Blast mitigation performance of a novel cladding–connector system
A novel cladding–connector system with excellent energy absorption capacity was proposed to protect vulnerable walls in frame structures subjected to blast load in the present study. The cladding–connector system was constructed by combining a sacrificial cladding consisting of an aluminum foam core...
Saved in:
| Published in | Thin-walled structures Vol. 184; p. 110489 |
|---|---|
| Main Authors | , , , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
Elsevier Ltd
01.03.2023
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 0263-8231 1879-3223 |
| DOI | 10.1016/j.tws.2022.110489 |
Cover
| Abstract | A novel cladding–connector system with excellent energy absorption capacity was proposed to protect vulnerable walls in frame structures subjected to blast load in the present study. The cladding–connector system was constructed by combining a sacrificial cladding consisting of an aluminum foam core sandwiched by two steel plates and four connectors made of corrugated steel tubes. On one hand, the cladding absorbed a considerable amount of blast energy. On the other hand, the connectors controlled the load transfer to the protected structure to certain specific pre-defined value. With this approach, both relatively high energy absorption and relatively low load transfer can be achieved simultaneously. Specifically, based on the quasi-static compression test on the connectors and the field blast test on the sacrificial cladding, the numerical model of the proposed system was established with ANSYS/LS-DYNA and validated with the test results. Then the deformation mode, energy dissipation, and load transfer of the cladding–connector systems with flexible or rigid connectors under various charge weights were numerically studied and compared. Results showed that the proposed cladding–connector systems could dissipate a considerable amount of energy under blast, in which the major part was dissipated by the cladding and the rest by the connectors. Particularly, compared to the cladding–connector system with rigid connectors, the cladding–connector system with flexible connectors exhibited superior performance in terms of energy absorption and load transfer, especially under intense blast. With the merits of excellent energy absorption, significant blast intensity reduction, and load shift from the vulnerable walls to the load-bearing components, the proposed cladding–connector system with flexible connectors was more promising to effectively protect the existing frame structures against blast.
•A cladding–connector system is proposed to protect walls of frame structures subjected to blast.•The proposed system shifts the blast load applied on the wall to the load-bearing frame.•The system simultaneously realizes favorable energy absorption and load transfer control.•The system absorbs a considerable amount of energy in a designable manner.•The system reduces the transferred load intensity in a designable manner. |
|---|---|
| AbstractList | A novel cladding–connector system with excellent energy absorption capacity was proposed to protect vulnerable walls in frame structures subjected to blast load in the present study. The cladding–connector system was constructed by combining a sacrificial cladding consisting of an aluminum foam core sandwiched by two steel plates and four connectors made of corrugated steel tubes. On one hand, the cladding absorbed a considerable amount of blast energy. On the other hand, the connectors controlled the load transfer to the protected structure to certain specific pre-defined value. With this approach, both relatively high energy absorption and relatively low load transfer can be achieved simultaneously. Specifically, based on the quasi-static compression test on the connectors and the field blast test on the sacrificial cladding, the numerical model of the proposed system was established with ANSYS/LS-DYNA and validated with the test results. Then the deformation mode, energy dissipation, and load transfer of the cladding–connector systems with flexible or rigid connectors under various charge weights were numerically studied and compared. Results showed that the proposed cladding–connector systems could dissipate a considerable amount of energy under blast, in which the major part was dissipated by the cladding and the rest by the connectors. Particularly, compared to the cladding–connector system with rigid connectors, the cladding–connector system with flexible connectors exhibited superior performance in terms of energy absorption and load transfer, especially under intense blast. With the merits of excellent energy absorption, significant blast intensity reduction, and load shift from the vulnerable walls to the load-bearing components, the proposed cladding–connector system with flexible connectors was more promising to effectively protect the existing frame structures against blast.
•A cladding–connector system is proposed to protect walls of frame structures subjected to blast.•The proposed system shifts the blast load applied on the wall to the load-bearing frame.•The system simultaneously realizes favorable energy absorption and load transfer control.•The system absorbs a considerable amount of energy in a designable manner.•The system reduces the transferred load intensity in a designable manner. |
| ArticleNumber | 110489 |
| Author | Du, Xiuli Wang, Yonghui Zhang, Hong Wang, Xiaojuan Zou, Hai-Lin Song, Tianyi Zhang, Xuejian Zhou, Hongyuan |
| Author_xml | – sequence: 1 givenname: Xuejian surname: Zhang fullname: Zhang, Xuejian organization: Key Laboratory of Urban Security and Disaster Engineering of Ministry of Education, Beijing University of Technology, Beijing 100124, China – sequence: 2 givenname: Xiaojuan surname: Wang fullname: Wang, Xiaojuan organization: Key Laboratory of Urban Security and Disaster Engineering of Ministry of Education, Beijing University of Technology, Beijing 100124, China – sequence: 3 givenname: Hongyuan surname: Zhou fullname: Zhou, Hongyuan email: hzhou@bjut.edu.cn organization: Key Laboratory of Urban Security and Disaster Engineering of Ministry of Education, Beijing University of Technology, Beijing 100124, China – sequence: 4 givenname: Xiuli surname: Du fullname: Du, Xiuli organization: Key Laboratory of Urban Security and Disaster Engineering of Ministry of Education, Beijing University of Technology, Beijing 100124, China – sequence: 5 givenname: Hai-Lin surname: Zou fullname: Zou, Hai-Lin organization: School of Mechanics, Civil Engineering and Architecture, Northwestern Polytechnical University, Xi’an 710072, China – sequence: 6 givenname: Tianyi surname: Song fullname: Song, Tianyi organization: Key Laboratory of Urban Security and Disaster Engineering of Ministry of Education, Beijing University of Technology, Beijing 100124, China – sequence: 7 givenname: Yonghui surname: Wang fullname: Wang, Yonghui organization: Key Laboratory of Structures Dynamic Behavior and Control of the Ministry of Education, Harbin Institute of Technology, Harbin, 150090, China – sequence: 8 givenname: Hong surname: Zhang fullname: Zhang, Hong organization: State Key Laboratory of Explosion Science and Technology, Beijing Institute of Technology, Beijing 100081, China |
| BookMark | eNp9kLFOwzAURS1UJNrCB7D5BxL87CROxAQVLUiVWGC2jO1UrhK7sq2ibt0Z-cN-CSllYuh0pSudp3fPBI2cdwahWyA5EKju1nn6jDkllOYApKibCzSGmjcZo5SN0JjQimU1ZXCFJjGuCQEOTTFG88dOxoR7m-xKJusd3pjQ-tBLpwz2LZbY-a3psOqk1tatDvtv5Z0zKvlw2H_huIvJ9NfospVdNDd_OUXv86e32XO2fF28zB6WmaINT5nipKxMrQpoDQcpdTP0Ba-UVpJIRnkBFD4q3hA6bGCl5rQpVSlLxjUpoWJTxE93VfAxBtMKZdPv3ylI2wkg4qhDrMWgQxx1iJOOgYR_5CbYXobdWeb-xJhh0taaIKKyZhCjbRgECO3tGfoHR2x7_Q |
| CitedBy_id | crossref_primary_10_1016_j_tws_2023_111257 crossref_primary_10_1016_j_engstruct_2023_116932 crossref_primary_10_1016_j_tws_2023_110953 crossref_primary_10_1016_j_tws_2024_112751 crossref_primary_10_1016_j_tws_2023_110885 crossref_primary_10_1016_j_compstruct_2025_118995 |
| Cites_doi | 10.1016/j.tws.2021.107445 10.1016/j.ijimpeng.2015.12.002 10.1177/1369433216656430 10.1016/j.tws.2019.04.029 10.1016/j.ijimpeng.2022.104361 10.1016/j.matdes.2018.10.047 10.1061/(ASCE)CF.1943-5509.0000957 10.1016/j.engstruct.2021.113389 10.1016/j.compstruct.2019.111081 10.1016/j.tws.2020.107380 10.1016/j.marstruc.2015.09.001 10.1016/j.matdes.2015.05.045 10.1016/j.istruc.2019.06.012 10.1016/j.ijmecsci.2014.03.027 10.1016/j.engfailanal.2017.07.017 10.1016/j.ijimpeng.2018.08.016 10.1061/(ASCE)CF.1943-5509.0001272 10.1061/(ASCE)0733-9445(2005)131:8(1233) 10.1016/j.dt.2019.06.010 10.1016/j.engstruct.2020.110404 10.1177/1099636219855322 10.1177/1099636217731255 10.1016/S0020-7403(03)00108-5 10.1016/j.ijmecsci.2017.05.024 10.1016/j.ijimpeng.2012.11.006 10.1016/j.engstruct.2022.113958 10.1016/j.conbuildmat.2015.07.076 10.1016/j.ijimpeng.2005.07.012 10.1016/j.compstruct.2017.08.020 10.1016/j.compstruct.2019.111322 10.1016/j.tws.2015.07.022 10.1260/136943308786412005 10.1016/j.tws.2022.109090 10.1016/j.ijmecsci.2018.06.035 10.1016/j.ijimpeng.2022.104258 10.1016/j.tws.2020.106898 10.1016/j.compstruct.2021.113727 10.1142/S0219455417500663 10.1016/j.compstruct.2016.06.059 10.1016/j.ijmecsci.2020.106107 10.1016/j.tws.2022.109027 10.1016/j.tws.2018.07.056 10.1061/(ASCE)ST.1943-541X.0001190 10.1016/j.engstruct.2011.06.003 10.1016/S0734-743X(01)00155-5 |
| ContentType | Journal Article |
| Copyright | 2022 Elsevier Ltd |
| Copyright_xml | – notice: 2022 Elsevier Ltd |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.tws.2022.110489 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1879-3223 |
| ExternalDocumentID | 10_1016_j_tws_2022_110489 S0263823122010412 |
| GroupedDBID | --K --M .~1 0R~ 123 1B1 1~. 1~5 29Q 4.4 457 4G. 5VS 7-5 71M 8P~ 9JN AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABFNM ABJNI ABMAC ABTAH ABXDB ACDAQ ACGFS ACNNM ACRLP ADBBV ADEZE ADMUD ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AIEXJ AIKHN AITUG AJOXV AKRWK ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HVGLF HZ~ IHE J1W JJJVA KOM LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SDF SDG SES SET SEW SPC SPCBC SST SSZ T5K WH7 WUQ XPP ZMT ZY4 ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKYEP ANKPU APXCP CITATION EFKBS EFLBG ~HD |
| ID | FETCH-LOGICAL-c297t-c7056e8c41fe71aad9c29476cdca0a3274121b6790204835d7295c5a537d05163 |
| IEDL.DBID | .~1 |
| ISSN | 0263-8231 |
| IngestDate | Thu Oct 09 00:29:43 EDT 2025 Thu Apr 24 23:01:23 EDT 2025 Tue Jul 16 04:31:20 EDT 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Cladding–connector system Blast load Protective structures Energy absorption Load transfer |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c297t-c7056e8c41fe71aad9c29476cdca0a3274121b6790204835d7295c5a537d05163 |
| ParticipantIDs | crossref_citationtrail_10_1016_j_tws_2022_110489 crossref_primary_10_1016_j_tws_2022_110489 elsevier_sciencedirect_doi_10_1016_j_tws_2022_110489 |
| PublicationCentury | 2000 |
| PublicationDate | March 2023 2023-03-00 |
| PublicationDateYYYYMMDD | 2023-03-01 |
| PublicationDate_xml | – month: 03 year: 2023 text: March 2023 |
| PublicationDecade | 2020 |
| PublicationTitle | Thin-walled structures |
| PublicationYear | 2023 |
| Publisher | Elsevier Ltd |
| Publisher_xml | – name: Elsevier Ltd |
| References | Li, Chen, Hao (b25) 2019; 20 Xue, Hutchinson (b32) 2003; 45 Aleyaasin, Harrigan, Reid (b8) 2015; 91 Zong, Hao, Shi (b6) 2017; 17 Yang, Lei, Lu (b31) 2021; 160 Wang, Zhang, Lu, Xue, Zhai (b40) 2020; 211 Zhang, Kim (b23) 2017; 21 Ma, Ye (b33) 2007; 34 Li, Wu, Hao (b1) 2015; 82 Li, Zhang, Shi, Wu, Li (b5) 2021; 263 Chen, Wang, Zhang, Zheng, Zhou, Jin, Fan (b29) 2020; 16 (b44) 2010 Liu, Li, Fang, Liu, Su, Wu (b3) 2022; 255 Xu, Chen, Fang, Zheng, Li, Cao (b7) 2021; 249 Chehab, Eamon, Griffin (b41) 2017; 31 Kalubadanage, Remennikov, Ngo, Qi (b48) 2020; 23 Zhang, Qin, Xiang, Wang (b18) 2016; 153 Zarei, Rahimi (b28) 2022; 174 Zhou, Jia, Wang, Xiong, Wang (b30) 2020; 154 Li, Fang, Yang, Chen, Hao, Kong, Shi (b26) 2022; 166 Qi, Remennikov, Pei, Yang, Yu, Ngo (b12) 2017; 180 Li, Qin, Zhang (b27) 2021; 191 Peng, Wu, Li, Liu, Liang (b2) 2019; 228 Zhang, Zhou, Wang, Qin, Ye, Wang (b4) 2018; 122 Jing, Liu, Su, Guo (b20) 2021; 161 Yang, Fallah, Saunders, Louca (b15) 2011; 33 Getter, Kantrales, Consolazio, Eudy, Fallaha (b46) 2015; 44 Cai, Zhang, Dai, Cheng, Liu (b22) 2019; 23 Hao, Hao, Li, Chen (b9) 2016; 19 Sun, Wang, Wang, Xiao, Li (b19) 2018; 160 Hanssen, Enstock, Langseth (b36) 2002; 27 Wang, Liew (b11) 2015; 96 Zhu, Zhao, Lu (b47) 2008; 11 Ousji, Belkassem, Louar, Reymen, Martino, Lecompte, Pyl, Vantomme (b14) 2017; 128–129 Zhou, Zhang, Wang, Du, Yu, Wang, Jiang (b13) 2022 George, Kimiaei, Elchalakani, Fawzia (b45) 2022; 174 Wu, Sheikh (b34) 2013; 55 Schenker, Anteby, Nizri, Ostraich, Kivity, Sadot, Haham, Michaelis, Gal (b35) 2005; 131 Shi, Xiong, Li, Xu (b38) 2016; 90 Li, Zhang, Shi, Xu (b42) 2019; 33 Xia, Wu, Li (b37) 2015; 141 Zhao, Yu, Yuan, Zhu (b10) 2015; 94 Wang, Zhai, Yan, Ying, Wang (b39) 2018; 131 Ousji, Belkassem, Louar, Reymen, Pyl, Vantomme (b16) 2016; 2016 Zhou, Zhang, Xiao, Liu, Cheng (b17) 2019; 226 Li, Chen, Hao (b24) 2018; 145 Sun, Zhang, Li, Fang, Wang, Li (b21) 2019; 142 Keys, Clubley (b43) 2017; 82 Yang (10.1016/j.tws.2022.110489_b15) 2011; 33 Schenker (10.1016/j.tws.2022.110489_b35) 2005; 131 Ma (10.1016/j.tws.2022.110489_b33) 2007; 34 Ousji (10.1016/j.tws.2022.110489_b14) 2017; 128–129 Xu (10.1016/j.tws.2022.110489_b7) 2021; 249 Wu (10.1016/j.tws.2022.110489_b34) 2013; 55 Li (10.1016/j.tws.2022.110489_b25) 2019; 20 Li (10.1016/j.tws.2022.110489_b24) 2018; 145 Wang (10.1016/j.tws.2022.110489_b40) 2020; 211 Liu (10.1016/j.tws.2022.110489_b3) 2022; 255 Zhu (10.1016/j.tws.2022.110489_b47) 2008; 11 Peng (10.1016/j.tws.2022.110489_b2) 2019; 228 Keys (10.1016/j.tws.2022.110489_b43) 2017; 82 Zhang (10.1016/j.tws.2022.110489_b4) 2018; 122 Zhou (10.1016/j.tws.2022.110489_b30) 2020; 154 Jing (10.1016/j.tws.2022.110489_b20) 2021; 161 Hanssen (10.1016/j.tws.2022.110489_b36) 2002; 27 Qi (10.1016/j.tws.2022.110489_b12) 2017; 180 Li (10.1016/j.tws.2022.110489_b1) 2015; 82 Aleyaasin (10.1016/j.tws.2022.110489_b8) 2015; 91 Hao (10.1016/j.tws.2022.110489_b9) 2016; 19 Getter (10.1016/j.tws.2022.110489_b46) 2015; 44 Zhang (10.1016/j.tws.2022.110489_b18) 2016; 153 Ousji (10.1016/j.tws.2022.110489_b16) 2016; 2016 Sun (10.1016/j.tws.2022.110489_b21) 2019; 142 Xue (10.1016/j.tws.2022.110489_b32) 2003; 45 Shi (10.1016/j.tws.2022.110489_b38) 2016; 90 Wang (10.1016/j.tws.2022.110489_b39) 2018; 131 Zhou (10.1016/j.tws.2022.110489_b17) 2019; 226 Zarei (10.1016/j.tws.2022.110489_b28) 2022; 174 Xia (10.1016/j.tws.2022.110489_b37) 2015; 141 Chehab (10.1016/j.tws.2022.110489_b41) 2017; 31 Kalubadanage (10.1016/j.tws.2022.110489_b48) 2020; 23 Li (10.1016/j.tws.2022.110489_b27) 2021; 191 Cai (10.1016/j.tws.2022.110489_b22) 2019; 23 George (10.1016/j.tws.2022.110489_b45) 2022; 174 Li (10.1016/j.tws.2022.110489_b5) 2021; 263 Sun (10.1016/j.tws.2022.110489_b19) 2018; 160 Chen (10.1016/j.tws.2022.110489_b29) 2020; 16 Yang (10.1016/j.tws.2022.110489_b31) 2021; 160 Zhao (10.1016/j.tws.2022.110489_b10) 2015; 94 (10.1016/j.tws.2022.110489_b44) 2010 Zong (10.1016/j.tws.2022.110489_b6) 2017; 17 Wang (10.1016/j.tws.2022.110489_b11) 2015; 96 Zhang (10.1016/j.tws.2022.110489_b23) 2017; 21 Zhou (10.1016/j.tws.2022.110489_b13) 2022 Li (10.1016/j.tws.2022.110489_b42) 2019; 33 Li (10.1016/j.tws.2022.110489_b26) 2022; 166 |
| References_xml | – volume: 90 start-page: 122 year: 2016 end-page: 131 ident: b38 article-title: Experimental studies on the local damage and fragments of unreinforced masonry walls under close-in explosions publication-title: Int. J. Impact Eng. – volume: 263 year: 2021 ident: b5 article-title: Finite element modeling of FRP retrofitted RC column against blast loading publication-title: Compos. Struct. – volume: 145 start-page: 83 year: 2018 end-page: 95 ident: b24 article-title: Blast mitigation performance of cladding using square dome-shape kirigami folded structure as core publication-title: Int. J. Mech. Sci. – volume: 226 year: 2019 ident: b17 article-title: Experimental investigation on the performance of PVC foam core sandwich panels under air blast loading publication-title: Compos. Struct. – volume: 17 year: 2017 ident: b6 article-title: Development of a new fence type blast wall for blast protection: numerical analysis publication-title: Int. J. Struct. Stab. Dyn. – volume: 82 start-page: 64 year: 2015 end-page: 76 ident: b1 article-title: An experimental and numerical study of reinforced ultra-high performance concrete slabs under blast loads publication-title: Mater. Des. – volume: 11 start-page: 525 year: 2008 end-page: 536 ident: b47 article-title: Structural response and energy absorption of sandwich panels with an aluminium foam core under blast loading publication-title: Adv. Struct. Eng. – volume: 96 start-page: 1 year: 2015 end-page: 10 ident: b11 article-title: Blast performance of water tank with energy absorbing support publication-title: Thin-Walled Struct. – volume: 174 year: 2022 ident: b28 article-title: Buckling resistance of joined composite sandwich conical-cylindrical shells with lattice core under lateral pressure publication-title: Thin-Walled Struct. – volume: 255 year: 2022 ident: b3 article-title: Investigation of ultra-high performance concrete slabs under contact explosions with a calibrated K & C model publication-title: Eng. Struct. – volume: 141 year: 2015 ident: b37 article-title: Optimized design of foam cladding for protection of reinforced concrete members under blast loading publication-title: J. Struct. Eng. – volume: 44 start-page: 171 year: 2015 end-page: 202 ident: b46 article-title: Strain rate sensitive steel constitutive models for finite element analysis of vessel-structure impacts publication-title: Mar. Struct. – volume: 154 year: 2020 ident: b30 article-title: Experimental and numerical investigation of low velocity impact response of foam concrete filled auxetic honeycombs publication-title: Thin-Walled Struct. – volume: 131 start-page: 566 year: 2018 end-page: 576 ident: b39 article-title: Experimental, numerical and analytical studies on the aluminum foam filled energy absorption connectors under impact loading publication-title: Thin-Walled Struct. – volume: 82 start-page: 82 year: 2017 end-page: 91 ident: b43 article-title: Establishing a predictive method for blast induced masonry debris distribution using experimental and numerical methods publication-title: Eng. Fail. Anal. – volume: 161 year: 2021 ident: b20 article-title: Experimental and numerical study of square sandwich panels with layered-gradient foam cores to air-blast loading publication-title: Thin-Walled Struct. – volume: 166 year: 2022 ident: b26 article-title: Performance of sandwich cladding with modular truncated square pyramid foldcore under projectile impact publication-title: Int. J. Impact Eng. – volume: 174 year: 2022 ident: b45 article-title: Underwater strengthening and repairing of tubular offshore structural members using Carbon Fibre Reinforced Polymers with different consolidation methods publication-title: Thin-Walled Struct. – year: 2010 ident: b44 article-title: GB/T 228.1-2010: Metallic Materials-Tensile Testing-Part 1: Method of Test at Room Temperature – volume: 249 year: 2021 ident: b7 article-title: Protective effects of gabion wall against blast waves from large TNT-equivalent explosions publication-title: Eng. Struct. – volume: 91 start-page: 64 year: 2015 end-page: 70 ident: b8 article-title: Air-blast response of cellular material with a face plate: An analytical-numerical approach publication-title: Int. J. Mech. Sci. – volume: 31 year: 2017 ident: b41 article-title: Collapse resistance of RC moment-resisting frame and shear wall structural systems exposed to blast publication-title: J. Perform. Constr. Facil. – volume: 23 year: 2020 ident: b48 article-title: Close-in blast resistance of large-scale auxetic re-entrant honeycomb sandwich panels publication-title: J. Sandw. Struct. Mater. – volume: 94 start-page: 710 year: 2015 end-page: 718 ident: b10 article-title: Blast mitigation effect of the foamed cement-base sacrificial cladding for tunnel structures publication-title: Constr. Build. Mater. – volume: 160 start-page: 1117 year: 2018 end-page: 1136 ident: b19 article-title: Low-velocity impact behaviour of sandwich panels with homogeneous and stepwise graded foam cores publication-title: Mater. Des. – volume: 211 year: 2020 ident: b40 article-title: Quasi-static crushing behaviour of the energy absorbing connector with polyurethane foam and multiple pleated plates publication-title: Eng. Struct. – volume: 122 start-page: 265 year: 2018 end-page: 275 ident: b4 article-title: Dynamic response of double-layer rectangular sandwich plates with metal foam cores subjected to blast loading publication-title: Int. J. Impact Eng. – volume: 33 start-page: 2781 year: 2011 end-page: 2793 ident: b15 article-title: On the dynamic response of sandwich panels with different core set-ups subject to global and local blast loads publication-title: Eng. Struct. – volume: 191 year: 2021 ident: b27 article-title: Internal blast resistance of sandwich cylinder with lattice cores publication-title: Int. J. Mech. Sci. – volume: 128–129 start-page: 459 year: 2017 end-page: 474 ident: b14 article-title: Air-blast response of sacrificial cladding using low density foams: Experimental and analytical approach publication-title: Int. J. Mech. Sci. – volume: 34 start-page: 329 year: 2007 end-page: 347 ident: b33 article-title: Energy absorption of double-layer foam cladding for blast alleviation publication-title: Int. J. Impact Eng. – volume: 142 year: 2019 ident: b21 article-title: Dynamic response of sandwich panel with hierarchical honeycomb cores subject to blast loading publication-title: Thin-Walled Struct. – volume: 131 start-page: 1233 year: 2005 end-page: 1243 ident: b35 article-title: Foam-protected reinforced concrete structures under impact-experimental and numerical studies publication-title: J. Struct. Eng. – volume: 55 start-page: 24 year: 2013 end-page: 33 ident: b34 article-title: A finite element modelling to investigate the mitigation of blast effects on reinforced concrete panel using foam cladding publication-title: Int. J. Impact Eng. – volume: 21 start-page: 2413 year: 2017 end-page: 2439 ident: b23 article-title: Core crushing and dynamic response of sandwich steel beams with sinusoidal and trapezoidal corrugated cores: A parametric study publication-title: J. Sandw. Struct. Mater. – volume: 19 start-page: 1193 year: 2016 end-page: 1223 ident: b9 article-title: Review of the current practices in blast-resistant analysis and design of concrete structures publication-title: Adv. Struct. Eng. – volume: 45 start-page: 687 year: 2003 end-page: 705 ident: b32 article-title: Preliminary assessment of sandwich plates subject to blast loads publication-title: Int. J. Mech. Sci. – volume: 20 start-page: 581 year: 2019 end-page: 593 ident: b25 article-title: Numerical study of blast mitigation performance of folded structure with foam infill publication-title: Structures – volume: 228 year: 2019 ident: b2 article-title: Mesoscale analysis on ultra-high performance steel fibre reinforced concrete slabs under contact explosions publication-title: Compos. Struct. – volume: 153 start-page: 614 year: 2016 end-page: 623 ident: b18 article-title: Dynamic response of slender multilayer sandwich beams with metal foam cores subjected to low-velocity impact publication-title: Compos. Struct. – year: 2022 ident: b13 article-title: Protection effectiveness of sacrificial cladding for near-field blast mitigation publication-title: Int. J. Impact Eng. – volume: 27 start-page: 593 year: 2002 end-page: 618 ident: b36 article-title: Close-range blast loading of aluminium foam panels publication-title: Int. J. Impact Eng. – volume: 16 start-page: 136 year: 2020 end-page: 149 ident: b29 article-title: Polyurea coating for foamed concrete panel: An efficient way to resist explosion publication-title: Def. Technol. – volume: 23 start-page: 1192 year: 2019 end-page: 1220 ident: b22 article-title: Multi-objective optimization for designing metallic corrugated core sandwich panels under air blast loading publication-title: J. Sandw. Struct. Mater. – volume: 160 start-page: 140 year: 2021 end-page: 154 ident: b31 article-title: Crashworthiness of circular fiber reinforced plastic tubes filled with composite skeletons/aluminum foam under drop-weight impact loading publication-title: Thin-Walled Struct. – volume: 33 year: 2019 ident: b42 article-title: Experimental studies on mitigating local damage and fragments of unreinforced masonry wall under close-in explosions publication-title: J. Perform. Constr. Facil. – volume: 2016 year: 2016 ident: b16 article-title: Experimental study of the effectiveness of sacrificial cladding using polymeric foams as crushable core with a simply supported steel beam publication-title: Adv. Civ. Eng. – volume: 180 start-page: 161 year: 2017 end-page: 178 ident: b12 article-title: Impact and close-in blast response of auxetic honeycomb-cored sandwich panels: Experimental tests and numerical simulations publication-title: Compos. Struct. – volume: 161 year: 2021 ident: 10.1016/j.tws.2022.110489_b20 article-title: Experimental and numerical study of square sandwich panels with layered-gradient foam cores to air-blast loading publication-title: Thin-Walled Struct. doi: 10.1016/j.tws.2021.107445 – volume: 90 start-page: 122 year: 2016 ident: 10.1016/j.tws.2022.110489_b38 article-title: Experimental studies on the local damage and fragments of unreinforced masonry walls under close-in explosions publication-title: Int. J. Impact Eng. doi: 10.1016/j.ijimpeng.2015.12.002 – volume: 19 start-page: 1193 year: 2016 ident: 10.1016/j.tws.2022.110489_b9 article-title: Review of the current practices in blast-resistant analysis and design of concrete structures publication-title: Adv. Struct. Eng. doi: 10.1177/1369433216656430 – volume: 142 year: 2019 ident: 10.1016/j.tws.2022.110489_b21 article-title: Dynamic response of sandwich panel with hierarchical honeycomb cores subject to blast loading publication-title: Thin-Walled Struct. doi: 10.1016/j.tws.2019.04.029 – year: 2022 ident: 10.1016/j.tws.2022.110489_b13 article-title: Protection effectiveness of sacrificial cladding for near-field blast mitigation publication-title: Int. J. Impact Eng. doi: 10.1016/j.ijimpeng.2022.104361 – volume: 160 start-page: 1117 year: 2018 ident: 10.1016/j.tws.2022.110489_b19 article-title: Low-velocity impact behaviour of sandwich panels with homogeneous and stepwise graded foam cores publication-title: Mater. Des. doi: 10.1016/j.matdes.2018.10.047 – volume: 31 year: 2017 ident: 10.1016/j.tws.2022.110489_b41 article-title: Collapse resistance of RC moment-resisting frame and shear wall structural systems exposed to blast publication-title: J. Perform. Constr. Facil. doi: 10.1061/(ASCE)CF.1943-5509.0000957 – volume: 249 year: 2021 ident: 10.1016/j.tws.2022.110489_b7 article-title: Protective effects of gabion wall against blast waves from large TNT-equivalent explosions publication-title: Eng. Struct. doi: 10.1016/j.engstruct.2021.113389 – volume: 226 year: 2019 ident: 10.1016/j.tws.2022.110489_b17 article-title: Experimental investigation on the performance of PVC foam core sandwich panels under air blast loading publication-title: Compos. Struct. doi: 10.1016/j.compstruct.2019.111081 – volume: 160 start-page: 140 year: 2021 ident: 10.1016/j.tws.2022.110489_b31 article-title: Crashworthiness of circular fiber reinforced plastic tubes filled with composite skeletons/aluminum foam under drop-weight impact loading publication-title: Thin-Walled Struct. doi: 10.1016/j.tws.2020.107380 – volume: 44 start-page: 171 year: 2015 ident: 10.1016/j.tws.2022.110489_b46 article-title: Strain rate sensitive steel constitutive models for finite element analysis of vessel-structure impacts publication-title: Mar. Struct. doi: 10.1016/j.marstruc.2015.09.001 – volume: 82 start-page: 64 year: 2015 ident: 10.1016/j.tws.2022.110489_b1 article-title: An experimental and numerical study of reinforced ultra-high performance concrete slabs under blast loads publication-title: Mater. Des. doi: 10.1016/j.matdes.2015.05.045 – volume: 20 start-page: 581 year: 2019 ident: 10.1016/j.tws.2022.110489_b25 article-title: Numerical study of blast mitigation performance of folded structure with foam infill publication-title: Structures doi: 10.1016/j.istruc.2019.06.012 – volume: 23 year: 2020 ident: 10.1016/j.tws.2022.110489_b48 article-title: Close-in blast resistance of large-scale auxetic re-entrant honeycomb sandwich panels publication-title: J. Sandw. Struct. Mater. – volume: 91 start-page: 64 year: 2015 ident: 10.1016/j.tws.2022.110489_b8 article-title: Air-blast response of cellular material with a face plate: An analytical-numerical approach publication-title: Int. J. Mech. Sci. doi: 10.1016/j.ijmecsci.2014.03.027 – volume: 82 start-page: 82 year: 2017 ident: 10.1016/j.tws.2022.110489_b43 article-title: Establishing a predictive method for blast induced masonry debris distribution using experimental and numerical methods publication-title: Eng. Fail. Anal. doi: 10.1016/j.engfailanal.2017.07.017 – volume: 122 start-page: 265 year: 2018 ident: 10.1016/j.tws.2022.110489_b4 article-title: Dynamic response of double-layer rectangular sandwich plates with metal foam cores subjected to blast loading publication-title: Int. J. Impact Eng. doi: 10.1016/j.ijimpeng.2018.08.016 – volume: 33 year: 2019 ident: 10.1016/j.tws.2022.110489_b42 article-title: Experimental studies on mitigating local damage and fragments of unreinforced masonry wall under close-in explosions publication-title: J. Perform. Constr. Facil. doi: 10.1061/(ASCE)CF.1943-5509.0001272 – volume: 131 start-page: 1233 year: 2005 ident: 10.1016/j.tws.2022.110489_b35 article-title: Foam-protected reinforced concrete structures under impact-experimental and numerical studies publication-title: J. Struct. Eng. doi: 10.1061/(ASCE)0733-9445(2005)131:8(1233) – volume: 16 start-page: 136 year: 2020 ident: 10.1016/j.tws.2022.110489_b29 article-title: Polyurea coating for foamed concrete panel: An efficient way to resist explosion publication-title: Def. Technol. doi: 10.1016/j.dt.2019.06.010 – volume: 211 year: 2020 ident: 10.1016/j.tws.2022.110489_b40 article-title: Quasi-static crushing behaviour of the energy absorbing connector with polyurethane foam and multiple pleated plates publication-title: Eng. Struct. doi: 10.1016/j.engstruct.2020.110404 – volume: 23 start-page: 1192 year: 2019 ident: 10.1016/j.tws.2022.110489_b22 article-title: Multi-objective optimization for designing metallic corrugated core sandwich panels under air blast loading publication-title: J. Sandw. Struct. Mater. doi: 10.1177/1099636219855322 – volume: 21 start-page: 2413 year: 2017 ident: 10.1016/j.tws.2022.110489_b23 article-title: Core crushing and dynamic response of sandwich steel beams with sinusoidal and trapezoidal corrugated cores: A parametric study publication-title: J. Sandw. Struct. Mater. doi: 10.1177/1099636217731255 – volume: 45 start-page: 687 year: 2003 ident: 10.1016/j.tws.2022.110489_b32 article-title: Preliminary assessment of sandwich plates subject to blast loads publication-title: Int. J. Mech. Sci. doi: 10.1016/S0020-7403(03)00108-5 – volume: 128–129 start-page: 459 year: 2017 ident: 10.1016/j.tws.2022.110489_b14 article-title: Air-blast response of sacrificial cladding using low density foams: Experimental and analytical approach publication-title: Int. J. Mech. Sci. doi: 10.1016/j.ijmecsci.2017.05.024 – volume: 55 start-page: 24 year: 2013 ident: 10.1016/j.tws.2022.110489_b34 article-title: A finite element modelling to investigate the mitigation of blast effects on reinforced concrete panel using foam cladding publication-title: Int. J. Impact Eng. doi: 10.1016/j.ijimpeng.2012.11.006 – volume: 255 year: 2022 ident: 10.1016/j.tws.2022.110489_b3 article-title: Investigation of ultra-high performance concrete slabs under contact explosions with a calibrated K & C model publication-title: Eng. Struct. doi: 10.1016/j.engstruct.2022.113958 – volume: 94 start-page: 710 year: 2015 ident: 10.1016/j.tws.2022.110489_b10 article-title: Blast mitigation effect of the foamed cement-base sacrificial cladding for tunnel structures publication-title: Constr. Build. Mater. doi: 10.1016/j.conbuildmat.2015.07.076 – volume: 34 start-page: 329 year: 2007 ident: 10.1016/j.tws.2022.110489_b33 article-title: Energy absorption of double-layer foam cladding for blast alleviation publication-title: Int. J. Impact Eng. doi: 10.1016/j.ijimpeng.2005.07.012 – volume: 180 start-page: 161 year: 2017 ident: 10.1016/j.tws.2022.110489_b12 article-title: Impact and close-in blast response of auxetic honeycomb-cored sandwich panels: Experimental tests and numerical simulations publication-title: Compos. Struct. doi: 10.1016/j.compstruct.2017.08.020 – volume: 228 year: 2019 ident: 10.1016/j.tws.2022.110489_b2 article-title: Mesoscale analysis on ultra-high performance steel fibre reinforced concrete slabs under contact explosions publication-title: Compos. Struct. doi: 10.1016/j.compstruct.2019.111322 – volume: 96 start-page: 1 year: 2015 ident: 10.1016/j.tws.2022.110489_b11 article-title: Blast performance of water tank with energy absorbing support publication-title: Thin-Walled Struct. doi: 10.1016/j.tws.2015.07.022 – volume: 11 start-page: 525 year: 2008 ident: 10.1016/j.tws.2022.110489_b47 article-title: Structural response and energy absorption of sandwich panels with an aluminium foam core under blast loading publication-title: Adv. Struct. Eng. doi: 10.1260/136943308786412005 – volume: 174 year: 2022 ident: 10.1016/j.tws.2022.110489_b45 article-title: Underwater strengthening and repairing of tubular offshore structural members using Carbon Fibre Reinforced Polymers with different consolidation methods publication-title: Thin-Walled Struct. doi: 10.1016/j.tws.2022.109090 – volume: 2016 year: 2016 ident: 10.1016/j.tws.2022.110489_b16 article-title: Experimental study of the effectiveness of sacrificial cladding using polymeric foams as crushable core with a simply supported steel beam publication-title: Adv. Civ. Eng. – volume: 145 start-page: 83 year: 2018 ident: 10.1016/j.tws.2022.110489_b24 article-title: Blast mitigation performance of cladding using square dome-shape kirigami folded structure as core publication-title: Int. J. Mech. Sci. doi: 10.1016/j.ijmecsci.2018.06.035 – volume: 166 year: 2022 ident: 10.1016/j.tws.2022.110489_b26 article-title: Performance of sandwich cladding with modular truncated square pyramid foldcore under projectile impact publication-title: Int. J. Impact Eng. doi: 10.1016/j.ijimpeng.2022.104258 – volume: 154 year: 2020 ident: 10.1016/j.tws.2022.110489_b30 article-title: Experimental and numerical investigation of low velocity impact response of foam concrete filled auxetic honeycombs publication-title: Thin-Walled Struct. doi: 10.1016/j.tws.2020.106898 – volume: 263 year: 2021 ident: 10.1016/j.tws.2022.110489_b5 article-title: Finite element modeling of FRP retrofitted RC column against blast loading publication-title: Compos. Struct. doi: 10.1016/j.compstruct.2021.113727 – volume: 17 year: 2017 ident: 10.1016/j.tws.2022.110489_b6 article-title: Development of a new fence type blast wall for blast protection: numerical analysis publication-title: Int. J. Struct. Stab. Dyn. doi: 10.1142/S0219455417500663 – volume: 153 start-page: 614 year: 2016 ident: 10.1016/j.tws.2022.110489_b18 article-title: Dynamic response of slender multilayer sandwich beams with metal foam cores subjected to low-velocity impact publication-title: Compos. Struct. doi: 10.1016/j.compstruct.2016.06.059 – volume: 191 year: 2021 ident: 10.1016/j.tws.2022.110489_b27 article-title: Internal blast resistance of sandwich cylinder with lattice cores publication-title: Int. J. Mech. Sci. doi: 10.1016/j.ijmecsci.2020.106107 – volume: 174 year: 2022 ident: 10.1016/j.tws.2022.110489_b28 article-title: Buckling resistance of joined composite sandwich conical-cylindrical shells with lattice core under lateral pressure publication-title: Thin-Walled Struct. doi: 10.1016/j.tws.2022.109027 – volume: 131 start-page: 566 year: 2018 ident: 10.1016/j.tws.2022.110489_b39 article-title: Experimental, numerical and analytical studies on the aluminum foam filled energy absorption connectors under impact loading publication-title: Thin-Walled Struct. doi: 10.1016/j.tws.2018.07.056 – volume: 141 year: 2015 ident: 10.1016/j.tws.2022.110489_b37 article-title: Optimized design of foam cladding for protection of reinforced concrete members under blast loading publication-title: J. Struct. Eng. doi: 10.1061/(ASCE)ST.1943-541X.0001190 – volume: 33 start-page: 2781 year: 2011 ident: 10.1016/j.tws.2022.110489_b15 article-title: On the dynamic response of sandwich panels with different core set-ups subject to global and local blast loads publication-title: Eng. Struct. doi: 10.1016/j.engstruct.2011.06.003 – year: 2010 ident: 10.1016/j.tws.2022.110489_b44 – volume: 27 start-page: 593 year: 2002 ident: 10.1016/j.tws.2022.110489_b36 article-title: Close-range blast loading of aluminium foam panels publication-title: Int. J. Impact Eng. doi: 10.1016/S0734-743X(01)00155-5 |
| SSID | ssj0017194 |
| Score | 2.3980284 |
| Snippet | A novel cladding–connector system with excellent energy absorption capacity was proposed to protect vulnerable walls in frame structures subjected to blast... |
| SourceID | crossref elsevier |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 110489 |
| SubjectTerms | Blast load Cladding–connector system Energy absorption Load transfer Protective structures |
| Title | Blast mitigation performance of a novel cladding–connector system |
| URI | https://dx.doi.org/10.1016/j.tws.2022.110489 |
| Volume | 184 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1879-3223 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017194 issn: 0263-8231 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier ScienceDirect customDbUrl: eissn: 1879-3223 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017194 issn: 0263-8231 databaseCode: .~1 dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Complete Freedom Collection [SCCMFC] customDbUrl: eissn: 1879-3223 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017194 issn: 0263-8231 databaseCode: ACRLP dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: ScienceDirect Freedom Collection Journals customDbUrl: eissn: 1879-3223 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017194 issn: 0263-8231 databaseCode: AIKHN dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1879-3223 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017194 issn: 0263-8231 databaseCode: AKRWK dateStart: 19830301 isFulltext: true providerName: Library Specific Holdings |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV27TsMwFLWqssCAeIryqDwwIZnmYcfJWCqqQkUHoKJb5EeCikpSoQAb6s7IH_ZL8M2jFAkYmCJZthTd2Ncn9rnnIHTMmYHlgmli0IZLqLIEEZQJwnxH-2Z-WVzD0cDVwOsN6eWIjWqoU9XCAK2yzP1FTs-zddnSKqPZmo7HrRvz95BfYjlwoUtzp2FKObgYnL4taB42t3MzROhMoHd1s5lzvLJXUOx2HCDDU3B6_2lvWtpvuhtovQSKuF28yyaqRckWWluSD9xG3TMDfTP8OC50MtIET7_KAHAaY4GT9CWaYDUB2lByP599KCC2wEH9fPaOCxnnHTTsnt92eqT0RSDKCXhGFDeoJfIVteOI20LowLRT7imthCVcEKRxbOnxAApfDcLSBkAzxQRzuTZr0HN3UT1Jk2gP4Zj5Nvelz6WIqMFyMpY2FZ4MlHYCS4kGsqqIhKoUDQfviklYscMeQhPEEIIYFkFsoJPFkGmhmPFXZ1qFOfz22UOT0X8ftv-_YQdoFdziCwrZIapnT8_RkcEUmWzmk6aJVtoX_d4Anv3ru_4nkdfM0A |
| linkProvider | Elsevier |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELYqGIAB8RTl6YEJKTRx7DgZoaIq0HahlbpZjp2gopJUKMCGujPyD_tL8OVRigQMrNadFF3s82f7u-8QOuXMwHLJtGXQhmtRZUtLUiYt5hPtm_llcw1XA92e1x7QmyEb1lCzqoUBWmWZ-4ucnmfrcqRRRrMxGY0ad-b0kD9iEXjQpdBpeJkywuEEdv4253k43Mm7IYK1BebV02ZO8speQbKbEGDDU2j1_tPmtLDhtDbQeokU8UXxMZuoFiVbaG1BP3AbtS4N9s3w46gQykgTPPmqA8BpjCVO0pdojNUYeEPJ_Wz6oYDZAjf1s-k7LnScd9CgddVvtq2yMYKlSMAzS3EDWyJfUSeOuCOlDsw45Z7SStrSBUUa4oQeD6Dy1UAsbRA0U0wyl2uzCD13Fy0laRLtIRwz3-F-6PNQRtSAuTAOHSq9MFCaBLaSdWRXERGqVA2H5hVjUdHDHoQJooAgiiKIdXQ2d5kUkhl_GdMqzOLbfxcmpf_utv8_txO00u53O6Jz3bs9QKvQOr7gkx2ipezpOToyACMLj_MJ9AkaSczC |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Blast+mitigation+performance+of+a+novel+cladding%E2%80%93connector%E2%80%8B+system&rft.jtitle=Thin-walled+structures&rft.au=Zhang%2C+Xuejian&rft.au=Wang%2C+Xiaojuan&rft.au=Zhou%2C+Hongyuan&rft.au=Du%2C+Xiuli&rft.date=2023-03-01&rft.pub=Elsevier+Ltd&rft.issn=0263-8231&rft.eissn=1879-3223&rft.volume=184&rft_id=info:doi/10.1016%2Fj.tws.2022.110489&rft.externalDocID=S0263823122010412 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0263-8231&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0263-8231&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0263-8231&client=summon |