-title: SN Comput. Sci.
  doi: 10.1007/s42979-021-00516-9
– volume: 12
  start-page: 38
  issue: 1
  year: 2023
  ident: 10.1016/j.iot.2023.100851_b39
  article-title: An artificial intelligence lightweight blockchain security model for security and privacy in IIoT systems
  publication-title: J. Cloud Comput.
  doi: 10.1186/s13677-023-00412-y
– start-page: 731
  year: 2016
  ident: 10.1016/j.iot.2023.100851_b2
  article-title: IoT architecture challenges and issues: Lack of standardization
– volume: 13
  start-page: 7107
  issue: 1
  year: 2023
  ident: 10.1016/j.iot.2023.100851_b41
  article-title: A quantum trust and consultative transaction-based blockchain cybersecurity model for healthcare systems
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-023-34354-x
– year: 2017
  ident: 10.1016/j.iot.2023.100851_b48
– volume: 18
  start-page: 1125
  issue: 2
  year: 2021
  ident: 10.1016/j.iot.2023.100851_b23
  article-title: A new method for flow-based network intrusion detection using the inverse potts model
  publication-title: IEEE Trans. Netw. Serv. Manag.
  doi: 10.1109/TNSM.2021.3075503
– volume: 3
  start-page: 1
  issue: 3
  year: 2022
  ident: 10.1016/j.iot.2023.100851_b15
  article-title: Modeling realistic adversarial attacks against network intrusion detection systems
  publication-title: Digital Threats Res. Pract. (DTRAP)
  doi: 10.1145/3469659
– start-page: 1
  year: 2022
  ident: 10.1016/j.iot.2023.100851_b25
  article-title: Leveraging siamese networks for one-shot intrusion detection model
  publication-title: J. Intell. Inf. Syst.
– start-page: 27
  year: 2022
  ident: 10.1016/j.iot.2023.100851_b38
  article-title: An appraisal of cyber-attacks and countermeasures using machine learning algorithms
– year: 2017
  ident: 10.1016/j.iot.2023.100851_b46
– volume: 86
  start-page: 147
  year: 2019
  ident: 10.1016/j.iot.2023.100851_b52
  article-title: A survey of network-based intrusion detection data sets
  publication-title: Comput. Secur.
  doi: 10.1016/j.cose.2019.06.005
– volume: 169
  year: 2021
  ident: 10.1016/j.iot.2023.100851_b20
  article-title: Detection of DDoS attacks with feed forward based deep neural network model
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2020.114520
– year: 2021
  ident: 10.1016/j.iot.2023.100851_b27
– volume: 9
  year: 2023
  ident: 10.1016/j.iot.2023.100851_b40
  article-title: Efficient data transmission on wireless communication through a privacy-enhanced blockchain process
  publication-title: PeerJ Comput. Sci.
  doi: 10.7717/peerj-cs.1308
– volume: 67
  year: 2022
  ident: 10.1016/j.iot.2023.100851_b42
  article-title: A deep learning ensemble approach to detecting unknown network attacks
  publication-title: J. Inform. Secur. Appl.
– start-page: 1
  year: 2021
  ident: 10.1016/j.iot.2023.100851_b33
  article-title: Survey on wireless network security
  publication-title: Arch. Comput. Methods Eng.
– volume: 215
  year: 2023
  ident: 10.1016/j.iot.2023.100851_b57
  article-title: Implementation of intrusion detection model for DDoS attacks in lightweight IoT networks
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2022.119330
– volume: 7
  start-page: 107678
  year: 2019
  ident: 10.1016/j.iot.2023.100851_b3
  article-title: Search: A collaborative and intelligent nids architecture for sdn-based cloud iot networks
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2932438
– ident: 10.1016/j.iot.2023.100851_b34
  doi: 10.1201/9781003196686-8
– year: 2022
  ident: 10.1016/j.iot.2023.100851_b12
– start-page: 181
  year: 2018
  ident: 10.1016/j.iot.2023.100851_b16
  article-title: Adversarial attacks on SDN-based deep learning IDS system
– volume: 148
  start-page: 215
  year: 2019
  ident: 10.1016/j.iot.2023.100851_b58
  article-title: VARMAN: Multi-plane security framework for software defined networks
  publication-title: Comput. Commun.
  doi: 10.1016/j.comcom.2019.09.014
– volume: 28
  start-page: 3211
  issue: 4
  year: 2021
  ident: 10.1016/j.iot.2023.100851_b4
  article-title: A review on machine learning and deep learning perspectives of IDS for IoT: recent updates, security issues, and challenges
  publication-title: Arch. Comput. Methods Eng.
  doi: 10.1007/s11831-020-09496-0
– volume: 51
  start-page: 7094
  issue: 10
  year: 2021
  ident: 10.1016/j.iot.2023.100851_b11
  article-title: Unsupervised deep learning approach for network intrusion detection combining convolutional autoencoder and one-class SVM
  publication-title: Appl. Intell.
  doi: 10.1007/s10489-021-02205-9
– volume: 12
  start-page: 677
  issue: 3
  year: 2023
  ident: 10.1016/j.iot.2023.100851_b36
  article-title: Lightweight-BIoV: blockchain distributed ledger technology (BDLT) for internet of vehicles (IoVs)
  publication-title: Electronics
  doi: 10.3390/electronics12030677
– volume: 20
  start-page: 3496
  issue: 4
  year: 2018
  ident: 10.1016/j.iot.2023.100851_b5
  article-title: A critical review of practices and challenges in intrusion detection systems for IoT: Toward universal and resilient systems
  publication-title: IEEE Commun. Surv. Tutor.
  doi: 10.1109/COMST.2018.2844742
– volume: 8
  start-page: 53972
  year: 2020
  ident: 10.1016/j.iot.2023.100851_b59
  article-title: A deep CNN ensemble framework for efficient DDoS attack detection in software defined networks
  publication-title: Ieee Access
  doi: 10.1109/ACCESS.2020.2976908
– volume: 34
  issue: 4
  year: 2022
  ident: 10.1016/j.iot.2023.100851_b37
  article-title: Botnet attack detection in Internet of Things devices over cloud environment via machine learning
  publication-title: Concurr. Comput.: Pract. Exper.
  doi: 10.1002/cpe.6662
– volume: 22
  start-page: 432
  issue: 2
  year: 2022
  ident: 10.1016/j.iot.2023.100851_b8
  article-title: Realguard: A lightweight network intrusion detection system for IoT gateways
  publication-title: Sensors
  doi: 10.3390/s22020432
– volume: 20
  start-page: 3369
  issue: 4
  year: 2018
  ident: 10.1016/j.iot.2023.100851_b29
  article-title: From intrusion detection to attacker attribution: A comprehensive survey of unsupervised methods
  publication-title: IEEE Commun. Surv. Tutor.
  doi: 10.1109/COMST.2018.2854724
– ident: 10.1016/j.iot.2023.100851_b49
  doi: 10.1145/342009.335388
– volume: 15
  start-page: 3540
  year: 2020
  ident: 10.1016/j.iot.2023.100851_b26
  article-title: A method of few-shot network intrusion detection based on meta-learning framework
  publication-title: IEEE Trans. Inf. Forensics Secur.
  doi: 10.1109/TIFS.2020.2991876
– ident: 10.1016/j.iot.2023.100851_b44
  doi: 10.1109/CVPR.2019.01181
– year: 2013
  ident: 10.1016/j.iot.2023.100851_b47
– start-page: 1
  year: 2021
  ident: 10.1016/j.iot.2023.100851_b32
  article-title: A review and state of art of Internet of Things (IoT)
  publication-title: Arch. Comput. Methods Eng.
– start-page: 39
  year: 2017
  ident: 10.1016/j.iot.2023.100851_b64
  article-title: Towards evaluating the robustness of neural networks
– start-page: 1
  year: 2021
  ident: 10.1016/j.iot.2023.100851_b30
  article-title: A survey on intrusion detection system: feature selection, model, performance measures, application perspective, challenges, and future research directions
  publication-title: Artif. Intell. Rev.
– year: 2021
  ident: 10.1016/j.iot.2023.100851_b43
– volume: 9
  start-page: 916
  issue: 6
  year: 2020
  ident: 10.1016/j.iot.2023.100851_b60
  article-title: CNN-based network intrusion detection against denial-of-service attacks
  publication-title: Electronics
  doi: 10.3390/electronics9060916
– volume: 167
  start-page: 636
  year: 2020
  ident: 10.1016/j.iot.2023.100851_b6
  article-title: A review of the advancement in intrusion detection datasets
  publication-title: Procedia Comput. Sci.
  doi: 10.1016/j.procs.2020.03.330
– volume: 8
  start-page: 193981
  year: 2020
  ident: 10.1016/j.iot.2023.100851_b13
  article-title: Unknown attack detection based on zero-shot learning
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.3033494
– volume: 7
  start-page: 9552
  issue: 10
  year: 2020
  ident: 10.1016/j.iot.2023.100851_b10
  article-title: Flowguard: an intelligent edge defense mechanism against IoT DDoS attacks
  publication-title: IEEE Internet Things J.
  doi: 10.1109/JIOT.2020.2993782
– start-page: 382
  year: 2022
  ident: 10.1016/j.iot.2023.100851_b62
  article-title: Preventing adversarial attacks against deep learning-based intrusion detection system
– volume: 2021
  start-page: 1
  year: 2021
  ident: 10.1016/j.iot.2023.100851_b35
  article-title: A generative adversarial network model based on intelligent data analytics for music emotion recognition under IoT
  publication-title: Mob. Inf. Syst.
– year: 2023
  ident: 10.1016/j.iot.2023.100851_b53
– year: 2018
  ident: 10.1016/j.iot.2023.100851_b54
– volume: 19
  start-page: 3188
  issue: 14
  year: 2019
  ident: 10.1016/j.iot.2023.100851_b50
  article-title: IoTDS: A one-class classification approach to detect botnets in internet of things devices
  publication-title: Sensors
  doi: 10.3390/s19143188
– start-page: 386
  year: 2021
  ident: 10.1016/j.iot.2023.100851_b24
  article-title: Detection of distributed denial of service attacks using automatic feature selection with enhancement for imbalance dataset
– volume: 17
  start-page: 876
  issue: 2
  year: 2020
  ident: 10.1016/j.iot.2023.100851_b61
  article-title: LUCID: A practical, lightweight deep learning solution for DDoS attack detection
  publication-title: IEEE Trans. Netw. Serv. Manag.
  doi: 10.1109/TNSM.2020.2971776
– year: 2023
  ident: 10.1016/j.iot.2023.100851_b14
  article-title: Which algorithm can detect unknown attacks? Comparison of supervised, unsupervised and meta-learning algorithms for intrusion detection
  publication-title: Comput. Secur.
  doi: 10.1016/j.cose.2023.103107
– volume: 10
  start-page: 2269
  year: 2021
  ident: 10.1016/j.iot.2023.100851_b1
  article-title: Protocol-based deep intrusion detection for DoS and DDoS attacks using UNSW-NB15 and bot-IoT data-sets
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2021.3137201
– volume: 8
  start-page: 194269
  year: 2020
  ident: 10.1016/j.iot.2023.100851_b19
  article-title: Bandwidth control mechanism and extreme gradient boosting algorithm for protecting software-defined networks against DDoS attacks
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.3033942
– volume: 9
  start-page: 101574
  year: 2021
  ident: 10.1016/j.iot.2023.100851_b31
  article-title: Deep learning-based intrusion detection systems: a systematic review
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2021.3097247
– volume: 8
  start-page: 10327
  issue: 13
  year: 2020
  ident: 10.1016/j.iot.2023.100851_b17
  article-title: Adversarial attacks against network intrusion detection in iot systems
  publication-title: IEEE Internet Things J.
  doi: 10.1109/JIOT.2020.3048038
– volume: 9
  start-page: 146810
  year: 2021
  ident: 10.1016/j.iot.2023.100851_b18
  article-title: Ae-mlp: A hybrid deep learning approach for DDoS detection and classification
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2021.3123791
– start-page: 1
  year: 2021
  ident: 10.1016/j.iot.2023.100851_b7
  article-title: Balancing approaches towards ML for IDS: a survey for the CSE-CIC IDS dataset
– volume: 7
  start-page: 6882
  issue: 8
  year: 2020
  ident: 10.1016/j.iot.2023.100851_b51
  article-title: Passban IDS: An intelligent anomaly-based intrusion detection system for IoT edge devices
  publication-title: IEEE Internet Things J.
  doi: 10.1109/JIOT.2020.2970501
– volume: 224
  year: 2021
  ident: 10.1016/j.iot.2023.100851_b22
  article-title: Multi-scale self-organizing map assisted deep autoencoding Gaussian mixture model for unsupervised intrusion detection
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2021.107086
– volume: 7
  start-page: 177
  issue: 2
  year: 2021
  ident: 10.1016/j.iot.2023.100851_b55
  article-title: Feature selection for intrusion detection system in internet-of-things (IoT)
  publication-title: ICT Express
  doi: 10.1016/j.icte.2021.04.012
– volume: 81
  start-page: 84
  year: 2022
  ident: 10.1016/j.iot.2023.100851_b28
  article-title: Tabular data: Deep learning is not all you need
  publication-title: Inf. Fusion
  doi: 10.1016/j.inffus.2021.11.011
– start-page: 75
  year: 2021
  ident: 10.1016/j.iot.2023.100851_b9
  article-title: Distributed denial of service (DDoS) attacks detection: A machine learning approach
– volume: 8
  start-page: 49730
  year: 2020
  ident: 10.1016/j.iot.2023.100851_b21
  article-title: An intrusion detection method using few-shot learning
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.2980136
SSID ssj0002963237
Score 2.4184833
Snippet The fourth industrial revolution is marked by the rapid growth of Internet of Things (IoT) technology, leading to an increase in the number of IoT devices....
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 100851
SubjectTerms Adversarial attack
Deep learning
DoS/DDoS attack
Intrusion detection system
Machine learning
Unknown attack
Title Robust detection of unknown DoS/DDoS attacks in IoT networks using a hybrid learning model
URI https://dx.doi.org/10.1016/j.iot.2023.100851
Volume 23
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier Science Direct Freedom Collection
  customDbUrl:
  eissn: 2542-6605
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002963237
  issn: 2542-6605
  databaseCode: ACRLP
  dateStart: 20180901
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals [SCFCJ]
  customDbUrl:
  eissn: 2542-6605
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002963237
  issn: 2542-6605
  databaseCode: AIKHN
  dateStart: 20180901
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 2542-6605
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002963237
  issn: 2542-6605
  databaseCode: AKRWK
  dateStart: 20180901
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07a8MwEBZpsrRD6ZOmLzR0Khi_JFkeQ9KQNDRDHjR0MbIlpS5FDo0z9N9X8iOk0HboYlvGB-bjuNOdvrsD4C4OSIgY9y0iBbNQgogVC0dYkrMgkML0KzEnuk9jMpijxwVeNEC3roUxtMrK9pc2vbDW1Ru7QtNepak91aGN9i5FWlOrFQr3QEv7H0qboNUZjgbjbarF00rmFd0zjYhlZOrzzYLplWaGVOn5hjFAsfuzh9rxOv0jcFhtF2Gn_KNj0BDqBBzsNBE8BS-TLN6sc8hFXtCqFMwk3CiTLFOwl03tnr5Aluemmh6mCg6zGVQl-3sNDe99CRl8_TSlW7AaIrGExYScMzDvP8y6A6uamGAlXhjkViIocTXe3OEOlkxwpheSJ0xHwURi6jHqYsoT_eRjxDFhAUl8l5DY4cJMwDgHTZUpcQGgDlddN9HxK5YYoRDFXAQOJw6VMnBjitvAqVGKkqqduJlq8R7VvLG3SAMbGWCjEtg2uN-KrMpeGn99jGroo28KEWlb_7vY5f_ErsC-WZUsvWvQzD824kbvNvL4ttImcx9NnkdfNoDTBw
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELZKOwAD4inK0wMTUpSX7SRj1VKl9DHQVqpYLCe2SxBKKpoO_HvsPCqQgIElyuuk6NPlznf-7g6Au8gjAWLcNYgUzEAxIkYkLGFIzjxPCt2vRO_ojicknKPHBV40QLeuhdG0ysr2lza9sNbVHbNC01wliTlVoY3yLkVaU6kVCnZAC2HXU39nqzMYhpNtqsVRSuYU3TO1iKFl6v3NgumVZJpU6biaMeBj-2cP9cXr9A_BQbVchJ3yi45AQ6THYP9LE8ET8PyURZt1DrnIC1pVCjMJN6lOlqWwl03NnjpAlue6mh4mKRxkM5iW7O811Lz3JWTw5UOXbsFqiMQSFhNyTsG8_zDrhkY1McGIncDLjVj4xFZ4c4tbWDLBmbqQPGYqCiYS-w7zbezzWJ25GHFMmEdi1yYksrjQEzDOQDPNUnEOoApXbTtW8SuWGKEARVx4FieWL6VnRz5uA6tGicZVO3E91eKN1ryxV6qApRpYWgLbBvdbkVXZS-Ovl1ENPf2mEFTZ-t_FLv4ndgt2w9l4REeDyfAS7OknJWPvCjTz9424ViuPPLqpNOsTgYXURQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Robust+detection+of+unknown+DoS%2FDDoS+attacks+in+IoT+networks+using+a+hybrid+learning+model&rft.jtitle=Internet+of+things+%28Amsterdam.+Online%29&rft.au=Nguyen%2C+Xuan-Ha&rft.au=Le%2C+Kim-Hung&rft.date=2023-10-01&rft.issn=2542-6605&rft.eissn=2542-6605&rft.volume=23&rft.spage=100851&rft_id=info:doi/10.1016%2Fj.iot.2023.100851&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_iot_2023_100851
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2542-6605&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2542-6605&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2542-6605&client=summon