Robust detection of unknown DoS/DDoS attacks in IoT networks using a hybrid learning model
The fourth industrial revolution is marked by the rapid growth of Internet of Things (IoT) technology, leading to an increase in the number of IoT devices. Unfortunately, this also makes these devices more susceptible to cyber threats, especially DoS/DDoS attacks. While supervised learning models ha...
Saved in:
| Published in | Internet of things (Amsterdam. Online) Vol. 23; p. 100851 |
|---|---|
| Main Authors | , |
| Format | Journal Article |
| Language | English |
| Published |
Elsevier B.V
01.10.2023
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 2542-6605 2542-6605 |
| DOI | 10.1016/j.iot.2023.100851 |
Cover
| Abstract | The fourth industrial revolution is marked by the rapid growth of Internet of Things (IoT) technology, leading to an increase in the number of IoT devices. Unfortunately, this also makes these devices more susceptible to cyber threats, especially DoS/DDoS attacks. While supervised learning models have been adopted to detect and mitigate these threats, they have limitations in detecting unknown attacks that can cause severe consequences. This research aims to address those limitations and provide better protection for IoT networks against DoS/DDoS attacks. We propose a new approach that combines a soft-ordering convolutional neural network (SOCNN) model with local outlier factor (LOF) and isolation-based anomaly detection using nearest-neighbor ensembles (iNNE) models that use both supervised and unsupervised learning methods. We evaluated our approach on three benchmark datasets with varying unknown attack scenarios, and our hybrid model achieved high accuracy in detecting unknown attacks with an average F1-score of 98.94%, 91.68%, and 96.07%, respectively, on BoT-IoT, CIC-IDS-2017, and CIC-IDS-2018 datasets, outperforming state-of-the-art competitors. Our model also showed resilience against adversarial attacks such as the fast gradient sign method (FGSM) and Carlini Wagner (CW) adversarial attacks, highlighting the potential of our approach to enhance IoT network security against DoS/DDoS attacks in unknown attack scenarios. |
|---|---|
| AbstractList | The fourth industrial revolution is marked by the rapid growth of Internet of Things (IoT) technology, leading to an increase in the number of IoT devices. Unfortunately, this also makes these devices more susceptible to cyber threats, especially DoS/DDoS attacks. While supervised learning models have been adopted to detect and mitigate these threats, they have limitations in detecting unknown attacks that can cause severe consequences. This research aims to address those limitations and provide better protection for IoT networks against DoS/DDoS attacks. We propose a new approach that combines a soft-ordering convolutional neural network (SOCNN) model with local outlier factor (LOF) and isolation-based anomaly detection using nearest-neighbor ensembles (iNNE) models that use both supervised and unsupervised learning methods. We evaluated our approach on three benchmark datasets with varying unknown attack scenarios, and our hybrid model achieved high accuracy in detecting unknown attacks with an average F1-score of 98.94%, 91.68%, and 96.07%, respectively, on BoT-IoT, CIC-IDS-2017, and CIC-IDS-2018 datasets, outperforming state-of-the-art competitors. Our model also showed resilience against adversarial attacks such as the fast gradient sign method (FGSM) and Carlini Wagner (CW) adversarial attacks, highlighting the potential of our approach to enhance IoT network security against DoS/DDoS attacks in unknown attack scenarios. |
| ArticleNumber | 100851 |
| Author | Nguyen, Xuan-Ha Le, Kim-Hung |
| Author_xml | – sequence: 1 givenname: Xuan-Ha surname: Nguyen fullname: Nguyen, Xuan-Ha email: hanx@uit.edu.vn – sequence: 2 givenname: Kim-Hung orcidid: 0000-0002-2781-8043 surname: Le fullname: Le, Kim-Hung email: hunglk@uit.edu.vn |
| BookMark | eNp9kM9KAzEQh4NUsNY-gLe8QNsku8lu8SStfwoFQevFS0iTWU27TSRJLX17s9SDePAyM7-Bb2C-S9Rz3gFC15SMKaFishlbn8aMsCJnUnN6hvqMl2wkBOG9X_MFGsa4IYSwqShYUfXR27Nf72PCBhLoZL3DvsF7t3X-4PDcv0zmuWCVktLbiK3DC7_CDtLBh5z30bp3rPDHcR2swS2o4LrNzhtor9B5o9oIw58-QK_3d6vZ42j59LCY3S5Hmk2rNNJQC6pLYYghvFFgVA6N0YqUQjS8ZqqmvDY6TwUvDReqErqgQqyJAVrwYoDo6a4OPsYAjfwMdqfCUVIiOz9yI7Mf2fmRJz-Zqf4w2ibV_Z-Csu2_5M2JhPzSl4Ugo7bgNBgbskFpvP2H_gb_hYHl |
| CitedBy_id | crossref_primary_10_1016_j_comnet_2024_110828 crossref_primary_10_1016_j_eswa_2024_124982 crossref_primary_10_1016_j_comnet_2024_110937 crossref_primary_10_1016_j_cose_2024_103898 crossref_primary_10_1002_ett_5056 crossref_primary_10_3233_JHS_230142 crossref_primary_10_33889_IJMEMS_2024_9_1_010 crossref_primary_10_1007_s42979_024_03429_5 crossref_primary_10_3390_s25051346 crossref_primary_10_1007_s44196_025_00741_7 crossref_primary_10_1016_j_cosrev_2024_100631 crossref_primary_10_1016_j_compeleceng_2024_109716 crossref_primary_10_1016_j_jnca_2025_104128 crossref_primary_10_1007_s10207_023_00807_7 crossref_primary_10_1016_j_jnca_2024_103946 crossref_primary_10_3390_su151813887 crossref_primary_10_1016_j_iot_2024_101231 crossref_primary_10_1109_ACCESS_2024_3388149 crossref_primary_10_1515_jisys_2024_0153 crossref_primary_10_1109_ACCESS_2025_3542275 crossref_primary_10_1016_j_iot_2023_101015 crossref_primary_10_1016_j_iot_2024_101336 crossref_primary_10_3390_fi16120458 crossref_primary_10_1016_j_eswa_2023_122198 |
| Cites_doi | 10.1016/j.sigpro.2013.12.026 10.1007/s42979-021-00516-9 10.1186/s13677-023-00412-y 10.1038/s41598-023-34354-x 10.1109/TNSM.2021.3075503 10.1145/3469659 10.1016/j.cose.2019.06.005 10.1016/j.eswa.2020.114520 10.7717/peerj-cs.1308 10.1016/j.eswa.2022.119330 10.1109/ACCESS.2019.2932438 10.1201/9781003196686-8 10.1016/j.comcom.2019.09.014 10.1007/s11831-020-09496-0 10.1007/s10489-021-02205-9 10.3390/electronics12030677 10.1109/COMST.2018.2844742 10.1109/ACCESS.2020.2976908 10.1002/cpe.6662 10.3390/s22020432 10.1109/COMST.2018.2854724 10.1145/342009.335388 10.1109/TIFS.2020.2991876 10.1109/CVPR.2019.01181 10.3390/electronics9060916 10.1016/j.procs.2020.03.330 10.1109/ACCESS.2020.3033494 10.1109/JIOT.2020.2993782 10.3390/s19143188 10.1109/TNSM.2020.2971776 10.1016/j.cose.2023.103107 10.1109/ACCESS.2021.3137201 10.1109/ACCESS.2020.3033942 10.1109/ACCESS.2021.3097247 10.1109/JIOT.2020.3048038 10.1109/ACCESS.2021.3123791 10.1109/JIOT.2020.2970501 10.1016/j.knosys.2021.107086 10.1016/j.icte.2021.04.012 10.1016/j.inffus.2021.11.011 10.1109/ACCESS.2020.2980136 |
| ContentType | Journal Article |
| Copyright | 2023 Elsevier B.V. |
| Copyright_xml | – notice: 2023 Elsevier B.V. |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.iot.2023.100851 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 2542-6605 |
| ExternalDocumentID | 10_1016_j_iot_2023_100851 S2542660523001749 |
| GroupedDBID | 0R~ AAEDW AAKOC AALRI AAQFI AATTM AAXUO AAYFN AAYWO ABJNI ABMAC ACDAQ ACHRH ACRLP ACVFH ADCNI AEBSH AEIPS AEUPX AFJKZ AFPUW AFTJW AGCQF AGUBO AGUMN AIALX AIEXJ AIGII AIIUN AIKHN AITUG AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU AOUOD APXCP AXJTR BELTK BJAXD BKOJK EBS EFJIC EFKBS EJD FDB FYGXN KOM M41 ROL SPC SPCBC SSB SSL SSR SST SSV SSZ T5K ~G- AAYXX ACLOT CITATION EFLBG |
| ID | FETCH-LOGICAL-c297t-ce861c46d0d05faedac46fdca0466f582a8158dc582354d56a76c3166b0de1353 |
| IEDL.DBID | AIKHN |
| ISSN | 2542-6605 |
| IngestDate | Thu Apr 24 22:57:12 EDT 2025 Wed Oct 01 05:47:48 EDT 2025 Sat Aug 16 17:01:45 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Deep learning Unknown attack Adversarial attack Intrusion detection system DoS/DDoS attack Machine learning |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c297t-ce861c46d0d05faedac46fdca0466f582a8158dc582354d56a76c3166b0de1353 |
| ORCID | 0000-0002-2781-8043 |
| ParticipantIDs | crossref_primary_10_1016_j_iot_2023_100851 crossref_citationtrail_10_1016_j_iot_2023_100851 elsevier_sciencedirect_doi_10_1016_j_iot_2023_100851 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | October 2023 2023-10-00 |
| PublicationDateYYYYMMDD | 2023-10-01 |
| PublicationDate_xml | – month: 10 year: 2023 text: October 2023 |
| PublicationDecade | 2020 |
| PublicationTitle | Internet of things (Amsterdam. Online) |
| PublicationYear | 2023 |
| Publisher | Elsevier B.V |
| Publisher_xml | – name: Elsevier B.V |
| References | Nguyen, Phan, Nguyen, So-In, Baig, Sanguanpong (b3) 2019; 7 Laghari, Khan, Alkanhel, Elmannai, Bourouis (b36) 2023; 12 Binbusayyis, Vaiyapuri (b11) 2021; 51 Carlini, Wagner (b64) 2017 Selvarajan, Srivastava, Khadidos, Khadidos, Baza, Alshehri, Lin (b39) 2023; 12 M.M. Breunig, H.-P. Kriegel, R.T. Ng, J. Sander, LOF: identifying density-based local outliers, in: Proceedings of the 2000 ACM SIGMOD International Conference on Management of Data, 2000, pp. 93–104. Bezerra, da Costa, Barbon Junior, Miani, Zarpelão (b50) 2019; 19 Nazir, Laghari, Kumar, David, Ali (b33) 2021 Gopalan, Ravikumar, Linekar, Raza, Hasib (b7) 2021 Nguyen, Nguyen, Huynh, Le (b8) 2022; 22 Shareena, Ramdas, AP (b56) 2021; 2 Hindy, Tachtatzis, Atkinson, Brosset, Bures, Andonovic, Michie, Bellekens (b25) 2022 Khanday, Fatima, Rakesh (b57) 2023; 215 Alamri, Thayananthan (b19) 2020; 8 Pontes, de Souza, Gondim, Bishop, Marotta (b23) 2021; 18 Cil, Yildiz, Buldu (b20) 2021; 169 Singh Samom, Taggu (b9) 2021 Laghari, Wu, Laghari, Ali, Khan (b32) 2021 Selvarajan, Mouratidis (b41) 2023; 13 Nimbalkar, Kshirsagar (b55) 2021; 7 Doriguzzi-Corin, Millar, Scott-Hayward, Martinez-del Rincon, Siracusa (b61) 2020; 17 Yu, Bian (b21) 2020; 8 Benkhelifa, Welsh, Hamouda (b5) 2018; 20 Lansky, Ali, Mohammadi, Majeed, Karim, Rashidi, Hosseinzadeh, Rahmani (b31) 2021; 9 Mummadi, Yadav, Sadhwika, Shitharth (b38) 2022 Pimentel, Clifton, Clifton, Tarassenko (b45) 2014; 99 Papernot, Faghri, Carlini, Goodfellow, Feinman, Kurakin, Xie, Sharma, Brown, Roy, Matyasko, Behzadan, Hambardzumyan, Zhang, Juang, Li, Sheatsley, Garg, Uesato, Gierke, Dong, Berthelot, Hendricks, Rauber, Long (b54) 2018 Thakkar, Lohiya (b6) 2020; 167 Yang, Zhou, Li, Liu (b43) 2021 Sanders (b46) 2017 Soltani, Ousat, Siavoshani, Jahangir (b27) 2021 Ahmad, Alsmadi, Alhamdani, Tawalbeh (b42) 2022; 67 Apruzzese, Andreolini, Ferretti, Marchetti, Colajanni (b15) 2022; 3 Eskandari, Janjua, Vecchio, Antonelli (b51) 2020; 7 Merino (b47) 2013 Wei, Jang-Jaccard, Sabrina, Singh, Xu, Camtepe (b18) 2021; 9 Al-Qaseemi, Almulhim, Almulhim, Chaudhry (b2) 2016 Can, Le, Ha (b24) 2021 Huang, Lee, Chang, Lin, Horng (b16) 2018 Huang, Lu, Shafiq, Ali Laghari, Yadav (b35) 2021; 2021 openargus (b53) 2023 Zhang, Liu, Qiu, Zhou, Zhang (b13) 2020; 8 Qiu, Dong, Zhang, Lu, Memmi, Qiu (b17) 2020; 8 Shwartz-Ziv, Armon (b28) 2022; 81 Thakkar, Lohiya (b30) 2021 Alvarez, Verdier, Nkashama, Frappier, Tardif, Kabanza (b12) 2022 Nguyen, Nguyen, Le (b62) 2022 Thakkar, Lohiya (b4) 2021; 28 P. Perera, V.M. Patel, Deep transfer learning for multiple class novelty detection, in: Proceedings of the Ieee/Cvf Conference on Computer Vision and Pattern Recognition, 2019, pp. 11544–11552. Nisioti, Mylonas, Yoo, Katos (b29) 2018; 20 Waqas, Kumar, Laghari, Saeed, Rind, Shaikh, Hussain, Rai, Qazi (b37) 2022; 34 Haider, Akhunzada, Mustafa, Patel, Fernandez, Choo, Iqbal (b59) 2020; 8 Chen, Ashizawa, Yeo, Yanai, Yean (b22) 2021; 224 Zeeshan, Riaz, Bilal, Shahzad, Jabeen, Haider, Rahim (b1) 2021; 10 Goodfellow, Shlens, Szegedy (b63) 2014 Ring, Wunderlich, Scheuring, Landes, Hotho (b52) 2019; 86 Jia, Zhong, Alrawais, Gong, Cheng (b10) 2020; 7 A.A. Khan, A.A. Laghari, A.A. Shaikh, Z.A. Shaikh, A.K. Jumani, Innovation in Multimedia Using IoT Systems, Multimed. Comput. Syst. Virtual Real. 171–187. Lashkari, Zang, Owhuo, Mamun, Gil (b48) 2017 Xu, Shen, Du (b26) 2020; 15 Kim, Kim, Kim, Shim, Choi (b60) 2020; 9 Krishnan, Duttagupta, Achuthan (b58) 2019; 148 Zoppi, Ceccarelli, Puccetti, Bondavalli (b14) 2023 Aluvalu, Thirumalaisamy, Basheer, Selvarajan (b40) 2023; 9 Nimbalkar (10.1016/j.iot.2023.100851_b55) 2021; 7 Kim (10.1016/j.iot.2023.100851_b60) 2020; 9 Aluvalu (10.1016/j.iot.2023.100851_b40) 2023; 9 Mummadi (10.1016/j.iot.2023.100851_b38) 2022 Merino (10.1016/j.iot.2023.100851_b47) 2013 Apruzzese (10.1016/j.iot.2023.100851_b15) 2022; 3 Benkhelifa (10.1016/j.iot.2023.100851_b5) 2018; 20 Shareena (10.1016/j.iot.2023.100851_b56) 2021; 2 Papernot (10.1016/j.iot.2023.100851_b54) 2018 10.1016/j.iot.2023.100851_b34 Lashkari (10.1016/j.iot.2023.100851_b48) 2017 Selvarajan (10.1016/j.iot.2023.100851_b41) 2023; 13 Selvarajan (10.1016/j.iot.2023.100851_b39) 2023; 12 Hindy (10.1016/j.iot.2023.100851_b25) 2022 Cil (10.1016/j.iot.2023.100851_b20) 2021; 169 Zoppi (10.1016/j.iot.2023.100851_b14) 2023 Shwartz-Ziv (10.1016/j.iot.2023.100851_b28) 2022; 81 Yang (10.1016/j.iot.2023.100851_b43) 2021 openargus (10.1016/j.iot.2023.100851_b53) 2023 Khanday (10.1016/j.iot.2023.100851_b57) 2023; 215 Goodfellow (10.1016/j.iot.2023.100851_b63) 2014 Thakkar (10.1016/j.iot.2023.100851_b30) 2021 Chen (10.1016/j.iot.2023.100851_b22) 2021; 224 Pontes (10.1016/j.iot.2023.100851_b23) 2021; 18 Lansky (10.1016/j.iot.2023.100851_b31) 2021; 9 Thakkar (10.1016/j.iot.2023.100851_b6) 2020; 167 Qiu (10.1016/j.iot.2023.100851_b17) 2020; 8 Laghari (10.1016/j.iot.2023.100851_b32) 2021 Zeeshan (10.1016/j.iot.2023.100851_b1) 2021; 10 10.1016/j.iot.2023.100851_b49 Krishnan (10.1016/j.iot.2023.100851_b58) 2019; 148 10.1016/j.iot.2023.100851_b44 Bezerra (10.1016/j.iot.2023.100851_b50) 2019; 19 Jia (10.1016/j.iot.2023.100851_b10) 2020; 7 Nguyen (10.1016/j.iot.2023.100851_b62) 2022 Nguyen (10.1016/j.iot.2023.100851_b8) 2022; 22 Huang (10.1016/j.iot.2023.100851_b16) 2018 Pimentel (10.1016/j.iot.2023.100851_b45) 2014; 99 Soltani (10.1016/j.iot.2023.100851_b27) 2021 Ahmad (10.1016/j.iot.2023.100851_b42) 2022; 67 Gopalan (10.1016/j.iot.2023.100851_b7) 2021 Carlini (10.1016/j.iot.2023.100851_b64) 2017 Nazir (10.1016/j.iot.2023.100851_b33) 2021 Singh Samom (10.1016/j.iot.2023.100851_b9) 2021 Sanders (10.1016/j.iot.2023.100851_b46) 2017 Xu (10.1016/j.iot.2023.100851_b26) 2020; 15 Nguyen (10.1016/j.iot.2023.100851_b3) 2019; 7 Thakkar (10.1016/j.iot.2023.100851_b4) 2021; 28 Huang (10.1016/j.iot.2023.100851_b35) 2021; 2021 Binbusayyis (10.1016/j.iot.2023.100851_b11) 2021; 51 Zhang (10.1016/j.iot.2023.100851_b13) 2020; 8 Can (10.1016/j.iot.2023.100851_b24) 2021 Laghari (10.1016/j.iot.2023.100851_b36) 2023; 12 Doriguzzi-Corin (10.1016/j.iot.2023.100851_b61) 2020; 17 Yu (10.1016/j.iot.2023.100851_b21) 2020; 8 Eskandari (10.1016/j.iot.2023.100851_b51) 2020; 7 Waqas (10.1016/j.iot.2023.100851_b37) 2022; 34 Ring (10.1016/j.iot.2023.100851_b52) 2019; 86 Alvarez (10.1016/j.iot.2023.100851_b12) 2022 Nisioti (10.1016/j.iot.2023.100851_b29) 2018; 20 Haider (10.1016/j.iot.2023.100851_b59) 2020; 8 Wei (10.1016/j.iot.2023.100851_b18) 2021; 9 Alamri (10.1016/j.iot.2023.100851_b19) 2020; 8 Al-Qaseemi (10.1016/j.iot.2023.100851_b2) 2016 |
| References_xml | – year: 2018 ident: b54 article-title: Technical report on the CleverHans v2.1.0 adversarial examples library – volume: 81 start-page: 84 year: 2022 end-page: 90 ident: b28 article-title: Tabular data: Deep learning is not all you need publication-title: Inf. Fusion – start-page: 386 year: 2021 end-page: 398 ident: b24 article-title: Detection of distributed denial of service attacks using automatic feature selection with enhancement for imbalance dataset publication-title: Asian Conference on Intelligent Information and Database Systems – volume: 18 start-page: 1125 year: 2021 end-page: 1136 ident: b23 article-title: A new method for flow-based network intrusion detection using the inverse potts model publication-title: IEEE Trans. Netw. Serv. Manag. – year: 2017 ident: b48 article-title: CICFlowMeter – start-page: 1 year: 2021 end-page: 111 ident: b30 article-title: A survey on intrusion detection system: feature selection, model, performance measures, application perspective, challenges, and future research directions publication-title: Artif. Intell. Rev. – volume: 7 start-page: 6882 year: 2020 end-page: 6897 ident: b51 article-title: Passban IDS: An intelligent anomaly-based intrusion detection system for IoT edge devices publication-title: IEEE Internet Things J. – volume: 8 start-page: 10327 year: 2020 end-page: 10335 ident: b17 article-title: Adversarial attacks against network intrusion detection in iot systems publication-title: IEEE Internet Things J. – volume: 7 start-page: 107678 year: 2019 end-page: 107694 ident: b3 article-title: Search: A collaborative and intelligent nids architecture for sdn-based cloud iot networks publication-title: IEEE Access – start-page: 181 year: 2018 end-page: 191 ident: b16 article-title: Adversarial attacks on SDN-based deep learning IDS system publication-title: International Conference on Mobile and Wireless Technology – volume: 148 start-page: 215 year: 2019 end-page: 239 ident: b58 article-title: VARMAN: Multi-plane security framework for software defined networks publication-title: Comput. Commun. – volume: 51 start-page: 7094 year: 2021 end-page: 7108 ident: b11 article-title: Unsupervised deep learning approach for network intrusion detection combining convolutional autoencoder and one-class SVM publication-title: Appl. Intell. – year: 2021 ident: b27 article-title: An adaptable deep learning-based intrusion detection system to zero-day attacks – reference: A.A. Khan, A.A. Laghari, A.A. Shaikh, Z.A. Shaikh, A.K. Jumani, Innovation in Multimedia Using IoT Systems, Multimed. Comput. Syst. Virtual Real. 171–187. – volume: 215 year: 2023 ident: b57 article-title: Implementation of intrusion detection model for DDoS attacks in lightweight IoT networks publication-title: Expert Syst. Appl. – volume: 9 start-page: 916 year: 2020 ident: b60 article-title: CNN-based network intrusion detection against denial-of-service attacks publication-title: Electronics – volume: 34 year: 2022 ident: b37 article-title: Botnet attack detection in Internet of Things devices over cloud environment via machine learning publication-title: Concurr. Comput.: Pract. Exper. – volume: 9 year: 2023 ident: b40 article-title: Efficient data transmission on wireless communication through a privacy-enhanced blockchain process publication-title: PeerJ Comput. Sci. – start-page: 382 year: 2022 end-page: 396 ident: b62 article-title: Preventing adversarial attacks against deep learning-based intrusion detection system publication-title: Information Security Practice and Experience: 17th International Conference, ISPEC 2022, Taipei, Taiwan, November 23–25, 2022, Proceedings – start-page: 731 year: 2016 end-page: 738 ident: b2 article-title: IoT architecture challenges and issues: Lack of standardization publication-title: 2016 Future Technologies Conference – year: 2022 ident: b12 article-title: A revealing large-scale evaluation of unsupervised anomaly detection algorithms – start-page: 39 year: 2017 end-page: 57 ident: b64 article-title: Towards evaluating the robustness of neural networks publication-title: 2017 Ieee Symposium on Security and Privacy (Sp) – start-page: 1 year: 2022 end-page: 30 ident: b25 article-title: Leveraging siamese networks for one-shot intrusion detection model publication-title: J. Intell. Inf. Syst. – year: 2017 ident: b46 article-title: Practical Packet Analysis, 3E: Using Wireshark To Solve Real-World Network Problems – start-page: 1 year: 2021 end-page: 20 ident: b33 article-title: Survey on wireless network security publication-title: Arch. Comput. Methods Eng. – volume: 86 start-page: 147 year: 2019 end-page: 167 ident: b52 article-title: A survey of network-based intrusion detection data sets publication-title: Comput. Secur. – volume: 20 start-page: 3496 year: 2018 end-page: 3509 ident: b5 article-title: A critical review of practices and challenges in intrusion detection systems for IoT: Toward universal and resilient systems publication-title: IEEE Commun. Surv. Tutor. – reference: P. Perera, V.M. Patel, Deep transfer learning for multiple class novelty detection, in: Proceedings of the Ieee/Cvf Conference on Computer Vision and Pattern Recognition, 2019, pp. 11544–11552. – volume: 19 start-page: 3188 year: 2019 ident: b50 article-title: IoTDS: A one-class classification approach to detect botnets in internet of things devices publication-title: Sensors – volume: 8 start-page: 49730 year: 2020 end-page: 49740 ident: b21 article-title: An intrusion detection method using few-shot learning publication-title: IEEE Access – volume: 67 year: 2022 ident: b42 article-title: A deep learning ensemble approach to detecting unknown network attacks publication-title: J. Inform. Secur. Appl. – volume: 10 start-page: 2269 year: 2021 end-page: 2283 ident: b1 article-title: Protocol-based deep intrusion detection for DoS and DDoS attacks using UNSW-NB15 and bot-IoT data-sets publication-title: IEEE Access – year: 2023 ident: b14 article-title: Which algorithm can detect unknown attacks? Comparison of supervised, unsupervised and meta-learning algorithms for intrusion detection publication-title: Comput. Secur. – year: 2021 ident: b43 article-title: Generalized out-of-distribution detection: A survey – year: 2013 ident: b47 article-title: Instant Traffic Analysis with Tshark how-To – volume: 22 start-page: 432 year: 2022 ident: b8 article-title: Realguard: A lightweight network intrusion detection system for IoT gateways publication-title: Sensors – volume: 17 start-page: 876 year: 2020 end-page: 889 ident: b61 article-title: LUCID: A practical, lightweight deep learning solution for DDoS attack detection publication-title: IEEE Trans. Netw. Serv. Manag. – volume: 8 start-page: 194269 year: 2020 end-page: 194288 ident: b19 article-title: Bandwidth control mechanism and extreme gradient boosting algorithm for protecting software-defined networks against DDoS attacks publication-title: IEEE Access – start-page: 1 year: 2021 end-page: 19 ident: b32 article-title: A review and state of art of Internet of Things (IoT) publication-title: Arch. Comput. Methods Eng. – volume: 12 start-page: 38 year: 2023 ident: b39 article-title: An artificial intelligence lightweight blockchain security model for security and privacy in IIoT systems publication-title: J. Cloud Comput. – volume: 28 start-page: 3211 year: 2021 end-page: 3243 ident: b4 article-title: A review on machine learning and deep learning perspectives of IDS for IoT: recent updates, security issues, and challenges publication-title: Arch. Comput. Methods Eng. – start-page: 27 year: 2022 end-page: 40 ident: b38 article-title: An appraisal of cyber-attacks and countermeasures using machine learning algorithms publication-title: Artificial Intelligence and Data Science: First International Conference, ICAIDS 2021, Hyderabad, India, December 17–18, 2021, Revised Selected Papers – volume: 9 start-page: 146810 year: 2021 end-page: 146821 ident: b18 article-title: Ae-mlp: A hybrid deep learning approach for DDoS detection and classification publication-title: IEEE Access – reference: M.M. Breunig, H.-P. Kriegel, R.T. Ng, J. Sander, LOF: identifying density-based local outliers, in: Proceedings of the 2000 ACM SIGMOD International Conference on Management of Data, 2000, pp. 93–104. – volume: 224 year: 2021 ident: b22 article-title: Multi-scale self-organizing map assisted deep autoencoding Gaussian mixture model for unsupervised intrusion detection publication-title: Knowl.-Based Syst. – year: 2014 ident: b63 article-title: Explaining and harnessing adversarial examples – volume: 2 start-page: 205 year: 2021 ident: b56 article-title: Intrusion detection system for iot botnet attacks using deep learning publication-title: SN Comput. Sci. – start-page: 1 year: 2021 end-page: 6 ident: b7 article-title: Balancing approaches towards ML for IDS: a survey for the CSE-CIC IDS dataset publication-title: 2020 International Conference on Communications, Signal Processing, and their Applications – volume: 8 start-page: 53972 year: 2020 end-page: 53983 ident: b59 article-title: A deep CNN ensemble framework for efficient DDoS attack detection in software defined networks publication-title: Ieee Access – volume: 7 start-page: 9552 year: 2020 end-page: 9562 ident: b10 article-title: Flowguard: an intelligent edge defense mechanism against IoT DDoS attacks publication-title: IEEE Internet Things J. – volume: 2021 start-page: 1 year: 2021 end-page: 8 ident: b35 article-title: A generative adversarial network model based on intelligent data analytics for music emotion recognition under IoT publication-title: Mob. Inf. Syst. – year: 2023 ident: b53 article-title: Argus tool – volume: 167 start-page: 636 year: 2020 end-page: 645 ident: b6 article-title: A review of the advancement in intrusion detection datasets publication-title: Procedia Comput. Sci. – volume: 9 start-page: 101574 year: 2021 end-page: 101599 ident: b31 article-title: Deep learning-based intrusion detection systems: a systematic review publication-title: IEEE Access – volume: 3 start-page: 1 year: 2022 end-page: 19 ident: b15 article-title: Modeling realistic adversarial attacks against network intrusion detection systems publication-title: Digital Threats Res. Pract. (DTRAP) – volume: 15 start-page: 3540 year: 2020 end-page: 3552 ident: b26 article-title: A method of few-shot network intrusion detection based on meta-learning framework publication-title: IEEE Trans. Inf. Forensics Secur. – volume: 13 start-page: 7107 year: 2023 ident: b41 article-title: A quantum trust and consultative transaction-based blockchain cybersecurity model for healthcare systems publication-title: Sci. Rep. – volume: 20 start-page: 3369 year: 2018 end-page: 3388 ident: b29 article-title: From intrusion detection to attacker attribution: A comprehensive survey of unsupervised methods publication-title: IEEE Commun. Surv. Tutor. – volume: 8 start-page: 193981 year: 2020 end-page: 193991 ident: b13 article-title: Unknown attack detection based on zero-shot learning publication-title: IEEE Access – start-page: 75 year: 2021 end-page: 87 ident: b9 article-title: Distributed denial of service (DDoS) attacks detection: A machine learning approach publication-title: Applied Soft Computing and Communication Networks – volume: 99 start-page: 215 year: 2014 end-page: 249 ident: b45 article-title: A review of novelty detection publication-title: Signal Process. – volume: 169 year: 2021 ident: b20 article-title: Detection of DDoS attacks with feed forward based deep neural network model publication-title: Expert Syst. Appl. – volume: 7 start-page: 177 year: 2021 end-page: 181 ident: b55 article-title: Feature selection for intrusion detection system in internet-of-things (IoT) publication-title: ICT Express – volume: 12 start-page: 677 year: 2023 ident: b36 article-title: Lightweight-BIoV: blockchain distributed ledger technology (BDLT) for internet of vehicles (IoVs) publication-title: Electronics – volume: 99 start-page: 215 year: 2014 ident: 10.1016/j.iot.2023.100851_b45 article-title: A review of novelty detection publication-title: Signal Process. doi: 10.1016/j.sigpro.2013.12.026 – year: 2014 ident: 10.1016/j.iot.2023.100851_b63 – volume: 2 start-page: 205 issue: 3 year: 2021 ident: 10.1016/j.iot.2023.100851_b56 article-title: Intrusion detection system for iot botnet attacks using deep learning publication-title: SN Comput. Sci. doi: 10.1007/s42979-021-00516-9 – volume: 12 start-page: 38 issue: 1 year: 2023 ident: 10.1016/j.iot.2023.100851_b39 article-title: An artificial intelligence lightweight blockchain security model for security and privacy in IIoT systems publication-title: J. Cloud Comput. doi: 10.1186/s13677-023-00412-y – start-page: 731 year: 2016 ident: 10.1016/j.iot.2023.100851_b2 article-title: IoT architecture challenges and issues: Lack of standardization – volume: 13 start-page: 7107 issue: 1 year: 2023 ident: 10.1016/j.iot.2023.100851_b41 article-title: A quantum trust and consultative transaction-based blockchain cybersecurity model for healthcare systems publication-title: Sci. Rep. doi: 10.1038/s41598-023-34354-x – year: 2017 ident: 10.1016/j.iot.2023.100851_b48 – volume: 18 start-page: 1125 issue: 2 year: 2021 ident: 10.1016/j.iot.2023.100851_b23 article-title: A new method for flow-based network intrusion detection using the inverse potts model publication-title: IEEE Trans. Netw. Serv. Manag. doi: 10.1109/TNSM.2021.3075503 – volume: 3 start-page: 1 issue: 3 year: 2022 ident: 10.1016/j.iot.2023.100851_b15 article-title: Modeling realistic adversarial attacks against network intrusion detection systems publication-title: Digital Threats Res. Pract. (DTRAP) doi: 10.1145/3469659 – start-page: 1 year: 2022 ident: 10.1016/j.iot.2023.100851_b25 article-title: Leveraging siamese networks for one-shot intrusion detection model publication-title: J. Intell. Inf. Syst. – start-page: 27 year: 2022 ident: 10.1016/j.iot.2023.100851_b38 article-title: An appraisal of cyber-attacks and countermeasures using machine learning algorithms – year: 2017 ident: 10.1016/j.iot.2023.100851_b46 – volume: 86 start-page: 147 year: 2019 ident: 10.1016/j.iot.2023.100851_b52 article-title: A survey of network-based intrusion detection data sets publication-title: Comput. Secur. doi: 10.1016/j.cose.2019.06.005 – volume: 169 year: 2021 ident: 10.1016/j.iot.2023.100851_b20 article-title: Detection of DDoS attacks with feed forward based deep neural network model publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2020.114520 – year: 2021 ident: 10.1016/j.iot.2023.100851_b27 – volume: 9 year: 2023 ident: 10.1016/j.iot.2023.100851_b40 article-title: Efficient data transmission on wireless communication through a privacy-enhanced blockchain process publication-title: PeerJ Comput. Sci. doi: 10.7717/peerj-cs.1308 – volume: 67 year: 2022 ident: 10.1016/j.iot.2023.100851_b42 article-title: A deep learning ensemble approach to detecting unknown network attacks publication-title: J. Inform. Secur. Appl. – start-page: 1 year: 2021 ident: 10.1016/j.iot.2023.100851_b33 article-title: Survey on wireless network security publication-title: Arch. Comput. Methods Eng. – volume: 215 year: 2023 ident: 10.1016/j.iot.2023.100851_b57 article-title: Implementation of intrusion detection model for DDoS attacks in lightweight IoT networks publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2022.119330 – volume: 7 start-page: 107678 year: 2019 ident: 10.1016/j.iot.2023.100851_b3 article-title: Search: A collaborative and intelligent nids architecture for sdn-based cloud iot networks publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2932438 – ident: 10.1016/j.iot.2023.100851_b34 doi: 10.1201/9781003196686-8 – year: 2022 ident: 10.1016/j.iot.2023.100851_b12 – start-page: 181 year: 2018 ident: 10.1016/j.iot.2023.100851_b16 article-title: Adversarial attacks on SDN-based deep learning IDS system – volume: 148 start-page: 215 year: 2019 ident: 10.1016/j.iot.2023.100851_b58 article-title: VARMAN: Multi-plane security framework for software defined networks publication-title: Comput. Commun. doi: 10.1016/j.comcom.2019.09.014 – volume: 28 start-page: 3211 issue: 4 year: 2021 ident: 10.1016/j.iot.2023.100851_b4 article-title: A review on machine learning and deep learning perspectives of IDS for IoT: recent updates, security issues, and challenges publication-title: Arch. Comput. Methods Eng. doi: 10.1007/s11831-020-09496-0 – volume: 51 start-page: 7094 issue: 10 year: 2021 ident: 10.1016/j.iot.2023.100851_b11 article-title: Unsupervised deep learning approach for network intrusion detection combining convolutional autoencoder and one-class SVM publication-title: Appl. Intell. doi: 10.1007/s10489-021-02205-9 – volume: 12 start-page: 677 issue: 3 year: 2023 ident: 10.1016/j.iot.2023.100851_b36 article-title: Lightweight-BIoV: blockchain distributed ledger technology (BDLT) for internet of vehicles (IoVs) publication-title: Electronics doi: 10.3390/electronics12030677 – volume: 20 start-page: 3496 issue: 4 year: 2018 ident: 10.1016/j.iot.2023.100851_b5 article-title: A critical review of practices and challenges in intrusion detection systems for IoT: Toward universal and resilient systems publication-title: IEEE Commun. Surv. Tutor. doi: 10.1109/COMST.2018.2844742 – volume: 8 start-page: 53972 year: 2020 ident: 10.1016/j.iot.2023.100851_b59 article-title: A deep CNN ensemble framework for efficient DDoS attack detection in software defined networks publication-title: Ieee Access doi: 10.1109/ACCESS.2020.2976908 – volume: 34 issue: 4 year: 2022 ident: 10.1016/j.iot.2023.100851_b37 article-title: Botnet attack detection in Internet of Things devices over cloud environment via machine learning publication-title: Concurr. Comput.: Pract. Exper. doi: 10.1002/cpe.6662 – volume: 22 start-page: 432 issue: 2 year: 2022 ident: 10.1016/j.iot.2023.100851_b8 article-title: Realguard: A lightweight network intrusion detection system for IoT gateways publication-title: Sensors doi: 10.3390/s22020432 – volume: 20 start-page: 3369 issue: 4 year: 2018 ident: 10.1016/j.iot.2023.100851_b29 article-title: From intrusion detection to attacker attribution: A comprehensive survey of unsupervised methods publication-title: IEEE Commun. Surv. Tutor. doi: 10.1109/COMST.2018.2854724 – ident: 10.1016/j.iot.2023.100851_b49 doi: 10.1145/342009.335388 – volume: 15 start-page: 3540 year: 2020 ident: 10.1016/j.iot.2023.100851_b26 article-title: A method of few-shot network intrusion detection based on meta-learning framework publication-title: IEEE Trans. Inf. Forensics Secur. doi: 10.1109/TIFS.2020.2991876 – ident: 10.1016/j.iot.2023.100851_b44 doi: 10.1109/CVPR.2019.01181 – year: 2013 ident: 10.1016/j.iot.2023.100851_b47 – start-page: 1 year: 2021 ident: 10.1016/j.iot.2023.100851_b32 article-title: A review and state of art of Internet of Things (IoT) publication-title: Arch. Comput. Methods Eng. – start-page: 39 year: 2017 ident: 10.1016/j.iot.2023.100851_b64 article-title: Towards evaluating the robustness of neural networks – start-page: 1 year: 2021 ident: 10.1016/j.iot.2023.100851_b30 article-title: A survey on intrusion detection system: feature selection, model, performance measures, application perspective, challenges, and future research directions publication-title: Artif. Intell. Rev. – year: 2021 ident: 10.1016/j.iot.2023.100851_b43 – volume: 9 start-page: 916 issue: 6 year: 2020 ident: 10.1016/j.iot.2023.100851_b60 article-title: CNN-based network intrusion detection against denial-of-service attacks publication-title: Electronics doi: 10.3390/electronics9060916 – volume: 167 start-page: 636 year: 2020 ident: 10.1016/j.iot.2023.100851_b6 article-title: A review of the advancement in intrusion detection datasets publication-title: Procedia Comput. Sci. doi: 10.1016/j.procs.2020.03.330 – volume: 8 start-page: 193981 year: 2020 ident: 10.1016/j.iot.2023.100851_b13 article-title: Unknown attack detection based on zero-shot learning publication-title: IEEE Access doi: 10.1109/ACCESS.2020.3033494 – volume: 7 start-page: 9552 issue: 10 year: 2020 ident: 10.1016/j.iot.2023.100851_b10 article-title: Flowguard: an intelligent edge defense mechanism against IoT DDoS attacks publication-title: IEEE Internet Things J. doi: 10.1109/JIOT.2020.2993782 – start-page: 382 year: 2022 ident: 10.1016/j.iot.2023.100851_b62 article-title: Preventing adversarial attacks against deep learning-based intrusion detection system – volume: 2021 start-page: 1 year: 2021 ident: 10.1016/j.iot.2023.100851_b35 article-title: A generative adversarial network model based on intelligent data analytics for music emotion recognition under IoT publication-title: Mob. Inf. Syst. – year: 2023 ident: 10.1016/j.iot.2023.100851_b53 – year: 2018 ident: 10.1016/j.iot.2023.100851_b54 – volume: 19 start-page: 3188 issue: 14 year: 2019 ident: 10.1016/j.iot.2023.100851_b50 article-title: IoTDS: A one-class classification approach to detect botnets in internet of things devices publication-title: Sensors doi: 10.3390/s19143188 – start-page: 386 year: 2021 ident: 10.1016/j.iot.2023.100851_b24 article-title: Detection of distributed denial of service attacks using automatic feature selection with enhancement for imbalance dataset – volume: 17 start-page: 876 issue: 2 year: 2020 ident: 10.1016/j.iot.2023.100851_b61 article-title: LUCID: A practical, lightweight deep learning solution for DDoS attack detection publication-title: IEEE Trans. Netw. Serv. Manag. doi: 10.1109/TNSM.2020.2971776 – year: 2023 ident: 10.1016/j.iot.2023.100851_b14 article-title: Which algorithm can detect unknown attacks? Comparison of supervised, unsupervised and meta-learning algorithms for intrusion detection publication-title: Comput. Secur. doi: 10.1016/j.cose.2023.103107 – volume: 10 start-page: 2269 year: 2021 ident: 10.1016/j.iot.2023.100851_b1 article-title: Protocol-based deep intrusion detection for DoS and DDoS attacks using UNSW-NB15 and bot-IoT data-sets publication-title: IEEE Access doi: 10.1109/ACCESS.2021.3137201 – volume: 8 start-page: 194269 year: 2020 ident: 10.1016/j.iot.2023.100851_b19 article-title: Bandwidth control mechanism and extreme gradient boosting algorithm for protecting software-defined networks against DDoS attacks publication-title: IEEE Access doi: 10.1109/ACCESS.2020.3033942 – volume: 9 start-page: 101574 year: 2021 ident: 10.1016/j.iot.2023.100851_b31 article-title: Deep learning-based intrusion detection systems: a systematic review publication-title: IEEE Access doi: 10.1109/ACCESS.2021.3097247 – volume: 8 start-page: 10327 issue: 13 year: 2020 ident: 10.1016/j.iot.2023.100851_b17 article-title: Adversarial attacks against network intrusion detection in iot systems publication-title: IEEE Internet Things J. doi: 10.1109/JIOT.2020.3048038 – volume: 9 start-page: 146810 year: 2021 ident: 10.1016/j.iot.2023.100851_b18 article-title: Ae-mlp: A hybrid deep learning approach for DDoS detection and classification publication-title: IEEE Access doi: 10.1109/ACCESS.2021.3123791 – start-page: 1 year: 2021 ident: 10.1016/j.iot.2023.100851_b7 article-title: Balancing approaches towards ML for IDS: a survey for the CSE-CIC IDS dataset – volume: 7 start-page: 6882 issue: 8 year: 2020 ident: 10.1016/j.iot.2023.100851_b51 article-title: Passban IDS: An intelligent anomaly-based intrusion detection system for IoT edge devices publication-title: IEEE Internet Things J. doi: 10.1109/JIOT.2020.2970501 – volume: 224 year: 2021 ident: 10.1016/j.iot.2023.100851_b22 article-title: Multi-scale self-organizing map assisted deep autoencoding Gaussian mixture model for unsupervised intrusion detection publication-title: Knowl.-Based Syst. doi: 10.1016/j.knosys.2021.107086 – volume: 7 start-page: 177 issue: 2 year: 2021 ident: 10.1016/j.iot.2023.100851_b55 article-title: Feature selection for intrusion detection system in internet-of-things (IoT) publication-title: ICT Express doi: 10.1016/j.icte.2021.04.012 – volume: 81 start-page: 84 year: 2022 ident: 10.1016/j.iot.2023.100851_b28 article-title: Tabular data: Deep learning is not all you need publication-title: Inf. Fusion doi: 10.1016/j.inffus.2021.11.011 – start-page: 75 year: 2021 ident: 10.1016/j.iot.2023.100851_b9 article-title: Distributed denial of service (DDoS) attacks detection: A machine learning approach – volume: 8 start-page: 49730 year: 2020 ident: 10.1016/j.iot.2023.100851_b21 article-title: An intrusion detection method using few-shot learning publication-title: IEEE Access doi: 10.1109/ACCESS.2020.2980136 |
| SSID | ssj0002963237 |
| Score | 2.4184833 |
| Snippet | The fourth industrial revolution is marked by the rapid growth of Internet of Things (IoT) technology, leading to an increase in the number of IoT devices.... |
| SourceID | crossref elsevier |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 100851 |
| SubjectTerms | Adversarial attack Deep learning DoS/DDoS attack Intrusion detection system Machine learning Unknown attack |
| Title | Robust detection of unknown DoS/DDoS attacks in IoT networks using a hybrid learning model |
| URI | https://dx.doi.org/10.1016/j.iot.2023.100851 |
| Volume | 23 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier Science Direct Freedom Collection customDbUrl: eissn: 2542-6605 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002963237 issn: 2542-6605 databaseCode: ACRLP dateStart: 20180901 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals [SCFCJ] customDbUrl: eissn: 2542-6605 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002963237 issn: 2542-6605 databaseCode: AIKHN dateStart: 20180901 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 2542-6605 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002963237 issn: 2542-6605 databaseCode: AKRWK dateStart: 20180901 isFulltext: true providerName: Library Specific Holdings |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07a8MwEBZpsrRD6ZOmLzR0Khi_JFkeQ9KQNDRDHjR0MbIlpS5FDo0z9N9X8iOk0HboYlvGB-bjuNOdvrsD4C4OSIgY9y0iBbNQgogVC0dYkrMgkML0KzEnuk9jMpijxwVeNEC3roUxtMrK9pc2vbDW1Ru7QtNepak91aGN9i5FWlOrFQr3QEv7H0qboNUZjgbjbarF00rmFd0zjYhlZOrzzYLplWaGVOn5hjFAsfuzh9rxOv0jcFhtF2Gn_KNj0BDqBBzsNBE8BS-TLN6sc8hFXtCqFMwk3CiTLFOwl03tnr5Aluemmh6mCg6zGVQl-3sNDe99CRl8_TSlW7AaIrGExYScMzDvP8y6A6uamGAlXhjkViIocTXe3OEOlkxwpheSJ0xHwURi6jHqYsoT_eRjxDFhAUl8l5DY4cJMwDgHTZUpcQGgDlddN9HxK5YYoRDFXAQOJw6VMnBjitvAqVGKkqqduJlq8R7VvLG3SAMbGWCjEtg2uN-KrMpeGn99jGroo28KEWlb_7vY5f_ErsC-WZUsvWvQzD824kbvNvL4ttImcx9NnkdfNoDTBw |
| linkProvider | Elsevier |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELZKOwAD4inK0wMTUpSX7SRj1VKl9DHQVqpYLCe2SxBKKpoO_HvsPCqQgIElyuuk6NPlznf-7g6Au8gjAWLcNYgUzEAxIkYkLGFIzjxPCt2vRO_ojicknKPHBV40QLeuhdG0ysr2lza9sNbVHbNC01wliTlVoY3yLkVaU6kVCnZAC2HXU39nqzMYhpNtqsVRSuYU3TO1iKFl6v3NgumVZJpU6biaMeBj-2cP9cXr9A_BQbVchJ3yi45AQ6THYP9LE8ET8PyURZt1DrnIC1pVCjMJN6lOlqWwl03NnjpAlue6mh4mKRxkM5iW7O811Lz3JWTw5UOXbsFqiMQSFhNyTsG8_zDrhkY1McGIncDLjVj4xFZ4c4tbWDLBmbqQPGYqCiYS-w7zbezzWJ25GHFMmEdi1yYksrjQEzDOQDPNUnEOoApXbTtW8SuWGKEARVx4FieWL6VnRz5uA6tGicZVO3E91eKN1ryxV6qApRpYWgLbBvdbkVXZS-Ovl1ENPf2mEFTZ-t_FLv4ndgt2w9l4REeDyfAS7OknJWPvCjTz9424ViuPPLqpNOsTgYXURQ |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Robust+detection+of+unknown+DoS%2FDDoS+attacks+in+IoT+networks+using+a+hybrid+learning+model&rft.jtitle=Internet+of+things+%28Amsterdam.+Online%29&rft.au=Nguyen%2C+Xuan-Ha&rft.au=Le%2C+Kim-Hung&rft.date=2023-10-01&rft.issn=2542-6605&rft.eissn=2542-6605&rft.volume=23&rft.spage=100851&rft_id=info:doi/10.1016%2Fj.iot.2023.100851&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_iot_2023_100851 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2542-6605&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2542-6605&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2542-6605&client=summon |