Atom-centered machine-learning force field package

In recent years, machine learning algorithms have been widely used for constructing force fields with an accuracy of ab initio methods and the efficiency of classical force fields. Here, we developed a python-based atom-centered machine-learning force field (PyAMFF) package to provide a simple and e...

Full description

Saved in:
Bibliographic Details
Published inComputer physics communications Vol. 292; p. 108883
Main Authors Li, Lei, Ciufo, Ryan A., Lee, Jiyoung, Zhou, Chuan, Lin, Bo, Cho, Jaeyoung, Katyal, Naman, Henkelman, Graeme
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.11.2023
Subjects
Online AccessGet full text
ISSN0010-4655
1879-2944
DOI10.1016/j.cpc.2023.108883

Cover

Abstract In recent years, machine learning algorithms have been widely used for constructing force fields with an accuracy of ab initio methods and the efficiency of classical force fields. Here, we developed a python-based atom-centered machine-learning force field (PyAMFF) package to provide a simple and efficient platform for fitting and using machine learning force fields by implementing an atom-centered neural-network algorithm with Behler-Parrinello symmetry functions as structural fingerprints. The following three features are included in PyAMFF: (1) integrated Fortran modules for fast fingerprint calculations and Python modules for user-friendly integration through scripts and facile extension of future algorithms; (2) a pure Fortran backend to interface with the software, including the long-timescale dynamic simulation package EON, enabling both molecular dynamic simulations and adaptive kinetic Monte Carlo simulations with machine-learning force fields; and (3) integration with the Atomic Simulation Environment package for active learning and ML-based algorithm development. Here, we demonstrate an efficient parallelization of PyAMFF in terms of CPU and memory usage and show that the Fortran-based PyAMFF calculator exhibits a linear scaling relationship with the number of symmetry functions and the system size. Program title: python-based atom-centered machine-learning force field (PyAMFF) CPC Library link to program files:https://doi.org/10.17632/fsn6dkcvrv.1 Developer's repository link:https://gitlab.com/pyamff/pyamff Licensing provisions: Apache License, 2.0 Nature of problem: Determine an approximate (surrogate) model based upon atomic forces and energies from density functional theory (DFT). With a surrogate model that is less computationally expensive to evaluate than DFT, there can be a rapid exploration of the potential energy surface, accelerated optimization to minima and saddle points, and ultimately, accelerated design of active materials where the kinetics are key to the material function. Solution method: The atomic environments of training data are calculated in terms of Behler-Parrinello fingerprints. These fingerprints are passed to a neural network which is trained to reproduce the energy and force of the training data. A parallel implementation and Fortran backend allow for efficient training and calculation of the resulting surrogate model. Examples of long-time simulations of materials on the surrogate model surfaces are provided.
AbstractList In recent years, machine learning algorithms have been widely used for constructing force fields with an accuracy of ab initio methods and the efficiency of classical force fields. Here, we developed a python-based atom-centered machine-learning force field (PyAMFF) package to provide a simple and efficient platform for fitting and using machine learning force fields by implementing an atom-centered neural-network algorithm with Behler-Parrinello symmetry functions as structural fingerprints. The following three features are included in PyAMFF: (1) integrated Fortran modules for fast fingerprint calculations and Python modules for user-friendly integration through scripts and facile extension of future algorithms; (2) a pure Fortran backend to interface with the software, including the long-timescale dynamic simulation package EON, enabling both molecular dynamic simulations and adaptive kinetic Monte Carlo simulations with machine-learning force fields; and (3) integration with the Atomic Simulation Environment package for active learning and ML-based algorithm development. Here, we demonstrate an efficient parallelization of PyAMFF in terms of CPU and memory usage and show that the Fortran-based PyAMFF calculator exhibits a linear scaling relationship with the number of symmetry functions and the system size. Program title: python-based atom-centered machine-learning force field (PyAMFF) CPC Library link to program files:https://doi.org/10.17632/fsn6dkcvrv.1 Developer's repository link:https://gitlab.com/pyamff/pyamff Licensing provisions: Apache License, 2.0 Nature of problem: Determine an approximate (surrogate) model based upon atomic forces and energies from density functional theory (DFT). With a surrogate model that is less computationally expensive to evaluate than DFT, there can be a rapid exploration of the potential energy surface, accelerated optimization to minima and saddle points, and ultimately, accelerated design of active materials where the kinetics are key to the material function. Solution method: The atomic environments of training data are calculated in terms of Behler-Parrinello fingerprints. These fingerprints are passed to a neural network which is trained to reproduce the energy and force of the training data. A parallel implementation and Fortran backend allow for efficient training and calculation of the resulting surrogate model. Examples of long-time simulations of materials on the surrogate model surfaces are provided.
ArticleNumber 108883
Author Katyal, Naman
Henkelman, Graeme
Ciufo, Ryan A.
Zhou, Chuan
Lee, Jiyoung
Lin, Bo
Li, Lei
Cho, Jaeyoung
Author_xml – sequence: 1
  givenname: Lei
  surname: Li
  fullname: Li, Lei
  email: lil33@sustech.edu.cn
  organization: Department of Materials Science and Engineering, Guangdong Provincial Key Laboratory of Functional Oxide Materials and Devices, Southern University of Science and Technology, Shenzhen 518055, Guangdong, China
– sequence: 2
  givenname: Ryan A.
  surname: Ciufo
  fullname: Ciufo, Ryan A.
  organization: Department of Chemistry and the Oden Institute for Computational Engineering and Sciences, University of Texas at Austin, Austin, TX 78712-0231, USA
– sequence: 3
  givenname: Jiyoung
  surname: Lee
  fullname: Lee, Jiyoung
  organization: Department of Chemistry and the Oden Institute for Computational Engineering and Sciences, University of Texas at Austin, Austin, TX 78712-0231, USA
– sequence: 4
  givenname: Chuan
  surname: Zhou
  fullname: Zhou, Chuan
  organization: Department of Materials Science and Engineering, Guangdong Provincial Key Laboratory of Functional Oxide Materials and Devices, Southern University of Science and Technology, Shenzhen 518055, Guangdong, China
– sequence: 5
  givenname: Bo
  surname: Lin
  fullname: Lin, Bo
  organization: Department of Materials Science and Engineering, Guangdong Provincial Key Laboratory of Functional Oxide Materials and Devices, Southern University of Science and Technology, Shenzhen 518055, Guangdong, China
– sequence: 6
  givenname: Jaeyoung
  surname: Cho
  fullname: Cho, Jaeyoung
  organization: Department of Chemistry and the Oden Institute for Computational Engineering and Sciences, University of Texas at Austin, Austin, TX 78712-0231, USA
– sequence: 7
  givenname: Naman
  surname: Katyal
  fullname: Katyal, Naman
  organization: Department of Chemistry and the Oden Institute for Computational Engineering and Sciences, University of Texas at Austin, Austin, TX 78712-0231, USA
– sequence: 8
  givenname: Graeme
  orcidid: 0000-0002-0336-7153
  surname: Henkelman
  fullname: Henkelman, Graeme
  email: henkelman@utexas.edu
  organization: Department of Chemistry and the Oden Institute for Computational Engineering and Sciences, University of Texas at Austin, Austin, TX 78712-0231, USA
BookMark eNp9z89KAzEQx_EgFazVB_C2L7B1kt0kGzyV4j8oeNFzmE1ma-o2W7JB8O3dUk8eehrm8P3B55rN4hCJsTsOSw5c3e-W7uCWAkQ1_U3TVBdszhttSmHqesbmABzKWkl5xa7HcQcAWptqzsQqD_vSUcyUyBd7dJ8hUtkTphjituiG5KjoAvW-OKD7wi3dsMsO-5Fu_-6CfTw9vq9fys3b8-t6tSmdMDqX2CrtidB0rWlbX3sU2kDVUiMNkkGHXnEjpFYVSKm9AKm5FoqDMkJJUS0YP-26NIxjos4eUthj-rEc7BFtd3ZC2yPantBTo_81LmTMYYg5YejPlg-nkibSd6BkRxcoOvIhkcvWD-FM_QvVYnJF
CitedBy_id crossref_primary_10_1021_acs_jctc_4c01176
crossref_primary_10_1002_cnl2_124
crossref_primary_10_1063_5_0187892
crossref_primary_10_1063_5_0247559
crossref_primary_10_1021_acs_jctc_4c00953
crossref_primary_10_1021_acs_jctc_3c01254
Cites_doi 10.1016/j.cpc.2016.05.010
10.1088/0965-0393/22/5/055002
10.1021/acs.chemrev.0c01111
10.1063/1.4960708
10.1021/acs.jctc.8b00770
10.1016/j.cpc.2021.108171
10.1063/1.3553717
10.1002/anie.201703114
10.1063/1.1415500
10.1021/acs.jctc.8b01092
10.1063/1.1323224
10.1016/j.cpc.2018.03.016
10.1021/acs.jpca.9b08723
10.1103/PhysRevLett.98.146401
10.1002/qua.24890
10.1088/0953-8984/26/18/183001
ContentType Journal Article
Copyright 2023 Elsevier B.V.
Copyright_xml – notice: 2023 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.cpc.2023.108883
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 1879-2944
ExternalDocumentID 10_1016_j_cpc_2023_108883
S001046552300228X
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
1B1
1RT
1~.
1~5
29F
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARLI
AAXUO
AAYFN
ABBOA
ABFNM
ABMAC
ABNEU
ABQEM
ABQYD
ABXDB
ABYKQ
ACDAQ
ACFVG
ACGFS
ACLVX
ACNNM
ACRLP
ACSBN
ACZNC
ADBBV
ADECG
ADEZE
ADJOM
ADMUD
AEBSH
AEKER
AENEX
AFKWA
AFTJW
AFZHZ
AGHFR
AGUBO
AGYEJ
AHHHB
AHZHX
AI.
AIALX
AIEXJ
AIKHN
AITUG
AIVDX
AJBFU
AJOXV
AJSZI
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ASPBG
ATOGT
AVWKF
AXJTR
AZFZN
BBWZM
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FLBIZ
FNPLU
FYGXN
G-2
G-Q
GBLVA
GBOLZ
HLZ
HME
HMV
HVGLF
HZ~
IHE
IMUCA
J1W
KOM
LG9
LZ4
M38
M41
MO0
N9A
NDZJH
O-L
O9-
OAUVE
OGIMB
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SBC
SCB
SDF
SDG
SES
SEW
SHN
SPC
SPCBC
SPD
SPG
SSE
SSK
SSQ
SSV
SSZ
T5K
TN5
UPT
VH1
WUQ
ZMT
~02
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
ID FETCH-LOGICAL-c297t-ab67deea9fb9bbd4da27903be859ae9acad619257630557d20571726106926523
IEDL.DBID .~1
ISSN 0010-4655
IngestDate Thu Apr 24 22:53:37 EDT 2025
Wed Oct 01 05:18:00 EDT 2025
Fri Feb 23 02:36:51 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Density functional theory
Atomic force field
Adaptive kinetic Monte Carlo
Machine learning
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c297t-ab67deea9fb9bbd4da27903be859ae9acad619257630557d20571726106926523
ORCID 0000-0002-0336-7153
ParticipantIDs crossref_primary_10_1016_j_cpc_2023_108883
crossref_citationtrail_10_1016_j_cpc_2023_108883
elsevier_sciencedirect_doi_10_1016_j_cpc_2023_108883
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate November 2023
2023-11-00
PublicationDateYYYYMMDD 2023-11-01
PublicationDate_xml – month: 11
  year: 2023
  text: November 2023
PublicationDecade 2020
PublicationTitle Computer physics communications
PublicationYear 2023
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Bartók, Kermode, Bernstein, Csányi (br0220) 2018; 8
Behler (br0070) 2011; 134
Singraber, Behler, Dellago (br0090) 2019; 15
S. Chill, G. Henkelman, (n.d.).
Singraber, Morawietz, Behler, Dellago (br0100) 2019; 15
Behler, Parrinello (br0050) 2007; 98
Khorshidi, Peterson (br0030) 2016; 207
Wang, Zhang, Han, E (br0040) 2018; 228
Larsen, Mortensen, Blomqvist, Castelli, Christensen, Dułak, Friis, Groves, Hammer, Hargus, Hermes, Jennings, Jensen, Kermode, Kitchin, Kolsbjerg, Kubal, Kaasbjerg, Lysgaard, Maronsson, Maxson, Olsen, Pastewka, Peterson, Rostgaard, Schiøtz, Schütt, Strange, Thygesen, Vegge, Vilhelmsen, Walter, Zeng, Jacobsen (br0130) 2017; 29
Thompson, Aktulga, Berger, Bolintineanu, Brown, Crozier, in 't Veld, Kohlmeyer, Moore, Nguyen, Shan, Stevens, Tranchida, Trott, Plimpton (br0120) 2022; 271
Henkelman, Jónsson (br0200) 2001; 115
Behler (br0060) 2015; 115
Li, Li, Seymour, Koziol, Henkelman (br0140) 2020; 152
Paszke, Gross, Massa, Lerer, Bradbury, Chanan, Killeen, Lin, Gimelshein, Antiga, Desmaison, Kopf, Yang, DeVito, Raison, Tejani, Chilamkurthy, Steiner, Fang, Bai, Chintala (br0150) 2019; vol. 32
Behler (br0010) 2017; 56
Behler (br0080) 2014; 26
Zuo, Chen, Li, Deng, Chen, Behler, Csányi, Shapeev, Thompson, Wood, Ong (br0230) 2020; 124
Unke, Chmiela, Sauceda, Gastegger, Poltavsky, Schütt, Tkatchenko, Müller (br0020) 2021; 121
Henkelman, Jónsson (br0170) 2000; 113
Peterson (br0180) 2016; 145
Xu, Henkelman (br0210) 2008; 129
Rohskopf, Sievers, Lubbers, Cusentino, Goff, Janssen, McCarthy, De Oca Zapiain, Nikolov, Sargsyan, Sema, Sikorski, Williams, Thompson, Wood (br0110) 2023; 8
Chill, Welborn, Terrell, Zhang, Berthet, Pedersen, Jónsson, Henkelman (br0160) 2014; 22
Behler (10.1016/j.cpc.2023.108883_br0050) 2007; 98
Wang (10.1016/j.cpc.2023.108883_br0040) 2018; 228
Chill (10.1016/j.cpc.2023.108883_br0160) 2014; 22
Behler (10.1016/j.cpc.2023.108883_br0070) 2011; 134
Behler (10.1016/j.cpc.2023.108883_br0080) 2014; 26
Thompson (10.1016/j.cpc.2023.108883_br0120) 2022; 271
Larsen (10.1016/j.cpc.2023.108883_br0130) 2017; 29
Li (10.1016/j.cpc.2023.108883_br0140) 2020; 152
Xu (10.1016/j.cpc.2023.108883_br0210) 2008; 129
Singraber (10.1016/j.cpc.2023.108883_br0090) 2019; 15
Henkelman (10.1016/j.cpc.2023.108883_br0170) 2000; 113
Zuo (10.1016/j.cpc.2023.108883_br0230) 2020; 124
Behler (10.1016/j.cpc.2023.108883_br0060) 2015; 115
Rohskopf (10.1016/j.cpc.2023.108883_br0110) 2023; 8
Singraber (10.1016/j.cpc.2023.108883_br0100) 2019; 15
10.1016/j.cpc.2023.108883_br0190
Bartók (10.1016/j.cpc.2023.108883_br0220) 2018; 8
Peterson (10.1016/j.cpc.2023.108883_br0180) 2016; 145
Henkelman (10.1016/j.cpc.2023.108883_br0200) 2001; 115
Behler (10.1016/j.cpc.2023.108883_br0010) 2017; 56
Unke (10.1016/j.cpc.2023.108883_br0020) 2021; 121
Khorshidi (10.1016/j.cpc.2023.108883_br0030) 2016; 207
Paszke (10.1016/j.cpc.2023.108883_br0150) 2019; vol. 32
References_xml – volume: 207
  start-page: 310
  year: 2016
  end-page: 324
  ident: br0030
  publication-title: Comput. Phys. Commun.
– volume: 22
  year: 2014
  ident: br0160
  publication-title: Model. Simul. Mater. Sci. Eng.
– volume: 121
  start-page: 10142
  year: 2021
  end-page: 10186
  ident: br0020
  publication-title: Chem. Rev.
– volume: 29
  year: 2017
  ident: br0130
  publication-title: J. Phys. Condens. Matter
– volume: 129
  year: 2008
  ident: br0210
  publication-title: J. Chem. Phys.
– volume: 8
  year: 2018
  ident: br0220
  publication-title: Phys. Rev. X
– volume: 124
  start-page: 731
  year: 2020
  end-page: 745
  ident: br0230
  publication-title: J. Phys. Chem. A
– volume: 228
  start-page: 178
  year: 2018
  end-page: 184
  ident: br0040
  publication-title: Comput. Phys. Commun.
– volume: 8
  start-page: 5118
  year: 2023
  ident: br0110
  publication-title: J. Soc. Struct.
– volume: 152
  year: 2020
  ident: br0140
  publication-title: J. Chem. Phys.
– volume: vol. 32
  start-page: 8024
  year: 2019
  end-page: 8035
  ident: br0150
  publication-title: Advances in Neural Information Processing Systems
– volume: 115
  start-page: 9657
  year: 2001
  end-page: 9666
  ident: br0200
  publication-title: J. Chem. Phys.
– volume: 134
  year: 2011
  ident: br0070
  publication-title: J. Chem. Phys.
– volume: 98
  year: 2007
  ident: br0050
  publication-title: Phys. Rev. Lett.
– volume: 15
  start-page: 1827
  year: 2019
  end-page: 1840
  ident: br0090
  publication-title: J. Chem. Theory Comput.
– volume: 113
  start-page: 9978
  year: 2000
  end-page: 9985
  ident: br0170
  publication-title: J. Chem. Phys.
– volume: 56
  start-page: 12828
  year: 2017
  end-page: 12840
  ident: br0010
  publication-title: Angew. Chem., Int. Ed.
– volume: 115
  start-page: 1032
  year: 2015
  end-page: 1050
  ident: br0060
  publication-title: Int. J. Quant. Chem.
– volume: 15
  start-page: 3075
  year: 2019
  end-page: 3092
  ident: br0100
  publication-title: J. Chem. Theory Comput.
– volume: 26
  year: 2014
  ident: br0080
  publication-title: J. Phys. Condens. Matter
– volume: 271
  year: 2022
  ident: br0120
  publication-title: Comput. Phys. Commun.
– volume: 145
  year: 2016
  ident: br0180
  publication-title: J. Chem. Phys.
– reference: S. Chill, G. Henkelman, (n.d.).
– volume: 207
  start-page: 310
  year: 2016
  ident: 10.1016/j.cpc.2023.108883_br0030
  publication-title: Comput. Phys. Commun.
  doi: 10.1016/j.cpc.2016.05.010
– volume: 22
  year: 2014
  ident: 10.1016/j.cpc.2023.108883_br0160
  publication-title: Model. Simul. Mater. Sci. Eng.
  doi: 10.1088/0965-0393/22/5/055002
– volume: 121
  start-page: 10142
  year: 2021
  ident: 10.1016/j.cpc.2023.108883_br0020
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.0c01111
– volume: 145
  year: 2016
  ident: 10.1016/j.cpc.2023.108883_br0180
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.4960708
– volume: 15
  start-page: 1827
  year: 2019
  ident: 10.1016/j.cpc.2023.108883_br0090
  publication-title: J. Chem. Theory Comput.
  doi: 10.1021/acs.jctc.8b00770
– volume: 8
  year: 2018
  ident: 10.1016/j.cpc.2023.108883_br0220
  publication-title: Phys. Rev. X
– volume: 8
  start-page: 5118
  year: 2023
  ident: 10.1016/j.cpc.2023.108883_br0110
  publication-title: J. Soc. Struct.
– volume: 271
  year: 2022
  ident: 10.1016/j.cpc.2023.108883_br0120
  publication-title: Comput. Phys. Commun.
  doi: 10.1016/j.cpc.2021.108171
– volume: 129
  year: 2008
  ident: 10.1016/j.cpc.2023.108883_br0210
  publication-title: J. Chem. Phys.
– volume: 134
  year: 2011
  ident: 10.1016/j.cpc.2023.108883_br0070
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.3553717
– volume: 56
  start-page: 12828
  year: 2017
  ident: 10.1016/j.cpc.2023.108883_br0010
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201703114
– volume: 115
  start-page: 9657
  year: 2001
  ident: 10.1016/j.cpc.2023.108883_br0200
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.1415500
– volume: 15
  start-page: 3075
  year: 2019
  ident: 10.1016/j.cpc.2023.108883_br0100
  publication-title: J. Chem. Theory Comput.
  doi: 10.1021/acs.jctc.8b01092
– volume: 113
  start-page: 9978
  year: 2000
  ident: 10.1016/j.cpc.2023.108883_br0170
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.1323224
– volume: 228
  start-page: 178
  year: 2018
  ident: 10.1016/j.cpc.2023.108883_br0040
  publication-title: Comput. Phys. Commun.
  doi: 10.1016/j.cpc.2018.03.016
– volume: vol. 32
  start-page: 8024
  year: 2019
  ident: 10.1016/j.cpc.2023.108883_br0150
– volume: 29
  year: 2017
  ident: 10.1016/j.cpc.2023.108883_br0130
  publication-title: J. Phys. Condens. Matter
– volume: 152
  year: 2020
  ident: 10.1016/j.cpc.2023.108883_br0140
  publication-title: J. Chem. Phys.
– volume: 124
  start-page: 731
  year: 2020
  ident: 10.1016/j.cpc.2023.108883_br0230
  publication-title: J. Phys. Chem. A
  doi: 10.1021/acs.jpca.9b08723
– volume: 98
  year: 2007
  ident: 10.1016/j.cpc.2023.108883_br0050
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.98.146401
– ident: 10.1016/j.cpc.2023.108883_br0190
– volume: 115
  start-page: 1032
  year: 2015
  ident: 10.1016/j.cpc.2023.108883_br0060
  publication-title: Int. J. Quant. Chem.
  doi: 10.1002/qua.24890
– volume: 26
  year: 2014
  ident: 10.1016/j.cpc.2023.108883_br0080
  publication-title: J. Phys. Condens. Matter
  doi: 10.1088/0953-8984/26/18/183001
SSID ssj0007793
Score 2.4736617
Snippet In recent years, machine learning algorithms have been widely used for constructing force fields with an accuracy of ab initio methods and the efficiency of...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 108883
SubjectTerms Adaptive kinetic Monte Carlo
Atomic force field
Density functional theory
Machine learning
Title Atom-centered machine-learning force field package
URI https://dx.doi.org/10.1016/j.cpc.2023.108883
Volume 292
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1879-2944
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0007793
  issn: 0010-4655
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier ScienceDirect
  customDbUrl:
  eissn: 1879-2944
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0007793
  issn: 0010-4655
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier ScienceDirect (LAB)
  customDbUrl:
  eissn: 1879-2944
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0007793
  issn: 0010-4655
  databaseCode: ACRLP
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect Freedom Collection Journals
  customDbUrl:
  eissn: 1879-2944
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0007793
  issn: 0010-4655
  databaseCode: AIKHN
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1879-2944
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0007793
  issn: 0010-4655
  databaseCode: AKRWK
  dateStart: 19690701
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF5KRfAiPrE-Sg6ehLVls9nNHkuxVIs9iMXewr4i9RGLxqu_3Zlk4wPUg6eQsAPJbPhmdvebbwg55hpmVRlNOZeOcuUFNUomVMa55Zp5CEq433E5FeMZv5gn8xYZNrUwSKsM2F9jeoXW4UkveLO3XCywxhfPJxPc1kQRlzlWsHOJXQxO3z5pHlIG4V3AGxzdnGxWHC-7RBVDFiPTLk3jn2PTl3gz2iDrIVGMBvW7bJKWL7bIakXYtC_bhA1KQDekVmKzzeix4kR6GppA3EaQi1ofVfy0CJbF9wAbO2Q2Orsejmnof0AtU7Kk2gjpvNcqN8oYx51mUvVj49MEJbW11Q6XP7BiQNku6RjkXpCPQEIkFBPgl13SLp4Kv0ciI6y2HuK5dQmPc57mhgnnMTYJrZN-h_SbL89sEAfHHhUPWcMCu8vAWRk6K6ud1SEnHybLWhnjr8G8cWf2bXozQO7fzfb_Z3ZA1vCuLhk8JO3y-dUfQe5Qmm71c3TJyuB8Mp7idXJ1M3kHPOjCCw
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JTsMwEB2VIgQXxCrKmgMnpNDKcez4WFVUBdqeWqk3y1sQW6kgXPl2PInDIgEHroktJWPrzYz95g3AKVV-VYVWMaXcxlQ4FmvB05gnuaGKOO-U8LxjNGaDKb2apbMG9OpaGKRVBuyvML1E6_CkHazZXtzeYo0v3k-meKyJIi6zJVimKeGYgZ2_ffI8OA_Kux5wcHh9tVmSvMwCZQxJglS7LEt-dk5fHE5_A9ZDpBh1q4_ZhIabb8FKydg0L9tAuoWHN-RWYrfN6LEkRbo4dIG4iXwwalxUEtQinxffe9zYgWn_YtIbxKEBQmyI4EWsNOPWOSVyLbS21CrCRSfRLktRU1sZZTH_8SkD6nZxS3zw5QMSHxExQZg3zC40509ztweRZkYZ5x26sSlNcprlmjDr0DkxpdJOCzr1n0sT1MGxScWDrGlgd9IbS6KxZGWsFpx9TFlU0hh_Daa1OeW39ZUeun-ftv-_aSewOpiMhnJ4Ob4-gDV8U9UPHkKzeH51Rz6QKPRxuVHeAevLwf0
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Atom-centered+machine-learning+force+field+package&rft.jtitle=Computer+physics+communications&rft.au=Li%2C+Lei&rft.au=Ciufo%2C+Ryan+A.&rft.au=Lee%2C+Jiyoung&rft.au=Zhou%2C+Chuan&rft.date=2023-11-01&rft.issn=0010-4655&rft.volume=292&rft.spage=108883&rft_id=info:doi/10.1016%2Fj.cpc.2023.108883&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_cpc_2023_108883
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0010-4655&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0010-4655&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0010-4655&client=summon