The deep finite element method: A deep learning framework integrating the physics-informed neural networks with the finite element method

•The deep finite element method integrating the physics-informed neural networks and the finite element method is proposed.•The method provides a flexible and robust framework that integrates data with physical laws.•A novel loss function is designed to eliminate high-order derivatives for efficient...

Full description

Saved in:
Bibliographic Details
Published inComputer methods in applied mechanics and engineering Vol. 436; p. 117681
Main Authors Xiong, Wei, Long, Xiangyun, Bordas, Stéphane P.A., Jiang, Chao
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.03.2025
Subjects
Online AccessGet full text
ISSN0045-7825
DOI10.1016/j.cma.2024.117681

Cover

Abstract •The deep finite element method integrating the physics-informed neural networks and the finite element method is proposed.•The method provides a flexible and robust framework that integrates data with physical laws.•A novel loss function is designed to eliminate high-order derivatives for efficient training.•Excellent training stability and prediction accuracy especially for complex 3D problems.•The method shows promise for extending to other partial differential equations with variational formulations. This paper proposes a deep finite element method (DFEM), which integrates physics-informed neural networks (PINNs) with the finite element method (FEM). The DFEM provides a versatile and robust framework that seamlessly combines observational data with physical laws. In this method, the outputs of the deep neural networks are utilized for approximating the displacements of grid nodes, while shape functions are used to construct trial functions within elements. A loss function is then designed by combining deep neural networks with stiffness matrices, avoiding the high-order derivative terms. Furthermore, the theoretical convergence stability of the proposed DFEM is analyzed. Finally, the training stability and predictive accuracy of the DFEM are validated through numerical examples. The results demonstrate that the proposed method greatly reduces the relative error compared to the deep energy method (DEM). Moreover, by integrating pre-training, the DFEM experiences a significant enhancement in training efficiency, reducing computation time by up to 7/8 compared to the FEM. This makes it a promising tool for fast computations and digital twin applications.
AbstractList •The deep finite element method integrating the physics-informed neural networks and the finite element method is proposed.•The method provides a flexible and robust framework that integrates data with physical laws.•A novel loss function is designed to eliminate high-order derivatives for efficient training.•Excellent training stability and prediction accuracy especially for complex 3D problems.•The method shows promise for extending to other partial differential equations with variational formulations. This paper proposes a deep finite element method (DFEM), which integrates physics-informed neural networks (PINNs) with the finite element method (FEM). The DFEM provides a versatile and robust framework that seamlessly combines observational data with physical laws. In this method, the outputs of the deep neural networks are utilized for approximating the displacements of grid nodes, while shape functions are used to construct trial functions within elements. A loss function is then designed by combining deep neural networks with stiffness matrices, avoiding the high-order derivative terms. Furthermore, the theoretical convergence stability of the proposed DFEM is analyzed. Finally, the training stability and predictive accuracy of the DFEM are validated through numerical examples. The results demonstrate that the proposed method greatly reduces the relative error compared to the deep energy method (DEM). Moreover, by integrating pre-training, the DFEM experiences a significant enhancement in training efficiency, reducing computation time by up to 7/8 compared to the FEM. This makes it a promising tool for fast computations and digital twin applications.
ArticleNumber 117681
Author Long, Xiangyun
Bordas, Stéphane P.A.
Jiang, Chao
Xiong, Wei
Author_xml – sequence: 1
  givenname: Wei
  orcidid: 0009-0004-8888-7386
  surname: Xiong
  fullname: Xiong, Wei
  organization: College of Mechanical and Vehicle Engineering, Hunan University, Changsha City, PR China
– sequence: 2
  givenname: Xiangyun
  orcidid: 0000-0001-5184-8181
  surname: Long
  fullname: Long, Xiangyun
  email: longxy@hnu.edu.cn
  organization: College of Mechanical and Vehicle Engineering, Hunan University, Changsha City, PR China
– sequence: 3
  givenname: Stéphane P.A.
  surname: Bordas
  fullname: Bordas, Stéphane P.A.
  organization: Department of Computational Engineering, University of Luxembourg, 6 Avenue de la Fonte, 4362 Esch-sur-Alzette, Luxembourg
– sequence: 4
  givenname: Chao
  surname: Jiang
  fullname: Jiang, Chao
  email: jiangc@hnu.edu.cn
  organization: College of Mechanical and Vehicle Engineering, Hunan University, Changsha City, PR China
BookMark eNp9kE1OwzAQhb0oEm3hAOx8gRTb-XEKq6riT6rEpqwtxx43LolT2YaqR-DWJIQVQp3Nk2bmm9F7MzRxnQOEbihZUEKL2_1CtXLBCMsWlPKipBM0JSTLE16y_BLNQtiTvkrKpuhrWwPWAAdsrLMRMDTQgou4hVh3-g6vxmkD0jvrdth42cKx8-_Yugg7L-PQjf2VQ30KVoXEOtP5FjR28OFl00sc9gM-2lj_bP776gpdGNkEuP7VOXp7fNiun5PN69PLerVJFFvymFSppKS3lnOZk6oEUqWspIZClsoq42mqeVnkzAAruM6XkAExWa5pzlipGF-mc8THu8p3IXgwQtnYu-hc9NI2ghIxpCj2ok9RDCmKMcWepH_Ig7et9KezzP3IQG_p04IXQVlwCrT1oKLQnT1DfwPwvJCi
CitedBy_id crossref_primary_10_1016_j_ijmecsci_2025_110075
Cites_doi 10.1016/j.neucom.2018.06.056
10.1016/j.cma.2022.114909
10.3389/fmats.2023.1128954
10.1016/j.cma.2022.114790
10.2166/hydro.2008.015
10.1016/j.cma.2019.112790
10.1016/j.cma.2019.112732
10.1109/TNNLS.2021.3070878
10.1016/j.cma.2021.114096
10.1016/j.jcp.2021.110938
10.1007/s40304-018-0127-z
10.1016/j.jcp.2018.10.045
10.1016/j.cma.2020.113250
10.1016/j.jmps.2022.104927
10.1016/j.cma.2016.02.001
10.1214/aoms/1177729586
10.1016/j.jcp.2019.109020
10.1016/0021-9991(90)90007-N
10.1038/323533a0
10.1016/j.cma.2020.113028
10.1016/j.cma.2019.112789
10.1016/j.cma.2022.115491
10.1016/j.cma.2020.113603
10.1016/j.engappai.2024.108055
10.1016/j.mechmat.2023.104707
10.1016/j.cma.2021.113959
10.1002/cnm.2958
10.1137/19M1274067
10.1007/BF01589116
10.1016/j.euromechsol.2019.103874
10.1016/j.jcp.2020.110085
10.1007/s00466-021-02112-3
10.1145/3446776
10.1016/j.jcp.2018.08.029
10.1016/j.cma.2020.113547
10.1016/j.cma.2021.113933
10.1007/s10915-022-01939-z
10.1038/s42254-021-00314-5
10.1016/j.jcp.2022.111539
10.1016/j.jcp.2019.108963
10.1016/0893-6080(89)90020-8
10.1016/j.cma.2022.115307
ContentType Journal Article
Copyright 2024 Elsevier B.V.
Copyright_xml – notice: 2024 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.cma.2024.117681
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Engineering
ExternalDocumentID 10_1016_j_cma_2024_117681
S0045782524009356
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
1B1
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AATTM
AAXKI
AAXUO
AAYFN
ABAOU
ABBOA
ABFNM
ABJNI
ABMAC
ACDAQ
ACGFS
ACIWK
ACRLP
ACZNC
ADBBV
ADEZE
ADGUI
ADTZH
AEBSH
AECPX
AEIPS
AEKER
AENEX
AFJKZ
AFTJW
AFXIZ
AGCQF
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIGVJ
AIKHN
AITUG
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
AOUOD
APXCP
ARUGR
AXJTR
BJAXD
BKOJK
BLXMC
BNPGV
CS3
DU5
EBS
EFJIC
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
IHE
J1W
JJJVA
KOM
LG9
LY7
M41
MHUIS
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SSH
SST
SSV
SSW
SSZ
T5K
TN5
WH7
XPP
ZMT
~02
~G-
29F
AAQXK
AAYWO
AAYXX
ABEFU
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADIYS
ADJOM
ADMUD
ADNMO
AEUPX
AFPUW
AGQPQ
AI.
AIGII
AIIUN
AKBMS
AKYEP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
EFLBG
EJD
FEDTE
FGOYB
G-2
HLZ
HVGLF
HZ~
R2-
SBC
SET
VH1
VOH
WUQ
ZY4
~HD
ID FETCH-LOGICAL-c297t-b3a1002457a50b8e0b3281f1e43ab4733d78652fe267d59e4e0f45d15228c2793
IEDL.DBID .~1
ISSN 0045-7825
IngestDate Thu Apr 24 22:59:24 EDT 2025
Wed Oct 01 06:02:57 EDT 2025
Sat May 03 15:57:02 EDT 2025
IsPeerReviewed true
IsScholarly true
Keywords Solid elasticity mechanics
Three-dimensional structures
Physics-informed neural networks
Deep finite element method
Deep energy method
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c297t-b3a1002457a50b8e0b3281f1e43ab4733d78652fe267d59e4e0f45d15228c2793
ORCID 0009-0004-8888-7386
0000-0001-5184-8181
ParticipantIDs crossref_citationtrail_10_1016_j_cma_2024_117681
crossref_primary_10_1016_j_cma_2024_117681
elsevier_sciencedirect_doi_10_1016_j_cma_2024_117681
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2025-03-01
2025-03-00
PublicationDateYYYYMMDD 2025-03-01
PublicationDate_xml – month: 03
  year: 2025
  text: 2025-03-01
  day: 01
PublicationDecade 2020
PublicationTitle Computer methods in applied mechanics and engineering
PublicationYear 2025
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Solomatine, Ostfeld (bib0011) 2008; 10
Bui, Tomar, Courtecuisse, Audette, Cotin, Bordas (bib0057) 2018; 34
Sun, Gao, Pan, Wang (bib0058) 2020; 361
Kharazmi, Zhang, Karniadakis (bib0040) 2021; 374
Voulodimos, Doulamis, Doulamis, Protopapadakis (bib0001) 2018
Cuomo, Di Cola, Giampaolo, Rozza, Raissi, Piccialli (bib0024) 2022; 92
Yin, Zheng, Humphrey, Karniadakis (bib0019) 2021; 375
Shin, Darbon, Karniadakis (bib0047) 2020
Bojarski, Del Testa, Dworakowski, Firner, Flepp, Goyal, Jackel, Monfort, Muller, Zhang, Zhang, Zhao, Zieba (bib0006) 2016
Liu, Nocedal (bib0061) 1989; 45
Devlin, Chang, Lee, Toutanova (bib0005) 2019
Nguyen-Thanh, Anitescu, Alajlan, Rabczuk, Zhuang (bib0043) 2021; 386
Wang, Zhang (bib0031) 2020; 400
Lu, Meng, Mao, Karniadakis (bib0036) 2021; 63
Henkes, Wessels, Mahnken (bib0052) 2022; 393
Chen (bib0004) 2014
Li, Wang (bib0054) 2008
Raissi, Perdikaris, Karniadakis (bib0025) 2019; 378
Samaniego, Anitescu, Goswami, Nguyen-Thanh, Guo, Hamdia, Zhuang, Rabczuk (bib0041) 2020; 362
Deshpande, Sosa, Bordas, Lengiewicz (bib0014) 2023; 10
Krokos, Bordas, Kerfriden (bib0016) 2024; 286–287
Chen, Du, Li, Lyu (bib0055) 2019
Haghighat, Raissi, Moure, Gomez, Juanes (bib0038) 2020
Lee, Kang (bib0028) 1990; 91
Zhang, Bengio, Hardt, Recht, Vinyals (bib0062) 2021; 64
Shalev-Shwartz, Ben-David (bib0065) 2014
Simonyan, Zisserman (bib0003) 2014
Hornik, Stinchcombe, White (bib0048) 1989; 2
Sirignano, Spiliopoulos (bib0039) 2018; 375
Fang (bib0022) 2022; 33
Mattey, Ghosh (bib0056) 2022; 390
Chiu, Wong, Ooi, Dao, Ong (bib0020) 2022; 395
Leung, Lin, Zhang (bib0021) 2022; 470
Bahmani, Sun (bib0008) 2022; 166
Rocha, Kerfriden, van der Meer (bib0017) 2023; 184
De Ryck, Jagtap, Mishra (bib0035) 2024
Bischof, Kraus (bib0037) 2021
Kirchdoerfer, Ortiz (bib0007) 2016; 304
Xu, Darve (bib0010) 2022; 453
Zienkiewicz, Taylor, Zhu (bib0053) 2005
Robbins, Monro (bib0059) 1951; 22
LeCun, Bottou, Orr, Müller (bib0051) 1998
Baydin, Pearlmutter, Radul, Siskind (bib0033) 2018; 18
Berg, Nyström (bib0045) 2018; 317
Shin, Zhang, Karniadakis (bib0046) 2020
Xu, Zhang, Luo, Xiao, Ma (bib0064) 2019
Deshpande, Lengiewicz, Bordas (bib0013) 2022; 398
Jagtap, Kharazmi, Karniadakis (bib0027) 2020; 365
Krokos, Bui Xuan, Bordas, Young, Kerfriden (bib0015) 2022; 69
Krizhevsky, Sutskever, Hinton (bib0002) 2017; 60
Wang, Sun, Li, Lu, Liu (bib0044) 2022; 400
Mao, Jagtap, Karniadakis (bib0034) 2020; 360
Deshpande, Bordas, Lengiewicz (bib0012) 2024; 133
Karniadakis, Kevrekidis, Lu, Perdikaris, Wang, Yang (bib0018) 2021; 3
Sheng, Yang (bib0030) 2021; 428
Amini Niaki, Haghighat, Campbell, Poursartip, Vaziri (bib0026) 2021; 384
Kingma, Ba (bib0060) 2014
Weinan, Yu (bib0042) 2018; 6
Garipov, Izmailov, Podoprikhin, Vetrov, Wilson (bib0063) 2018; 31
Meng, Li, Zhang, Karniadakis (bib0023) 2020; 370
Nguyen-Thanh, Zhuang, Rabczuk (bib0032) 2020; 80
Meng, Karniadakis (bib0009) 2020; 401
Li, Bazant, Zhu (bib0029) 2021; 383
Rumelhart, Hinton, Williams (bib0050) 1986; 323
Bishop (bib0049) 2006
Mao (10.1016/j.cma.2024.117681_bib0034) 2020; 360
Jagtap (10.1016/j.cma.2024.117681_bib0027) 2020; 365
Wang (10.1016/j.cma.2024.117681_bib0031) 2020; 400
Bischof (10.1016/j.cma.2024.117681_bib0037) 2021
Hornik (10.1016/j.cma.2024.117681_bib0048) 1989; 2
Weinan (10.1016/j.cma.2024.117681_bib0042) 2018; 6
Nguyen-Thanh (10.1016/j.cma.2024.117681_bib0043) 2021; 386
Voulodimos (10.1016/j.cma.2024.117681_bib0001) 2018
Krokos (10.1016/j.cma.2024.117681_bib0016) 2024; 286–287
Bui (10.1016/j.cma.2024.117681_bib0057) 2018; 34
Rumelhart (10.1016/j.cma.2024.117681_bib0050) 1986; 323
Leung (10.1016/j.cma.2024.117681_bib0021) 2022; 470
Xu (10.1016/j.cma.2024.117681_bib0064) 2019
Nguyen-Thanh (10.1016/j.cma.2024.117681_bib0032) 2020; 80
Sirignano (10.1016/j.cma.2024.117681_bib0039) 2018; 375
Kharazmi (10.1016/j.cma.2024.117681_bib0040) 2021; 374
Krizhevsky (10.1016/j.cma.2024.117681_bib0002) 2017; 60
Robbins (10.1016/j.cma.2024.117681_bib0059) 1951; 22
Deshpande (10.1016/j.cma.2024.117681_bib0013) 2022; 398
Wang (10.1016/j.cma.2024.117681_bib0044) 2022; 400
Bishop (10.1016/j.cma.2024.117681_bib0049) 2006
Yin (10.1016/j.cma.2024.117681_bib0019) 2021; 375
Sheng (10.1016/j.cma.2024.117681_bib0030) 2021; 428
Haghighat (10.1016/j.cma.2024.117681_bib0038) 2020
De Ryck (10.1016/j.cma.2024.117681_bib0035) 2024
Devlin (10.1016/j.cma.2024.117681_bib0005) 2019
Li (10.1016/j.cma.2024.117681_bib0029) 2021; 383
Samaniego (10.1016/j.cma.2024.117681_bib0041) 2020; 362
Cuomo (10.1016/j.cma.2024.117681_bib0024) 2022; 92
Baydin (10.1016/j.cma.2024.117681_bib0033) 2018; 18
Shin (10.1016/j.cma.2024.117681_bib0047) 2020
Kingma (10.1016/j.cma.2024.117681_bib0060) 2014
Meng (10.1016/j.cma.2024.117681_bib0023) 2020; 370
Amini Niaki (10.1016/j.cma.2024.117681_bib0026) 2021; 384
Meng (10.1016/j.cma.2024.117681_bib0009) 2020; 401
Solomatine (10.1016/j.cma.2024.117681_bib0011) 2008; 10
Deshpande (10.1016/j.cma.2024.117681_bib0012) 2024; 133
Lu (10.1016/j.cma.2024.117681_bib0036) 2021; 63
Mattey (10.1016/j.cma.2024.117681_bib0056) 2022; 390
Bahmani (10.1016/j.cma.2024.117681_bib0008) 2022; 166
Sun (10.1016/j.cma.2024.117681_bib0058) 2020; 361
LeCun (10.1016/j.cma.2024.117681_bib0051) 1998
Bojarski (10.1016/j.cma.2024.117681_bib0006) 2016
Raissi (10.1016/j.cma.2024.117681_bib0025) 2019; 378
Xu (10.1016/j.cma.2024.117681_bib0010) 2022; 453
Lee (10.1016/j.cma.2024.117681_bib0028) 1990; 91
Karniadakis (10.1016/j.cma.2024.117681_bib0018) 2021; 3
Li (10.1016/j.cma.2024.117681_bib0054) 2008
Rocha (10.1016/j.cma.2024.117681_bib0017) 2023; 184
Zienkiewicz (10.1016/j.cma.2024.117681_bib0053) 2005
Shin (10.1016/j.cma.2024.117681_bib0046) 2020
Berg (10.1016/j.cma.2024.117681_bib0045) 2018; 317
Chen (10.1016/j.cma.2024.117681_bib0004) 2014
Shalev-Shwartz (10.1016/j.cma.2024.117681_bib0065) 2014
Deshpande (10.1016/j.cma.2024.117681_bib0014) 2023; 10
Chiu (10.1016/j.cma.2024.117681_bib0020) 2022; 395
Fang (10.1016/j.cma.2024.117681_bib0022) 2022; 33
Krokos (10.1016/j.cma.2024.117681_bib0015) 2022; 69
Liu (10.1016/j.cma.2024.117681_bib0061) 1989; 45
Chen (10.1016/j.cma.2024.117681_bib0055) 2019
Zhang (10.1016/j.cma.2024.117681_bib0062) 2021; 64
Kirchdoerfer (10.1016/j.cma.2024.117681_bib0007) 2016; 304
Henkes (10.1016/j.cma.2024.117681_bib0052) 2022; 393
Garipov (10.1016/j.cma.2024.117681_bib0063) 2018; 31
Simonyan (10.1016/j.cma.2024.117681_bib0003) 2014
References_xml – year: 2024
  ident: bib0035
  article-title: arXiv preprint
– volume: 2
  start-page: 359
  year: 1989
  end-page: 366
  ident: bib0048
  article-title: Multilayer feedforward networks are universal approximators
  publication-title: Neural Netw.
– volume: 375
  year: 2021
  ident: bib0019
  article-title: Non-invasive inference of thrombus material properties with physics-informed neural networks
  publication-title: Comput. Method. Appl. Mech. Engrg.
– volume: 400
  year: 2022
  ident: bib0044
  article-title: CENN: conservative energy method based on neural networks with subdomains for solving variational problems involving heterogeneous and complex geometries
  publication-title: Comput. Method. Appl. Mech. Engrg.
– volume: 323
  start-page: 533
  year: 1986
  end-page: 536
  ident: bib0050
  article-title: Learning representations by back-propagating errors
  publication-title: Nature
– volume: 91
  start-page: 110
  year: 1990
  end-page: 131
  ident: bib0028
  article-title: Neural algorithm for solving differential equations
  publication-title: J. Comput. Phys.
– volume: 60
  start-page: 84
  year: 2017
  end-page: 90
  ident: bib0002
  article-title: ImageNet classification with deep convolutional neural networks
  publication-title: Adv. Neural. Inf. Process. Syst.
– year: 2008
  ident: bib0054
  article-title: Introduction to Micromechanics and Nanomechanics
– year: 2014
  ident: bib0003
  article-title: arXiv preprint
– volume: 383
  year: 2021
  ident: bib0029
  article-title: A physics-guided neural network framework for elastic plates: comparison of governing equations-based and energy-based approaches
  publication-title: Comput. Method. Appl. Mech. Engrg.
– volume: 374
  year: 2021
  ident: bib0040
  article-title: hp-VPINNs: variational physics-informed neural networks with domain decomposition
  publication-title: Comput. Method. Appl. Mech. Engrg.
– volume: 395
  year: 2022
  ident: bib0020
  article-title: CAN-PINN: a fast physics-informed neural network based on coupled-automatic–numerical differentiation method
  publication-title: Comput. Method. Appl. Mech. Engrg.
– volume: 370
  year: 2020
  ident: bib0023
  article-title: PPINN: parareal physics-informed neural network for time-dependent PDEs
  publication-title: Comput. Method. Appl. Mech. Engrg.
– volume: 92
  start-page: 88
  year: 2022
  ident: bib0024
  article-title: Scientific machine learning through physics–informed neural networks: where we are and what's next
  publication-title: J. Sci. Comput.
– volume: 10
  start-page: 3
  year: 2008
  end-page: 22
  ident: bib0011
  article-title: Data-driven modelling: some past experiences and new approaches
  publication-title: J. Hydroinform.
– volume: 393
  year: 2022
  ident: bib0052
  article-title: Physics informed neural networks for continuum micromechanics
  publication-title: Comput. Method. Appl. Mech. Engrg.
– volume: 64
  start-page: 107
  year: 2021
  end-page: 115
  ident: bib0062
  article-title: Understanding deep learning (still) requires rethinking generalization
  publication-title: Commun. ACM
– volume: 453
  year: 2022
  ident: bib0010
  article-title: Physics constrained learning for data-driven inverse modeling from sparse observations
  publication-title: J. Comput. Phys.
– year: 2019
  ident: bib0064
  article-title: arXiv preprint
– volume: 390
  year: 2022
  ident: bib0056
  article-title: A physics informed neural network for time-dependent nonlinear and higher order partial differential equations
  publication-title: Comput. Method. Appl. Mech. Engrg.
– volume: 34
  start-page: e2958
  year: 2018
  ident: bib0057
  article-title: Controlling the error on target motion through real-time mesh adaptation: applications to deep brain stimulation
  publication-title: Int. J. Numer. Meth. Biomed. Eng.
– year: 2005
  ident: bib0053
  article-title: The Finite Element method: Its Basis and Fundamentals
– volume: 304
  start-page: 81
  year: 2016
  end-page: 101
  ident: bib0007
  article-title: Data-driven computational mechanics
  publication-title: Comput. Method. Appl. Mech. Engrg.
– volume: 45
  start-page: 503
  year: 1989
  end-page: 528
  ident: bib0061
  article-title: On the limited memory BFGS method for large scale optimization
  publication-title: Math. Program.
– volume: 361
  year: 2020
  ident: bib0058
  article-title: Surrogate modeling for fluid flows based on physics-constrained deep learning without simulation data
  publication-title: Comput. Method. Appl. Mech. Engrg.
– volume: 428
  year: 2021
  ident: bib0030
  article-title: PFNN: a penalty-free neural network method for solving a class of second-order boundary-value problems on complex geometries
  publication-title: J. Comput. Phys.
– volume: 365
  year: 2020
  ident: bib0027
  article-title: Conservative physics-informed neural networks on discrete domains for conservation laws: applications to forward and inverse problems
  publication-title: Comput. Method. Appl. Mech. Engrg.
– volume: 400
  year: 2020
  ident: bib0031
  article-title: A mesh-free method for interface problems using the deep learning approach
  publication-title: J. Comput. Phys.
– volume: 6
  start-page: 1
  year: 2018
  end-page: 12
  ident: bib0042
  article-title: The Deep Ritz Method: a deep learning-based numerical algorithm for solving variational problems
  publication-title: Commun. Math. Stat.
– year: 2021
  ident: bib0037
  article-title: arXiv preprint
– volume: 18
  start-page: 1
  year: 2018
  end-page: 43
  ident: bib0033
  article-title: Automatic differentiation in machine learning: a survey
  publication-title: J. Mach. Learn. Res.
– volume: 33
  start-page: 5514
  year: 2022
  end-page: 5526
  ident: bib0022
  article-title: A High-efficient hybrid physics-informed neural networks based on convolutional neural network
  publication-title: IEEE. Trans. Neural. Netw. Learn. Syst.
– volume: 133
  year: 2024
  ident: bib0012
  article-title: MAgNET: a graph U-Net architecture for mesh-based simulations
  publication-title: Eng. Appl. Artif. Intell.
– year: 2020
  ident: bib0047
  article-title: arXiv preprint
– volume: 398
  year: 2022
  ident: bib0013
  article-title: Probabilistic deep learning for real-time large deformation simulations
  publication-title: Comput. Method. Appl. Mech. Engrg.
– year: 2019
  ident: bib0005
  article-title: arXiv preprint
– year: 2016
  ident: bib0006
  article-title: arXiv preprint
– volume: 166
  year: 2022
  ident: bib0008
  article-title: Manifold embedding data-driven mechanics
  publication-title: J. Mech. Phys. Solid.
– volume: 317
  start-page: 28
  year: 2018
  end-page: 41
  ident: bib0045
  article-title: A unified deep artificial neural network approach to partial differential equations in complex geometries
  publication-title: Neurocomputing
– volume: 63
  start-page: 208
  year: 2021
  end-page: 228
  ident: bib0036
  article-title: DeepXDE: a deep learning library for solving differential equations
  publication-title: SIAM Rev.
– year: 1998
  ident: bib0051
  article-title: Neural Networks: Tricks of the Trade
– year: 2014
  ident: bib0065
  article-title: Understanding Machine learning: From theory to Algorithms
– year: 2020
  ident: bib0046
  article-title: arXiv preprint
– year: 2014
  ident: bib0004
  article-title: arXiv preprint
– volume: 31
  year: 2018
  ident: bib0063
  article-title: Loss surfaces, mode connectivity, and fast ensembling of dnns
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 286–287
  year: 2024
  ident: bib0016
  article-title: A graph-based probabilistic geometric deep learning framework with online enforcement of physical constraints to predict the criticality of defects in porous materials
  publication-title: Int. J. Solid. Struct.
– volume: 384
  year: 2021
  ident: bib0026
  article-title: Physics-informed neural network for modelling the thermochemical curing process of composite-tool systems during manufacture
  publication-title: Comput. Method. Appl. Mech. Engrg.
– year: 2020
  ident: bib0038
  article-title: arXiv preprint
– volume: 386
  year: 2021
  ident: bib0043
  article-title: Parametric deep energy approach for elasticity accounting for strain gradient effects
  publication-title: Comput. Method. Appl. Mech. Engrg.
– year: 2014
  ident: bib0060
  article-title: arXiv preprint
– volume: 378
  start-page: 686
  year: 2019
  end-page: 707
  ident: bib0025
  article-title: Physics-informed neural networks: a deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations
  publication-title: J. Comput. Phys.
– volume: 3
  start-page: 422
  year: 2021
  end-page: 440
  ident: bib0018
  article-title: Physics-informed machine learning
  publication-title: Nat. Rev. Phys.
– volume: 184
  year: 2023
  ident: bib0017
  article-title: Machine learning of evolving physics-based material models for multiscale solid mechanics
  publication-title: Mech. Mater.
– volume: 375
  start-page: 1339
  year: 2018
  end-page: 1364
  ident: bib0039
  article-title: DGM: a deep learning algorithm for solving partial differential equations
  publication-title: J. Comput. Phys.
– volume: 80
  year: 2020
  ident: bib0032
  article-title: A deep energy method for finite deformation hyperelasticity
  publication-title: Eur. J. Mech. A Solid.
– volume: 401
  year: 2020
  ident: bib0009
  article-title: A composite neural network that learns from multi-fidelity data: application to function approximation and inverse PDE problems
  publication-title: J. Comput. Phys.
– year: 2006
  ident: bib0049
  article-title: Pattern Recognition and Machine Learning
– volume: 69
  start-page: 733
  year: 2022
  end-page: 766
  ident: bib0015
  article-title: A Bayesian multiscale CNN framework to predict local stress fields in structures with microscale features
  publication-title: Comput. Mech.
– volume: 360
  year: 2020
  ident: bib0034
  article-title: Physics-informed neural networks for high-speed flows
  publication-title: Comput. Method. Appl. Mech. Engrg.
– volume: 362
  year: 2020
  ident: bib0041
  article-title: An energy approach to the solution of partial differential equations in computational mechanics via machine learning: concepts, implementation and applications
  publication-title: Comput. Method. Appl. Mech. Engrg.
– year: 2019
  ident: bib0055
  article-title: arXiv preprint
– volume: 22
  start-page: 400
  year: 1951
  end-page: 407
  ident: bib0059
  article-title: A stochastic approximation method
  publication-title: Ann. Math. Statist.
– start-page: 1
  year: 2018
  end-page: 13
  ident: bib0001
  article-title: Deep learning for computer vision: a brief review
  publication-title: Comput. Intell. Neurosci.
– volume: 470
  year: 2022
  ident: bib0021
  article-title: NH-PINN: neural homogenization-based physics-informed neural network for multiscale problems
  publication-title: J. Comput. Phys.
– volume: 10
  year: 2023
  ident: bib0014
  article-title: Convolution, aggregation and attention based deep neural networks for accelerating simulations in mechanics
  publication-title: Front. Mater.
– volume: 317
  start-page: 28
  year: 2018
  ident: 10.1016/j.cma.2024.117681_bib0045
  article-title: A unified deep artificial neural network approach to partial differential equations in complex geometries
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2018.06.056
– year: 2014
  ident: 10.1016/j.cma.2024.117681_bib0060
– volume: 395
  year: 2022
  ident: 10.1016/j.cma.2024.117681_bib0020
  article-title: CAN-PINN: a fast physics-informed neural network based on coupled-automatic–numerical differentiation method
  publication-title: Comput. Method. Appl. Mech. Engrg.
  doi: 10.1016/j.cma.2022.114909
– year: 2024
  ident: 10.1016/j.cma.2024.117681_bib0035
– volume: 31
  year: 2018
  ident: 10.1016/j.cma.2024.117681_bib0063
  article-title: Loss surfaces, mode connectivity, and fast ensembling of dnns
  publication-title: Adv. Neural Inf. Process. Syst.
– year: 2020
  ident: 10.1016/j.cma.2024.117681_bib0046
– year: 2014
  ident: 10.1016/j.cma.2024.117681_bib0004
– year: 2019
  ident: 10.1016/j.cma.2024.117681_bib0064
– volume: 10
  year: 2023
  ident: 10.1016/j.cma.2024.117681_bib0014
  article-title: Convolution, aggregation and attention based deep neural networks for accelerating simulations in mechanics
  publication-title: Front. Mater.
  doi: 10.3389/fmats.2023.1128954
– volume: 393
  year: 2022
  ident: 10.1016/j.cma.2024.117681_bib0052
  article-title: Physics informed neural networks for continuum micromechanics
  publication-title: Comput. Method. Appl. Mech. Engrg.
  doi: 10.1016/j.cma.2022.114790
– volume: 10
  start-page: 3
  year: 2008
  ident: 10.1016/j.cma.2024.117681_bib0011
  article-title: Data-driven modelling: some past experiences and new approaches
  publication-title: J. Hydroinform.
  doi: 10.2166/hydro.2008.015
– volume: 362
  year: 2020
  ident: 10.1016/j.cma.2024.117681_bib0041
  article-title: An energy approach to the solution of partial differential equations in computational mechanics via machine learning: concepts, implementation and applications
  publication-title: Comput. Method. Appl. Mech. Engrg.
  doi: 10.1016/j.cma.2019.112790
– volume: 361
  year: 2020
  ident: 10.1016/j.cma.2024.117681_bib0058
  article-title: Surrogate modeling for fluid flows based on physics-constrained deep learning without simulation data
  publication-title: Comput. Method. Appl. Mech. Engrg.
  doi: 10.1016/j.cma.2019.112732
– volume: 33
  start-page: 5514
  year: 2022
  ident: 10.1016/j.cma.2024.117681_bib0022
  article-title: A High-efficient hybrid physics-informed neural networks based on convolutional neural network
  publication-title: IEEE. Trans. Neural. Netw. Learn. Syst.
  doi: 10.1109/TNNLS.2021.3070878
– volume: 386
  year: 2021
  ident: 10.1016/j.cma.2024.117681_bib0043
  article-title: Parametric deep energy approach for elasticity accounting for strain gradient effects
  publication-title: Comput. Method. Appl. Mech. Engrg.
  doi: 10.1016/j.cma.2021.114096
– volume: 453
  year: 2022
  ident: 10.1016/j.cma.2024.117681_bib0010
  article-title: Physics constrained learning for data-driven inverse modeling from sparse observations
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2021.110938
– year: 2020
  ident: 10.1016/j.cma.2024.117681_bib0038
– volume: 6
  start-page: 1
  issue: 1
  year: 2018
  ident: 10.1016/j.cma.2024.117681_bib0042
  article-title: The Deep Ritz Method: a deep learning-based numerical algorithm for solving variational problems
  publication-title: Commun. Math. Stat.
  doi: 10.1007/s40304-018-0127-z
– volume: 390
  year: 2022
  ident: 10.1016/j.cma.2024.117681_bib0056
  article-title: A physics informed neural network for time-dependent nonlinear and higher order partial differential equations
  publication-title: Comput. Method. Appl. Mech. Engrg.
– volume: 378
  start-page: 686
  year: 2019
  ident: 10.1016/j.cma.2024.117681_bib0025
  article-title: Physics-informed neural networks: a deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2018.10.045
– volume: 370
  year: 2020
  ident: 10.1016/j.cma.2024.117681_bib0023
  article-title: PPINN: parareal physics-informed neural network for time-dependent PDEs
  publication-title: Comput. Method. Appl. Mech. Engrg.
  doi: 10.1016/j.cma.2020.113250
– volume: 166
  year: 2022
  ident: 10.1016/j.cma.2024.117681_bib0008
  article-title: Manifold embedding data-driven mechanics
  publication-title: J. Mech. Phys. Solid.
  doi: 10.1016/j.jmps.2022.104927
– volume: 304
  start-page: 81
  year: 2016
  ident: 10.1016/j.cma.2024.117681_bib0007
  article-title: Data-driven computational mechanics
  publication-title: Comput. Method. Appl. Mech. Engrg.
  doi: 10.1016/j.cma.2016.02.001
– volume: 22
  start-page: 400
  issue: 3
  year: 1951
  ident: 10.1016/j.cma.2024.117681_bib0059
  article-title: A stochastic approximation method
  publication-title: Ann. Math. Statist.
  doi: 10.1214/aoms/1177729586
– volume: 401
  year: 2020
  ident: 10.1016/j.cma.2024.117681_bib0009
  article-title: A composite neural network that learns from multi-fidelity data: application to function approximation and inverse PDE problems
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2019.109020
– volume: 91
  start-page: 110
  issue: 1
  year: 1990
  ident: 10.1016/j.cma.2024.117681_bib0028
  article-title: Neural algorithm for solving differential equations
  publication-title: J. Comput. Phys.
  doi: 10.1016/0021-9991(90)90007-N
– volume: 323
  start-page: 533
  issue: 6088
  year: 1986
  ident: 10.1016/j.cma.2024.117681_bib0050
  article-title: Learning representations by back-propagating errors
  publication-title: Nature
  doi: 10.1038/323533a0
– volume: 365
  year: 2020
  ident: 10.1016/j.cma.2024.117681_bib0027
  article-title: Conservative physics-informed neural networks on discrete domains for conservation laws: applications to forward and inverse problems
  publication-title: Comput. Method. Appl. Mech. Engrg.
  doi: 10.1016/j.cma.2020.113028
– volume: 360
  year: 2020
  ident: 10.1016/j.cma.2024.117681_bib0034
  article-title: Physics-informed neural networks for high-speed flows
  publication-title: Comput. Method. Appl. Mech. Engrg.
  doi: 10.1016/j.cma.2019.112789
– volume: 60
  start-page: 84
  issue: 6
  year: 2017
  ident: 10.1016/j.cma.2024.117681_bib0002
  article-title: ImageNet classification with deep convolutional neural networks
  publication-title: Adv. Neural. Inf. Process. Syst.
– volume: 400
  year: 2022
  ident: 10.1016/j.cma.2024.117681_bib0044
  article-title: CENN: conservative energy method based on neural networks with subdomains for solving variational problems involving heterogeneous and complex geometries
  publication-title: Comput. Method. Appl. Mech. Engrg.
  doi: 10.1016/j.cma.2022.115491
– volume: 375
  year: 2021
  ident: 10.1016/j.cma.2024.117681_bib0019
  article-title: Non-invasive inference of thrombus material properties with physics-informed neural networks
  publication-title: Comput. Method. Appl. Mech. Engrg.
  doi: 10.1016/j.cma.2020.113603
– volume: 133
  year: 2024
  ident: 10.1016/j.cma.2024.117681_bib0012
  article-title: MAgNET: a graph U-Net architecture for mesh-based simulations
  publication-title: Eng. Appl. Artif. Intell.
  doi: 10.1016/j.engappai.2024.108055
– volume: 184
  year: 2023
  ident: 10.1016/j.cma.2024.117681_bib0017
  article-title: Machine learning of evolving physics-based material models for multiscale solid mechanics
  publication-title: Mech. Mater.
  doi: 10.1016/j.mechmat.2023.104707
– volume: 384
  year: 2021
  ident: 10.1016/j.cma.2024.117681_bib0026
  article-title: Physics-informed neural network for modelling the thermochemical curing process of composite-tool systems during manufacture
  publication-title: Comput. Method. Appl. Mech. Engrg.
  doi: 10.1016/j.cma.2021.113959
– volume: 34
  start-page: e2958
  year: 2018
  ident: 10.1016/j.cma.2024.117681_bib0057
  article-title: Controlling the error on target motion through real-time mesh adaptation: applications to deep brain stimulation
  publication-title: Int. J. Numer. Meth. Biomed. Eng.
  doi: 10.1002/cnm.2958
– volume: 63
  start-page: 208
  issue: 1
  year: 2021
  ident: 10.1016/j.cma.2024.117681_bib0036
  article-title: DeepXDE: a deep learning library for solving differential equations
  publication-title: SIAM Rev.
  doi: 10.1137/19M1274067
– volume: 45
  start-page: 503
  year: 1989
  ident: 10.1016/j.cma.2024.117681_bib0061
  article-title: On the limited memory BFGS method for large scale optimization
  publication-title: Math. Program.
  doi: 10.1007/BF01589116
– volume: 80
  year: 2020
  ident: 10.1016/j.cma.2024.117681_bib0032
  article-title: A deep energy method for finite deformation hyperelasticity
  publication-title: Eur. J. Mech. A Solid.
  doi: 10.1016/j.euromechsol.2019.103874
– volume: 18
  start-page: 1
  year: 2018
  ident: 10.1016/j.cma.2024.117681_bib0033
  article-title: Automatic differentiation in machine learning: a survey
  publication-title: J. Mach. Learn. Res.
– volume: 428
  year: 2021
  ident: 10.1016/j.cma.2024.117681_bib0030
  article-title: PFNN: a penalty-free neural network method for solving a class of second-order boundary-value problems on complex geometries
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2020.110085
– year: 2008
  ident: 10.1016/j.cma.2024.117681_bib0054
– year: 2006
  ident: 10.1016/j.cma.2024.117681_bib0049
– volume: 69
  start-page: 733
  year: 2022
  ident: 10.1016/j.cma.2024.117681_bib0015
  article-title: A Bayesian multiscale CNN framework to predict local stress fields in structures with microscale features
  publication-title: Comput. Mech.
  doi: 10.1007/s00466-021-02112-3
– volume: 64
  start-page: 107
  issue: 3
  year: 2021
  ident: 10.1016/j.cma.2024.117681_bib0062
  article-title: Understanding deep learning (still) requires rethinking generalization
  publication-title: Commun. ACM
  doi: 10.1145/3446776
– year: 2019
  ident: 10.1016/j.cma.2024.117681_bib0005
– volume: 375
  start-page: 1339
  year: 2018
  ident: 10.1016/j.cma.2024.117681_bib0039
  article-title: DGM: a deep learning algorithm for solving partial differential equations
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2018.08.029
– year: 2014
  ident: 10.1016/j.cma.2024.117681_bib0003
– volume: 374
  year: 2021
  ident: 10.1016/j.cma.2024.117681_bib0040
  article-title: hp-VPINNs: variational physics-informed neural networks with domain decomposition
  publication-title: Comput. Method. Appl. Mech. Engrg.
  doi: 10.1016/j.cma.2020.113547
– year: 2016
  ident: 10.1016/j.cma.2024.117681_bib0006
– volume: 383
  year: 2021
  ident: 10.1016/j.cma.2024.117681_bib0029
  article-title: A physics-guided neural network framework for elastic plates: comparison of governing equations-based and energy-based approaches
  publication-title: Comput. Method. Appl. Mech. Engrg.
  doi: 10.1016/j.cma.2021.113933
– volume: 92
  start-page: 88
  year: 2022
  ident: 10.1016/j.cma.2024.117681_bib0024
  article-title: Scientific machine learning through physics–informed neural networks: where we are and what's next
  publication-title: J. Sci. Comput.
  doi: 10.1007/s10915-022-01939-z
– volume: 3
  start-page: 422
  year: 2021
  ident: 10.1016/j.cma.2024.117681_bib0018
  article-title: Physics-informed machine learning
  publication-title: Nat. Rev. Phys.
  doi: 10.1038/s42254-021-00314-5
– year: 2021
  ident: 10.1016/j.cma.2024.117681_bib0037
– year: 1998
  ident: 10.1016/j.cma.2024.117681_bib0051
– volume: 470
  year: 2022
  ident: 10.1016/j.cma.2024.117681_bib0021
  article-title: NH-PINN: neural homogenization-based physics-informed neural network for multiscale problems
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2022.111539
– volume: 400
  year: 2020
  ident: 10.1016/j.cma.2024.117681_bib0031
  article-title: A mesh-free method for interface problems using the deep learning approach
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2019.108963
– start-page: 1
  year: 2018
  ident: 10.1016/j.cma.2024.117681_bib0001
  article-title: Deep learning for computer vision: a brief review
  publication-title: Comput. Intell. Neurosci.
– year: 2020
  ident: 10.1016/j.cma.2024.117681_bib0047
– volume: 2
  start-page: 359
  issue: 5
  year: 1989
  ident: 10.1016/j.cma.2024.117681_bib0048
  article-title: Multilayer feedforward networks are universal approximators
  publication-title: Neural Netw.
  doi: 10.1016/0893-6080(89)90020-8
– year: 2005
  ident: 10.1016/j.cma.2024.117681_bib0053
– volume: 286–287
  year: 2024
  ident: 10.1016/j.cma.2024.117681_bib0016
  article-title: A graph-based probabilistic geometric deep learning framework with online enforcement of physical constraints to predict the criticality of defects in porous materials
  publication-title: Int. J. Solid. Struct.
– year: 2019
  ident: 10.1016/j.cma.2024.117681_bib0055
– volume: 398
  year: 2022
  ident: 10.1016/j.cma.2024.117681_bib0013
  article-title: Probabilistic deep learning for real-time large deformation simulations
  publication-title: Comput. Method. Appl. Mech. Engrg.
  doi: 10.1016/j.cma.2022.115307
– year: 2014
  ident: 10.1016/j.cma.2024.117681_bib0065
SSID ssj0000812
Score 2.5353367
Snippet •The deep finite element method integrating the physics-informed neural networks and the finite element method is proposed.•The method provides a flexible and...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 117681
SubjectTerms Deep energy method
Deep finite element method
Physics-informed neural networks
Solid elasticity mechanics
Three-dimensional structures
Title The deep finite element method: A deep learning framework integrating the physics-informed neural networks with the finite element method
URI https://dx.doi.org/10.1016/j.cma.2024.117681
Volume 436
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  issn: 0045-7825
  databaseCode: GBLVA
  dateStart: 20110101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: true
  ssIdentifier: ssj0000812
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Complete Freedom Collection [SCCMFC]
  issn: 0045-7825
  databaseCode: ACRLP
  dateStart: 19950101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: true
  ssIdentifier: ssj0000812
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals [SCFCJ]
  issn: 0045-7825
  databaseCode: AIKHN
  dateStart: 19950101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: true
  ssIdentifier: ssj0000812
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Science Direct
  issn: 0045-7825
  databaseCode: .~1
  dateStart: 19950101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: true
  ssIdentifier: ssj0000812
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  issn: 0045-7825
  databaseCode: AKRWK
  dateStart: 19720601
  customDbUrl:
  isFulltext: true
  mediaType: online
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000812
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV27TsMwFLUqWGDgUUCUR-WBCck08SsOW1VRFZA6UalblDg3qAiFipaVnb_Gr0CRCgNrYsuWj-N7Yh-fi9AFTawlDIsIBaCES8VIDhUnUkGsmWYsL5zaYixHE343FdMWGjR3YaysMqz9fk13q3V40guj2ZvPZvaOL7de7MKqIFMmrO0254nNYnD1_i3zMCHPO4ZzQWzp5mTTaby0sx6i3B5dShWvj00r8Wa4h3YCUcR935d91IK6jXYDacThk1y00faKo-AB-jCw4xJgjquZZZMYvDwc-0zR17jv34ZkEY-4asRZuDGOsE8NK8R-z2NBvLWqadNaX5oe1V44vsB2C9eVXNvUIZoMbx4GIxKyLRBN02RJCpbH7iA2yUVUKIgKRlVcxcANXjxhrEyUFLQCKpNSpMAhqrgoTfynShvI2RHaqF9qOEa4MCynSKuoMv9KnNNccS3BMJ0ISs1A5h0UNeOc6WBFbjNiPGeN5uwpM9BkFprMQ9NBl19V5t6H46_CvAEv-zGZMhMnfq928r9qp2iL2qTATph2hjaWr29wbpjKsui6qdhFm_3b-9H4E0oG59c
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwED6VMgADjwKiPD0wIZkmfiVlqypQgdKplbpFeVxQEQoVLSs7_xo7dqBIhYHVsWXL5_g--z5_B3DOAiMJwz3KEBkVKuQ0xlxQFaKf8pTzOCnZFgPVG4m7sRzXoFu9hTG0Srf32z293K1dScvNZms6mZg3vsJosUvDgmxzqVZgVUgWmBPY5fs3z0P7PCsZLiQ11avQZknySkvtISZM7FKF_nLntOBwbrZh0yFF0rGD2YEaFg3YcqiRuH9y1oCNBUnBXfjQdicZ4pTkEwMnCVp-OLGpoq9Ix3512SIeSV6xs0ilHGFKNSwk9tJjRq22qu7TaF_qERWWOT4j5g63rLm0qz0Y3VwPuz3q0i3QlLWDOU147JeR2CCWXhKil3AW-rmPQhtMBJxnQagky5GpIJNtFOjlQmYaALAw1Tbn-1AvXgo8AJJomJO0cy_XhyUhWByKVKGGOh5mKUcVN8Gr5jlKnRa5SYnxHFWks6dImyYypomsaZpw8dVkaoU4_qosKuNFP1ZTpB3F780O_9fsDNZ6w4d-1L8d3B_BOjMZgkuW2jHU569veKJhyzw5LZflJ7fg6Ww
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+deep+finite+element+method%3A+A+deep+learning+framework+integrating+the+physics-informed+neural+networks+with+the+finite+element+method&rft.jtitle=Computer+methods+in+applied+mechanics+and+engineering&rft.au=Xiong%2C+Wei&rft.au=Long%2C+Xiangyun&rft.au=Bordas%2C+St%C3%A9phane+P.A.&rft.au=Jiang%2C+Chao&rft.date=2025-03-01&rft.issn=0045-7825&rft.volume=436&rft.spage=117681&rft_id=info:doi/10.1016%2Fj.cma.2024.117681&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_cma_2024_117681
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0045-7825&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0045-7825&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0045-7825&client=summon