Blast mitigation performance of a novel cladding–connector​ system

A novel cladding–connector system with excellent energy absorption capacity was proposed to protect vulnerable walls in frame structures subjected to blast load in the present study. The cladding–connector system was constructed by combining a sacrificial cladding consisting of an aluminum foam core...

Full description

Saved in:
Bibliographic Details
Published inThin-walled structures Vol. 184; p. 110489
Main Authors Zhang, Xuejian, Wang, Xiaojuan, Zhou, Hongyuan, Du, Xiuli, Zou, Hai-Lin, Song, Tianyi, Wang, Yonghui, Zhang, Hong
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.03.2023
Subjects
Online AccessGet full text
ISSN0263-8231
1879-3223
DOI10.1016/j.tws.2022.110489

Cover

Abstract A novel cladding–connector system with excellent energy absorption capacity was proposed to protect vulnerable walls in frame structures subjected to blast load in the present study. The cladding–connector system was constructed by combining a sacrificial cladding consisting of an aluminum foam core sandwiched by two steel plates and four connectors made of corrugated steel tubes. On one hand, the cladding absorbed a considerable amount of blast energy. On the other hand, the connectors controlled the load transfer to the protected structure to certain specific pre-defined value. With this approach, both relatively high energy absorption and relatively low load transfer can be achieved simultaneously. Specifically, based on the quasi-static compression test on the connectors and the field blast test on the sacrificial cladding, the numerical model of the proposed system was established with ANSYS/LS-DYNA and validated with the test results. Then the deformation mode, energy dissipation, and load transfer of the cladding–connector systems with flexible or rigid connectors under various charge weights were numerically studied and compared. Results showed that the proposed cladding–connector​ systems could dissipate a considerable amount of energy under blast, in which the major part was dissipated by the cladding and the rest by the connectors. Particularly, compared to the cladding–connector system with rigid connectors, the cladding–connector system with flexible connectors exhibited superior performance in terms of energy absorption and load transfer, especially under intense blast. With the merits of excellent energy absorption, significant blast intensity reduction, and load shift from the vulnerable walls to the load-bearing components, the proposed cladding–connector system with flexible connectors was more promising to effectively protect the existing frame structures against blast. •A cladding–connector system is proposed to protect walls of frame structures subjected to blast.•The proposed system shifts the blast load applied on the wall to the load-bearing frame.•The system simultaneously realizes favorable energy absorption and load transfer control.•The system absorbs a considerable amount of energy in a designable manner.•The system reduces the transferred load intensity in a designable manner.
AbstractList A novel cladding–connector system with excellent energy absorption capacity was proposed to protect vulnerable walls in frame structures subjected to blast load in the present study. The cladding–connector system was constructed by combining a sacrificial cladding consisting of an aluminum foam core sandwiched by two steel plates and four connectors made of corrugated steel tubes. On one hand, the cladding absorbed a considerable amount of blast energy. On the other hand, the connectors controlled the load transfer to the protected structure to certain specific pre-defined value. With this approach, both relatively high energy absorption and relatively low load transfer can be achieved simultaneously. Specifically, based on the quasi-static compression test on the connectors and the field blast test on the sacrificial cladding, the numerical model of the proposed system was established with ANSYS/LS-DYNA and validated with the test results. Then the deformation mode, energy dissipation, and load transfer of the cladding–connector systems with flexible or rigid connectors under various charge weights were numerically studied and compared. Results showed that the proposed cladding–connector​ systems could dissipate a considerable amount of energy under blast, in which the major part was dissipated by the cladding and the rest by the connectors. Particularly, compared to the cladding–connector system with rigid connectors, the cladding–connector system with flexible connectors exhibited superior performance in terms of energy absorption and load transfer, especially under intense blast. With the merits of excellent energy absorption, significant blast intensity reduction, and load shift from the vulnerable walls to the load-bearing components, the proposed cladding–connector system with flexible connectors was more promising to effectively protect the existing frame structures against blast. •A cladding–connector system is proposed to protect walls of frame structures subjected to blast.•The proposed system shifts the blast load applied on the wall to the load-bearing frame.•The system simultaneously realizes favorable energy absorption and load transfer control.•The system absorbs a considerable amount of energy in a designable manner.•The system reduces the transferred load intensity in a designable manner.
ArticleNumber 110489
Author Du, Xiuli
Wang, Yonghui
Zhang, Hong
Wang, Xiaojuan
Zou, Hai-Lin
Song, Tianyi
Zhang, Xuejian
Zhou, Hongyuan
Author_xml – sequence: 1
  givenname: Xuejian
  surname: Zhang
  fullname: Zhang, Xuejian
  organization: Key Laboratory of Urban Security and Disaster Engineering of Ministry of Education, Beijing University of Technology, Beijing 100124, China
– sequence: 2
  givenname: Xiaojuan
  surname: Wang
  fullname: Wang, Xiaojuan
  organization: Key Laboratory of Urban Security and Disaster Engineering of Ministry of Education, Beijing University of Technology, Beijing 100124, China
– sequence: 3
  givenname: Hongyuan
  surname: Zhou
  fullname: Zhou, Hongyuan
  email: hzhou@bjut.edu.cn
  organization: Key Laboratory of Urban Security and Disaster Engineering of Ministry of Education, Beijing University of Technology, Beijing 100124, China
– sequence: 4
  givenname: Xiuli
  surname: Du
  fullname: Du, Xiuli
  organization: Key Laboratory of Urban Security and Disaster Engineering of Ministry of Education, Beijing University of Technology, Beijing 100124, China
– sequence: 5
  givenname: Hai-Lin
  surname: Zou
  fullname: Zou, Hai-Lin
  organization: School of Mechanics, Civil Engineering and Architecture, Northwestern Polytechnical University, Xi’an 710072, China
– sequence: 6
  givenname: Tianyi
  surname: Song
  fullname: Song, Tianyi
  organization: Key Laboratory of Urban Security and Disaster Engineering of Ministry of Education, Beijing University of Technology, Beijing 100124, China
– sequence: 7
  givenname: Yonghui
  surname: Wang
  fullname: Wang, Yonghui
  organization: Key Laboratory of Structures Dynamic Behavior and Control of the Ministry of Education, Harbin Institute of Technology, Harbin, 150090, China
– sequence: 8
  givenname: Hong
  surname: Zhang
  fullname: Zhang, Hong
  organization: State Key Laboratory of Explosion Science and Technology, Beijing Institute of Technology, Beijing 100081, China
BookMark eNp9kLFOwzAURS1UJNrCB7D5BxL87CROxAQVLUiVWGC2jO1UrhK7sq2ibt0Z-cN-CSllYuh0pSudp3fPBI2cdwahWyA5EKju1nn6jDkllOYApKibCzSGmjcZo5SN0JjQimU1ZXCFJjGuCQEOTTFG88dOxoR7m-xKJusd3pjQ-tBLpwz2LZbY-a3psOqk1tatDvtv5Z0zKvlw2H_huIvJ9NfospVdNDd_OUXv86e32XO2fF28zB6WmaINT5nipKxMrQpoDQcpdTP0Ba-UVpJIRnkBFD4q3hA6bGCl5rQpVSlLxjUpoWJTxE93VfAxBtMKZdPv3ylI2wkg4qhDrMWgQxx1iJOOgYR_5CbYXobdWeb-xJhh0taaIKKyZhCjbRgECO3tGfoHR2x7_Q
CitedBy_id crossref_primary_10_1016_j_tws_2023_111257
crossref_primary_10_1016_j_engstruct_2023_116932
crossref_primary_10_1016_j_tws_2023_110953
crossref_primary_10_1016_j_tws_2024_112751
crossref_primary_10_1016_j_tws_2023_110885
crossref_primary_10_1016_j_compstruct_2025_118995
Cites_doi 10.1016/j.tws.2021.107445
10.1016/j.ijimpeng.2015.12.002
10.1177/1369433216656430
10.1016/j.tws.2019.04.029
10.1016/j.ijimpeng.2022.104361
10.1016/j.matdes.2018.10.047
10.1061/(ASCE)CF.1943-5509.0000957
10.1016/j.engstruct.2021.113389
10.1016/j.compstruct.2019.111081
10.1016/j.tws.2020.107380
10.1016/j.marstruc.2015.09.001
10.1016/j.matdes.2015.05.045
10.1016/j.istruc.2019.06.012
10.1016/j.ijmecsci.2014.03.027
10.1016/j.engfailanal.2017.07.017
10.1016/j.ijimpeng.2018.08.016
10.1061/(ASCE)CF.1943-5509.0001272
10.1061/(ASCE)0733-9445(2005)131:8(1233)
10.1016/j.dt.2019.06.010
10.1016/j.engstruct.2020.110404
10.1177/1099636219855322
10.1177/1099636217731255
10.1016/S0020-7403(03)00108-5
10.1016/j.ijmecsci.2017.05.024
10.1016/j.ijimpeng.2012.11.006
10.1016/j.engstruct.2022.113958
10.1016/j.conbuildmat.2015.07.076
10.1016/j.ijimpeng.2005.07.012
10.1016/j.compstruct.2017.08.020
10.1016/j.compstruct.2019.111322
10.1016/j.tws.2015.07.022
10.1260/136943308786412005
10.1016/j.tws.2022.109090
10.1016/j.ijmecsci.2018.06.035
10.1016/j.ijimpeng.2022.104258
10.1016/j.tws.2020.106898
10.1016/j.compstruct.2021.113727
10.1142/S0219455417500663
10.1016/j.compstruct.2016.06.059
10.1016/j.ijmecsci.2020.106107
10.1016/j.tws.2022.109027
10.1016/j.tws.2018.07.056
10.1061/(ASCE)ST.1943-541X.0001190
10.1016/j.engstruct.2011.06.003
10.1016/S0734-743X(01)00155-5
ContentType Journal Article
Copyright 2022 Elsevier Ltd
Copyright_xml – notice: 2022 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.tws.2022.110489
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1879-3223
ExternalDocumentID 10_1016_j_tws_2022_110489
S0263823122010412
GroupedDBID --K
--M
.~1
0R~
123
1B1
1~.
1~5
29Q
4.4
457
4G.
5VS
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABFNM
ABJNI
ABMAC
ABTAH
ABXDB
ACDAQ
ACGFS
ACNNM
ACRLP
ADBBV
ADEZE
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AIEXJ
AIKHN
AITUG
AJOXV
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SES
SET
SEW
SPC
SPCBC
SST
SSZ
T5K
WH7
WUQ
XPP
ZMT
ZY4
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKYEP
ANKPU
APXCP
CITATION
EFKBS
EFLBG
~HD
ID FETCH-LOGICAL-c297t-c7056e8c41fe71aad9c29476cdca0a3274121b6790204835d7295c5a537d05163
IEDL.DBID .~1
ISSN 0263-8231
IngestDate Thu Oct 09 00:29:43 EDT 2025
Thu Apr 24 23:01:23 EDT 2025
Tue Jul 16 04:31:20 EDT 2024
IsPeerReviewed true
IsScholarly true
Keywords Cladding–connector system
Blast load
Protective structures
Energy absorption
Load transfer
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c297t-c7056e8c41fe71aad9c29476cdca0a3274121b6790204835d7295c5a537d05163
ParticipantIDs crossref_citationtrail_10_1016_j_tws_2022_110489
crossref_primary_10_1016_j_tws_2022_110489
elsevier_sciencedirect_doi_10_1016_j_tws_2022_110489
PublicationCentury 2000
PublicationDate March 2023
2023-03-00
PublicationDateYYYYMMDD 2023-03-01
PublicationDate_xml – month: 03
  year: 2023
  text: March 2023
PublicationDecade 2020
PublicationTitle Thin-walled structures
PublicationYear 2023
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Li, Chen, Hao (b25) 2019; 20
Xue, Hutchinson (b32) 2003; 45
Aleyaasin, Harrigan, Reid (b8) 2015; 91
Zong, Hao, Shi (b6) 2017; 17
Yang, Lei, Lu (b31) 2021; 160
Wang, Zhang, Lu, Xue, Zhai (b40) 2020; 211
Zhang, Kim (b23) 2017; 21
Ma, Ye (b33) 2007; 34
Li, Wu, Hao (b1) 2015; 82
Li, Zhang, Shi, Wu, Li (b5) 2021; 263
Chen, Wang, Zhang, Zheng, Zhou, Jin, Fan (b29) 2020; 16
(b44) 2010
Liu, Li, Fang, Liu, Su, Wu (b3) 2022; 255
Xu, Chen, Fang, Zheng, Li, Cao (b7) 2021; 249
Chehab, Eamon, Griffin (b41) 2017; 31
Kalubadanage, Remennikov, Ngo, Qi (b48) 2020; 23
Zhang, Qin, Xiang, Wang (b18) 2016; 153
Zarei, Rahimi (b28) 2022; 174
Zhou, Jia, Wang, Xiong, Wang (b30) 2020; 154
Li, Fang, Yang, Chen, Hao, Kong, Shi (b26) 2022; 166
Qi, Remennikov, Pei, Yang, Yu, Ngo (b12) 2017; 180
Li, Qin, Zhang (b27) 2021; 191
Peng, Wu, Li, Liu, Liang (b2) 2019; 228
Zhang, Zhou, Wang, Qin, Ye, Wang (b4) 2018; 122
Jing, Liu, Su, Guo (b20) 2021; 161
Yang, Fallah, Saunders, Louca (b15) 2011; 33
Getter, Kantrales, Consolazio, Eudy, Fallaha (b46) 2015; 44
Cai, Zhang, Dai, Cheng, Liu (b22) 2019; 23
Hao, Hao, Li, Chen (b9) 2016; 19
Sun, Wang, Wang, Xiao, Li (b19) 2018; 160
Hanssen, Enstock, Langseth (b36) 2002; 27
Wang, Liew (b11) 2015; 96
Zhu, Zhao, Lu (b47) 2008; 11
Ousji, Belkassem, Louar, Reymen, Martino, Lecompte, Pyl, Vantomme (b14) 2017; 128–129
Zhou, Zhang, Wang, Du, Yu, Wang, Jiang (b13) 2022
George, Kimiaei, Elchalakani, Fawzia (b45) 2022; 174
Wu, Sheikh (b34) 2013; 55
Schenker, Anteby, Nizri, Ostraich, Kivity, Sadot, Haham, Michaelis, Gal (b35) 2005; 131
Shi, Xiong, Li, Xu (b38) 2016; 90
Li, Zhang, Shi, Xu (b42) 2019; 33
Xia, Wu, Li (b37) 2015; 141
Zhao, Yu, Yuan, Zhu (b10) 2015; 94
Wang, Zhai, Yan, Ying, Wang (b39) 2018; 131
Ousji, Belkassem, Louar, Reymen, Pyl, Vantomme (b16) 2016; 2016
Zhou, Zhang, Xiao, Liu, Cheng (b17) 2019; 226
Li, Chen, Hao (b24) 2018; 145
Sun, Zhang, Li, Fang, Wang, Li (b21) 2019; 142
Keys, Clubley (b43) 2017; 82
Yang (10.1016/j.tws.2022.110489_b15) 2011; 33
Schenker (10.1016/j.tws.2022.110489_b35) 2005; 131
Ma (10.1016/j.tws.2022.110489_b33) 2007; 34
Ousji (10.1016/j.tws.2022.110489_b14) 2017; 128–129
Xu (10.1016/j.tws.2022.110489_b7) 2021; 249
Wu (10.1016/j.tws.2022.110489_b34) 2013; 55
Li (10.1016/j.tws.2022.110489_b25) 2019; 20
Li (10.1016/j.tws.2022.110489_b24) 2018; 145
Wang (10.1016/j.tws.2022.110489_b40) 2020; 211
Liu (10.1016/j.tws.2022.110489_b3) 2022; 255
Zhu (10.1016/j.tws.2022.110489_b47) 2008; 11
Peng (10.1016/j.tws.2022.110489_b2) 2019; 228
Keys (10.1016/j.tws.2022.110489_b43) 2017; 82
Zhang (10.1016/j.tws.2022.110489_b4) 2018; 122
Zhou (10.1016/j.tws.2022.110489_b30) 2020; 154
Jing (10.1016/j.tws.2022.110489_b20) 2021; 161
Hanssen (10.1016/j.tws.2022.110489_b36) 2002; 27
Qi (10.1016/j.tws.2022.110489_b12) 2017; 180
Li (10.1016/j.tws.2022.110489_b1) 2015; 82
Aleyaasin (10.1016/j.tws.2022.110489_b8) 2015; 91
Hao (10.1016/j.tws.2022.110489_b9) 2016; 19
Getter (10.1016/j.tws.2022.110489_b46) 2015; 44
Zhang (10.1016/j.tws.2022.110489_b18) 2016; 153
Ousji (10.1016/j.tws.2022.110489_b16) 2016; 2016
Sun (10.1016/j.tws.2022.110489_b21) 2019; 142
Xue (10.1016/j.tws.2022.110489_b32) 2003; 45
Shi (10.1016/j.tws.2022.110489_b38) 2016; 90
Wang (10.1016/j.tws.2022.110489_b39) 2018; 131
Zhou (10.1016/j.tws.2022.110489_b17) 2019; 226
Zarei (10.1016/j.tws.2022.110489_b28) 2022; 174
Xia (10.1016/j.tws.2022.110489_b37) 2015; 141
Chehab (10.1016/j.tws.2022.110489_b41) 2017; 31
Kalubadanage (10.1016/j.tws.2022.110489_b48) 2020; 23
Li (10.1016/j.tws.2022.110489_b27) 2021; 191
Cai (10.1016/j.tws.2022.110489_b22) 2019; 23
George (10.1016/j.tws.2022.110489_b45) 2022; 174
Li (10.1016/j.tws.2022.110489_b5) 2021; 263
Sun (10.1016/j.tws.2022.110489_b19) 2018; 160
Chen (10.1016/j.tws.2022.110489_b29) 2020; 16
Yang (10.1016/j.tws.2022.110489_b31) 2021; 160
Zhao (10.1016/j.tws.2022.110489_b10) 2015; 94
(10.1016/j.tws.2022.110489_b44) 2010
Zong (10.1016/j.tws.2022.110489_b6) 2017; 17
Wang (10.1016/j.tws.2022.110489_b11) 2015; 96
Zhang (10.1016/j.tws.2022.110489_b23) 2017; 21
Zhou (10.1016/j.tws.2022.110489_b13) 2022
Li (10.1016/j.tws.2022.110489_b42) 2019; 33
Li (10.1016/j.tws.2022.110489_b26) 2022; 166
References_xml – volume: 90
  start-page: 122
  year: 2016
  end-page: 131
  ident: b38
  article-title: Experimental studies on the local damage and fragments of unreinforced masonry walls under close-in explosions
  publication-title: Int. J. Impact Eng.
– volume: 263
  year: 2021
  ident: b5
  article-title: Finite element modeling of FRP retrofitted RC column against blast loading
  publication-title: Compos. Struct.
– volume: 145
  start-page: 83
  year: 2018
  end-page: 95
  ident: b24
  article-title: Blast mitigation performance of cladding using square dome-shape kirigami folded structure as core
  publication-title: Int. J. Mech. Sci.
– volume: 226
  year: 2019
  ident: b17
  article-title: Experimental investigation on the performance of PVC foam core sandwich panels under air blast loading
  publication-title: Compos. Struct.
– volume: 17
  year: 2017
  ident: b6
  article-title: Development of a new fence type blast wall for blast protection: numerical analysis
  publication-title: Int. J. Struct. Stab. Dyn.
– volume: 82
  start-page: 64
  year: 2015
  end-page: 76
  ident: b1
  article-title: An experimental and numerical study of reinforced ultra-high performance concrete slabs under blast loads
  publication-title: Mater. Des.
– volume: 11
  start-page: 525
  year: 2008
  end-page: 536
  ident: b47
  article-title: Structural response and energy absorption of sandwich panels with an aluminium foam core under blast loading
  publication-title: Adv. Struct. Eng.
– volume: 96
  start-page: 1
  year: 2015
  end-page: 10
  ident: b11
  article-title: Blast performance of water tank with energy absorbing support
  publication-title: Thin-Walled Struct.
– volume: 174
  year: 2022
  ident: b28
  article-title: Buckling resistance of joined composite sandwich conical-cylindrical shells with lattice core under lateral pressure
  publication-title: Thin-Walled Struct.
– volume: 255
  year: 2022
  ident: b3
  article-title: Investigation of ultra-high performance concrete slabs under contact explosions with a calibrated K & C model
  publication-title: Eng. Struct.
– volume: 141
  year: 2015
  ident: b37
  article-title: Optimized design of foam cladding for protection of reinforced concrete members under blast loading
  publication-title: J. Struct. Eng.
– volume: 44
  start-page: 171
  year: 2015
  end-page: 202
  ident: b46
  article-title: Strain rate sensitive steel constitutive models for finite element analysis of vessel-structure impacts
  publication-title: Mar. Struct.
– volume: 154
  year: 2020
  ident: b30
  article-title: Experimental and numerical investigation of low velocity impact response of foam concrete filled auxetic honeycombs
  publication-title: Thin-Walled Struct.
– volume: 131
  start-page: 566
  year: 2018
  end-page: 576
  ident: b39
  article-title: Experimental, numerical and analytical studies on the aluminum foam filled energy absorption connectors under impact loading
  publication-title: Thin-Walled Struct.
– volume: 82
  start-page: 82
  year: 2017
  end-page: 91
  ident: b43
  article-title: Establishing a predictive method for blast induced masonry debris distribution using experimental and numerical methods
  publication-title: Eng. Fail. Anal.
– volume: 161
  year: 2021
  ident: b20
  article-title: Experimental and numerical study of square sandwich panels with layered-gradient foam cores to air-blast loading
  publication-title: Thin-Walled Struct.
– volume: 166
  year: 2022
  ident: b26
  article-title: Performance of sandwich cladding with modular truncated square pyramid foldcore under projectile impact
  publication-title: Int. J. Impact Eng.
– volume: 174
  year: 2022
  ident: b45
  article-title: Underwater strengthening and repairing of tubular offshore structural members using Carbon Fibre Reinforced Polymers with different consolidation methods
  publication-title: Thin-Walled Struct.
– year: 2010
  ident: b44
  article-title: GB/T 228.1-2010: Metallic Materials-Tensile Testing-Part 1: Method of Test at Room Temperature
– volume: 249
  year: 2021
  ident: b7
  article-title: Protective effects of gabion wall against blast waves from large TNT-equivalent explosions
  publication-title: Eng. Struct.
– volume: 91
  start-page: 64
  year: 2015
  end-page: 70
  ident: b8
  article-title: Air-blast response of cellular material with a face plate: An analytical-numerical approach
  publication-title: Int. J. Mech. Sci.
– volume: 31
  year: 2017
  ident: b41
  article-title: Collapse resistance of RC moment-resisting frame and shear wall structural systems exposed to blast
  publication-title: J. Perform. Constr. Facil.
– volume: 23
  year: 2020
  ident: b48
  article-title: Close-in blast resistance of large-scale auxetic re-entrant honeycomb sandwich panels
  publication-title: J. Sandw. Struct. Mater.
– volume: 94
  start-page: 710
  year: 2015
  end-page: 718
  ident: b10
  article-title: Blast mitigation effect of the foamed cement-base sacrificial cladding for tunnel structures
  publication-title: Constr. Build. Mater.
– volume: 160
  start-page: 1117
  year: 2018
  end-page: 1136
  ident: b19
  article-title: Low-velocity impact behaviour of sandwich panels with homogeneous and stepwise graded foam cores
  publication-title: Mater. Des.
– volume: 211
  year: 2020
  ident: b40
  article-title: Quasi-static crushing behaviour of the energy absorbing connector with polyurethane foam and multiple pleated plates
  publication-title: Eng. Struct.
– volume: 122
  start-page: 265
  year: 2018
  end-page: 275
  ident: b4
  article-title: Dynamic response of double-layer rectangular sandwich plates with metal foam cores subjected to blast loading
  publication-title: Int. J. Impact Eng.
– volume: 33
  start-page: 2781
  year: 2011
  end-page: 2793
  ident: b15
  article-title: On the dynamic response of sandwich panels with different core set-ups subject to global and local blast loads
  publication-title: Eng. Struct.
– volume: 191
  year: 2021
  ident: b27
  article-title: Internal blast resistance of sandwich cylinder with lattice cores
  publication-title: Int. J. Mech. Sci.
– volume: 128–129
  start-page: 459
  year: 2017
  end-page: 474
  ident: b14
  article-title: Air-blast response of sacrificial cladding using low density foams: Experimental and analytical approach
  publication-title: Int. J. Mech. Sci.
– volume: 34
  start-page: 329
  year: 2007
  end-page: 347
  ident: b33
  article-title: Energy absorption of double-layer foam cladding for blast alleviation
  publication-title: Int. J. Impact Eng.
– volume: 142
  year: 2019
  ident: b21
  article-title: Dynamic response of sandwich panel with hierarchical honeycomb cores subject to blast loading
  publication-title: Thin-Walled Struct.
– volume: 131
  start-page: 1233
  year: 2005
  end-page: 1243
  ident: b35
  article-title: Foam-protected reinforced concrete structures under impact-experimental and numerical studies
  publication-title: J. Struct. Eng.
– volume: 55
  start-page: 24
  year: 2013
  end-page: 33
  ident: b34
  article-title: A finite element modelling to investigate the mitigation of blast effects on reinforced concrete panel using foam cladding
  publication-title: Int. J. Impact Eng.
– volume: 21
  start-page: 2413
  year: 2017
  end-page: 2439
  ident: b23
  article-title: Core crushing and dynamic response of sandwich steel beams with sinusoidal and trapezoidal corrugated cores: A parametric study
  publication-title: J. Sandw. Struct. Mater.
– volume: 19
  start-page: 1193
  year: 2016
  end-page: 1223
  ident: b9
  article-title: Review of the current practices in blast-resistant analysis and design of concrete structures
  publication-title: Adv. Struct. Eng.
– volume: 45
  start-page: 687
  year: 2003
  end-page: 705
  ident: b32
  article-title: Preliminary assessment of sandwich plates subject to blast loads
  publication-title: Int. J. Mech. Sci.
– volume: 20
  start-page: 581
  year: 2019
  end-page: 593
  ident: b25
  article-title: Numerical study of blast mitigation performance of folded structure with foam infill
  publication-title: Structures
– volume: 228
  year: 2019
  ident: b2
  article-title: Mesoscale analysis on ultra-high performance steel fibre reinforced concrete slabs under contact explosions
  publication-title: Compos. Struct.
– volume: 153
  start-page: 614
  year: 2016
  end-page: 623
  ident: b18
  article-title: Dynamic response of slender multilayer sandwich beams with metal foam cores subjected to low-velocity impact
  publication-title: Compos. Struct.
– year: 2022
  ident: b13
  article-title: Protection effectiveness of sacrificial cladding for near-field blast mitigation
  publication-title: Int. J. Impact Eng.
– volume: 27
  start-page: 593
  year: 2002
  end-page: 618
  ident: b36
  article-title: Close-range blast loading of aluminium foam panels
  publication-title: Int. J. Impact Eng.
– volume: 16
  start-page: 136
  year: 2020
  end-page: 149
  ident: b29
  article-title: Polyurea coating for foamed concrete panel: An efficient way to resist explosion
  publication-title: Def. Technol.
– volume: 23
  start-page: 1192
  year: 2019
  end-page: 1220
  ident: b22
  article-title: Multi-objective optimization for designing metallic corrugated core sandwich panels under air blast loading
  publication-title: J. Sandw. Struct. Mater.
– volume: 160
  start-page: 140
  year: 2021
  end-page: 154
  ident: b31
  article-title: Crashworthiness of circular fiber reinforced plastic tubes filled with composite skeletons/aluminum foam under drop-weight impact loading
  publication-title: Thin-Walled Struct.
– volume: 33
  year: 2019
  ident: b42
  article-title: Experimental studies on mitigating local damage and fragments of unreinforced masonry wall under close-in explosions
  publication-title: J. Perform. Constr. Facil.
– volume: 2016
  year: 2016
  ident: b16
  article-title: Experimental study of the effectiveness of sacrificial cladding using polymeric foams as crushable core with a simply supported steel beam
  publication-title: Adv. Civ. Eng.
– volume: 180
  start-page: 161
  year: 2017
  end-page: 178
  ident: b12
  article-title: Impact and close-in blast response of auxetic honeycomb-cored sandwich panels: Experimental tests and numerical simulations
  publication-title: Compos. Struct.
– volume: 161
  year: 2021
  ident: 10.1016/j.tws.2022.110489_b20
  article-title: Experimental and numerical study of square sandwich panels with layered-gradient foam cores to air-blast loading
  publication-title: Thin-Walled Struct.
  doi: 10.1016/j.tws.2021.107445
– volume: 90
  start-page: 122
  year: 2016
  ident: 10.1016/j.tws.2022.110489_b38
  article-title: Experimental studies on the local damage and fragments of unreinforced masonry walls under close-in explosions
  publication-title: Int. J. Impact Eng.
  doi: 10.1016/j.ijimpeng.2015.12.002
– volume: 19
  start-page: 1193
  year: 2016
  ident: 10.1016/j.tws.2022.110489_b9
  article-title: Review of the current practices in blast-resistant analysis and design of concrete structures
  publication-title: Adv. Struct. Eng.
  doi: 10.1177/1369433216656430
– volume: 142
  year: 2019
  ident: 10.1016/j.tws.2022.110489_b21
  article-title: Dynamic response of sandwich panel with hierarchical honeycomb cores subject to blast loading
  publication-title: Thin-Walled Struct.
  doi: 10.1016/j.tws.2019.04.029
– year: 2022
  ident: 10.1016/j.tws.2022.110489_b13
  article-title: Protection effectiveness of sacrificial cladding for near-field blast mitigation
  publication-title: Int. J. Impact Eng.
  doi: 10.1016/j.ijimpeng.2022.104361
– volume: 160
  start-page: 1117
  year: 2018
  ident: 10.1016/j.tws.2022.110489_b19
  article-title: Low-velocity impact behaviour of sandwich panels with homogeneous and stepwise graded foam cores
  publication-title: Mater. Des.
  doi: 10.1016/j.matdes.2018.10.047
– volume: 31
  year: 2017
  ident: 10.1016/j.tws.2022.110489_b41
  article-title: Collapse resistance of RC moment-resisting frame and shear wall structural systems exposed to blast
  publication-title: J. Perform. Constr. Facil.
  doi: 10.1061/(ASCE)CF.1943-5509.0000957
– volume: 249
  year: 2021
  ident: 10.1016/j.tws.2022.110489_b7
  article-title: Protective effects of gabion wall against blast waves from large TNT-equivalent explosions
  publication-title: Eng. Struct.
  doi: 10.1016/j.engstruct.2021.113389
– volume: 226
  year: 2019
  ident: 10.1016/j.tws.2022.110489_b17
  article-title: Experimental investigation on the performance of PVC foam core sandwich panels under air blast loading
  publication-title: Compos. Struct.
  doi: 10.1016/j.compstruct.2019.111081
– volume: 160
  start-page: 140
  year: 2021
  ident: 10.1016/j.tws.2022.110489_b31
  article-title: Crashworthiness of circular fiber reinforced plastic tubes filled with composite skeletons/aluminum foam under drop-weight impact loading
  publication-title: Thin-Walled Struct.
  doi: 10.1016/j.tws.2020.107380
– volume: 44
  start-page: 171
  year: 2015
  ident: 10.1016/j.tws.2022.110489_b46
  article-title: Strain rate sensitive steel constitutive models for finite element analysis of vessel-structure impacts
  publication-title: Mar. Struct.
  doi: 10.1016/j.marstruc.2015.09.001
– volume: 82
  start-page: 64
  year: 2015
  ident: 10.1016/j.tws.2022.110489_b1
  article-title: An experimental and numerical study of reinforced ultra-high performance concrete slabs under blast loads
  publication-title: Mater. Des.
  doi: 10.1016/j.matdes.2015.05.045
– volume: 20
  start-page: 581
  year: 2019
  ident: 10.1016/j.tws.2022.110489_b25
  article-title: Numerical study of blast mitigation performance of folded structure with foam infill
  publication-title: Structures
  doi: 10.1016/j.istruc.2019.06.012
– volume: 23
  year: 2020
  ident: 10.1016/j.tws.2022.110489_b48
  article-title: Close-in blast resistance of large-scale auxetic re-entrant honeycomb sandwich panels
  publication-title: J. Sandw. Struct. Mater.
– volume: 91
  start-page: 64
  year: 2015
  ident: 10.1016/j.tws.2022.110489_b8
  article-title: Air-blast response of cellular material with a face plate: An analytical-numerical approach
  publication-title: Int. J. Mech. Sci.
  doi: 10.1016/j.ijmecsci.2014.03.027
– volume: 82
  start-page: 82
  year: 2017
  ident: 10.1016/j.tws.2022.110489_b43
  article-title: Establishing a predictive method for blast induced masonry debris distribution using experimental and numerical methods
  publication-title: Eng. Fail. Anal.
  doi: 10.1016/j.engfailanal.2017.07.017
– volume: 122
  start-page: 265
  year: 2018
  ident: 10.1016/j.tws.2022.110489_b4
  article-title: Dynamic response of double-layer rectangular sandwich plates with metal foam cores subjected to blast loading
  publication-title: Int. J. Impact Eng.
  doi: 10.1016/j.ijimpeng.2018.08.016
– volume: 33
  year: 2019
  ident: 10.1016/j.tws.2022.110489_b42
  article-title: Experimental studies on mitigating local damage and fragments of unreinforced masonry wall under close-in explosions
  publication-title: J. Perform. Constr. Facil.
  doi: 10.1061/(ASCE)CF.1943-5509.0001272
– volume: 131
  start-page: 1233
  year: 2005
  ident: 10.1016/j.tws.2022.110489_b35
  article-title: Foam-protected reinforced concrete structures under impact-experimental and numerical studies
  publication-title: J. Struct. Eng.
  doi: 10.1061/(ASCE)0733-9445(2005)131:8(1233)
– volume: 16
  start-page: 136
  year: 2020
  ident: 10.1016/j.tws.2022.110489_b29
  article-title: Polyurea coating for foamed concrete panel: An efficient way to resist explosion
  publication-title: Def. Technol.
  doi: 10.1016/j.dt.2019.06.010
– volume: 211
  year: 2020
  ident: 10.1016/j.tws.2022.110489_b40
  article-title: Quasi-static crushing behaviour of the energy absorbing connector with polyurethane foam and multiple pleated plates
  publication-title: Eng. Struct.
  doi: 10.1016/j.engstruct.2020.110404
– volume: 23
  start-page: 1192
  year: 2019
  ident: 10.1016/j.tws.2022.110489_b22
  article-title: Multi-objective optimization for designing metallic corrugated core sandwich panels under air blast loading
  publication-title: J. Sandw. Struct. Mater.
  doi: 10.1177/1099636219855322
– volume: 21
  start-page: 2413
  year: 2017
  ident: 10.1016/j.tws.2022.110489_b23
  article-title: Core crushing and dynamic response of sandwich steel beams with sinusoidal and trapezoidal corrugated cores: A parametric study
  publication-title: J. Sandw. Struct. Mater.
  doi: 10.1177/1099636217731255
– volume: 45
  start-page: 687
  year: 2003
  ident: 10.1016/j.tws.2022.110489_b32
  article-title: Preliminary assessment of sandwich plates subject to blast loads
  publication-title: Int. J. Mech. Sci.
  doi: 10.1016/S0020-7403(03)00108-5
– volume: 128–129
  start-page: 459
  year: 2017
  ident: 10.1016/j.tws.2022.110489_b14
  article-title: Air-blast response of sacrificial cladding using low density foams: Experimental and analytical approach
  publication-title: Int. J. Mech. Sci.
  doi: 10.1016/j.ijmecsci.2017.05.024
– volume: 55
  start-page: 24
  year: 2013
  ident: 10.1016/j.tws.2022.110489_b34
  article-title: A finite element modelling to investigate the mitigation of blast effects on reinforced concrete panel using foam cladding
  publication-title: Int. J. Impact Eng.
  doi: 10.1016/j.ijimpeng.2012.11.006
– volume: 255
  year: 2022
  ident: 10.1016/j.tws.2022.110489_b3
  article-title: Investigation of ultra-high performance concrete slabs under contact explosions with a calibrated K & C model
  publication-title: Eng. Struct.
  doi: 10.1016/j.engstruct.2022.113958
– volume: 94
  start-page: 710
  year: 2015
  ident: 10.1016/j.tws.2022.110489_b10
  article-title: Blast mitigation effect of the foamed cement-base sacrificial cladding for tunnel structures
  publication-title: Constr. Build. Mater.
  doi: 10.1016/j.conbuildmat.2015.07.076
– volume: 34
  start-page: 329
  year: 2007
  ident: 10.1016/j.tws.2022.110489_b33
  article-title: Energy absorption of double-layer foam cladding for blast alleviation
  publication-title: Int. J. Impact Eng.
  doi: 10.1016/j.ijimpeng.2005.07.012
– volume: 180
  start-page: 161
  year: 2017
  ident: 10.1016/j.tws.2022.110489_b12
  article-title: Impact and close-in blast response of auxetic honeycomb-cored sandwich panels: Experimental tests and numerical simulations
  publication-title: Compos. Struct.
  doi: 10.1016/j.compstruct.2017.08.020
– volume: 228
  year: 2019
  ident: 10.1016/j.tws.2022.110489_b2
  article-title: Mesoscale analysis on ultra-high performance steel fibre reinforced concrete slabs under contact explosions
  publication-title: Compos. Struct.
  doi: 10.1016/j.compstruct.2019.111322
– volume: 96
  start-page: 1
  year: 2015
  ident: 10.1016/j.tws.2022.110489_b11
  article-title: Blast performance of water tank with energy absorbing support
  publication-title: Thin-Walled Struct.
  doi: 10.1016/j.tws.2015.07.022
– volume: 11
  start-page: 525
  year: 2008
  ident: 10.1016/j.tws.2022.110489_b47
  article-title: Structural response and energy absorption of sandwich panels with an aluminium foam core under blast loading
  publication-title: Adv. Struct. Eng.
  doi: 10.1260/136943308786412005
– volume: 174
  year: 2022
  ident: 10.1016/j.tws.2022.110489_b45
  article-title: Underwater strengthening and repairing of tubular offshore structural members using Carbon Fibre Reinforced Polymers with different consolidation methods
  publication-title: Thin-Walled Struct.
  doi: 10.1016/j.tws.2022.109090
– volume: 2016
  year: 2016
  ident: 10.1016/j.tws.2022.110489_b16
  article-title: Experimental study of the effectiveness of sacrificial cladding using polymeric foams as crushable core with a simply supported steel beam
  publication-title: Adv. Civ. Eng.
– volume: 145
  start-page: 83
  year: 2018
  ident: 10.1016/j.tws.2022.110489_b24
  article-title: Blast mitigation performance of cladding using square dome-shape kirigami folded structure as core
  publication-title: Int. J. Mech. Sci.
  doi: 10.1016/j.ijmecsci.2018.06.035
– volume: 166
  year: 2022
  ident: 10.1016/j.tws.2022.110489_b26
  article-title: Performance of sandwich cladding with modular truncated square pyramid foldcore under projectile impact
  publication-title: Int. J. Impact Eng.
  doi: 10.1016/j.ijimpeng.2022.104258
– volume: 154
  year: 2020
  ident: 10.1016/j.tws.2022.110489_b30
  article-title: Experimental and numerical investigation of low velocity impact response of foam concrete filled auxetic honeycombs
  publication-title: Thin-Walled Struct.
  doi: 10.1016/j.tws.2020.106898
– volume: 263
  year: 2021
  ident: 10.1016/j.tws.2022.110489_b5
  article-title: Finite element modeling of FRP retrofitted RC column against blast loading
  publication-title: Compos. Struct.
  doi: 10.1016/j.compstruct.2021.113727
– volume: 17
  year: 2017
  ident: 10.1016/j.tws.2022.110489_b6
  article-title: Development of a new fence type blast wall for blast protection: numerical analysis
  publication-title: Int. J. Struct. Stab. Dyn.
  doi: 10.1142/S0219455417500663
– volume: 153
  start-page: 614
  year: 2016
  ident: 10.1016/j.tws.2022.110489_b18
  article-title: Dynamic response of slender multilayer sandwich beams with metal foam cores subjected to low-velocity impact
  publication-title: Compos. Struct.
  doi: 10.1016/j.compstruct.2016.06.059
– volume: 191
  year: 2021
  ident: 10.1016/j.tws.2022.110489_b27
  article-title: Internal blast resistance of sandwich cylinder with lattice cores
  publication-title: Int. J. Mech. Sci.
  doi: 10.1016/j.ijmecsci.2020.106107
– volume: 174
  year: 2022
  ident: 10.1016/j.tws.2022.110489_b28
  article-title: Buckling resistance of joined composite sandwich conical-cylindrical shells with lattice core under lateral pressure
  publication-title: Thin-Walled Struct.
  doi: 10.1016/j.tws.2022.109027
– volume: 131
  start-page: 566
  year: 2018
  ident: 10.1016/j.tws.2022.110489_b39
  article-title: Experimental, numerical and analytical studies on the aluminum foam filled energy absorption connectors under impact loading
  publication-title: Thin-Walled Struct.
  doi: 10.1016/j.tws.2018.07.056
– volume: 141
  year: 2015
  ident: 10.1016/j.tws.2022.110489_b37
  article-title: Optimized design of foam cladding for protection of reinforced concrete members under blast loading
  publication-title: J. Struct. Eng.
  doi: 10.1061/(ASCE)ST.1943-541X.0001190
– volume: 33
  start-page: 2781
  year: 2011
  ident: 10.1016/j.tws.2022.110489_b15
  article-title: On the dynamic response of sandwich panels with different core set-ups subject to global and local blast loads
  publication-title: Eng. Struct.
  doi: 10.1016/j.engstruct.2011.06.003
– year: 2010
  ident: 10.1016/j.tws.2022.110489_b44
– volume: 27
  start-page: 593
  year: 2002
  ident: 10.1016/j.tws.2022.110489_b36
  article-title: Close-range blast loading of aluminium foam panels
  publication-title: Int. J. Impact Eng.
  doi: 10.1016/S0734-743X(01)00155-5
SSID ssj0017194
Score 2.3980284
Snippet A novel cladding–connector system with excellent energy absorption capacity was proposed to protect vulnerable walls in frame structures subjected to blast...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 110489
SubjectTerms Blast load
Cladding–connector system
Energy absorption
Load transfer
Protective structures
Title Blast mitigation performance of a novel cladding–connector​ system
URI https://dx.doi.org/10.1016/j.tws.2022.110489
Volume 184
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1879-3223
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017194
  issn: 0263-8231
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier ScienceDirect
  customDbUrl:
  eissn: 1879-3223
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017194
  issn: 0263-8231
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Complete Freedom Collection [SCCMFC]
  customDbUrl:
  eissn: 1879-3223
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017194
  issn: 0263-8231
  databaseCode: ACRLP
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect Freedom Collection Journals
  customDbUrl:
  eissn: 1879-3223
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017194
  issn: 0263-8231
  databaseCode: AIKHN
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1879-3223
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017194
  issn: 0263-8231
  databaseCode: AKRWK
  dateStart: 19830301
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV27TsMwFLWqssCAeIryqDwwIZnmYcfJWCqqQkUHoKJb5EeCikpSoQAb6s7IH_ZL8M2jFAkYmCJZthTd2Ncn9rnnIHTMmYHlgmli0IZLqLIEEZQJwnxH-2Z-WVzD0cDVwOsN6eWIjWqoU9XCAK2yzP1FTs-zddnSKqPZmo7HrRvz95BfYjlwoUtzp2FKObgYnL4taB42t3MzROhMoHd1s5lzvLJXUOx2HCDDU3B6_2lvWtpvuhtovQSKuF28yyaqRckWWluSD9xG3TMDfTP8OC50MtIET7_KAHAaY4GT9CWaYDUB2lByP599KCC2wEH9fPaOCxnnHTTsnt92eqT0RSDKCXhGFDeoJfIVteOI20LowLRT7imthCVcEKRxbOnxAApfDcLSBkAzxQRzuTZr0HN3UT1Jk2gP4Zj5Nvelz6WIqMFyMpY2FZ4MlHYCS4kGsqqIhKoUDQfviklYscMeQhPEEIIYFkFsoJPFkGmhmPFXZ1qFOfz22UOT0X8ftv-_YQdoFdziCwrZIapnT8_RkcEUmWzmk6aJVtoX_d4Anv3ru_4nkdfM0A
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELYqGIAB8RTl6YEJKTRx7DgZoaIq0HahlbpZjp2gopJUKMCGujPyD_tL8OVRigQMrNadFF3s82f7u-8QOuXMwHLJtGXQhmtRZUtLUiYt5hPtm_llcw1XA92e1x7QmyEb1lCzqoUBWmWZ-4ucnmfrcqRRRrMxGY0ad-b0kD9iEXjQpdBpeJkywuEEdv4253k43Mm7IYK1BebV02ZO8speQbKbEGDDU2j1_tPmtLDhtDbQeokU8UXxMZuoFiVbaG1BP3AbtS4N9s3w46gQykgTPPmqA8BpjCVO0pdojNUYeEPJ_Wz6oYDZAjf1s-k7LnScd9CgddVvtq2yMYKlSMAzS3EDWyJfUSeOuCOlDsw45Z7SStrSBUUa4oQeD6Dy1UAsbRA0U0wyl2uzCD13Fy0laRLtIRwz3-F-6PNQRtSAuTAOHSq9MFCaBLaSdWRXERGqVA2H5hVjUdHDHoQJooAgiiKIdXQ2d5kUkhl_GdMqzOLbfxcmpf_utv8_txO00u53O6Jz3bs9QKvQOr7gkx2ipezpOToyACMLj_MJ9AkaSczC
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Blast+mitigation+performance+of+a+novel+cladding%E2%80%93connector%E2%80%8B+system&rft.jtitle=Thin-walled+structures&rft.au=Zhang%2C+Xuejian&rft.au=Wang%2C+Xiaojuan&rft.au=Zhou%2C+Hongyuan&rft.au=Du%2C+Xiuli&rft.date=2023-03-01&rft.pub=Elsevier+Ltd&rft.issn=0263-8231&rft.eissn=1879-3223&rft.volume=184&rft_id=info:doi/10.1016%2Fj.tws.2022.110489&rft.externalDocID=S0263823122010412
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0263-8231&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0263-8231&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0263-8231&client=summon