Atom-centered machine-learning force field package
In recent years, machine learning algorithms have been widely used for constructing force fields with an accuracy of ab initio methods and the efficiency of classical force fields. Here, we developed a python-based atom-centered machine-learning force field (PyAMFF) package to provide a simple and e...
        Saved in:
      
    
          | Published in | Computer physics communications Vol. 292; p. 108883 | 
|---|---|
| Main Authors | , , , , , , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
            Elsevier B.V
    
        01.11.2023
     | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 0010-4655 1879-2944  | 
| DOI | 10.1016/j.cpc.2023.108883 | 
Cover
| Abstract | In recent years, machine learning algorithms have been widely used for constructing force fields with an accuracy of ab initio methods and the efficiency of classical force fields. Here, we developed a python-based atom-centered machine-learning force field (PyAMFF) package to provide a simple and efficient platform for fitting and using machine learning force fields by implementing an atom-centered neural-network algorithm with Behler-Parrinello symmetry functions as structural fingerprints. The following three features are included in PyAMFF: (1) integrated Fortran modules for fast fingerprint calculations and Python modules for user-friendly integration through scripts and facile extension of future algorithms; (2) a pure Fortran backend to interface with the software, including the long-timescale dynamic simulation package EON, enabling both molecular dynamic simulations and adaptive kinetic Monte Carlo simulations with machine-learning force fields; and (3) integration with the Atomic Simulation Environment package for active learning and ML-based algorithm development. Here, we demonstrate an efficient parallelization of PyAMFF in terms of CPU and memory usage and show that the Fortran-based PyAMFF calculator exhibits a linear scaling relationship with the number of symmetry functions and the system size.
Program title: python-based atom-centered machine-learning force field (PyAMFF)
CPC Library link to program files:https://doi.org/10.17632/fsn6dkcvrv.1
Developer's repository link:https://gitlab.com/pyamff/pyamff
Licensing provisions: Apache License, 2.0
Nature of problem: Determine an approximate (surrogate) model based upon atomic forces and energies from density functional theory (DFT). With a surrogate model that is less computationally expensive to evaluate than DFT, there can be a rapid exploration of the potential energy surface, accelerated optimization to minima and saddle points, and ultimately, accelerated design of active materials where the kinetics are key to the material function.
Solution method: The atomic environments of training data are calculated in terms of Behler-Parrinello fingerprints. These fingerprints are passed to a neural network which is trained to reproduce the energy and force of the training data. A parallel implementation and Fortran backend allow for efficient training and calculation of the resulting surrogate model. Examples of long-time simulations of materials on the surrogate model surfaces are provided. | 
    
|---|---|
| AbstractList | In recent years, machine learning algorithms have been widely used for constructing force fields with an accuracy of ab initio methods and the efficiency of classical force fields. Here, we developed a python-based atom-centered machine-learning force field (PyAMFF) package to provide a simple and efficient platform for fitting and using machine learning force fields by implementing an atom-centered neural-network algorithm with Behler-Parrinello symmetry functions as structural fingerprints. The following three features are included in PyAMFF: (1) integrated Fortran modules for fast fingerprint calculations and Python modules for user-friendly integration through scripts and facile extension of future algorithms; (2) a pure Fortran backend to interface with the software, including the long-timescale dynamic simulation package EON, enabling both molecular dynamic simulations and adaptive kinetic Monte Carlo simulations with machine-learning force fields; and (3) integration with the Atomic Simulation Environment package for active learning and ML-based algorithm development. Here, we demonstrate an efficient parallelization of PyAMFF in terms of CPU and memory usage and show that the Fortran-based PyAMFF calculator exhibits a linear scaling relationship with the number of symmetry functions and the system size.
Program title: python-based atom-centered machine-learning force field (PyAMFF)
CPC Library link to program files:https://doi.org/10.17632/fsn6dkcvrv.1
Developer's repository link:https://gitlab.com/pyamff/pyamff
Licensing provisions: Apache License, 2.0
Nature of problem: Determine an approximate (surrogate) model based upon atomic forces and energies from density functional theory (DFT). With a surrogate model that is less computationally expensive to evaluate than DFT, there can be a rapid exploration of the potential energy surface, accelerated optimization to minima and saddle points, and ultimately, accelerated design of active materials where the kinetics are key to the material function.
Solution method: The atomic environments of training data are calculated in terms of Behler-Parrinello fingerprints. These fingerprints are passed to a neural network which is trained to reproduce the energy and force of the training data. A parallel implementation and Fortran backend allow for efficient training and calculation of the resulting surrogate model. Examples of long-time simulations of materials on the surrogate model surfaces are provided. | 
    
| ArticleNumber | 108883 | 
    
| Author | Katyal, Naman Henkelman, Graeme Ciufo, Ryan A. Zhou, Chuan Lee, Jiyoung Lin, Bo Li, Lei Cho, Jaeyoung  | 
    
| Author_xml | – sequence: 1 givenname: Lei surname: Li fullname: Li, Lei email: lil33@sustech.edu.cn organization: Department of Materials Science and Engineering, Guangdong Provincial Key Laboratory of Functional Oxide Materials and Devices, Southern University of Science and Technology, Shenzhen 518055, Guangdong, China – sequence: 2 givenname: Ryan A. surname: Ciufo fullname: Ciufo, Ryan A. organization: Department of Chemistry and the Oden Institute for Computational Engineering and Sciences, University of Texas at Austin, Austin, TX 78712-0231, USA – sequence: 3 givenname: Jiyoung surname: Lee fullname: Lee, Jiyoung organization: Department of Chemistry and the Oden Institute for Computational Engineering and Sciences, University of Texas at Austin, Austin, TX 78712-0231, USA – sequence: 4 givenname: Chuan surname: Zhou fullname: Zhou, Chuan organization: Department of Materials Science and Engineering, Guangdong Provincial Key Laboratory of Functional Oxide Materials and Devices, Southern University of Science and Technology, Shenzhen 518055, Guangdong, China – sequence: 5 givenname: Bo surname: Lin fullname: Lin, Bo organization: Department of Materials Science and Engineering, Guangdong Provincial Key Laboratory of Functional Oxide Materials and Devices, Southern University of Science and Technology, Shenzhen 518055, Guangdong, China – sequence: 6 givenname: Jaeyoung surname: Cho fullname: Cho, Jaeyoung organization: Department of Chemistry and the Oden Institute for Computational Engineering and Sciences, University of Texas at Austin, Austin, TX 78712-0231, USA – sequence: 7 givenname: Naman surname: Katyal fullname: Katyal, Naman organization: Department of Chemistry and the Oden Institute for Computational Engineering and Sciences, University of Texas at Austin, Austin, TX 78712-0231, USA – sequence: 8 givenname: Graeme orcidid: 0000-0002-0336-7153 surname: Henkelman fullname: Henkelman, Graeme email: henkelman@utexas.edu organization: Department of Chemistry and the Oden Institute for Computational Engineering and Sciences, University of Texas at Austin, Austin, TX 78712-0231, USA  | 
    
| BookMark | eNp9z89KAzEQx_EgFazVB_C2L7B1kt0kGzyV4j8oeNFzmE1ma-o2W7JB8O3dUk8eehrm8P3B55rN4hCJsTsOSw5c3e-W7uCWAkQ1_U3TVBdszhttSmHqesbmABzKWkl5xa7HcQcAWptqzsQqD_vSUcyUyBd7dJ8hUtkTphjituiG5KjoAvW-OKD7wi3dsMsO-5Fu_-6CfTw9vq9fys3b8-t6tSmdMDqX2CrtidB0rWlbX3sU2kDVUiMNkkGHXnEjpFYVSKm9AKm5FoqDMkJJUS0YP-26NIxjos4eUthj-rEc7BFtd3ZC2yPantBTo_81LmTMYYg5YejPlg-nkibSd6BkRxcoOvIhkcvWD-FM_QvVYnJF | 
    
| CitedBy_id | crossref_primary_10_1021_acs_jctc_4c01176 crossref_primary_10_1002_cnl2_124 crossref_primary_10_1063_5_0187892 crossref_primary_10_1063_5_0247559 crossref_primary_10_1021_acs_jctc_4c00953 crossref_primary_10_1021_acs_jctc_3c01254  | 
    
| Cites_doi | 10.1016/j.cpc.2016.05.010 10.1088/0965-0393/22/5/055002 10.1021/acs.chemrev.0c01111 10.1063/1.4960708 10.1021/acs.jctc.8b00770 10.1016/j.cpc.2021.108171 10.1063/1.3553717 10.1002/anie.201703114 10.1063/1.1415500 10.1021/acs.jctc.8b01092 10.1063/1.1323224 10.1016/j.cpc.2018.03.016 10.1021/acs.jpca.9b08723 10.1103/PhysRevLett.98.146401 10.1002/qua.24890 10.1088/0953-8984/26/18/183001  | 
    
| ContentType | Journal Article | 
    
| Copyright | 2023 Elsevier B.V. | 
    
| Copyright_xml | – notice: 2023 Elsevier B.V. | 
    
| DBID | AAYXX CITATION  | 
    
| DOI | 10.1016/j.cpc.2023.108883 | 
    
| DatabaseName | CrossRef | 
    
| DatabaseTitle | CrossRef | 
    
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Physics | 
    
| EISSN | 1879-2944 | 
    
| ExternalDocumentID | 10_1016_j_cpc_2023_108883 S001046552300228X  | 
    
| GroupedDBID | --K --M -~X .DC .~1 0R~ 1B1 1RT 1~. 1~5 29F 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AARLI AAXUO AAYFN ABBOA ABFNM ABMAC ABNEU ABQEM ABQYD ABXDB ABYKQ ACDAQ ACFVG ACGFS ACLVX ACNNM ACRLP ACSBN ACZNC ADBBV ADECG ADEZE ADJOM ADMUD AEBSH AEKER AENEX AFKWA AFTJW AFZHZ AGHFR AGUBO AGYEJ AHHHB AHZHX AI. AIALX AIEXJ AIKHN AITUG AIVDX AJBFU AJOXV AJSZI ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD ASPBG ATOGT AVWKF AXJTR AZFZN BBWZM BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FLBIZ FNPLU FYGXN G-2 G-Q GBLVA GBOLZ HLZ HME HMV HVGLF HZ~ IHE IMUCA J1W KOM LG9 LZ4 M38 M41 MO0 N9A NDZJH O-L O9- OAUVE OGIMB OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SBC SCB SDF SDG SES SEW SHN SPC SPCBC SPD SPG SSE SSK SSQ SSV SSZ T5K TN5 UPT VH1 WUQ ZMT ~02 ~G- AATTM AAXKI AAYWO AAYXX ABJNI ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD  | 
    
| ID | FETCH-LOGICAL-c297t-ab67deea9fb9bbd4da27903be859ae9acad619257630557d20571726106926523 | 
    
| IEDL.DBID | .~1 | 
    
| ISSN | 0010-4655 | 
    
| IngestDate | Thu Apr 24 22:53:37 EDT 2025 Wed Oct 01 05:18:00 EDT 2025 Fri Feb 23 02:36:51 EST 2024  | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Keywords | Density functional theory Atomic force field Adaptive kinetic Monte Carlo Machine learning  | 
    
| Language | English | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c297t-ab67deea9fb9bbd4da27903be859ae9acad619257630557d20571726106926523 | 
    
| ORCID | 0000-0002-0336-7153 | 
    
| ParticipantIDs | crossref_primary_10_1016_j_cpc_2023_108883 crossref_citationtrail_10_1016_j_cpc_2023_108883 elsevier_sciencedirect_doi_10_1016_j_cpc_2023_108883  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | November 2023 2023-11-00  | 
    
| PublicationDateYYYYMMDD | 2023-11-01 | 
    
| PublicationDate_xml | – month: 11 year: 2023 text: November 2023  | 
    
| PublicationDecade | 2020 | 
    
| PublicationTitle | Computer physics communications | 
    
| PublicationYear | 2023 | 
    
| Publisher | Elsevier B.V | 
    
| Publisher_xml | – name: Elsevier B.V | 
    
| References | Bartók, Kermode, Bernstein, Csányi (br0220) 2018; 8 Behler (br0070) 2011; 134 Singraber, Behler, Dellago (br0090) 2019; 15 S. Chill, G. Henkelman, (n.d.). Singraber, Morawietz, Behler, Dellago (br0100) 2019; 15 Behler, Parrinello (br0050) 2007; 98 Khorshidi, Peterson (br0030) 2016; 207 Wang, Zhang, Han, E (br0040) 2018; 228 Larsen, Mortensen, Blomqvist, Castelli, Christensen, Dułak, Friis, Groves, Hammer, Hargus, Hermes, Jennings, Jensen, Kermode, Kitchin, Kolsbjerg, Kubal, Kaasbjerg, Lysgaard, Maronsson, Maxson, Olsen, Pastewka, Peterson, Rostgaard, Schiøtz, Schütt, Strange, Thygesen, Vegge, Vilhelmsen, Walter, Zeng, Jacobsen (br0130) 2017; 29 Thompson, Aktulga, Berger, Bolintineanu, Brown, Crozier, in 't Veld, Kohlmeyer, Moore, Nguyen, Shan, Stevens, Tranchida, Trott, Plimpton (br0120) 2022; 271 Henkelman, Jónsson (br0200) 2001; 115 Behler (br0060) 2015; 115 Li, Li, Seymour, Koziol, Henkelman (br0140) 2020; 152 Paszke, Gross, Massa, Lerer, Bradbury, Chanan, Killeen, Lin, Gimelshein, Antiga, Desmaison, Kopf, Yang, DeVito, Raison, Tejani, Chilamkurthy, Steiner, Fang, Bai, Chintala (br0150) 2019; vol. 32 Behler (br0010) 2017; 56 Behler (br0080) 2014; 26 Zuo, Chen, Li, Deng, Chen, Behler, Csányi, Shapeev, Thompson, Wood, Ong (br0230) 2020; 124 Unke, Chmiela, Sauceda, Gastegger, Poltavsky, Schütt, Tkatchenko, Müller (br0020) 2021; 121 Henkelman, Jónsson (br0170) 2000; 113 Peterson (br0180) 2016; 145 Xu, Henkelman (br0210) 2008; 129 Rohskopf, Sievers, Lubbers, Cusentino, Goff, Janssen, McCarthy, De Oca Zapiain, Nikolov, Sargsyan, Sema, Sikorski, Williams, Thompson, Wood (br0110) 2023; 8 Chill, Welborn, Terrell, Zhang, Berthet, Pedersen, Jónsson, Henkelman (br0160) 2014; 22 Behler (10.1016/j.cpc.2023.108883_br0050) 2007; 98 Wang (10.1016/j.cpc.2023.108883_br0040) 2018; 228 Chill (10.1016/j.cpc.2023.108883_br0160) 2014; 22 Behler (10.1016/j.cpc.2023.108883_br0070) 2011; 134 Behler (10.1016/j.cpc.2023.108883_br0080) 2014; 26 Thompson (10.1016/j.cpc.2023.108883_br0120) 2022; 271 Larsen (10.1016/j.cpc.2023.108883_br0130) 2017; 29 Li (10.1016/j.cpc.2023.108883_br0140) 2020; 152 Xu (10.1016/j.cpc.2023.108883_br0210) 2008; 129 Singraber (10.1016/j.cpc.2023.108883_br0090) 2019; 15 Henkelman (10.1016/j.cpc.2023.108883_br0170) 2000; 113 Zuo (10.1016/j.cpc.2023.108883_br0230) 2020; 124 Behler (10.1016/j.cpc.2023.108883_br0060) 2015; 115 Rohskopf (10.1016/j.cpc.2023.108883_br0110) 2023; 8 Singraber (10.1016/j.cpc.2023.108883_br0100) 2019; 15 10.1016/j.cpc.2023.108883_br0190 Bartók (10.1016/j.cpc.2023.108883_br0220) 2018; 8 Peterson (10.1016/j.cpc.2023.108883_br0180) 2016; 145 Henkelman (10.1016/j.cpc.2023.108883_br0200) 2001; 115 Behler (10.1016/j.cpc.2023.108883_br0010) 2017; 56 Unke (10.1016/j.cpc.2023.108883_br0020) 2021; 121 Khorshidi (10.1016/j.cpc.2023.108883_br0030) 2016; 207 Paszke (10.1016/j.cpc.2023.108883_br0150) 2019; vol. 32  | 
    
| References_xml | – volume: 207 start-page: 310 year: 2016 end-page: 324 ident: br0030 publication-title: Comput. Phys. Commun. – volume: 22 year: 2014 ident: br0160 publication-title: Model. Simul. Mater. Sci. Eng. – volume: 121 start-page: 10142 year: 2021 end-page: 10186 ident: br0020 publication-title: Chem. Rev. – volume: 29 year: 2017 ident: br0130 publication-title: J. Phys. Condens. Matter – volume: 129 year: 2008 ident: br0210 publication-title: J. Chem. Phys. – volume: 8 year: 2018 ident: br0220 publication-title: Phys. Rev. X – volume: 124 start-page: 731 year: 2020 end-page: 745 ident: br0230 publication-title: J. Phys. Chem. A – volume: 228 start-page: 178 year: 2018 end-page: 184 ident: br0040 publication-title: Comput. Phys. Commun. – volume: 8 start-page: 5118 year: 2023 ident: br0110 publication-title: J. Soc. Struct. – volume: 152 year: 2020 ident: br0140 publication-title: J. Chem. Phys. – volume: vol. 32 start-page: 8024 year: 2019 end-page: 8035 ident: br0150 publication-title: Advances in Neural Information Processing Systems – volume: 115 start-page: 9657 year: 2001 end-page: 9666 ident: br0200 publication-title: J. Chem. Phys. – volume: 134 year: 2011 ident: br0070 publication-title: J. Chem. Phys. – volume: 98 year: 2007 ident: br0050 publication-title: Phys. Rev. Lett. – volume: 15 start-page: 1827 year: 2019 end-page: 1840 ident: br0090 publication-title: J. Chem. Theory Comput. – volume: 113 start-page: 9978 year: 2000 end-page: 9985 ident: br0170 publication-title: J. Chem. Phys. – volume: 56 start-page: 12828 year: 2017 end-page: 12840 ident: br0010 publication-title: Angew. Chem., Int. Ed. – volume: 115 start-page: 1032 year: 2015 end-page: 1050 ident: br0060 publication-title: Int. J. Quant. Chem. – volume: 15 start-page: 3075 year: 2019 end-page: 3092 ident: br0100 publication-title: J. Chem. Theory Comput. – volume: 26 year: 2014 ident: br0080 publication-title: J. Phys. Condens. Matter – volume: 271 year: 2022 ident: br0120 publication-title: Comput. Phys. Commun. – volume: 145 year: 2016 ident: br0180 publication-title: J. Chem. Phys. – reference: S. Chill, G. Henkelman, (n.d.). – volume: 207 start-page: 310 year: 2016 ident: 10.1016/j.cpc.2023.108883_br0030 publication-title: Comput. Phys. Commun. doi: 10.1016/j.cpc.2016.05.010 – volume: 22 year: 2014 ident: 10.1016/j.cpc.2023.108883_br0160 publication-title: Model. Simul. Mater. Sci. Eng. doi: 10.1088/0965-0393/22/5/055002 – volume: 121 start-page: 10142 year: 2021 ident: 10.1016/j.cpc.2023.108883_br0020 publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.0c01111 – volume: 145 year: 2016 ident: 10.1016/j.cpc.2023.108883_br0180 publication-title: J. Chem. Phys. doi: 10.1063/1.4960708 – volume: 15 start-page: 1827 year: 2019 ident: 10.1016/j.cpc.2023.108883_br0090 publication-title: J. Chem. Theory Comput. doi: 10.1021/acs.jctc.8b00770 – volume: 8 year: 2018 ident: 10.1016/j.cpc.2023.108883_br0220 publication-title: Phys. Rev. X – volume: 8 start-page: 5118 year: 2023 ident: 10.1016/j.cpc.2023.108883_br0110 publication-title: J. Soc. Struct. – volume: 271 year: 2022 ident: 10.1016/j.cpc.2023.108883_br0120 publication-title: Comput. Phys. Commun. doi: 10.1016/j.cpc.2021.108171 – volume: 129 year: 2008 ident: 10.1016/j.cpc.2023.108883_br0210 publication-title: J. Chem. Phys. – volume: 134 year: 2011 ident: 10.1016/j.cpc.2023.108883_br0070 publication-title: J. Chem. Phys. doi: 10.1063/1.3553717 – volume: 56 start-page: 12828 year: 2017 ident: 10.1016/j.cpc.2023.108883_br0010 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201703114 – volume: 115 start-page: 9657 year: 2001 ident: 10.1016/j.cpc.2023.108883_br0200 publication-title: J. Chem. Phys. doi: 10.1063/1.1415500 – volume: 15 start-page: 3075 year: 2019 ident: 10.1016/j.cpc.2023.108883_br0100 publication-title: J. Chem. Theory Comput. doi: 10.1021/acs.jctc.8b01092 – volume: 113 start-page: 9978 year: 2000 ident: 10.1016/j.cpc.2023.108883_br0170 publication-title: J. Chem. Phys. doi: 10.1063/1.1323224 – volume: 228 start-page: 178 year: 2018 ident: 10.1016/j.cpc.2023.108883_br0040 publication-title: Comput. Phys. Commun. doi: 10.1016/j.cpc.2018.03.016 – volume: vol. 32 start-page: 8024 year: 2019 ident: 10.1016/j.cpc.2023.108883_br0150 – volume: 29 year: 2017 ident: 10.1016/j.cpc.2023.108883_br0130 publication-title: J. Phys. Condens. Matter – volume: 152 year: 2020 ident: 10.1016/j.cpc.2023.108883_br0140 publication-title: J. Chem. Phys. – volume: 124 start-page: 731 year: 2020 ident: 10.1016/j.cpc.2023.108883_br0230 publication-title: J. Phys. Chem. A doi: 10.1021/acs.jpca.9b08723 – volume: 98 year: 2007 ident: 10.1016/j.cpc.2023.108883_br0050 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.98.146401 – ident: 10.1016/j.cpc.2023.108883_br0190 – volume: 115 start-page: 1032 year: 2015 ident: 10.1016/j.cpc.2023.108883_br0060 publication-title: Int. J. Quant. Chem. doi: 10.1002/qua.24890 – volume: 26 year: 2014 ident: 10.1016/j.cpc.2023.108883_br0080 publication-title: J. Phys. Condens. Matter doi: 10.1088/0953-8984/26/18/183001  | 
    
| SSID | ssj0007793 | 
    
| Score | 2.4736617 | 
    
| Snippet | In recent years, machine learning algorithms have been widely used for constructing force fields with an accuracy of ab initio methods and the efficiency of... | 
    
| SourceID | crossref elsevier  | 
    
| SourceType | Enrichment Source Index Database Publisher  | 
    
| StartPage | 108883 | 
    
| SubjectTerms | Adaptive kinetic Monte Carlo Atomic force field Density functional theory Machine learning  | 
    
| Title | Atom-centered machine-learning force field package | 
    
| URI | https://dx.doi.org/10.1016/j.cpc.2023.108883 | 
    
| Volume | 292 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1879-2944 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0007793 issn: 0010-4655 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier ScienceDirect customDbUrl: eissn: 1879-2944 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0007793 issn: 0010-4655 databaseCode: .~1 dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier ScienceDirect (LAB) customDbUrl: eissn: 1879-2944 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0007793 issn: 0010-4655 databaseCode: ACRLP dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: ScienceDirect Freedom Collection Journals customDbUrl: eissn: 1879-2944 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0007793 issn: 0010-4655 databaseCode: AIKHN dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1879-2944 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0007793 issn: 0010-4655 databaseCode: AKRWK dateStart: 19690701 isFulltext: true providerName: Library Specific Holdings  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF5KRfAiPrE-Sg6ehLVls9nNHkuxVIs9iMXewr4i9RGLxqu_3Zlk4wPUg6eQsAPJbPhmdvebbwg55hpmVRlNOZeOcuUFNUomVMa55Zp5CEq433E5FeMZv5gn8xYZNrUwSKsM2F9jeoXW4UkveLO3XCywxhfPJxPc1kQRlzlWsHOJXQxO3z5pHlIG4V3AGxzdnGxWHC-7RBVDFiPTLk3jn2PTl3gz2iDrIVGMBvW7bJKWL7bIakXYtC_bhA1KQDekVmKzzeix4kR6GppA3EaQi1ofVfy0CJbF9wAbO2Q2Orsejmnof0AtU7Kk2gjpvNcqN8oYx51mUvVj49MEJbW11Q6XP7BiQNku6RjkXpCPQEIkFBPgl13SLp4Kv0ciI6y2HuK5dQmPc57mhgnnMTYJrZN-h_SbL89sEAfHHhUPWcMCu8vAWRk6K6ud1SEnHybLWhnjr8G8cWf2bXozQO7fzfb_Z3ZA1vCuLhk8JO3y-dUfQe5Qmm71c3TJyuB8Mp7idXJ1M3kHPOjCCw | 
    
| linkProvider | Elsevier | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JTsMwEB2VIgQXxCrKmgMnpNDKcez4WFVUBdqeWqk3y1sQW6kgXPl2PInDIgEHroktJWPrzYz95g3AKVV-VYVWMaXcxlQ4FmvB05gnuaGKOO-U8LxjNGaDKb2apbMG9OpaGKRVBuyvML1E6_CkHazZXtzeYo0v3k-meKyJIi6zJVimKeGYgZ2_ffI8OA_Kux5wcHh9tVmSvMwCZQxJglS7LEt-dk5fHE5_A9ZDpBh1q4_ZhIabb8FKydg0L9tAuoWHN-RWYrfN6LEkRbo4dIG4iXwwalxUEtQinxffe9zYgWn_YtIbxKEBQmyI4EWsNOPWOSVyLbS21CrCRSfRLktRU1sZZTH_8SkD6nZxS3zw5QMSHxExQZg3zC40509ztweRZkYZ5x26sSlNcprlmjDr0DkxpdJOCzr1n0sT1MGxScWDrGlgd9IbS6KxZGWsFpx9TFlU0hh_Daa1OeW39ZUeun-ftv-_aSewOpiMhnJ4Ob4-gDV8U9UPHkKzeH51Rz6QKPRxuVHeAevLwf0 | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Atom-centered+machine-learning+force+field+package&rft.jtitle=Computer+physics+communications&rft.au=Li%2C+Lei&rft.au=Ciufo%2C+Ryan+A.&rft.au=Lee%2C+Jiyoung&rft.au=Zhou%2C+Chuan&rft.date=2023-11-01&rft.issn=0010-4655&rft.volume=292&rft.spage=108883&rft_id=info:doi/10.1016%2Fj.cpc.2023.108883&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_cpc_2023_108883 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0010-4655&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0010-4655&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0010-4655&client=summon |