The deep finite element method: A deep learning framework integrating the physics-informed neural networks with the finite element method
•The deep finite element method integrating the physics-informed neural networks and the finite element method is proposed.•The method provides a flexible and robust framework that integrates data with physical laws.•A novel loss function is designed to eliminate high-order derivatives for efficient...
Saved in:
| Published in | Computer methods in applied mechanics and engineering Vol. 436; p. 117681 |
|---|---|
| Main Authors | , , , |
| Format | Journal Article |
| Language | English |
| Published |
Elsevier B.V
01.03.2025
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 0045-7825 |
| DOI | 10.1016/j.cma.2024.117681 |
Cover
| Abstract | •The deep finite element method integrating the physics-informed neural networks and the finite element method is proposed.•The method provides a flexible and robust framework that integrates data with physical laws.•A novel loss function is designed to eliminate high-order derivatives for efficient training.•Excellent training stability and prediction accuracy especially for complex 3D problems.•The method shows promise for extending to other partial differential equations with variational formulations.
This paper proposes a deep finite element method (DFEM), which integrates physics-informed neural networks (PINNs) with the finite element method (FEM). The DFEM provides a versatile and robust framework that seamlessly combines observational data with physical laws. In this method, the outputs of the deep neural networks are utilized for approximating the displacements of grid nodes, while shape functions are used to construct trial functions within elements. A loss function is then designed by combining deep neural networks with stiffness matrices, avoiding the high-order derivative terms. Furthermore, the theoretical convergence stability of the proposed DFEM is analyzed. Finally, the training stability and predictive accuracy of the DFEM are validated through numerical examples. The results demonstrate that the proposed method greatly reduces the relative error compared to the deep energy method (DEM). Moreover, by integrating pre-training, the DFEM experiences a significant enhancement in training efficiency, reducing computation time by up to 7/8 compared to the FEM. This makes it a promising tool for fast computations and digital twin applications. |
|---|---|
| AbstractList | •The deep finite element method integrating the physics-informed neural networks and the finite element method is proposed.•The method provides a flexible and robust framework that integrates data with physical laws.•A novel loss function is designed to eliminate high-order derivatives for efficient training.•Excellent training stability and prediction accuracy especially for complex 3D problems.•The method shows promise for extending to other partial differential equations with variational formulations.
This paper proposes a deep finite element method (DFEM), which integrates physics-informed neural networks (PINNs) with the finite element method (FEM). The DFEM provides a versatile and robust framework that seamlessly combines observational data with physical laws. In this method, the outputs of the deep neural networks are utilized for approximating the displacements of grid nodes, while shape functions are used to construct trial functions within elements. A loss function is then designed by combining deep neural networks with stiffness matrices, avoiding the high-order derivative terms. Furthermore, the theoretical convergence stability of the proposed DFEM is analyzed. Finally, the training stability and predictive accuracy of the DFEM are validated through numerical examples. The results demonstrate that the proposed method greatly reduces the relative error compared to the deep energy method (DEM). Moreover, by integrating pre-training, the DFEM experiences a significant enhancement in training efficiency, reducing computation time by up to 7/8 compared to the FEM. This makes it a promising tool for fast computations and digital twin applications. |
| ArticleNumber | 117681 |
| Author | Long, Xiangyun Bordas, Stéphane P.A. Jiang, Chao Xiong, Wei |
| Author_xml | – sequence: 1 givenname: Wei orcidid: 0009-0004-8888-7386 surname: Xiong fullname: Xiong, Wei organization: College of Mechanical and Vehicle Engineering, Hunan University, Changsha City, PR China – sequence: 2 givenname: Xiangyun orcidid: 0000-0001-5184-8181 surname: Long fullname: Long, Xiangyun email: longxy@hnu.edu.cn organization: College of Mechanical and Vehicle Engineering, Hunan University, Changsha City, PR China – sequence: 3 givenname: Stéphane P.A. surname: Bordas fullname: Bordas, Stéphane P.A. organization: Department of Computational Engineering, University of Luxembourg, 6 Avenue de la Fonte, 4362 Esch-sur-Alzette, Luxembourg – sequence: 4 givenname: Chao surname: Jiang fullname: Jiang, Chao email: jiangc@hnu.edu.cn organization: College of Mechanical and Vehicle Engineering, Hunan University, Changsha City, PR China |
| BookMark | eNp9kE1OwzAQhb0oEm3hAOx8gRTb-XEKq6riT6rEpqwtxx43LolT2YaqR-DWJIQVQp3Nk2bmm9F7MzRxnQOEbihZUEKL2_1CtXLBCMsWlPKipBM0JSTLE16y_BLNQtiTvkrKpuhrWwPWAAdsrLMRMDTQgou4hVh3-g6vxmkD0jvrdth42cKx8-_Yugg7L-PQjf2VQ30KVoXEOtP5FjR28OFl00sc9gM-2lj_bP776gpdGNkEuP7VOXp7fNiun5PN69PLerVJFFvymFSppKS3lnOZk6oEUqWspIZClsoq42mqeVnkzAAruM6XkAExWa5pzlipGF-mc8THu8p3IXgwQtnYu-hc9NI2ghIxpCj2ok9RDCmKMcWepH_Ig7et9KezzP3IQG_p04IXQVlwCrT1oKLQnT1DfwPwvJCi |
| CitedBy_id | crossref_primary_10_1016_j_ijmecsci_2025_110075 |
| Cites_doi | 10.1016/j.neucom.2018.06.056 10.1016/j.cma.2022.114909 10.3389/fmats.2023.1128954 10.1016/j.cma.2022.114790 10.2166/hydro.2008.015 10.1016/j.cma.2019.112790 10.1016/j.cma.2019.112732 10.1109/TNNLS.2021.3070878 10.1016/j.cma.2021.114096 10.1016/j.jcp.2021.110938 10.1007/s40304-018-0127-z 10.1016/j.jcp.2018.10.045 10.1016/j.cma.2020.113250 10.1016/j.jmps.2022.104927 10.1016/j.cma.2016.02.001 10.1214/aoms/1177729586 10.1016/j.jcp.2019.109020 10.1016/0021-9991(90)90007-N 10.1038/323533a0 10.1016/j.cma.2020.113028 10.1016/j.cma.2019.112789 10.1016/j.cma.2022.115491 10.1016/j.cma.2020.113603 10.1016/j.engappai.2024.108055 10.1016/j.mechmat.2023.104707 10.1016/j.cma.2021.113959 10.1002/cnm.2958 10.1137/19M1274067 10.1007/BF01589116 10.1016/j.euromechsol.2019.103874 10.1016/j.jcp.2020.110085 10.1007/s00466-021-02112-3 10.1145/3446776 10.1016/j.jcp.2018.08.029 10.1016/j.cma.2020.113547 10.1016/j.cma.2021.113933 10.1007/s10915-022-01939-z 10.1038/s42254-021-00314-5 10.1016/j.jcp.2022.111539 10.1016/j.jcp.2019.108963 10.1016/0893-6080(89)90020-8 10.1016/j.cma.2022.115307 |
| ContentType | Journal Article |
| Copyright | 2024 Elsevier B.V. |
| Copyright_xml | – notice: 2024 Elsevier B.V. |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.cma.2024.117681 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Applied Sciences Engineering |
| ExternalDocumentID | 10_1016_j_cma_2024_117681 S0045782524009356 |
| GroupedDBID | --K --M -~X .DC .~1 0R~ 1B1 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AATTM AAXKI AAXUO AAYFN ABAOU ABBOA ABFNM ABJNI ABMAC ACDAQ ACGFS ACIWK ACRLP ACZNC ADBBV ADEZE ADGUI ADTZH AEBSH AECPX AEIPS AEKER AENEX AFJKZ AFTJW AFXIZ AGCQF AGHFR AGUBO AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIGVJ AIKHN AITUG AKRWK ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU AOUOD APXCP ARUGR AXJTR BJAXD BKOJK BLXMC BNPGV CS3 DU5 EBS EFJIC EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ IHE J1W JJJVA KOM LG9 LY7 M41 MHUIS MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. PQQKQ Q38 RNS ROL RPZ SDF SDG SDP SES SEW SPC SPCBC SSH SST SSV SSW SSZ T5K TN5 WH7 XPP ZMT ~02 ~G- 29F AAQXK AAYWO AAYXX ABEFU ABWVN ABXDB ACLOT ACNNM ACRPL ACVFH ADCNI ADIYS ADJOM ADMUD ADNMO AEUPX AFPUW AGQPQ AI. AIGII AIIUN AKBMS AKYEP ASPBG AVWKF AZFZN CITATION EFKBS EFLBG EJD FEDTE FGOYB G-2 HLZ HVGLF HZ~ R2- SBC SET VH1 VOH WUQ ZY4 ~HD |
| ID | FETCH-LOGICAL-c297t-b3a1002457a50b8e0b3281f1e43ab4733d78652fe267d59e4e0f45d15228c2793 |
| IEDL.DBID | .~1 |
| ISSN | 0045-7825 |
| IngestDate | Thu Apr 24 22:59:24 EDT 2025 Wed Oct 01 06:02:57 EDT 2025 Sat May 03 15:57:02 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Solid elasticity mechanics Three-dimensional structures Physics-informed neural networks Deep finite element method Deep energy method |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c297t-b3a1002457a50b8e0b3281f1e43ab4733d78652fe267d59e4e0f45d15228c2793 |
| ORCID | 0009-0004-8888-7386 0000-0001-5184-8181 |
| ParticipantIDs | crossref_citationtrail_10_1016_j_cma_2024_117681 crossref_primary_10_1016_j_cma_2024_117681 elsevier_sciencedirect_doi_10_1016_j_cma_2024_117681 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2025-03-01 2025-03-00 |
| PublicationDateYYYYMMDD | 2025-03-01 |
| PublicationDate_xml | – month: 03 year: 2025 text: 2025-03-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationTitle | Computer methods in applied mechanics and engineering |
| PublicationYear | 2025 |
| Publisher | Elsevier B.V |
| Publisher_xml | – name: Elsevier B.V |
| References | Solomatine, Ostfeld (bib0011) 2008; 10 Bui, Tomar, Courtecuisse, Audette, Cotin, Bordas (bib0057) 2018; 34 Sun, Gao, Pan, Wang (bib0058) 2020; 361 Kharazmi, Zhang, Karniadakis (bib0040) 2021; 374 Voulodimos, Doulamis, Doulamis, Protopapadakis (bib0001) 2018 Cuomo, Di Cola, Giampaolo, Rozza, Raissi, Piccialli (bib0024) 2022; 92 Yin, Zheng, Humphrey, Karniadakis (bib0019) 2021; 375 Shin, Darbon, Karniadakis (bib0047) 2020 Bojarski, Del Testa, Dworakowski, Firner, Flepp, Goyal, Jackel, Monfort, Muller, Zhang, Zhang, Zhao, Zieba (bib0006) 2016 Liu, Nocedal (bib0061) 1989; 45 Devlin, Chang, Lee, Toutanova (bib0005) 2019 Nguyen-Thanh, Anitescu, Alajlan, Rabczuk, Zhuang (bib0043) 2021; 386 Wang, Zhang (bib0031) 2020; 400 Lu, Meng, Mao, Karniadakis (bib0036) 2021; 63 Henkes, Wessels, Mahnken (bib0052) 2022; 393 Chen (bib0004) 2014 Li, Wang (bib0054) 2008 Raissi, Perdikaris, Karniadakis (bib0025) 2019; 378 Samaniego, Anitescu, Goswami, Nguyen-Thanh, Guo, Hamdia, Zhuang, Rabczuk (bib0041) 2020; 362 Deshpande, Sosa, Bordas, Lengiewicz (bib0014) 2023; 10 Krokos, Bordas, Kerfriden (bib0016) 2024; 286–287 Chen, Du, Li, Lyu (bib0055) 2019 Haghighat, Raissi, Moure, Gomez, Juanes (bib0038) 2020 Lee, Kang (bib0028) 1990; 91 Zhang, Bengio, Hardt, Recht, Vinyals (bib0062) 2021; 64 Shalev-Shwartz, Ben-David (bib0065) 2014 Simonyan, Zisserman (bib0003) 2014 Hornik, Stinchcombe, White (bib0048) 1989; 2 Sirignano, Spiliopoulos (bib0039) 2018; 375 Fang (bib0022) 2022; 33 Mattey, Ghosh (bib0056) 2022; 390 Chiu, Wong, Ooi, Dao, Ong (bib0020) 2022; 395 Leung, Lin, Zhang (bib0021) 2022; 470 Bahmani, Sun (bib0008) 2022; 166 Rocha, Kerfriden, van der Meer (bib0017) 2023; 184 De Ryck, Jagtap, Mishra (bib0035) 2024 Bischof, Kraus (bib0037) 2021 Kirchdoerfer, Ortiz (bib0007) 2016; 304 Xu, Darve (bib0010) 2022; 453 Zienkiewicz, Taylor, Zhu (bib0053) 2005 Robbins, Monro (bib0059) 1951; 22 LeCun, Bottou, Orr, Müller (bib0051) 1998 Baydin, Pearlmutter, Radul, Siskind (bib0033) 2018; 18 Berg, Nyström (bib0045) 2018; 317 Shin, Zhang, Karniadakis (bib0046) 2020 Xu, Zhang, Luo, Xiao, Ma (bib0064) 2019 Deshpande, Lengiewicz, Bordas (bib0013) 2022; 398 Jagtap, Kharazmi, Karniadakis (bib0027) 2020; 365 Krokos, Bui Xuan, Bordas, Young, Kerfriden (bib0015) 2022; 69 Krizhevsky, Sutskever, Hinton (bib0002) 2017; 60 Wang, Sun, Li, Lu, Liu (bib0044) 2022; 400 Mao, Jagtap, Karniadakis (bib0034) 2020; 360 Deshpande, Bordas, Lengiewicz (bib0012) 2024; 133 Karniadakis, Kevrekidis, Lu, Perdikaris, Wang, Yang (bib0018) 2021; 3 Sheng, Yang (bib0030) 2021; 428 Amini Niaki, Haghighat, Campbell, Poursartip, Vaziri (bib0026) 2021; 384 Kingma, Ba (bib0060) 2014 Weinan, Yu (bib0042) 2018; 6 Garipov, Izmailov, Podoprikhin, Vetrov, Wilson (bib0063) 2018; 31 Meng, Li, Zhang, Karniadakis (bib0023) 2020; 370 Nguyen-Thanh, Zhuang, Rabczuk (bib0032) 2020; 80 Meng, Karniadakis (bib0009) 2020; 401 Li, Bazant, Zhu (bib0029) 2021; 383 Rumelhart, Hinton, Williams (bib0050) 1986; 323 Bishop (bib0049) 2006 Mao (10.1016/j.cma.2024.117681_bib0034) 2020; 360 Jagtap (10.1016/j.cma.2024.117681_bib0027) 2020; 365 Wang (10.1016/j.cma.2024.117681_bib0031) 2020; 400 Bischof (10.1016/j.cma.2024.117681_bib0037) 2021 Hornik (10.1016/j.cma.2024.117681_bib0048) 1989; 2 Weinan (10.1016/j.cma.2024.117681_bib0042) 2018; 6 Nguyen-Thanh (10.1016/j.cma.2024.117681_bib0043) 2021; 386 Voulodimos (10.1016/j.cma.2024.117681_bib0001) 2018 Krokos (10.1016/j.cma.2024.117681_bib0016) 2024; 286–287 Bui (10.1016/j.cma.2024.117681_bib0057) 2018; 34 Rumelhart (10.1016/j.cma.2024.117681_bib0050) 1986; 323 Leung (10.1016/j.cma.2024.117681_bib0021) 2022; 470 Xu (10.1016/j.cma.2024.117681_bib0064) 2019 Nguyen-Thanh (10.1016/j.cma.2024.117681_bib0032) 2020; 80 Sirignano (10.1016/j.cma.2024.117681_bib0039) 2018; 375 Kharazmi (10.1016/j.cma.2024.117681_bib0040) 2021; 374 Krizhevsky (10.1016/j.cma.2024.117681_bib0002) 2017; 60 Robbins (10.1016/j.cma.2024.117681_bib0059) 1951; 22 Deshpande (10.1016/j.cma.2024.117681_bib0013) 2022; 398 Wang (10.1016/j.cma.2024.117681_bib0044) 2022; 400 Bishop (10.1016/j.cma.2024.117681_bib0049) 2006 Yin (10.1016/j.cma.2024.117681_bib0019) 2021; 375 Sheng (10.1016/j.cma.2024.117681_bib0030) 2021; 428 Haghighat (10.1016/j.cma.2024.117681_bib0038) 2020 De Ryck (10.1016/j.cma.2024.117681_bib0035) 2024 Devlin (10.1016/j.cma.2024.117681_bib0005) 2019 Li (10.1016/j.cma.2024.117681_bib0029) 2021; 383 Samaniego (10.1016/j.cma.2024.117681_bib0041) 2020; 362 Cuomo (10.1016/j.cma.2024.117681_bib0024) 2022; 92 Baydin (10.1016/j.cma.2024.117681_bib0033) 2018; 18 Shin (10.1016/j.cma.2024.117681_bib0047) 2020 Kingma (10.1016/j.cma.2024.117681_bib0060) 2014 Meng (10.1016/j.cma.2024.117681_bib0023) 2020; 370 Amini Niaki (10.1016/j.cma.2024.117681_bib0026) 2021; 384 Meng (10.1016/j.cma.2024.117681_bib0009) 2020; 401 Solomatine (10.1016/j.cma.2024.117681_bib0011) 2008; 10 Deshpande (10.1016/j.cma.2024.117681_bib0012) 2024; 133 Lu (10.1016/j.cma.2024.117681_bib0036) 2021; 63 Mattey (10.1016/j.cma.2024.117681_bib0056) 2022; 390 Bahmani (10.1016/j.cma.2024.117681_bib0008) 2022; 166 Sun (10.1016/j.cma.2024.117681_bib0058) 2020; 361 LeCun (10.1016/j.cma.2024.117681_bib0051) 1998 Bojarski (10.1016/j.cma.2024.117681_bib0006) 2016 Raissi (10.1016/j.cma.2024.117681_bib0025) 2019; 378 Xu (10.1016/j.cma.2024.117681_bib0010) 2022; 453 Lee (10.1016/j.cma.2024.117681_bib0028) 1990; 91 Karniadakis (10.1016/j.cma.2024.117681_bib0018) 2021; 3 Li (10.1016/j.cma.2024.117681_bib0054) 2008 Rocha (10.1016/j.cma.2024.117681_bib0017) 2023; 184 Zienkiewicz (10.1016/j.cma.2024.117681_bib0053) 2005 Shin (10.1016/j.cma.2024.117681_bib0046) 2020 Berg (10.1016/j.cma.2024.117681_bib0045) 2018; 317 Chen (10.1016/j.cma.2024.117681_bib0004) 2014 Shalev-Shwartz (10.1016/j.cma.2024.117681_bib0065) 2014 Deshpande (10.1016/j.cma.2024.117681_bib0014) 2023; 10 Chiu (10.1016/j.cma.2024.117681_bib0020) 2022; 395 Fang (10.1016/j.cma.2024.117681_bib0022) 2022; 33 Krokos (10.1016/j.cma.2024.117681_bib0015) 2022; 69 Liu (10.1016/j.cma.2024.117681_bib0061) 1989; 45 Chen (10.1016/j.cma.2024.117681_bib0055) 2019 Zhang (10.1016/j.cma.2024.117681_bib0062) 2021; 64 Kirchdoerfer (10.1016/j.cma.2024.117681_bib0007) 2016; 304 Henkes (10.1016/j.cma.2024.117681_bib0052) 2022; 393 Garipov (10.1016/j.cma.2024.117681_bib0063) 2018; 31 Simonyan (10.1016/j.cma.2024.117681_bib0003) 2014 |
| References_xml | – year: 2024 ident: bib0035 article-title: arXiv preprint – volume: 2 start-page: 359 year: 1989 end-page: 366 ident: bib0048 article-title: Multilayer feedforward networks are universal approximators publication-title: Neural Netw. – volume: 375 year: 2021 ident: bib0019 article-title: Non-invasive inference of thrombus material properties with physics-informed neural networks publication-title: Comput. Method. Appl. Mech. Engrg. – volume: 400 year: 2022 ident: bib0044 article-title: CENN: conservative energy method based on neural networks with subdomains for solving variational problems involving heterogeneous and complex geometries publication-title: Comput. Method. Appl. Mech. Engrg. – volume: 323 start-page: 533 year: 1986 end-page: 536 ident: bib0050 article-title: Learning representations by back-propagating errors publication-title: Nature – volume: 91 start-page: 110 year: 1990 end-page: 131 ident: bib0028 article-title: Neural algorithm for solving differential equations publication-title: J. Comput. Phys. – volume: 60 start-page: 84 year: 2017 end-page: 90 ident: bib0002 article-title: ImageNet classification with deep convolutional neural networks publication-title: Adv. Neural. Inf. Process. Syst. – year: 2008 ident: bib0054 article-title: Introduction to Micromechanics and Nanomechanics – year: 2014 ident: bib0003 article-title: arXiv preprint – volume: 383 year: 2021 ident: bib0029 article-title: A physics-guided neural network framework for elastic plates: comparison of governing equations-based and energy-based approaches publication-title: Comput. Method. Appl. Mech. Engrg. – volume: 374 year: 2021 ident: bib0040 article-title: hp-VPINNs: variational physics-informed neural networks with domain decomposition publication-title: Comput. Method. Appl. Mech. Engrg. – volume: 395 year: 2022 ident: bib0020 article-title: CAN-PINN: a fast physics-informed neural network based on coupled-automatic–numerical differentiation method publication-title: Comput. Method. Appl. Mech. Engrg. – volume: 370 year: 2020 ident: bib0023 article-title: PPINN: parareal physics-informed neural network for time-dependent PDEs publication-title: Comput. Method. Appl. Mech. Engrg. – volume: 92 start-page: 88 year: 2022 ident: bib0024 article-title: Scientific machine learning through physics–informed neural networks: where we are and what's next publication-title: J. Sci. Comput. – volume: 10 start-page: 3 year: 2008 end-page: 22 ident: bib0011 article-title: Data-driven modelling: some past experiences and new approaches publication-title: J. Hydroinform. – volume: 393 year: 2022 ident: bib0052 article-title: Physics informed neural networks for continuum micromechanics publication-title: Comput. Method. Appl. Mech. Engrg. – volume: 64 start-page: 107 year: 2021 end-page: 115 ident: bib0062 article-title: Understanding deep learning (still) requires rethinking generalization publication-title: Commun. ACM – volume: 453 year: 2022 ident: bib0010 article-title: Physics constrained learning for data-driven inverse modeling from sparse observations publication-title: J. Comput. Phys. – year: 2019 ident: bib0064 article-title: arXiv preprint – volume: 390 year: 2022 ident: bib0056 article-title: A physics informed neural network for time-dependent nonlinear and higher order partial differential equations publication-title: Comput. Method. Appl. Mech. Engrg. – volume: 34 start-page: e2958 year: 2018 ident: bib0057 article-title: Controlling the error on target motion through real-time mesh adaptation: applications to deep brain stimulation publication-title: Int. J. Numer. Meth. Biomed. Eng. – year: 2005 ident: bib0053 article-title: The Finite Element method: Its Basis and Fundamentals – volume: 304 start-page: 81 year: 2016 end-page: 101 ident: bib0007 article-title: Data-driven computational mechanics publication-title: Comput. Method. Appl. Mech. Engrg. – volume: 45 start-page: 503 year: 1989 end-page: 528 ident: bib0061 article-title: On the limited memory BFGS method for large scale optimization publication-title: Math. Program. – volume: 361 year: 2020 ident: bib0058 article-title: Surrogate modeling for fluid flows based on physics-constrained deep learning without simulation data publication-title: Comput. Method. Appl. Mech. Engrg. – volume: 428 year: 2021 ident: bib0030 article-title: PFNN: a penalty-free neural network method for solving a class of second-order boundary-value problems on complex geometries publication-title: J. Comput. Phys. – volume: 365 year: 2020 ident: bib0027 article-title: Conservative physics-informed neural networks on discrete domains for conservation laws: applications to forward and inverse problems publication-title: Comput. Method. Appl. Mech. Engrg. – volume: 400 year: 2020 ident: bib0031 article-title: A mesh-free method for interface problems using the deep learning approach publication-title: J. Comput. Phys. – volume: 6 start-page: 1 year: 2018 end-page: 12 ident: bib0042 article-title: The Deep Ritz Method: a deep learning-based numerical algorithm for solving variational problems publication-title: Commun. Math. Stat. – year: 2021 ident: bib0037 article-title: arXiv preprint – volume: 18 start-page: 1 year: 2018 end-page: 43 ident: bib0033 article-title: Automatic differentiation in machine learning: a survey publication-title: J. Mach. Learn. Res. – volume: 33 start-page: 5514 year: 2022 end-page: 5526 ident: bib0022 article-title: A High-efficient hybrid physics-informed neural networks based on convolutional neural network publication-title: IEEE. Trans. Neural. Netw. Learn. Syst. – volume: 133 year: 2024 ident: bib0012 article-title: MAgNET: a graph U-Net architecture for mesh-based simulations publication-title: Eng. Appl. Artif. Intell. – year: 2020 ident: bib0047 article-title: arXiv preprint – volume: 398 year: 2022 ident: bib0013 article-title: Probabilistic deep learning for real-time large deformation simulations publication-title: Comput. Method. Appl. Mech. Engrg. – year: 2019 ident: bib0005 article-title: arXiv preprint – year: 2016 ident: bib0006 article-title: arXiv preprint – volume: 166 year: 2022 ident: bib0008 article-title: Manifold embedding data-driven mechanics publication-title: J. Mech. Phys. Solid. – volume: 317 start-page: 28 year: 2018 end-page: 41 ident: bib0045 article-title: A unified deep artificial neural network approach to partial differential equations in complex geometries publication-title: Neurocomputing – volume: 63 start-page: 208 year: 2021 end-page: 228 ident: bib0036 article-title: DeepXDE: a deep learning library for solving differential equations publication-title: SIAM Rev. – year: 1998 ident: bib0051 article-title: Neural Networks: Tricks of the Trade – year: 2014 ident: bib0065 article-title: Understanding Machine learning: From theory to Algorithms – year: 2020 ident: bib0046 article-title: arXiv preprint – year: 2014 ident: bib0004 article-title: arXiv preprint – volume: 31 year: 2018 ident: bib0063 article-title: Loss surfaces, mode connectivity, and fast ensembling of dnns publication-title: Adv. Neural Inf. Process. Syst. – volume: 286–287 year: 2024 ident: bib0016 article-title: A graph-based probabilistic geometric deep learning framework with online enforcement of physical constraints to predict the criticality of defects in porous materials publication-title: Int. J. Solid. Struct. – volume: 384 year: 2021 ident: bib0026 article-title: Physics-informed neural network for modelling the thermochemical curing process of composite-tool systems during manufacture publication-title: Comput. Method. Appl. Mech. Engrg. – year: 2020 ident: bib0038 article-title: arXiv preprint – volume: 386 year: 2021 ident: bib0043 article-title: Parametric deep energy approach for elasticity accounting for strain gradient effects publication-title: Comput. Method. Appl. Mech. Engrg. – year: 2014 ident: bib0060 article-title: arXiv preprint – volume: 378 start-page: 686 year: 2019 end-page: 707 ident: bib0025 article-title: Physics-informed neural networks: a deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations publication-title: J. Comput. Phys. – volume: 3 start-page: 422 year: 2021 end-page: 440 ident: bib0018 article-title: Physics-informed machine learning publication-title: Nat. Rev. Phys. – volume: 184 year: 2023 ident: bib0017 article-title: Machine learning of evolving physics-based material models for multiscale solid mechanics publication-title: Mech. Mater. – volume: 375 start-page: 1339 year: 2018 end-page: 1364 ident: bib0039 article-title: DGM: a deep learning algorithm for solving partial differential equations publication-title: J. Comput. Phys. – volume: 80 year: 2020 ident: bib0032 article-title: A deep energy method for finite deformation hyperelasticity publication-title: Eur. J. Mech. A Solid. – volume: 401 year: 2020 ident: bib0009 article-title: A composite neural network that learns from multi-fidelity data: application to function approximation and inverse PDE problems publication-title: J. Comput. Phys. – year: 2006 ident: bib0049 article-title: Pattern Recognition and Machine Learning – volume: 69 start-page: 733 year: 2022 end-page: 766 ident: bib0015 article-title: A Bayesian multiscale CNN framework to predict local stress fields in structures with microscale features publication-title: Comput. Mech. – volume: 360 year: 2020 ident: bib0034 article-title: Physics-informed neural networks for high-speed flows publication-title: Comput. Method. Appl. Mech. Engrg. – volume: 362 year: 2020 ident: bib0041 article-title: An energy approach to the solution of partial differential equations in computational mechanics via machine learning: concepts, implementation and applications publication-title: Comput. Method. Appl. Mech. Engrg. – year: 2019 ident: bib0055 article-title: arXiv preprint – volume: 22 start-page: 400 year: 1951 end-page: 407 ident: bib0059 article-title: A stochastic approximation method publication-title: Ann. Math. Statist. – start-page: 1 year: 2018 end-page: 13 ident: bib0001 article-title: Deep learning for computer vision: a brief review publication-title: Comput. Intell. Neurosci. – volume: 470 year: 2022 ident: bib0021 article-title: NH-PINN: neural homogenization-based physics-informed neural network for multiscale problems publication-title: J. Comput. Phys. – volume: 10 year: 2023 ident: bib0014 article-title: Convolution, aggregation and attention based deep neural networks for accelerating simulations in mechanics publication-title: Front. Mater. – volume: 317 start-page: 28 year: 2018 ident: 10.1016/j.cma.2024.117681_bib0045 article-title: A unified deep artificial neural network approach to partial differential equations in complex geometries publication-title: Neurocomputing doi: 10.1016/j.neucom.2018.06.056 – year: 2014 ident: 10.1016/j.cma.2024.117681_bib0060 – volume: 395 year: 2022 ident: 10.1016/j.cma.2024.117681_bib0020 article-title: CAN-PINN: a fast physics-informed neural network based on coupled-automatic–numerical differentiation method publication-title: Comput. Method. Appl. Mech. Engrg. doi: 10.1016/j.cma.2022.114909 – year: 2024 ident: 10.1016/j.cma.2024.117681_bib0035 – volume: 31 year: 2018 ident: 10.1016/j.cma.2024.117681_bib0063 article-title: Loss surfaces, mode connectivity, and fast ensembling of dnns publication-title: Adv. Neural Inf. Process. Syst. – year: 2020 ident: 10.1016/j.cma.2024.117681_bib0046 – year: 2014 ident: 10.1016/j.cma.2024.117681_bib0004 – year: 2019 ident: 10.1016/j.cma.2024.117681_bib0064 – volume: 10 year: 2023 ident: 10.1016/j.cma.2024.117681_bib0014 article-title: Convolution, aggregation and attention based deep neural networks for accelerating simulations in mechanics publication-title: Front. Mater. doi: 10.3389/fmats.2023.1128954 – volume: 393 year: 2022 ident: 10.1016/j.cma.2024.117681_bib0052 article-title: Physics informed neural networks for continuum micromechanics publication-title: Comput. Method. Appl. Mech. Engrg. doi: 10.1016/j.cma.2022.114790 – volume: 10 start-page: 3 year: 2008 ident: 10.1016/j.cma.2024.117681_bib0011 article-title: Data-driven modelling: some past experiences and new approaches publication-title: J. Hydroinform. doi: 10.2166/hydro.2008.015 – volume: 362 year: 2020 ident: 10.1016/j.cma.2024.117681_bib0041 article-title: An energy approach to the solution of partial differential equations in computational mechanics via machine learning: concepts, implementation and applications publication-title: Comput. Method. Appl. Mech. Engrg. doi: 10.1016/j.cma.2019.112790 – volume: 361 year: 2020 ident: 10.1016/j.cma.2024.117681_bib0058 article-title: Surrogate modeling for fluid flows based on physics-constrained deep learning without simulation data publication-title: Comput. Method. Appl. Mech. Engrg. doi: 10.1016/j.cma.2019.112732 – volume: 33 start-page: 5514 year: 2022 ident: 10.1016/j.cma.2024.117681_bib0022 article-title: A High-efficient hybrid physics-informed neural networks based on convolutional neural network publication-title: IEEE. Trans. Neural. Netw. Learn. Syst. doi: 10.1109/TNNLS.2021.3070878 – volume: 386 year: 2021 ident: 10.1016/j.cma.2024.117681_bib0043 article-title: Parametric deep energy approach for elasticity accounting for strain gradient effects publication-title: Comput. Method. Appl. Mech. Engrg. doi: 10.1016/j.cma.2021.114096 – volume: 453 year: 2022 ident: 10.1016/j.cma.2024.117681_bib0010 article-title: Physics constrained learning for data-driven inverse modeling from sparse observations publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2021.110938 – year: 2020 ident: 10.1016/j.cma.2024.117681_bib0038 – volume: 6 start-page: 1 issue: 1 year: 2018 ident: 10.1016/j.cma.2024.117681_bib0042 article-title: The Deep Ritz Method: a deep learning-based numerical algorithm for solving variational problems publication-title: Commun. Math. Stat. doi: 10.1007/s40304-018-0127-z – volume: 390 year: 2022 ident: 10.1016/j.cma.2024.117681_bib0056 article-title: A physics informed neural network for time-dependent nonlinear and higher order partial differential equations publication-title: Comput. Method. Appl. Mech. Engrg. – volume: 378 start-page: 686 year: 2019 ident: 10.1016/j.cma.2024.117681_bib0025 article-title: Physics-informed neural networks: a deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2018.10.045 – volume: 370 year: 2020 ident: 10.1016/j.cma.2024.117681_bib0023 article-title: PPINN: parareal physics-informed neural network for time-dependent PDEs publication-title: Comput. Method. Appl. Mech. Engrg. doi: 10.1016/j.cma.2020.113250 – volume: 166 year: 2022 ident: 10.1016/j.cma.2024.117681_bib0008 article-title: Manifold embedding data-driven mechanics publication-title: J. Mech. Phys. Solid. doi: 10.1016/j.jmps.2022.104927 – volume: 304 start-page: 81 year: 2016 ident: 10.1016/j.cma.2024.117681_bib0007 article-title: Data-driven computational mechanics publication-title: Comput. Method. Appl. Mech. Engrg. doi: 10.1016/j.cma.2016.02.001 – volume: 22 start-page: 400 issue: 3 year: 1951 ident: 10.1016/j.cma.2024.117681_bib0059 article-title: A stochastic approximation method publication-title: Ann. Math. Statist. doi: 10.1214/aoms/1177729586 – volume: 401 year: 2020 ident: 10.1016/j.cma.2024.117681_bib0009 article-title: A composite neural network that learns from multi-fidelity data: application to function approximation and inverse PDE problems publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2019.109020 – volume: 91 start-page: 110 issue: 1 year: 1990 ident: 10.1016/j.cma.2024.117681_bib0028 article-title: Neural algorithm for solving differential equations publication-title: J. Comput. Phys. doi: 10.1016/0021-9991(90)90007-N – volume: 323 start-page: 533 issue: 6088 year: 1986 ident: 10.1016/j.cma.2024.117681_bib0050 article-title: Learning representations by back-propagating errors publication-title: Nature doi: 10.1038/323533a0 – volume: 365 year: 2020 ident: 10.1016/j.cma.2024.117681_bib0027 article-title: Conservative physics-informed neural networks on discrete domains for conservation laws: applications to forward and inverse problems publication-title: Comput. Method. Appl. Mech. Engrg. doi: 10.1016/j.cma.2020.113028 – volume: 360 year: 2020 ident: 10.1016/j.cma.2024.117681_bib0034 article-title: Physics-informed neural networks for high-speed flows publication-title: Comput. Method. Appl. Mech. Engrg. doi: 10.1016/j.cma.2019.112789 – volume: 60 start-page: 84 issue: 6 year: 2017 ident: 10.1016/j.cma.2024.117681_bib0002 article-title: ImageNet classification with deep convolutional neural networks publication-title: Adv. Neural. Inf. Process. Syst. – volume: 400 year: 2022 ident: 10.1016/j.cma.2024.117681_bib0044 article-title: CENN: conservative energy method based on neural networks with subdomains for solving variational problems involving heterogeneous and complex geometries publication-title: Comput. Method. Appl. Mech. Engrg. doi: 10.1016/j.cma.2022.115491 – volume: 375 year: 2021 ident: 10.1016/j.cma.2024.117681_bib0019 article-title: Non-invasive inference of thrombus material properties with physics-informed neural networks publication-title: Comput. Method. Appl. Mech. Engrg. doi: 10.1016/j.cma.2020.113603 – volume: 133 year: 2024 ident: 10.1016/j.cma.2024.117681_bib0012 article-title: MAgNET: a graph U-Net architecture for mesh-based simulations publication-title: Eng. Appl. Artif. Intell. doi: 10.1016/j.engappai.2024.108055 – volume: 184 year: 2023 ident: 10.1016/j.cma.2024.117681_bib0017 article-title: Machine learning of evolving physics-based material models for multiscale solid mechanics publication-title: Mech. Mater. doi: 10.1016/j.mechmat.2023.104707 – volume: 384 year: 2021 ident: 10.1016/j.cma.2024.117681_bib0026 article-title: Physics-informed neural network for modelling the thermochemical curing process of composite-tool systems during manufacture publication-title: Comput. Method. Appl. Mech. Engrg. doi: 10.1016/j.cma.2021.113959 – volume: 34 start-page: e2958 year: 2018 ident: 10.1016/j.cma.2024.117681_bib0057 article-title: Controlling the error on target motion through real-time mesh adaptation: applications to deep brain stimulation publication-title: Int. J. Numer. Meth. Biomed. Eng. doi: 10.1002/cnm.2958 – volume: 63 start-page: 208 issue: 1 year: 2021 ident: 10.1016/j.cma.2024.117681_bib0036 article-title: DeepXDE: a deep learning library for solving differential equations publication-title: SIAM Rev. doi: 10.1137/19M1274067 – volume: 45 start-page: 503 year: 1989 ident: 10.1016/j.cma.2024.117681_bib0061 article-title: On the limited memory BFGS method for large scale optimization publication-title: Math. Program. doi: 10.1007/BF01589116 – volume: 80 year: 2020 ident: 10.1016/j.cma.2024.117681_bib0032 article-title: A deep energy method for finite deformation hyperelasticity publication-title: Eur. J. Mech. A Solid. doi: 10.1016/j.euromechsol.2019.103874 – volume: 18 start-page: 1 year: 2018 ident: 10.1016/j.cma.2024.117681_bib0033 article-title: Automatic differentiation in machine learning: a survey publication-title: J. Mach. Learn. Res. – volume: 428 year: 2021 ident: 10.1016/j.cma.2024.117681_bib0030 article-title: PFNN: a penalty-free neural network method for solving a class of second-order boundary-value problems on complex geometries publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2020.110085 – year: 2008 ident: 10.1016/j.cma.2024.117681_bib0054 – year: 2006 ident: 10.1016/j.cma.2024.117681_bib0049 – volume: 69 start-page: 733 year: 2022 ident: 10.1016/j.cma.2024.117681_bib0015 article-title: A Bayesian multiscale CNN framework to predict local stress fields in structures with microscale features publication-title: Comput. Mech. doi: 10.1007/s00466-021-02112-3 – volume: 64 start-page: 107 issue: 3 year: 2021 ident: 10.1016/j.cma.2024.117681_bib0062 article-title: Understanding deep learning (still) requires rethinking generalization publication-title: Commun. ACM doi: 10.1145/3446776 – year: 2019 ident: 10.1016/j.cma.2024.117681_bib0005 – volume: 375 start-page: 1339 year: 2018 ident: 10.1016/j.cma.2024.117681_bib0039 article-title: DGM: a deep learning algorithm for solving partial differential equations publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2018.08.029 – year: 2014 ident: 10.1016/j.cma.2024.117681_bib0003 – volume: 374 year: 2021 ident: 10.1016/j.cma.2024.117681_bib0040 article-title: hp-VPINNs: variational physics-informed neural networks with domain decomposition publication-title: Comput. Method. Appl. Mech. Engrg. doi: 10.1016/j.cma.2020.113547 – year: 2016 ident: 10.1016/j.cma.2024.117681_bib0006 – volume: 383 year: 2021 ident: 10.1016/j.cma.2024.117681_bib0029 article-title: A physics-guided neural network framework for elastic plates: comparison of governing equations-based and energy-based approaches publication-title: Comput. Method. Appl. Mech. Engrg. doi: 10.1016/j.cma.2021.113933 – volume: 92 start-page: 88 year: 2022 ident: 10.1016/j.cma.2024.117681_bib0024 article-title: Scientific machine learning through physics–informed neural networks: where we are and what's next publication-title: J. Sci. Comput. doi: 10.1007/s10915-022-01939-z – volume: 3 start-page: 422 year: 2021 ident: 10.1016/j.cma.2024.117681_bib0018 article-title: Physics-informed machine learning publication-title: Nat. Rev. Phys. doi: 10.1038/s42254-021-00314-5 – year: 2021 ident: 10.1016/j.cma.2024.117681_bib0037 – year: 1998 ident: 10.1016/j.cma.2024.117681_bib0051 – volume: 470 year: 2022 ident: 10.1016/j.cma.2024.117681_bib0021 article-title: NH-PINN: neural homogenization-based physics-informed neural network for multiscale problems publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2022.111539 – volume: 400 year: 2020 ident: 10.1016/j.cma.2024.117681_bib0031 article-title: A mesh-free method for interface problems using the deep learning approach publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2019.108963 – start-page: 1 year: 2018 ident: 10.1016/j.cma.2024.117681_bib0001 article-title: Deep learning for computer vision: a brief review publication-title: Comput. Intell. Neurosci. – year: 2020 ident: 10.1016/j.cma.2024.117681_bib0047 – volume: 2 start-page: 359 issue: 5 year: 1989 ident: 10.1016/j.cma.2024.117681_bib0048 article-title: Multilayer feedforward networks are universal approximators publication-title: Neural Netw. doi: 10.1016/0893-6080(89)90020-8 – year: 2005 ident: 10.1016/j.cma.2024.117681_bib0053 – volume: 286–287 year: 2024 ident: 10.1016/j.cma.2024.117681_bib0016 article-title: A graph-based probabilistic geometric deep learning framework with online enforcement of physical constraints to predict the criticality of defects in porous materials publication-title: Int. J. Solid. Struct. – year: 2019 ident: 10.1016/j.cma.2024.117681_bib0055 – volume: 398 year: 2022 ident: 10.1016/j.cma.2024.117681_bib0013 article-title: Probabilistic deep learning for real-time large deformation simulations publication-title: Comput. Method. Appl. Mech. Engrg. doi: 10.1016/j.cma.2022.115307 – year: 2014 ident: 10.1016/j.cma.2024.117681_bib0065 |
| SSID | ssj0000812 |
| Score | 2.5353367 |
| Snippet | •The deep finite element method integrating the physics-informed neural networks and the finite element method is proposed.•The method provides a flexible and... |
| SourceID | crossref elsevier |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 117681 |
| SubjectTerms | Deep energy method Deep finite element method Physics-informed neural networks Solid elasticity mechanics Three-dimensional structures |
| Title | The deep finite element method: A deep learning framework integrating the physics-informed neural networks with the finite element method |
| URI | https://dx.doi.org/10.1016/j.cma.2024.117681 |
| Volume | 436 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) issn: 0045-7825 databaseCode: GBLVA dateStart: 20110101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: true ssIdentifier: ssj0000812 providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Complete Freedom Collection [SCCMFC] issn: 0045-7825 databaseCode: ACRLP dateStart: 19950101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: true ssIdentifier: ssj0000812 providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals [SCFCJ] issn: 0045-7825 databaseCode: AIKHN dateStart: 19950101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: true ssIdentifier: ssj0000812 providerName: Elsevier – providerCode: PRVESC databaseName: Science Direct issn: 0045-7825 databaseCode: .~1 dateStart: 19950101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: true ssIdentifier: ssj0000812 providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals issn: 0045-7825 databaseCode: AKRWK dateStart: 19720601 customDbUrl: isFulltext: true mediaType: online dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000812 providerName: Library Specific Holdings |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV27TsMwFLUqWGDgUUCUR-WBCck08SsOW1VRFZA6UalblDg3qAiFipaVnb_Gr0CRCgNrYsuWj-N7Yh-fi9AFTawlDIsIBaCES8VIDhUnUkGsmWYsL5zaYixHE343FdMWGjR3YaysMqz9fk13q3V40guj2ZvPZvaOL7de7MKqIFMmrO0254nNYnD1_i3zMCHPO4ZzQWzp5mTTaby0sx6i3B5dShWvj00r8Wa4h3YCUcR935d91IK6jXYDacThk1y00faKo-AB-jCw4xJgjquZZZMYvDwc-0zR17jv34ZkEY-4asRZuDGOsE8NK8R-z2NBvLWqadNaX5oe1V44vsB2C9eVXNvUIZoMbx4GIxKyLRBN02RJCpbH7iA2yUVUKIgKRlVcxcANXjxhrEyUFLQCKpNSpMAhqrgoTfynShvI2RHaqF9qOEa4MCynSKuoMv9KnNNccS3BMJ0ISs1A5h0UNeOc6WBFbjNiPGeN5uwpM9BkFprMQ9NBl19V5t6H46_CvAEv-zGZMhMnfq928r9qp2iL2qTATph2hjaWr29wbpjKsui6qdhFm_3b-9H4E0oG59c |
| linkProvider | Elsevier |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwED6VMgADjwKiPD0wIZkmfiVlqypQgdKplbpFeVxQEQoVLSs7_xo7dqBIhYHVsWXL5_g--z5_B3DOAiMJwz3KEBkVKuQ0xlxQFaKf8pTzOCnZFgPVG4m7sRzXoFu9hTG0Srf32z293K1dScvNZms6mZg3vsJosUvDgmxzqVZgVUgWmBPY5fs3z0P7PCsZLiQ11avQZknySkvtISZM7FKF_nLntOBwbrZh0yFF0rGD2YEaFg3YcqiRuH9y1oCNBUnBXfjQdicZ4pTkEwMnCVp-OLGpoq9Ix3512SIeSV6xs0ilHGFKNSwk9tJjRq22qu7TaF_qERWWOT4j5g63rLm0qz0Y3VwPuz3q0i3QlLWDOU147JeR2CCWXhKil3AW-rmPQhtMBJxnQagky5GpIJNtFOjlQmYaALAw1Tbn-1AvXgo8AJJomJO0cy_XhyUhWByKVKGGOh5mKUcVN8Gr5jlKnRa5SYnxHFWks6dImyYypomsaZpw8dVkaoU4_qosKuNFP1ZTpB3F780O_9fsDNZ6w4d-1L8d3B_BOjMZgkuW2jHU569veKJhyzw5LZflJ7fg6Ww |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+deep+finite+element+method%3A+A+deep+learning+framework+integrating+the+physics-informed+neural+networks+with+the+finite+element+method&rft.jtitle=Computer+methods+in+applied+mechanics+and+engineering&rft.au=Xiong%2C+Wei&rft.au=Long%2C+Xiangyun&rft.au=Bordas%2C+St%C3%A9phane+P.A.&rft.au=Jiang%2C+Chao&rft.date=2025-03-01&rft.issn=0045-7825&rft.volume=436&rft.spage=117681&rft_id=info:doi/10.1016%2Fj.cma.2024.117681&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_cma_2024_117681 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0045-7825&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0045-7825&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0045-7825&client=summon |