Many-objective evolutionary algorithm based on relative non-dominance matrix

Various evolutionary algorithms have been proposed for tackling many-objective optimization problems over the past three decades. However, these algorithms still suffer from the loss of selection pressures due to the existence of dominance resistance. To tackle this issue, this paper proposes a rela...

Full description

Saved in:
Bibliographic Details
Published inInformation sciences Vol. 547; pp. 963 - 983
Main Authors Zhang, Maoqing, Wang, Lei, Guo, Weian, Li, Wuzhao, Li, Dongyang, Hu, Bo, Wu, Qidi
Format Journal Article
LanguageEnglish
Published Elsevier Inc 08.02.2021
Subjects
Online AccessGet full text
ISSN0020-0255
1872-6291
DOI10.1016/j.ins.2020.09.061

Cover

Abstract Various evolutionary algorithms have been proposed for tackling many-objective optimization problems over the past three decades. However, these algorithms still suffer from the loss of selection pressures due to the existence of dominance resistance. To tackle this issue, this paper proposes a relative non-dominance matrix, based on which a fitness formula is defined. Empirical analyses show that solutions with smaller fitness values are likely to dominate more other solutions in the future evolutionary process, and play a vital role in enhancing the convergence toward to the true Pareto fronts. Additionally, to further ensure the diversity, k-means clustering strategy is combined with the relative non-dominance matrix for a new design of the environmental selection, where parameter k in the clustering strategy is adjusted adaptively. The proposed algorithm is extensively tested with four state-of-art algorithms on WFG, MaF and DTLZ test suites. Empirical comparisons demonstrate the competitiveness of the proposed algorithm regarding to the convergence, diversity and spread.
AbstractList Various evolutionary algorithms have been proposed for tackling many-objective optimization problems over the past three decades. However, these algorithms still suffer from the loss of selection pressures due to the existence of dominance resistance. To tackle this issue, this paper proposes a relative non-dominance matrix, based on which a fitness formula is defined. Empirical analyses show that solutions with smaller fitness values are likely to dominate more other solutions in the future evolutionary process, and play a vital role in enhancing the convergence toward to the true Pareto fronts. Additionally, to further ensure the diversity, k-means clustering strategy is combined with the relative non-dominance matrix for a new design of the environmental selection, where parameter k in the clustering strategy is adjusted adaptively. The proposed algorithm is extensively tested with four state-of-art algorithms on WFG, MaF and DTLZ test suites. Empirical comparisons demonstrate the competitiveness of the proposed algorithm regarding to the convergence, diversity and spread.
Author Li, Wuzhao
Li, Dongyang
Wu, Qidi
Zhang, Maoqing
Wang, Lei
Hu, Bo
Guo, Weian
Author_xml – sequence: 1
  givenname: Maoqing
  orcidid: 0000-0003-1362-4384
  surname: Zhang
  fullname: Zhang, Maoqing
  organization: School of Electronics and Information Engineering, Tongji University, Shanghai 201804, China
– sequence: 2
  givenname: Lei
  orcidid: 0000-0002-2146-9081
  surname: Wang
  fullname: Wang, Lei
  email: wanglei@tongji.edu.cn
  organization: School of Electronics and Information Engineering, Tongji University, Shanghai 201804, China
– sequence: 3
  givenname: Weian
  orcidid: 0000-0001-9715-3836
  surname: Guo
  fullname: Guo, Weian
  organization: Sino-Germany College of Applied Sciences, Tongji University, Shanghai 201804, China
– sequence: 4
  givenname: Wuzhao
  surname: Li
  fullname: Li, Wuzhao
  organization: School of Intelligent Manufacturing, Jiaxing Vocational Technology College, 314036 Zhejiang, China
– sequence: 5
  givenname: Dongyang
  surname: Li
  fullname: Li, Dongyang
  organization: School of Electronics and Information Engineering, Tongji University, Shanghai 201804, China
– sequence: 6
  givenname: Bo
  surname: Hu
  fullname: Hu, Bo
  organization: School of Electronics and Information Engineering, Tongji University, Shanghai 201804, China
– sequence: 7
  givenname: Qidi
  surname: Wu
  fullname: Wu, Qidi
  organization: School of Electronics and Information Engineering, Tongji University, Shanghai 201804, China
BookMark eNp9kLFOwzAQhi1UJNrCA7DlBRLOTmLXYkIVUKQiFpgtx3bAUWIj21T07XEpE0OnG-6-u_u_BZo57wxC1xgqDJjeDJV1sSJAoAJeAcVnaI5XjJSUcDxDc8idEkjbXqBFjAMANIzSOdo-S7cvfTcYlezOFGbnx69kvZNhX8jx3QebPqaik9HowrsimFH-Dub7pfaTddIpU0wyBft9ic57OUZz9VeX6O3h_nW9Kbcvj0_ru22pCGep7FinFF8pTkEB7jvZdDXuWrXq21o3vKdEE96wmhglG9n3hmoKdQsMJIM8WC8RPu5VwccYTC8-g53yxwKDOOgQg8g6xEGHAC6yjsywf4yySR6SpiDteJK8PZImR9pZE0RU1uTU2oZsTWhvT9A_0Wt-JQ
CitedBy_id crossref_primary_10_1002_cpe_7301
crossref_primary_10_1016_j_cie_2021_107263
crossref_primary_10_1016_j_swevo_2023_101391
crossref_primary_10_1016_j_ins_2021_01_015
crossref_primary_10_1016_j_ins_2022_08_035
crossref_primary_10_1016_j_neucom_2021_08_154
crossref_primary_10_1186_s10033_021_00604_0
crossref_primary_10_1016_j_asoc_2021_107814
crossref_primary_10_1016_j_asoc_2021_107869
crossref_primary_10_1007_s00521_023_08505_0
crossref_primary_10_1016_j_ins_2023_02_055
crossref_primary_10_1109_TCYB_2022_3225341
crossref_primary_10_1016_j_ins_2022_11_002
crossref_primary_10_1016_j_swevo_2021_100995
crossref_primary_10_3390_su141811681
crossref_primary_10_1016_j_ins_2024_120551
crossref_primary_10_1016_j_swevo_2024_101749
crossref_primary_10_1016_j_ins_2022_12_079
crossref_primary_10_1007_s10586_024_04275_z
crossref_primary_10_1002_cpe_6518
Cites_doi 10.1109/TEVC.2009.2015575
10.1109/TEVC.2005.861417
10.1109/TSMCB.2008.926329
10.1007/s00500-017-2987-7
10.1109/TEVC.2010.2041060
10.1109/4235.996017
10.1109/TCYB.2015.2403131
10.1007/s00500-019-04004-4
10.1109/CISW.2007.4425478
10.1109/TCYB.2018.2872803
10.1007/s40747-017-0039-7
10.1162/106365602760234108
10.1109/TEVC.2007.910138
10.1016/j.artint.2015.06.007
10.1109/TEVC.2017.2749619
10.1109/TEVC.2016.2519378
10.1016/j.ins.2018.12.078
10.1145/2792984
10.1162/EVCO_a_00009
10.1109/CEC.2001.934293
10.1109/TSMCA.2004.824873
10.1109/TEVC.2015.2443001
10.1007/s00500-008-0394-9
10.1007/s10710-005-6164-x
10.1109/TEVC.2013.2281535
10.1109/TEVC.2013.2258025
10.1109/TEVC.2006.876362
10.1109/TEVC.2010.2093579
10.1109/MCI.2017.2742868
10.1109/TEVC.2014.2378512
10.1109/TEVC.2014.2373386
10.1162/evco.2009.17.2.135
10.1109/TEVC.2018.2866854
10.24275/rmiq/Sim395
10.1109/TEVC.2007.892759
10.1016/j.ins.2019.10.054
10.1109/TCYB.2014.2365354
ContentType Journal Article
Copyright 2020 Elsevier Inc.
Copyright_xml – notice: 2020 Elsevier Inc.
DBID AAYXX
CITATION
DOI 10.1016/j.ins.2020.09.061
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Library & Information Science
EISSN 1872-6291
EndPage 983
ExternalDocumentID 10_1016_j_ins_2020_09_061
S0020025520309713
GroupedDBID --K
--M
--Z
-~X
.DC
.~1
0R~
1B1
1RT
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
9JO
AAAKF
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARIN
AAXUO
AAYFN
ABAOU
ABBOA
ABFNM
ABJNI
ABMAC
ABUCO
ABYKQ
ACAZW
ACDAQ
ACGFS
ACRLP
ACZNC
ADBBV
ADEZE
ADGUI
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIGVJ
AIKHN
AITUG
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
APLSM
ARUGR
AXJTR
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HAMUX
IHE
J1W
JJJVA
KOM
LG9
LY1
M41
MHUIS
MO0
MS~
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
ROL
RPZ
SDF
SDG
SDP
SES
SPC
SPCBC
SSB
SSD
SST
SSV
SSW
SSZ
T5K
TN5
TWZ
WH7
XPP
ZMT
~02
~G-
1OL
29I
77I
AAAKG
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABEFU
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADJOM
ADMUD
ADNMO
ADVLN
AEIPS
AEUPX
AFFNX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
EJD
FEDTE
FGOYB
HLZ
HVGLF
HZ~
H~9
R2-
SBC
SDS
SEW
UHS
WUQ
YYP
ZY4
~HD
ID FETCH-LOGICAL-c297t-b7bcc98c960c01fba4b31b5c8f53d49f62d294732eca4affe6d6035070a701b53
IEDL.DBID .~1
ISSN 0020-0255
IngestDate Wed Oct 01 05:19:09 EDT 2025
Thu Apr 24 23:01:33 EDT 2025
Fri Feb 23 02:45:54 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Dominance resistance
Many-objective optimization
Evolutionary algorithm
Convergence
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c297t-b7bcc98c960c01fba4b31b5c8f53d49f62d294732eca4affe6d6035070a701b53
ORCID 0000-0002-2146-9081
0000-0001-9715-3836
0000-0003-1362-4384
PageCount 21
ParticipantIDs crossref_primary_10_1016_j_ins_2020_09_061
crossref_citationtrail_10_1016_j_ins_2020_09_061
elsevier_sciencedirect_doi_10_1016_j_ins_2020_09_061
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-02-08
PublicationDateYYYYMMDD 2021-02-08
PublicationDate_xml – month: 02
  year: 2021
  text: 2021-02-08
  day: 08
PublicationDecade 2020
PublicationTitle Information sciences
PublicationYear 2021
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References Ishibuchi, Tsukamoto, Nojima (b0095) 2008
Cui, Zhang, Wang, Cai, Zhang (b0040) 2019; 23
Beume, Fonseca, Lopez-Ibanez (b0015) 2009; 13
Li, Li, Tang, Yao (b0115) 2015; 48
Sato, Aguirre, Tanaka (b0160) 2007
Purshouse, Fleming (b0150) 2007; 11
Emmerich, Beume, Naujoks (b0060) 2005
Li, Kwong, Zhang, Deb (b0125) 2014; 45
Bader, Zitzler (b0005) 2011; 19
Fabre, Pulido, Coello (b0065) 2009
Deb, Pratap, Agarwal, Meyarivan (b0050) 2002; 6
Zou, Chen, Liu, Kang (b0235) 2008; 38
K. Deb, D.K. Saxena, On finding pareto-optimal solutions through dimensionality reduction for certain large-dimensional multi-objective optimization problems. Kangal report, 2005011, 2005.
Tian, Cheng, Zhang, Cheng, Jin (b0175) 2018; 22
Zitzler, Laumanns, Thiele (b0230) 2001
Li, Deb, Zhang, Kwong (b0120) 2015; 19
Huband, Hingston, Barone, While (b0085) 2006; 10
Liu, Zhu, Li, Li, Zheng, Li (b0135) 2020; 509
Kar, Majumdar, Constales, Pal, Dutta (b0105) 2020; 19
Pierro, Khu, Savic (b0145) 2007; 11
Wang, Wu, Yuan (b0195) 2010; 14
Zitzler, Künzli (b0225) 2004
Said, Bechikh, Ghedira (b0155) 2010; 14
He, Yen, Zhang (b0080) 2014; 18
K. Ikeda, H. Kita, S. Kobayashi, Failure of Pareto-based MOEAs: Does non-dominated really mean near to optimal? in: Proceedings of the 2001 Congress on Evolutionary Computation (IEEE Cat. No. 01TH8546), vol. 2, IEEE, 2001, pp. 957–962.
Brockhoff, Zitzler (b0020) 2009; 17
Zhang, Tian, Jin (b0215) 2015; 19
Garza-Fabre, Pulido, Coello (b0075) 2009
Tian, Cheng, Zhang, Su, Jin (b0185) 2019; 23
Laumanns, Thiele, Deb, Zitzler (b0110) 2002; 10
Cheng, Li, Tian, Zhang, Yang, Jin, Yao (b0030) 2017; 3
Majumder, Kundu, Kar, Pal (b0140) 2019; 23
G. Wang, H. Jiang, Fuzzy-dominance and its application in evolutionary many objective optimization, in: 2007 International Conference on Computational Intelligence and Security Workshops (CISW 2007), IEEE, 2007, pp. 195–198.
Singh, Isaacs, Ray (b0170) 2011; 15
Yuan, Xu, Wang, Zhang, Yao (b0205) 2016; 20
Cheng, Jin, Olhofer, Sendhoff (b0025) 2016; 20
Deb, Jain (b0045) 2014; 18
J.D. Schaffer. Multiple objective optimization with vector evaluated genetic algorithms, in: Proceedings of the 1st International Conference on Genetic Algorithms, L. Erlbaum Associates Inc., 1985, pp. 93–100.
Tian, Cheng, Zhang, Jin (b0180) 2017; 12
Batista, Campelo, Guimarães, Ramírez (b0010) 2011
Coello, Cortes (b0035) 2005; 6
Li, Yang, Liu (b0130) 2015; 228
Wu, Li, Kwong, Zhang (b0200) 2020; 5
Zhou, Gao, Yao, Zhang, Chan, Lin (b0220) 2020; 513
Zhang, Li (b0210) 2007; 11
Farina, Amato (b0070) 2004; 34
Jiang, Yang (b0100) 2016; 46
Deb (10.1016/j.ins.2020.09.061_b0045) 2014; 18
Li (10.1016/j.ins.2020.09.061_b0125) 2014; 45
Coello (10.1016/j.ins.2020.09.061_b0035) 2005; 6
Batista (10.1016/j.ins.2020.09.061_b0010) 2011
Tian (10.1016/j.ins.2020.09.061_b0175) 2018; 22
10.1016/j.ins.2020.09.061_b0190
Wang (10.1016/j.ins.2020.09.061_b0195) 2010; 14
Wu (10.1016/j.ins.2020.09.061_b0200) 2020; 5
10.1016/j.ins.2020.09.061_b0090
Cui (10.1016/j.ins.2020.09.061_b0040) 2019; 23
Majumder (10.1016/j.ins.2020.09.061_b0140) 2019; 23
Tian (10.1016/j.ins.2020.09.061_b0180) 2017; 12
Li (10.1016/j.ins.2020.09.061_b0115) 2015; 48
Li (10.1016/j.ins.2020.09.061_b0120) 2015; 19
10.1016/j.ins.2020.09.061_b0055
Jiang (10.1016/j.ins.2020.09.061_b0100) 2016; 46
Said (10.1016/j.ins.2020.09.061_b0155) 2010; 14
Zhou (10.1016/j.ins.2020.09.061_b0220) 2020; 513
Fabre (10.1016/j.ins.2020.09.061_b0065) 2009
Emmerich (10.1016/j.ins.2020.09.061_b0060) 2005
Pierro (10.1016/j.ins.2020.09.061_b0145) 2007; 11
Zou (10.1016/j.ins.2020.09.061_b0235) 2008; 38
Brockhoff (10.1016/j.ins.2020.09.061_b0020) 2009; 17
Li (10.1016/j.ins.2020.09.061_b0130) 2015; 228
Liu (10.1016/j.ins.2020.09.061_b0135) 2020; 509
Beume (10.1016/j.ins.2020.09.061_b0015) 2009; 13
Kar (10.1016/j.ins.2020.09.061_b0105) 2020; 19
He (10.1016/j.ins.2020.09.061_b0080) 2014; 18
Ishibuchi (10.1016/j.ins.2020.09.061_b0095) 2008
Tian (10.1016/j.ins.2020.09.061_b0185) 2019; 23
Farina (10.1016/j.ins.2020.09.061_b0070) 2004; 34
10.1016/j.ins.2020.09.061_b0165
Bader (10.1016/j.ins.2020.09.061_b0005) 2011; 19
Deb (10.1016/j.ins.2020.09.061_b0050) 2002; 6
Huband (10.1016/j.ins.2020.09.061_b0085) 2006; 10
Garza-Fabre (10.1016/j.ins.2020.09.061_b0075) 2009
Yuan (10.1016/j.ins.2020.09.061_b0205) 2016; 20
Zhang (10.1016/j.ins.2020.09.061_b0215) 2015; 19
Zitzler (10.1016/j.ins.2020.09.061_b0230) 2001
Singh (10.1016/j.ins.2020.09.061_b0170) 2011; 15
Sato (10.1016/j.ins.2020.09.061_b0160) 2007
Purshouse (10.1016/j.ins.2020.09.061_b0150) 2007; 11
Laumanns (10.1016/j.ins.2020.09.061_b0110) 2002; 10
Zhang (10.1016/j.ins.2020.09.061_b0210) 2007; 11
Cheng (10.1016/j.ins.2020.09.061_b0025) 2016; 20
Cheng (10.1016/j.ins.2020.09.061_b0030) 2017; 3
Zitzler (10.1016/j.ins.2020.09.061_b0225) 2004
References_xml – volume: 18
  start-page: 577
  year: 2014
  end-page: 601
  ident: b0045
  article-title: An evolutionary many-objective optimization algorithm using reference-point based non-dominated sorting approach, part I: Solving problems with box constraints
  publication-title: IEEE Transactions on Evolutionary Computation
– volume: 12
  start-page: 73
  year: 2017
  end-page: 87
  ident: b0180
  article-title: PlatEMO: A MATLAB platform for evolutionary multi-objective optimization
  publication-title: IEEE Computational Intelligence Magazine
– reference: K. Ikeda, H. Kita, S. Kobayashi, Failure of Pareto-based MOEAs: Does non-dominated really mean near to optimal? in: Proceedings of the 2001 Congress on Evolutionary Computation (IEEE Cat. No. 01TH8546), vol. 2, IEEE, 2001, pp. 957–962.
– start-page: 146
  year: 2009
  end-page: 157
  ident: b0065
  article-title: Alternative fitness assignment methods for many-objective optimization problems
  publication-title: International Conference on Artificial Evolution (Evolution Artificielle)
– volume: 34
  start-page: 315
  year: 2004
  end-page: 326
  ident: b0070
  article-title: A fuzzy definition of optimality for many-criteria optimization problems
  publication-title: IEEE Transactions on Systems, Man, and Cybernetics-Part A: Systems and Humans
– volume: 14
  start-page: 193
  year: 2010
  end-page: 209
  ident: b0195
  article-title: Multi-objective self-adaptive differential evolution with elitist archive and crowding entropy-based diversity measure
  publication-title: Soft Computing
– volume: 513
  start-page: 143
  year: 2020
  end-page: 167
  ident: b0220
  article-title: Evolutionary many-objective assembly of cloud services via angle and adversarial direction driven search
  publication-title: Information Sciences
– volume: 17
  start-page: 135
  year: 2009
  end-page: 166
  ident: b0020
  article-title: Objective reduction in evolutionary multiobjective optimization: theory and applications
  publication-title: Evolutionary Computation
– reference: J.D. Schaffer. Multiple objective optimization with vector evaluated genetic algorithms, in: Proceedings of the 1st International Conference on Genetic Algorithms, L. Erlbaum Associates Inc., 1985, pp. 93–100.
– volume: 23
  start-page: 3279
  year: 2019
  end-page: 3301
  ident: b0140
  article-title: Uncertain multi-objective multi-item fixed charge solid transportation problem with budget constraint
  publication-title: Soft Computing
– start-page: 832
  year: 2004
  end-page: 842
  ident: b0225
  article-title: Indicator-based selection in multiobjective search
  publication-title: International Conference on Parallel Problem Solving from Nature
– volume: 6
  start-page: 182
  year: 2002
  end-page: 197
  ident: b0050
  article-title: A fast and elitist multiobjective genetic algorithm: NSGA-II
  publication-title: IEEE Transactions on Evolutionary Computation
– volume: 18
  start-page: 269
  year: 2014
  end-page: 285
  ident: b0080
  article-title: Fuzzy-based Pareto optimality for many-objective evolutionary algorithms
  publication-title: IEEE Transactions on Evolutionary Computation
– volume: 10
  start-page: 477
  year: 2006
  end-page: 506
  ident: b0085
  article-title: A review of multiobjective test problems and a scalable test problem toolkit
  publication-title: IEEE Transactions on Evolutionary Computation
– volume: 509
  start-page: 376
  year: 2020
  end-page: 399
  ident: b0135
  article-title: An angle dominance criterion for evolutionary many-objective optimization
  publication-title: Information Sciences
– volume: 11
  start-page: 712
  year: 2007
  end-page: 731
  ident: b0210
  article-title: MOEA/D: A multiobjective evolutionary algorithm based on decomposition
  publication-title: IEEE Transactions on Evolutionary Computation
– volume: 22
  start-page: 609
  year: 2018
  end-page: 622
  ident: b0175
  article-title: An indicator-based multiobjective evolutionary algorithm with reference point adaptation for better versatility
  publication-title: IEEE Transactions on Evolutionary Computation
– volume: 38
  start-page: 1402
  year: 2008
  end-page: 1412
  ident: b0235
  article-title: A new evolutionary algorithm for solving many-objective optimization problems
  publication-title: IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics)
– start-page: 76
  year: 2011
  end-page: 90
  ident: b0010
  article-title: Pareto cone
  publication-title: International Conference on Evolutionary Multi-Criterion Optimization
– reference: K. Deb, D.K. Saxena, On finding pareto-optimal solutions through dimensionality reduction for certain large-dimensional multi-objective optimization problems. Kangal report, 2005011, 2005.
– volume: 228
  start-page: 45
  year: 2015
  end-page: 65
  ident: b0130
  article-title: Bi-goal evolution for many-objective optimization problems
  publication-title: Artificial Intelligence
– start-page: 2419
  year: 2008
  end-page: 2426
  ident: b0095
  article-title: Evolutionary many-objective optimization: A short review
  publication-title: 2008 IEEE Congress on Evolutionary Computation (IEEE World Congress on Computational Intelligence)
– volume: 23
  start-page: 10681
  year: 2019
  end-page: 10697
  ident: b0040
  article-title: A hybrid many-objective cuckoo search algorithm
  publication-title: Soft Computing
– volume: 19
  start-page: 299
  year: 2020
  end-page: 311
  ident: b0105
  article-title: A comparative study of multi objective optimization algorithms for a cellular automata model
  publication-title: Revista Mexicana de Ingeniería Química
– volume: 19
  start-page: 694
  year: 2015
  end-page: 716
  ident: b0120
  article-title: An evolutionary many-objective optimization algorithm based on dominance and decomposition
  publication-title: IEEE Transactions on Evolutionary Computation
– volume: 45
  start-page: 2076
  year: 2014
  end-page: 2088
  ident: b0125
  article-title: Interrelationship-based selection for decomposition multiobjective optimization
  publication-title: IEEE Transactions on Cybernetics
– volume: 6
  start-page: 163
  year: 2005
  end-page: 190
  ident: b0035
  article-title: Solving multiobjective optimization problems using an artificial immune system
  publication-title: Genetic Programming and Evolvable Machines
– volume: 23
  start-page: 331
  year: 2019
  end-page: 345
  ident: b0185
  article-title: A strengthened dominance relation considering convergence and diversity for evolutionary many-objective optimization
  publication-title: IEEE Transactions on Evolutionary Computation
– volume: 20
  start-page: 773
  year: 2016
  end-page: 791
  ident: b0025
  article-title: A reference vector guided evolutionary algorithm for many-objective optimization
  publication-title: IEEE Transactions on Evolutionary Computation
– start-page: 5
  year: 2007
  end-page: 20
  ident: b0160
  article-title: Controlling dominance area of solutions and its impact on the performance of MOEAs
  publication-title: International Conference on Evolutionary Multi-Criterion Optimization
– volume: 19
  start-page: 761
  year: 2015
  end-page: 776
  ident: b0215
  article-title: A knee point-driven evolutionary algorithm for many-objective optimization
  publication-title: IEEE Transactions on Evolutionary Computation
– reference: G. Wang, H. Jiang, Fuzzy-dominance and its application in evolutionary many objective optimization, in: 2007 International Conference on Computational Intelligence and Security Workshops (CISW 2007), IEEE, 2007, pp. 195–198.
– volume: 11
  start-page: 17
  year: 2007
  end-page: 45
  ident: b0145
  article-title: An investigation on preference order ranking scheme for multiobjective evolutionary optimization
  publication-title: IEEE Transactions on Evolutionary Computation
– volume: 46
  start-page: 421
  year: 2016
  end-page: 437
  ident: b0100
  article-title: An Improved Multiobjective Optimization Evolutionary Algorithm Based on Decomposition for Complex Pareto Fronts
  publication-title: IEEE Transactions on Cybernetics
– volume: 10
  start-page: 263
  year: 2002
  end-page: 282
  ident: b0110
  article-title: Combining convergence and diversity in evolutionary multiobjective optimization
  publication-title: Evolutionary Computation
– start-page: 95
  year: 2001
  end-page: 100
  ident: b0230
  article-title: SPEA2: Improving the strength Pareto evolutionary algorithm
  publication-title: Proceedings of the 5th Conference on Evolutionary Methods for Design, Optimization and Control with Applications to Industrial Problems
– volume: 20
  start-page: 180
  year: 2016
  end-page: 198
  ident: b0205
  article-title: Balancing convergence and diversity in decomposition-based many-objective optimizers
  publication-title: IEEE Transactions on Evolutionary Computation
– volume: 19
  start-page: 45
  year: 2011
  end-page: 76
  ident: b0005
  article-title: HypE: An algorithm for fast hypervolume-based many-objective optimization
  publication-title: Evolutionary Computation
– volume: 13
  start-page: 1075
  year: 2009
  end-page: 1082
  ident: b0015
  article-title: On the Complexity of Computing the Hypervolume Indicator
  publication-title: IEEE Transactions on Evolutionary Computation
– start-page: 62
  year: 2005
  end-page: 76
  ident: b0060
  article-title: An EMO algorithm using the hypervolume measure as selection criterion
  publication-title: International Conference on Evolutionary Multi-Criterion Optimization
– volume: 11
  start-page: 770
  year: 2007
  end-page: 784
  ident: b0150
  article-title: On the evolutionary optimization of many conflicting objectives
  publication-title: IEEE Transactions on Evolutionary Computation
– volume: 14
  start-page: 801
  year: 2010
  end-page: 818
  ident: b0155
  article-title: The
  publication-title: IEEE Transactions on Evolutionary Computation
– volume: 15
  start-page: 539
  year: 2011
  end-page: 556
  ident: b0170
  article-title: A Pareto corner search evolutionary algorithm and dimensionality reduction in many-objective optimization problems
  publication-title: IEEE Transactions on Evolutionary Computation
– volume: 5
  start-page: 753
  year: 2020
  end-page: 764
  ident: b0200
  article-title: Evolutionary many-objective optimization based on adversarial decomposition
  publication-title: IEEE Transactions on Cybernetics
– volume: 48
  start-page: 1
  year: 2015
  end-page: 35
  ident: b0115
  article-title: Many-objective evolutionary algorithms: A survey
  publication-title: ACM Computing Surveys
– volume: 3
  start-page: 67
  year: 2017
  end-page: 81
  ident: b0030
  article-title: A benchmark test suite for evolutionary many-objective optimization
  publication-title: Complex & Intelligent Systems
– start-page: 633
  year: 2009
  end-page: 645
  ident: b0075
  article-title: Ranking methods for many-objective optimization
  publication-title: Mexican International Conference on Artificial Intelligence
– volume: 13
  start-page: 1075
  issue: 5
  year: 2009
  ident: 10.1016/j.ins.2020.09.061_b0015
  article-title: On the Complexity of Computing the Hypervolume Indicator
  publication-title: IEEE Transactions on Evolutionary Computation
  doi: 10.1109/TEVC.2009.2015575
– volume: 10
  start-page: 477
  issue: 5
  year: 2006
  ident: 10.1016/j.ins.2020.09.061_b0085
  article-title: A review of multiobjective test problems and a scalable test problem toolkit
  publication-title: IEEE Transactions on Evolutionary Computation
  doi: 10.1109/TEVC.2005.861417
– volume: 38
  start-page: 1402
  issue: 5
  year: 2008
  ident: 10.1016/j.ins.2020.09.061_b0235
  article-title: A new evolutionary algorithm for solving many-objective optimization problems
  publication-title: IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics)
  doi: 10.1109/TSMCB.2008.926329
– volume: 23
  start-page: 3279
  issue: 10
  year: 2019
  ident: 10.1016/j.ins.2020.09.061_b0140
  article-title: Uncertain multi-objective multi-item fixed charge solid transportation problem with budget constraint
  publication-title: Soft Computing
  doi: 10.1007/s00500-017-2987-7
– volume: 14
  start-page: 801
  issue: 5
  year: 2010
  ident: 10.1016/j.ins.2020.09.061_b0155
  article-title: The r-Dominance: A New Dominance Relation for Interactive Evolutionary Multicriteria Decision Making
  publication-title: IEEE Transactions on Evolutionary Computation
  doi: 10.1109/TEVC.2010.2041060
– volume: 6
  start-page: 182
  issue: 2
  year: 2002
  ident: 10.1016/j.ins.2020.09.061_b0050
  article-title: A fast and elitist multiobjective genetic algorithm: NSGA-II
  publication-title: IEEE Transactions on Evolutionary Computation
  doi: 10.1109/4235.996017
– volume: 46
  start-page: 421
  issue: 2
  year: 2016
  ident: 10.1016/j.ins.2020.09.061_b0100
  article-title: An Improved Multiobjective Optimization Evolutionary Algorithm Based on Decomposition for Complex Pareto Fronts
  publication-title: IEEE Transactions on Cybernetics
  doi: 10.1109/TCYB.2015.2403131
– volume: 23
  start-page: 10681
  issue: 21
  year: 2019
  ident: 10.1016/j.ins.2020.09.061_b0040
  article-title: A hybrid many-objective cuckoo search algorithm
  publication-title: Soft Computing
  doi: 10.1007/s00500-019-04004-4
– ident: 10.1016/j.ins.2020.09.061_b0190
  doi: 10.1109/CISW.2007.4425478
– volume: 5
  start-page: 753
  issue: 2
  year: 2020
  ident: 10.1016/j.ins.2020.09.061_b0200
  article-title: Evolutionary many-objective optimization based on adversarial decomposition
  publication-title: IEEE Transactions on Cybernetics
  doi: 10.1109/TCYB.2018.2872803
– volume: 3
  start-page: 67
  issue: 1
  year: 2017
  ident: 10.1016/j.ins.2020.09.061_b0030
  article-title: A benchmark test suite for evolutionary many-objective optimization
  publication-title: Complex & Intelligent Systems
  doi: 10.1007/s40747-017-0039-7
– start-page: 62
  year: 2005
  ident: 10.1016/j.ins.2020.09.061_b0060
  article-title: An EMO algorithm using the hypervolume measure as selection criterion
– volume: 10
  start-page: 263
  issue: 3
  year: 2002
  ident: 10.1016/j.ins.2020.09.061_b0110
  article-title: Combining convergence and diversity in evolutionary multiobjective optimization
  publication-title: Evolutionary Computation
  doi: 10.1162/106365602760234108
– volume: 11
  start-page: 770
  issue: 6
  year: 2007
  ident: 10.1016/j.ins.2020.09.061_b0150
  article-title: On the evolutionary optimization of many conflicting objectives
  publication-title: IEEE Transactions on Evolutionary Computation
  doi: 10.1109/TEVC.2007.910138
– volume: 228
  start-page: 45
  year: 2015
  ident: 10.1016/j.ins.2020.09.061_b0130
  article-title: Bi-goal evolution for many-objective optimization problems
  publication-title: Artificial Intelligence
  doi: 10.1016/j.artint.2015.06.007
– volume: 22
  start-page: 609
  issue: 4
  year: 2018
  ident: 10.1016/j.ins.2020.09.061_b0175
  article-title: An indicator-based multiobjective evolutionary algorithm with reference point adaptation for better versatility
  publication-title: IEEE Transactions on Evolutionary Computation
  doi: 10.1109/TEVC.2017.2749619
– volume: 20
  start-page: 773
  issue: 5
  year: 2016
  ident: 10.1016/j.ins.2020.09.061_b0025
  article-title: A reference vector guided evolutionary algorithm for many-objective optimization
  publication-title: IEEE Transactions on Evolutionary Computation
  doi: 10.1109/TEVC.2016.2519378
– volume: 509
  start-page: 376
  year: 2020
  ident: 10.1016/j.ins.2020.09.061_b0135
  article-title: An angle dominance criterion for evolutionary many-objective optimization
  publication-title: Information Sciences
  doi: 10.1016/j.ins.2018.12.078
– volume: 48
  start-page: 1
  issue: 1
  year: 2015
  ident: 10.1016/j.ins.2020.09.061_b0115
  article-title: Many-objective evolutionary algorithms: A survey
  publication-title: ACM Computing Surveys
  doi: 10.1145/2792984
– volume: 19
  start-page: 45
  issue: 1
  year: 2011
  ident: 10.1016/j.ins.2020.09.061_b0005
  article-title: HypE: An algorithm for fast hypervolume-based many-objective optimization
  publication-title: Evolutionary Computation
  doi: 10.1162/EVCO_a_00009
– ident: 10.1016/j.ins.2020.09.061_b0090
  doi: 10.1109/CEC.2001.934293
– ident: 10.1016/j.ins.2020.09.061_b0055
– volume: 34
  start-page: 315
  issue: 3
  year: 2004
  ident: 10.1016/j.ins.2020.09.061_b0070
  article-title: A fuzzy definition of optimality for many-criteria optimization problems
  publication-title: IEEE Transactions on Systems, Man, and Cybernetics-Part A: Systems and Humans
  doi: 10.1109/TSMCA.2004.824873
– volume: 20
  start-page: 180
  issue: 2
  year: 2016
  ident: 10.1016/j.ins.2020.09.061_b0205
  article-title: Balancing convergence and diversity in decomposition-based many-objective optimizers
  publication-title: IEEE Transactions on Evolutionary Computation
  doi: 10.1109/TEVC.2015.2443001
– volume: 14
  start-page: 193
  issue: 3
  year: 2010
  ident: 10.1016/j.ins.2020.09.061_b0195
  article-title: Multi-objective self-adaptive differential evolution with elitist archive and crowding entropy-based diversity measure
  publication-title: Soft Computing
  doi: 10.1007/s00500-008-0394-9
– volume: 6
  start-page: 163
  issue: 2
  year: 2005
  ident: 10.1016/j.ins.2020.09.061_b0035
  article-title: Solving multiobjective optimization problems using an artificial immune system
  publication-title: Genetic Programming and Evolvable Machines
  doi: 10.1007/s10710-005-6164-x
– start-page: 2419
  year: 2008
  ident: 10.1016/j.ins.2020.09.061_b0095
  article-title: Evolutionary many-objective optimization: A short review
– volume: 18
  start-page: 577
  issue: 4
  year: 2014
  ident: 10.1016/j.ins.2020.09.061_b0045
  article-title: An evolutionary many-objective optimization algorithm using reference-point based non-dominated sorting approach, part I: Solving problems with box constraints
  publication-title: IEEE Transactions on Evolutionary Computation
  doi: 10.1109/TEVC.2013.2281535
– start-page: 95
  year: 2001
  ident: 10.1016/j.ins.2020.09.061_b0230
  article-title: SPEA2: Improving the strength Pareto evolutionary algorithm
– start-page: 146
  year: 2009
  ident: 10.1016/j.ins.2020.09.061_b0065
  article-title: Alternative fitness assignment methods for many-objective optimization problems
– volume: 18
  start-page: 269
  issue: 2
  year: 2014
  ident: 10.1016/j.ins.2020.09.061_b0080
  article-title: Fuzzy-based Pareto optimality for many-objective evolutionary algorithms
  publication-title: IEEE Transactions on Evolutionary Computation
  doi: 10.1109/TEVC.2013.2258025
– volume: 11
  start-page: 17
  issue: 1
  year: 2007
  ident: 10.1016/j.ins.2020.09.061_b0145
  article-title: An investigation on preference order ranking scheme for multiobjective evolutionary optimization
  publication-title: IEEE Transactions on Evolutionary Computation
  doi: 10.1109/TEVC.2006.876362
– volume: 15
  start-page: 539
  issue: 4
  year: 2011
  ident: 10.1016/j.ins.2020.09.061_b0170
  article-title: A Pareto corner search evolutionary algorithm and dimensionality reduction in many-objective optimization problems
  publication-title: IEEE Transactions on Evolutionary Computation
  doi: 10.1109/TEVC.2010.2093579
– volume: 12
  start-page: 73
  issue: 4
  year: 2017
  ident: 10.1016/j.ins.2020.09.061_b0180
  article-title: PlatEMO: A MATLAB platform for evolutionary multi-objective optimization
  publication-title: IEEE Computational Intelligence Magazine
  doi: 10.1109/MCI.2017.2742868
– ident: 10.1016/j.ins.2020.09.061_b0165
– volume: 19
  start-page: 761
  issue: 6
  year: 2015
  ident: 10.1016/j.ins.2020.09.061_b0215
  article-title: A knee point-driven evolutionary algorithm for many-objective optimization
  publication-title: IEEE Transactions on Evolutionary Computation
  doi: 10.1109/TEVC.2014.2378512
– volume: 19
  start-page: 694
  issue: 5
  year: 2015
  ident: 10.1016/j.ins.2020.09.061_b0120
  article-title: An evolutionary many-objective optimization algorithm based on dominance and decomposition
  publication-title: IEEE Transactions on Evolutionary Computation
  doi: 10.1109/TEVC.2014.2373386
– volume: 17
  start-page: 135
  issue: 2
  year: 2009
  ident: 10.1016/j.ins.2020.09.061_b0020
  article-title: Objective reduction in evolutionary multiobjective optimization: theory and applications
  publication-title: Evolutionary Computation
  doi: 10.1162/evco.2009.17.2.135
– start-page: 633
  year: 2009
  ident: 10.1016/j.ins.2020.09.061_b0075
  article-title: Ranking methods for many-objective optimization
– volume: 23
  start-page: 331
  issue: 2
  year: 2019
  ident: 10.1016/j.ins.2020.09.061_b0185
  article-title: A strengthened dominance relation considering convergence and diversity for evolutionary many-objective optimization
  publication-title: IEEE Transactions on Evolutionary Computation
  doi: 10.1109/TEVC.2018.2866854
– start-page: 5
  year: 2007
  ident: 10.1016/j.ins.2020.09.061_b0160
  article-title: Controlling dominance area of solutions and its impact on the performance of MOEAs
– start-page: 832
  year: 2004
  ident: 10.1016/j.ins.2020.09.061_b0225
  article-title: Indicator-based selection in multiobjective search
– start-page: 76
  year: 2011
  ident: 10.1016/j.ins.2020.09.061_b0010
  article-title: Pareto cone ε-dominance: improving convergence and diversity in multiobjective evolutionary algorithms
– volume: 19
  start-page: 299
  issue: 1
  year: 2020
  ident: 10.1016/j.ins.2020.09.061_b0105
  article-title: A comparative study of multi objective optimization algorithms for a cellular automata model
  publication-title: Revista Mexicana de Ingeniería Química
  doi: 10.24275/rmiq/Sim395
– volume: 11
  start-page: 712
  issue: 6
  year: 2007
  ident: 10.1016/j.ins.2020.09.061_b0210
  article-title: MOEA/D: A multiobjective evolutionary algorithm based on decomposition
  publication-title: IEEE Transactions on Evolutionary Computation
  doi: 10.1109/TEVC.2007.892759
– volume: 513
  start-page: 143
  year: 2020
  ident: 10.1016/j.ins.2020.09.061_b0220
  article-title: Evolutionary many-objective assembly of cloud services via angle and adversarial direction driven search
  publication-title: Information Sciences
  doi: 10.1016/j.ins.2019.10.054
– volume: 45
  start-page: 2076
  issue: 10
  year: 2014
  ident: 10.1016/j.ins.2020.09.061_b0125
  article-title: Interrelationship-based selection for decomposition multiobjective optimization
  publication-title: IEEE Transactions on Cybernetics
  doi: 10.1109/TCYB.2014.2365354
SSID ssj0004766
Score 2.4533246
Snippet Various evolutionary algorithms have been proposed for tackling many-objective optimization problems over the past three decades. However, these algorithms...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 963
SubjectTerms Convergence
Dominance resistance
Evolutionary algorithm
Many-objective optimization
Title Many-objective evolutionary algorithm based on relative non-dominance matrix
URI https://dx.doi.org/10.1016/j.ins.2020.09.061
Volume 547
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1872-6291
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004766
  issn: 0020-0255
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier ScienceDirect (LAB)
  customDbUrl:
  eissn: 1872-6291
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004766
  issn: 0020-0255
  databaseCode: ACRLP
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Science Direct
  customDbUrl:
  eissn: 1872-6291
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004766
  issn: 0020-0255
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect Freedom Collection Journals
  customDbUrl:
  eissn: 1872-6291
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004766
  issn: 0020-0255
  databaseCode: AIKHN
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1872-6291
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004766
  issn: 0020-0255
  databaseCode: AKRWK
  dateStart: 19681201
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELaqssCAoIAo0MoDYkAKdRwnjseqoiqPdqJSt8h2bEjVJlVVEBO_HTtxeEjAwBrdKdHlfHfWffcdAOeIxSTGMvVMrU09okLkMZYqT2KuTL4PuCrZ-ceTaDQlt7Nw1gCDehbGwipd7K9iehmt3ZOes2ZvlWV2xheXFTG2XQJabq4lhNotBldvnzAPQqt-pb0mWem6s1livLLcMnZjVFKdRv7PuelLvhnugV1XKMJ-9S37oKHyFtj5Qh_YAh03dAAvoJsqslaG7rgegPuxOeleIeZVUIPqxfmZ1eGLx2KdbZ6W0CayFBrFaq7FCOZF7qVFCZKRCi4ti__rIZgOrx8GI89tTzB2ZnTjCSqkZLE0VxSJfC04EYEvQhnrMEgJ0xFOMSM0wEpywrVWURrZNiNFnCIjGByBpnmdOgaQRVQElGke-5IgEXMkfKQpDqUWGjHVBqi2WyIdtbjdcLFIagzZPDGmTqypE8QSY-o2uPxQWVW8Gn8Jk_pnJN-cIzFx_3e1k_-pnYJtbIErFpodn4HmZv2sOqby2Ihu6VpdsNW_uRtN3gEImNh6
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV09T8MwELWqMgADggLiq-ABMSCFOo4TxyNCoAItUyuxWbZjQytoUVUQE78dX-LwIQEDa3SnRC_23Vn37hmhQyJyllNTRL7W5hGzKYmEKGxkqLI-3yfKlur8_ZusO2RXt-ltA53VszBAqwyxv4rpZbQOTzoBzc7TaAQzvrSsiCl0CTjcXLvAUsrhBHby9snzYLxqWMI5Cczr1mZJ8hpNQLKbklLrNIt_Tk5fEs7FKloJlSI-rT5mDTXspIWWv-gHtlA7TB3gIxzGigBmHPbrOur1_VaPpnpcRTVsX8JCAx_1cDedjeb3jxgyWYG9YzXY4g0n00lUTEuWjLH4EWT8XzfQ8OJ8cNaNwvUJHmjB55Hm2hiRG39GMSR2WjGdxDo1uUuTggmX0YIKxhNqjWLKOZsVGfQZOVGceMNkEzX96-wWwiLjOuHCqTw2jOhcER0Tx2lqnHZE2G1EatykCdricMXFg6xJZGPpoZYAtSRCeqi30fGHy1MlrPGXMat_hvy2OqQP_L-77fzP7QAtdgf9nuxd3lzvoiUKLBbgaed7qDmfPdu2L0Pmer9cZu8uKtoP
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Many-objective+evolutionary+algorithm+based+on+relative+non-dominance+matrix&rft.jtitle=Information+sciences&rft.au=Zhang%2C+Maoqing&rft.au=Wang%2C+Lei&rft.au=Guo%2C+Weian&rft.au=Li%2C+Wuzhao&rft.date=2021-02-08&rft.pub=Elsevier+Inc&rft.issn=0020-0255&rft.eissn=1872-6291&rft.volume=547&rft.spage=963&rft.epage=983&rft_id=info:doi/10.1016%2Fj.ins.2020.09.061&rft.externalDocID=S0020025520309713
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0020-0255&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0020-0255&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0020-0255&client=summon