Accelerated Random Search for constrained global optimization assisted by Radial Basis Function surrogates
The Accelerated Random Search (ARS) algorithm (Appel et al., 2004) is a stochastic algorithm for the global optimization of black-box functions subject only to bound constraints. ARS iteratively samples uniformly within a box centered at the current best point. If the sample point is worse than the...
Saved in:
| Published in | Journal of computational and applied mathematics Vol. 340; pp. 276 - 295 |
|---|---|
| Main Authors | , , |
| Format | Journal Article |
| Language | English |
| Published |
Elsevier B.V
01.10.2018
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 0377-0427 1879-1778 |
| DOI | 10.1016/j.cam.2018.02.017 |
Cover
| Abstract | The Accelerated Random Search (ARS) algorithm (Appel et al., 2004) is a stochastic algorithm for the global optimization of black-box functions subject only to bound constraints. ARS iteratively samples uniformly within a box centered at the current best point. If the sample point is worse than the current best point, then the size of the box is reduced, thereby making it more likely to generate an improving solution if the current best point is not yet a local minimum. Otherwise, if the sample point is an improvement over the current best point, then the size of the box is reset to the initial value so that the box covers the entire search space. ARS has been shown theoretically and numerically to converge to the global minimum faster than the Pure Random Search (PRS) algorithm on bound-constrained problems. This article develops the Constrained ARS (CARS) algorithm, which is an extension of ARS for optimization problems with black-box inequality constraints. Under some mild conditions on the constrained optimization problem, we prove the convergence to the global minimum in a probabilistic sense of a class of stochastic search algorithms called Scattered Uniform Random Search (SCAT-URS) algorithms, which includes CARS as a special case. To improve performance of CARS on computationally expensive simulation-based problems, we incorporate Radial Basis Function (RBF) surrogate models to approximate the objective and constrained functions, and refer to the resulting algorithm as CARS-RBF. Numerical experiments show that CARS consistently and substantially outperforms both the Pure Random Search (PRS) and Accelerated Particle Swarm Optimization (APSO) algorithms (Yang, 2010) on 31 test problems with dimensions ranging from 2 to 20. Moreover, CARS-RBF is an improvement over CARS, outperforms a sequential penalty derivative-algorithm, and competes with ConstrLMSRBF (Regis, 2011) on the same test problems. Finally, sensitivity analysis of CARS-RBF to the type of RBF model used shows that the cubic RBF model generally yields the best results on the test problems among six types of RBF models considered, including the thin plate spline, Gaussian and multiquadric models.
•Developed extension of Accelerated Random Search (ARS) to constrained optimization.•Proved convergence of more general class of Scattered Uniform Random Search algorithms.•Constrained ARS (CARS) compares favorably with alternatives on 31 benchmark problems.•Radial basis function (RBF) surrogates approximate objective and constraints in CARS.•CARS with RBF is an improvement over CARS and is competitive with alternatives. |
|---|---|
| AbstractList | The Accelerated Random Search (ARS) algorithm (Appel et al., 2004) is a stochastic algorithm for the global optimization of black-box functions subject only to bound constraints. ARS iteratively samples uniformly within a box centered at the current best point. If the sample point is worse than the current best point, then the size of the box is reduced, thereby making it more likely to generate an improving solution if the current best point is not yet a local minimum. Otherwise, if the sample point is an improvement over the current best point, then the size of the box is reset to the initial value so that the box covers the entire search space. ARS has been shown theoretically and numerically to converge to the global minimum faster than the Pure Random Search (PRS) algorithm on bound-constrained problems. This article develops the Constrained ARS (CARS) algorithm, which is an extension of ARS for optimization problems with black-box inequality constraints. Under some mild conditions on the constrained optimization problem, we prove the convergence to the global minimum in a probabilistic sense of a class of stochastic search algorithms called Scattered Uniform Random Search (SCAT-URS) algorithms, which includes CARS as a special case. To improve performance of CARS on computationally expensive simulation-based problems, we incorporate Radial Basis Function (RBF) surrogate models to approximate the objective and constrained functions, and refer to the resulting algorithm as CARS-RBF. Numerical experiments show that CARS consistently and substantially outperforms both the Pure Random Search (PRS) and Accelerated Particle Swarm Optimization (APSO) algorithms (Yang, 2010) on 31 test problems with dimensions ranging from 2 to 20. Moreover, CARS-RBF is an improvement over CARS, outperforms a sequential penalty derivative-algorithm, and competes with ConstrLMSRBF (Regis, 2011) on the same test problems. Finally, sensitivity analysis of CARS-RBF to the type of RBF model used shows that the cubic RBF model generally yields the best results on the test problems among six types of RBF models considered, including the thin plate spline, Gaussian and multiquadric models.
•Developed extension of Accelerated Random Search (ARS) to constrained optimization.•Proved convergence of more general class of Scattered Uniform Random Search algorithms.•Constrained ARS (CARS) compares favorably with alternatives on 31 benchmark problems.•Radial basis function (RBF) surrogates approximate objective and constraints in CARS.•CARS with RBF is an improvement over CARS and is competitive with alternatives. |
| Author | Varela, Kayla Nuñez, Luigi Regis, Rommel G. |
| Author_xml | – sequence: 1 givenname: Luigi orcidid: 0000-0001-5138-0945 surname: Nuñez fullname: Nuñez, Luigi organization: Department of Mathematics, Saint Joseph’s University, Philadelphia, PA 19131, USA – sequence: 2 givenname: Rommel G. orcidid: 0000-0002-3468-5146 surname: Regis fullname: Regis, Rommel G. email: rregis@sju.edu organization: Department of Mathematics, Saint Joseph’s University, Philadelphia, PA 19131, USA – sequence: 3 givenname: Kayla surname: Varela fullname: Varela, Kayla organization: US Census Bureau, Suitland, MD 20746, USA |
| BookMark | eNp9kNFKwzAUhoNMcJs-gHd9gdaTtGtavJrDqTAQdPchTU9nSpuMpBPm05tuXnmxqwPnnO-H_5uRibEGCbmnkFCg-UObKNknDGiRAEuA8isypQUvY8p5MSFTSDmPIWP8hsy8bwEgL2k2Je1SKezQyQHr6EOa2vbRJ0qnvqLGukhZ4wcntQnXXWcr2UV2P-he_8hBWxNJ77Uf0eoY6FqH-5MMq2h9MOr04Q_O2V2I97fkupGdx7u_OSfb9fN29Rpv3l_eVstNrFjJh1hWaYbYgMQ0VUh5keXAsqqQwAFKxXBRF3leAvC84rzM0wXLGpUjx7JUFUvnhJ5jlbPeO2zE3uleuqOgIEZXohXBlRhdCWAiuAoM_8coPZwajuW7i-TjmcTQ6FujE15pNApr7VANorb6Av0L7FyHtA |
| CitedBy_id | crossref_primary_10_1016_j_cma_2024_117039 crossref_primary_10_1016_j_jtice_2021_104185 crossref_primary_10_3103_S1060992X19040088 crossref_primary_10_1360_SCM_2023_0092 crossref_primary_10_3390_math10030481 crossref_primary_10_3390_mca28020057 crossref_primary_10_1007_s40722_022_00268_5 crossref_primary_10_1109_TCYB_2020_3031620 crossref_primary_10_1155_2021_5541650 crossref_primary_10_1007_s10898_020_00917_9 crossref_primary_10_1016_j_cam_2024_115794 crossref_primary_10_1007_s43069_024_00403_y crossref_primary_10_1007_s00500_020_05211_0 crossref_primary_10_3390_math10162906 crossref_primary_10_1109_TEVC_2021_3078486 crossref_primary_10_1007_s11590_024_02109_w crossref_primary_10_1016_j_ins_2020_07_069 crossref_primary_10_3390_math9182334 crossref_primary_10_1007_s10898_020_00912_0 crossref_primary_10_1016_j_swevo_2022_101146 |
| Cites_doi | 10.1023/A:1008306431147 10.1016/j.ejor.2010.07.005 10.1137/070691814 10.1007/s10898-017-0496-y 10.1080/00401706.2015.1014065 10.1007/s00158-011-0658-3 10.1109/TEVC.2002.800884 10.1137/070692662 10.1080/0305215X.2011.570758 10.1007/s10898-016-0427-3 10.1109/TSMCC.2005.855506 10.1287/opre.21.6.1267 10.1111/itor.12292 10.1137/040603371 10.1080/03052150410001647966 10.1016/j.jocs.2015.08.003 10.1111/itor.12190 10.1080/0305215X.2013.765000 10.1002/fld.2282 10.1109/TEVC.2013.2262111 10.1109/TEVC.2004.836819 10.1504/IJPD.2009.026179 10.1007/s10898-016-0455-z 10.1109/CEC.2012.6256111 10.1162/evco.1996.4.1.1 10.1080/10556788.2016.1226305 10.1145/2330163.2330210 10.1016/j.cor.2010.09.013 10.1007/s10898-005-3693-z 10.1007/BF00935752 10.1109/CEC.2006.1688386 10.1137/090750639 10.1016/j.swevo.2011.05.001 10.1023/A:1011255519438 10.1137/S105262340240063X 10.1145/1916461.1916468 10.1007/s10957-016-0977-z 10.1002/aic.14442 10.1145/1389095.1389289 10.1109/TEVC.2010.2093582 10.1287/moor.6.1.19 10.1016/S1474-0346(02)00011-3 10.1137/080724083 10.1109/CEC.2006.1688315 10.1016/j.jocs.2015.11.004 10.1109/TAI.2003.1250183 10.1016/S0045-7825(99)00389-8 10.1080/0305215X.2012.685074 10.1109/4235.873238 |
| ContentType | Journal Article |
| Copyright | 2018 Elsevier B.V. |
| Copyright_xml | – notice: 2018 Elsevier B.V. |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.cam.2018.02.017 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Mathematics |
| EISSN | 1879-1778 |
| EndPage | 295 |
| ExternalDocumentID | 10_1016_j_cam_2018_02_017 S0377042718300888 |
| GroupedDBID | --K --M -~X .~1 0R~ 1B1 1RT 1~. 1~5 4.4 457 4G. 5GY 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAFTH AAIAV AAIKJ AAKOC AALRI AAOAW AAXUO ABAOU ABJNI ABMAC ABVKL ABYKQ ACAZW ACDAQ ACGFS ACRLP ADBBV ADEZE AEBSH AEKER AENEX AEXQZ AFKWA AFTJW AGUBO AGYEJ AHHHB AIEXJ AIGVJ AIKHN AITUG AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ARUGR BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FIRID FNPLU FYGXN G-Q GBLVA HVGLF IHE IXB J1W KOM LG9 M26 M41 MHUIS MO0 N9A O-L O9- OAUVE OK1 OZT P-8 P-9 P2P PC. Q38 RIG RNS ROL RPZ SDF SDG SDP SES SPC SPCBC SSW SSZ T5K TN5 UPT XPP YQT ZMT ~02 ~G- 29K 5VS AAFWJ AAQFI AAQXK AATTM AAXKI AAYWO AAYXX ABDPE ABEFU ABFNM ABWVN ABXDB ACLOT ACRPL ACVFH ADCNI ADMUD ADNMO ADVLN AEIPS AEUPX AFJKZ AFPUW AGHFR AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AXJTR AZFZN CITATION D-I EFKBS FGOYB G-2 HZ~ NHB R2- SEW WUQ ZY4 ~HD |
| ID | FETCH-LOGICAL-c297t-ab34eef0ae33ce17846024b8a07009c2e5d86690076b77963524fc6e7e99cb23 |
| IEDL.DBID | .~1 |
| ISSN | 0377-0427 |
| IngestDate | Thu Apr 24 22:55:16 EDT 2025 Thu Oct 09 00:20:02 EDT 2025 Fri Feb 23 02:31:35 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Radial basis function Expensive optimization Constrained global optimization Surrogate model Random search |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c297t-ab34eef0ae33ce17846024b8a07009c2e5d86690076b77963524fc6e7e99cb23 |
| ORCID | 0000-0001-5138-0945 0000-0002-3468-5146 |
| PageCount | 20 |
| ParticipantIDs | crossref_primary_10_1016_j_cam_2018_02_017 crossref_citationtrail_10_1016_j_cam_2018_02_017 elsevier_sciencedirect_doi_10_1016_j_cam_2018_02_017 |
| PublicationCentury | 2000 |
| PublicationDate | 2018-10-01 2018-10-00 |
| PublicationDateYYYYMMDD | 2018-10-01 |
| PublicationDate_xml | – month: 10 year: 2018 text: 2018-10-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationTitle | Journal of computational and applied mathematics |
| PublicationYear | 2018 |
| Publisher | Elsevier B.V |
| Publisher_xml | – name: Elsevier B.V |
| References | L. Shi, K. Rasheed, ASAGA: an adaptive surrogate-assisted genetic algorithm, in: Proceedings of the Genetic and Evolutionary Computation Conference, GECCO 2008, 2008, pp. 1049–1056. Zhou, Ong, Nair, Keane, Lum (b45) 2007; 37 Floudas, Pardalos (b67) 1990 B. Tessema, G.G. Yen, A self adaptive penalty function based algorithm for constrained optimization, in: IEEE Congress on Evolutionary Computation, 2006, CEC 2006, 2006, pp. 246–253. Jin (b53) 2011; 1 Solis, Wets (b4) 1981; 6 Müller, Woodbury (b34) 2017; 69 Baba (b7) 1981; 33 Runarsson, Yao (b21) 2000; 4 Boukouvala, Ierapetritou (b35) 2014; 60 Conn, Scheinberg, Vicente (b18) 2009 T. Takahama, S. Sakai, Efficient constrained optimization by the epsilon constrained rank-based differential evolution, in: Proceedings of 2012 IEEE Congress on Evolutionary Computation, CEC2012, Brisbane, Australia, 2012, pp. 62–69. Feliot, Bect, Vazquez (b36) 2017; 67 Gramacy, Gray, Le Digabel, Lee, Ranjan, Wells, Wild (b37) 2016; 58 Regis (b47) 2014; 18 Mezura-Montes, Cetina-Dominguez (b63) 2012; 218 Emmerich, Giotis, Özdemir, Bäck, Giannakoglou (b44) 2002 Isaacs, Ray, Smith (b46) 2009; 9 Coello Coello, Landa-Becerra (b27) 2004; 36 Moré, Wild (b69) 2009; 20 R. Mallipeddi, P.N. Suganthan, Problem definitions and evaluation criteria for the cec 2010 competition on constrained real-parameter optimization, Tech. rep., Nanyang Technological University, Singapore, 2010. Beightler, Phillips (b66) 1976 Husain, Lee, Kim (b10) 2011; 66 Le Digabel (b17) 2011; 37 Abramson, Asaki, Dennis, Magallanez, Sottile (b40) 2012; 45 Datta, Deb (b24) 2013 Zabinsky (b2) 2003 Araujo, Wanner, Guimarães, Takahashi (b41) 2009; vol. 198 T.P. Runarsson, Approximate evolution strategy using stochastic ranking, in: IEEE Congress on Evolutionary Computation, 2006, pp. 745–752. Jin, Olhofer, Sendhoff (b43) 2002; 6 Appel, LaBarre, Radulović (b6) 2004; 14 Powell (b19) 1994 Liu, Koziel, Zhang (b52) 2016; 12 Regis (b14) 2011; 38 Wang, Cai (b23) 2012; 16 Regis (b57) 2014; 46 Pinter (b8) 1984; 15 Regis, Wild (b39) 2017; 32 Powell (b56) 1992 Kontoleontos, Asouti, Giannakoglou (b11) 2012; 44 I. Loshchilov, M. Schoenauer, M. Sebag, Self-adaptive surrogate-assisted covariance matrix adaptation evolution strategy, in: Proceedings of the Genetic and Evolutionary Computation Conference, GECCO 2012, 2012, pp. 321–328. Zhigljavsky, Žilinskas (b3) 2008 Regis (b55) 2010; 207 Audet, Dennis Jr. (b15) 2006; 17 Montaño, Coello Coello, Mezura-Montes (b51) 2012 Deb (b64) 2000; 186 Krityakierne, Shoemaker (b38) 2017; 24 Michalewicz, Schoenauer (b60) 1996; 4 Yang (b1) 2010 Ky, D’Ambrosio, Hamadi, Liberti (b12) 2017; 24 Hesse (b68) 1973; 21 Gutmann (b31) 2001; 19 Hedar, Fukushima (b62) 2006; 35 Regis (b9) 2016; 170 Coello Coello, Mezura-Montes (b65) 2002; 16 Gieseke, Kramer (b48) 2013; vol. 7835 E. Mezura-Montes, C.A. Coello Coello, R. Landa-Becerra, Engineering optimization using simple evolutionary algorithm, in: Proceedings of the 15th IEEE International Conference on Tools with Artificial Intelligence, 2003, pp. 149–156. Li, Wu, Zhao, Chen (b33) 2017; 67 Liuzzi, Lucidi, Sciandrone (b13) 2010; 20 Jones, Schonlau, Welch (b30) 1998; 13 Wild, Regis, Shoemaker (b58) 2008; 30 Forrester, Sobester, Keane (b29) 2008 Spall (b5) 2003 Runarsson (b50) 2004; vol. 3242 Audet, Dennis Jr. (b16) 2009; 20 Mezura-Montes, Coello Coello (b28) 2005; 9 Deb, Datta (b25) 2013; 45 Koziel, Leifsson (b32) 2015; 11 Resnick (b59) 1999 Abramson (10.1016/j.cam.2018.02.017_b40) 2012; 45 Zabinsky (10.1016/j.cam.2018.02.017_b2) 2003 10.1016/j.cam.2018.02.017_b61 Beightler (10.1016/j.cam.2018.02.017_b66) 1976 10.1016/j.cam.2018.02.017_b20 Appel (10.1016/j.cam.2018.02.017_b6) 2004; 14 10.1016/j.cam.2018.02.017_b22 Regis (10.1016/j.cam.2018.02.017_b39) 2017; 32 10.1016/j.cam.2018.02.017_b26 Liuzzi (10.1016/j.cam.2018.02.017_b13) 2010; 20 Powell (10.1016/j.cam.2018.02.017_b56) 1992 Yang (10.1016/j.cam.2018.02.017_b1) 2010 Zhou (10.1016/j.cam.2018.02.017_b45) 2007; 37 Baba (10.1016/j.cam.2018.02.017_b7) 1981; 33 Hedar (10.1016/j.cam.2018.02.017_b62) 2006; 35 Zhigljavsky (10.1016/j.cam.2018.02.017_b3) 2008 Coello Coello (10.1016/j.cam.2018.02.017_b65) 2002; 16 Solis (10.1016/j.cam.2018.02.017_b4) 1981; 6 Powell (10.1016/j.cam.2018.02.017_b19) 1994 10.1016/j.cam.2018.02.017_b54 Regis (10.1016/j.cam.2018.02.017_b55) 2010; 207 Runarsson (10.1016/j.cam.2018.02.017_b50) 2004; vol. 3242 Emmerich (10.1016/j.cam.2018.02.017_b44) 2002 Runarsson (10.1016/j.cam.2018.02.017_b21) 2000; 4 Gieseke (10.1016/j.cam.2018.02.017_b48) 2013; vol. 7835 Montaño (10.1016/j.cam.2018.02.017_b51) 2012 Regis (10.1016/j.cam.2018.02.017_b9) 2016; 170 Mezura-Montes (10.1016/j.cam.2018.02.017_b28) 2005; 9 Deb (10.1016/j.cam.2018.02.017_b25) 2013; 45 Jin (10.1016/j.cam.2018.02.017_b43) 2002; 6 Wild (10.1016/j.cam.2018.02.017_b58) 2008; 30 Pinter (10.1016/j.cam.2018.02.017_b8) 1984; 15 Wang (10.1016/j.cam.2018.02.017_b23) 2012; 16 Spall (10.1016/j.cam.2018.02.017_b5) 2003 Araujo (10.1016/j.cam.2018.02.017_b41) 2009; vol. 198 10.1016/j.cam.2018.02.017_b42 Gramacy (10.1016/j.cam.2018.02.017_b37) 2016; 58 Koziel (10.1016/j.cam.2018.02.017_b32) 2015; 11 Kontoleontos (10.1016/j.cam.2018.02.017_b11) 2012; 44 Krityakierne (10.1016/j.cam.2018.02.017_b38) 2017; 24 10.1016/j.cam.2018.02.017_b49 Forrester (10.1016/j.cam.2018.02.017_b29) 2008 Feliot (10.1016/j.cam.2018.02.017_b36) 2017; 67 Michalewicz (10.1016/j.cam.2018.02.017_b60) 1996; 4 Li (10.1016/j.cam.2018.02.017_b33) 2017; 67 Ky (10.1016/j.cam.2018.02.017_b12) 2017; 24 Resnick (10.1016/j.cam.2018.02.017_b59) 1999 Regis (10.1016/j.cam.2018.02.017_b14) 2011; 38 Boukouvala (10.1016/j.cam.2018.02.017_b35) 2014; 60 Liu (10.1016/j.cam.2018.02.017_b52) 2016; 12 Coello Coello (10.1016/j.cam.2018.02.017_b27) 2004; 36 Regis (10.1016/j.cam.2018.02.017_b47) 2014; 18 Audet (10.1016/j.cam.2018.02.017_b15) 2006; 17 Jin (10.1016/j.cam.2018.02.017_b53) 2011; 1 Jones (10.1016/j.cam.2018.02.017_b30) 1998; 13 Datta (10.1016/j.cam.2018.02.017_b24) 2013 Deb (10.1016/j.cam.2018.02.017_b64) 2000; 186 Mezura-Montes (10.1016/j.cam.2018.02.017_b63) 2012; 218 Le Digabel (10.1016/j.cam.2018.02.017_b17) 2011; 37 Isaacs (10.1016/j.cam.2018.02.017_b46) 2009; 9 Moré (10.1016/j.cam.2018.02.017_b69) 2009; 20 Hesse (10.1016/j.cam.2018.02.017_b68) 1973; 21 Müller (10.1016/j.cam.2018.02.017_b34) 2017; 69 Gutmann (10.1016/j.cam.2018.02.017_b31) 2001; 19 Floudas (10.1016/j.cam.2018.02.017_b67) 1990 Conn (10.1016/j.cam.2018.02.017_b18) 2009 Audet (10.1016/j.cam.2018.02.017_b16) 2009; 20 Regis (10.1016/j.cam.2018.02.017_b57) 2014; 46 Husain (10.1016/j.cam.2018.02.017_b10) 2011; 66 |
| References_xml | – volume: 18 start-page: 326 year: 2014 end-page: 347 ident: b47 article-title: Evolutionary programming for high-dimensional constrained expensive black-box optimization using radial basis functions publication-title: IEEE Trans. Evol. Comput. – volume: 38 start-page: 837 year: 2011 end-page: 853 ident: b14 article-title: Stochastic radial basis function algorithms for large-scale optimization involving expensive black-box objective and constraint functions publication-title: Comput. Oper. Res. – reference: B. Tessema, G.G. Yen, A self adaptive penalty function based algorithm for constrained optimization, in: IEEE Congress on Evolutionary Computation, 2006, CEC 2006, 2006, pp. 246–253. – volume: 20 start-page: 445 year: 2009 end-page: 472 ident: b16 article-title: A progressive barrier for derivative-free nonlinear programming publication-title: SIAM J. Optim. – year: 2003 ident: b5 article-title: Introduction to Stochastic Search and Optimization – volume: 15 start-page: 405 year: 1984 end-page: 427 ident: b8 article-title: Convergence properties of stochastic optimization procedures publication-title: Optimization – reference: E. Mezura-Montes, C.A. Coello Coello, R. Landa-Becerra, Engineering optimization using simple evolutionary algorithm, in: Proceedings of the 15th IEEE International Conference on Tools with Artificial Intelligence, 2003, pp. 149–156. – volume: 12 start-page: 28 year: 2016 end-page: 37 ident: b52 article-title: A multi-fidelity surrogate-model-assisted evolutionary algorithm for computationally expensive optimization problems publication-title: J. Comput. Sci. – reference: R. Mallipeddi, P.N. Suganthan, Problem definitions and evaluation criteria for the cec 2010 competition on constrained real-parameter optimization, Tech. rep., Nanyang Technological University, Singapore, 2010. – volume: 6 start-page: 481 year: 2002 end-page: 494 ident: b43 article-title: A framework for evolutionary optimization with approximate fitness functions publication-title: IEEE Trans. Evol. Comput. – volume: 9 start-page: 188 year: 2009 end-page: 217 ident: b46 article-title: Multiobjective design optimization using multiple adaptive spatially distributed surrogates publication-title: Int. J. Prod. Dev. – volume: 44 start-page: 157 year: 2012 end-page: 173 ident: b11 article-title: An asynchronous metamodel-assisted memetic algorithm for CFD-based shape optimization publication-title: Eng. Optim. – volume: 14 start-page: 708 year: 2004 end-page: 731 ident: b6 article-title: On accelerated random search publication-title: SIAM J. Optim. – volume: 24 start-page: 1139 year: 2017 end-page: 1172 ident: b38 article-title: SOMS: surrogate multistart algorithm for use with nonlinear programming for global optimization publication-title: Int. Trans. Oper. Res. – year: 1990 ident: b67 article-title: A Collection of Test Problems for Constrained Global Optimization Algorithms – start-page: 1188 year: 2012 end-page: 1195 ident: b51 article-title: Multi-objective airfoil shape optimization using a multiple-surrogate approach publication-title: Proceedings of the IEEE Congress on Evolutionary Computation 2012 – year: 2003 ident: b2 article-title: Stochastic Adaptive Search in Global Optimization – volume: 67 start-page: 97 year: 2017 end-page: 133 ident: b36 article-title: A Bayesian approach to constrained single- and multi-objective optimization publication-title: J. Global Optim. – year: 1999 ident: b59 article-title: A Probability Path – volume: 36 start-page: 219 year: 2004 end-page: 236 ident: b27 article-title: Efficient evolutionary optimization through the use of a cultural algorithm publication-title: Eng. Optim. – volume: 60 start-page: 2462 year: 2014 end-page: 2474 ident: b35 article-title: Derivative-free optimization for expensive constrained problems using a novel expected improvement objective function publication-title: AIChE J. – reference: T.P. Runarsson, Approximate evolution strategy using stochastic ranking, in: IEEE Congress on Evolutionary Computation, 2006, pp. 745–752. – volume: 21 start-page: 1267 year: 1973 end-page: 1280 ident: b68 article-title: A heuristic search procedure for estimating a global solution of nonconvex programming problems publication-title: Oper. Res. – reference: I. Loshchilov, M. Schoenauer, M. Sebag, Self-adaptive surrogate-assisted covariance matrix adaptation evolution strategy, in: Proceedings of the Genetic and Evolutionary Computation Conference, GECCO 2012, 2012, pp. 321–328. – volume: 16 start-page: 193 year: 2002 end-page: 203 ident: b65 article-title: Constraint-handling in genetic algorithms through the use of dominance-based tournament selection publication-title: Adv. Eng. Inf. – volume: 17 start-page: 188 year: 2006 end-page: 217 ident: b15 article-title: Mesh adaptive direct search algorithms for constrained optimization publication-title: SIAM J. Optim. – volume: 32 start-page: 552 year: 2017 end-page: 580 ident: b39 article-title: CONORBIT: constrained optimization by radial basis function interpolation in trust regions publication-title: Optim. Methods Softw. – volume: 69 start-page: 117 year: 2017 end-page: 136 ident: b34 article-title: GOSAC: global optimization with surrogate approximation of constraints publication-title: J. Global Optim. – volume: 20 start-page: 2614 year: 2010 end-page: 2635 ident: b13 article-title: Sequential penalty derivative-free methods for nonlinear constrained optimization publication-title: SIAM J. Optim. – volume: 19 start-page: 201 year: 2001 end-page: 227 ident: b31 article-title: A radial basis function method for global optimization publication-title: J. Global Optim. – volume: vol. 7835 start-page: 459 year: 2013 end-page: 468 ident: b48 article-title: Towards non-linear constraint estimation for expensive optimization publication-title: EvoApplications – volume: 35 start-page: 521 year: 2006 end-page: 549 ident: b62 article-title: Derivative-free filter simulated annealing method for constrained continuous global optimization publication-title: J. Global Optim. – volume: 11 start-page: 1 year: 2015 end-page: 11 ident: b32 article-title: Efficient knowledge-based optimization of expensive computational models using adaptive response correction publication-title: J. Comput. Sci. – year: 2010 ident: b1 article-title: Nature-Inspired Metaheuristic Algorithms – year: 2009 ident: b18 publication-title: Introduction to Derivative-Free Optimization – volume: 13 start-page: 455 year: 1998 end-page: 492 ident: b30 article-title: Efficient global optimization of expensive black-box functions publication-title: J. Global Optim. – volume: 30 start-page: 3197 year: 2008 end-page: 3219 ident: b58 article-title: ORBIT: optimization by radial basis function interpolation in trust-regions publication-title: SIAM J. Sci. Comput. – volume: 6 start-page: 19 year: 1981 end-page: 30 ident: b4 article-title: Minimization by random search techniques publication-title: Math. Oper. Res. – volume: 58 start-page: 1 year: 2016 end-page: 11 ident: b37 article-title: Modeling an augmented Lagrangian for blackbox constrained optimization publication-title: Technometrics – start-page: 2720 year: 2013 end-page: 2727 ident: b24 article-title: Individual penalty based constraint handling using a hybrid bi-objective and penalty function approach publication-title: 2013 IEEE Congress on Evolutionary Computation – volume: 20 start-page: 172 year: 2009 end-page: 191 ident: b69 article-title: Benchmarking derivative-free optimization algorithms publication-title: SIAM J. Optim. – volume: 37 start-page: 44:1 year: 2011 end-page: 44:15 ident: b17 article-title: Algorithm 909: NOMAD: Nonlinear optimization with the mads algorithm publication-title: ACM Trans. Math. Software – year: 2008 ident: b29 article-title: Engineering Design via Surrogate Modelling: A Practical Guide – volume: 218 start-page: 10943 year: 2012 end-page: 10973 ident: b63 article-title: Empirical analysis of a modified artificial bee colony for constrained numerical optimization publication-title: Appl. Math. Comput. – year: 1976 ident: b66 article-title: Applied Geometric Programming – volume: 37 start-page: 66 year: 2007 end-page: 76 ident: b45 article-title: Combining global and local surrogate models to accelerate evolutionary optimization publication-title: IEEE Trans. Syst. Man Cybern. C – start-page: 105 year: 1992 end-page: 210 ident: b56 article-title: The theory of radial basis function approximation in 1990 publication-title: Advances in Numerical Analysis, Volume 2: Wavelets, Subdivision Algorithms and Radial Basis Functions – start-page: 51 year: 1994 end-page: 67 ident: b19 article-title: A direct search optimization methods that models the objective and constraint functions by linear interpolation publication-title: Advances in Optimization and Numerical Analysis – volume: 67 start-page: 343 year: 2017 end-page: 366 ident: b33 article-title: A Kriging-based constrained global optimization algorithm for expensive black-box functions with infeasible initial points publication-title: J. Global Optim. – volume: 45 start-page: 53 year: 2012 end-page: 64 ident: b40 article-title: An efficient class of direct search surrogate methods for solving expensive optimization problems with cpu-time-related functions publication-title: Struct. Multidiscip. Optim. – volume: 33 start-page: 451 year: 1981 end-page: 461 ident: b7 article-title: Convergence of a random optimization method for constrained optimization problems publication-title: J. Optim. Theory Appl. – volume: 170 start-page: 932 year: 2016 end-page: 959 ident: b9 article-title: On the convergence of adaptive stochastic search methods for constrained and multi-objective black-box optimization publication-title: J. Optim. Theory Appl. – volume: 66 start-page: 742 year: 2011 end-page: 759 ident: b10 article-title: Enhanced multi-objective optimization of a dimpled channel through evolutionary algorithms and multiple surrogate methods publication-title: Internat. J. Numer. Methods Fluids – volume: 9 start-page: 1 year: 2005 end-page: 17 ident: b28 article-title: A simple multimembered evolution strategy to solve constrained optimization problems publication-title: IEEE Trans. Evol. Comput. – reference: T. Takahama, S. Sakai, Efficient constrained optimization by the epsilon constrained rank-based differential evolution, in: Proceedings of 2012 IEEE Congress on Evolutionary Computation, CEC2012, Brisbane, Australia, 2012, pp. 62–69. – volume: vol. 3242 start-page: 401 year: 2004 end-page: 410 ident: b50 article-title: Constrained evolutionary optimization by approximate ranking and surrogate models publication-title: Parallel Problem Solving from Nature VII – volume: 186 start-page: 311 year: 2000 end-page: 338 ident: b64 article-title: An efficient constraint handling method for genetic algorithms publication-title: Comput. Methods Appl. Mech. Engrg. – volume: 46 start-page: 218 year: 2014 end-page: 243 ident: b57 article-title: Constrained optimization by radial basis function interpolation for high-dimensional expensive black-box problems with infeasible initial points publication-title: Eng. Optim. – volume: vol. 198 start-page: 193 year: 2009 end-page: 217 ident: b41 article-title: Constrained optimization based on quadratic approximations in genetic algorithms publication-title: Constraint-Handling in Evolutionary Computation – volume: 207 start-page: 1187 year: 2010 end-page: 1202 ident: b55 article-title: Convergence guarantees for generalized adaptive stochastic search methods for continuous global optimization publication-title: European J. Oper. Res. – volume: 24 start-page: 393 year: 2017 end-page: 424 ident: b12 article-title: Surrogate-based methods for black-box optimization publication-title: Int. Trans. Oper. Res. – volume: 1 start-page: 61 year: 2011 end-page: 70 ident: b53 article-title: Surrogate-assisted evolutionary computation: recent advances and future challenges publication-title: Swarm Evol. Comput. – volume: 4 start-page: 1 year: 1996 end-page: 32 ident: b60 article-title: Evolutionary algorithms for constrained parameter optimization problems publication-title: Evol. Comput. – volume: 16 start-page: 117 year: 2012 end-page: 134 ident: b23 article-title: Combining multiobjective optimization with differential evolution to solve constrained optimization problems publication-title: IEEE Trans. Evol. Comput. – reference: L. Shi, K. Rasheed, ASAGA: an adaptive surrogate-assisted genetic algorithm, in: Proceedings of the Genetic and Evolutionary Computation Conference, GECCO 2008, 2008, pp. 1049–1056. – volume: 45 start-page: 503 year: 2013 end-page: 527 ident: b25 article-title: A bi-objective constrained optimization algorithm using a hybrid evolutionary and penalty function approach publication-title: Eng. Optim. – year: 2008 ident: b3 article-title: Stochastic Global Optimization – start-page: 362 year: 2002 end-page: 370 ident: b44 article-title: Metamodel-assisted evolution strategies publication-title: Parallel Problem Solving from Nature VII – volume: 4 start-page: 284 year: 2000 end-page: 294 ident: b21 article-title: Stochastic ranking for constrained evolutionary optimization publication-title: IEEE Trans. Evol. Comput. – volume: 13 start-page: 455 issue: 4 year: 1998 ident: 10.1016/j.cam.2018.02.017_b30 article-title: Efficient global optimization of expensive black-box functions publication-title: J. Global Optim. doi: 10.1023/A:1008306431147 – volume: 207 start-page: 1187 issue: 3 year: 2010 ident: 10.1016/j.cam.2018.02.017_b55 article-title: Convergence guarantees for generalized adaptive stochastic search methods for continuous global optimization publication-title: European J. Oper. Res. doi: 10.1016/j.ejor.2010.07.005 – volume: 30 start-page: 3197 issue: 6 year: 2008 ident: 10.1016/j.cam.2018.02.017_b58 article-title: ORBIT: optimization by radial basis function interpolation in trust-regions publication-title: SIAM J. Sci. Comput. doi: 10.1137/070691814 – volume: 218 start-page: 10943 issue: 22 year: 2012 ident: 10.1016/j.cam.2018.02.017_b63 article-title: Empirical analysis of a modified artificial bee colony for constrained numerical optimization publication-title: Appl. Math. Comput. – year: 2008 ident: 10.1016/j.cam.2018.02.017_b29 – volume: 69 start-page: 117 issue: 1 year: 2017 ident: 10.1016/j.cam.2018.02.017_b34 article-title: GOSAC: global optimization with surrogate approximation of constraints publication-title: J. Global Optim. doi: 10.1007/s10898-017-0496-y – year: 2010 ident: 10.1016/j.cam.2018.02.017_b1 – volume: 58 start-page: 1 issue: 1 year: 2016 ident: 10.1016/j.cam.2018.02.017_b37 article-title: Modeling an augmented Lagrangian for blackbox constrained optimization publication-title: Technometrics doi: 10.1080/00401706.2015.1014065 – volume: 45 start-page: 53 issue: 1 year: 2012 ident: 10.1016/j.cam.2018.02.017_b40 article-title: An efficient class of direct search surrogate methods for solving expensive optimization problems with cpu-time-related functions publication-title: Struct. Multidiscip. Optim. doi: 10.1007/s00158-011-0658-3 – volume: 6 start-page: 481 issue: 5 year: 2002 ident: 10.1016/j.cam.2018.02.017_b43 article-title: A framework for evolutionary optimization with approximate fitness functions publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/TEVC.2002.800884 – year: 2008 ident: 10.1016/j.cam.2018.02.017_b3 – start-page: 51 year: 1994 ident: 10.1016/j.cam.2018.02.017_b19 article-title: A direct search optimization methods that models the objective and constraint functions by linear interpolation – volume: 20 start-page: 445 issue: 1 year: 2009 ident: 10.1016/j.cam.2018.02.017_b16 article-title: A progressive barrier for derivative-free nonlinear programming publication-title: SIAM J. Optim. doi: 10.1137/070692662 – volume: 44 start-page: 157 issue: 3 year: 2012 ident: 10.1016/j.cam.2018.02.017_b11 article-title: An asynchronous metamodel-assisted memetic algorithm for CFD-based shape optimization publication-title: Eng. Optim. doi: 10.1080/0305215X.2011.570758 – year: 1999 ident: 10.1016/j.cam.2018.02.017_b59 – volume: 67 start-page: 97 issue: 1 year: 2017 ident: 10.1016/j.cam.2018.02.017_b36 article-title: A Bayesian approach to constrained single- and multi-objective optimization publication-title: J. Global Optim. doi: 10.1007/s10898-016-0427-3 – volume: 37 start-page: 66 issue: 1 year: 2007 ident: 10.1016/j.cam.2018.02.017_b45 article-title: Combining global and local surrogate models to accelerate evolutionary optimization publication-title: IEEE Trans. Syst. Man Cybern. C doi: 10.1109/TSMCC.2005.855506 – volume: 21 start-page: 1267 year: 1973 ident: 10.1016/j.cam.2018.02.017_b68 article-title: A heuristic search procedure for estimating a global solution of nonconvex programming problems publication-title: Oper. Res. doi: 10.1287/opre.21.6.1267 – volume: 24 start-page: 393 issue: 3 year: 2017 ident: 10.1016/j.cam.2018.02.017_b12 article-title: Surrogate-based methods for black-box optimization publication-title: Int. Trans. Oper. Res. doi: 10.1111/itor.12292 – volume: 17 start-page: 188 issue: 2 year: 2006 ident: 10.1016/j.cam.2018.02.017_b15 article-title: Mesh adaptive direct search algorithms for constrained optimization publication-title: SIAM J. Optim. doi: 10.1137/040603371 – ident: 10.1016/j.cam.2018.02.017_b61 – year: 1990 ident: 10.1016/j.cam.2018.02.017_b67 – volume: 36 start-page: 219 issue: 2 year: 2004 ident: 10.1016/j.cam.2018.02.017_b27 article-title: Efficient evolutionary optimization through the use of a cultural algorithm publication-title: Eng. Optim. doi: 10.1080/03052150410001647966 – volume: 11 start-page: 1 year: 2015 ident: 10.1016/j.cam.2018.02.017_b32 article-title: Efficient knowledge-based optimization of expensive computational models using adaptive response correction publication-title: J. Comput. Sci. doi: 10.1016/j.jocs.2015.08.003 – volume: 24 start-page: 1139 issue: 5 year: 2017 ident: 10.1016/j.cam.2018.02.017_b38 article-title: SOMS: surrogate multistart algorithm for use with nonlinear programming for global optimization publication-title: Int. Trans. Oper. Res. doi: 10.1111/itor.12190 – volume: 46 start-page: 218 issue: 2 year: 2014 ident: 10.1016/j.cam.2018.02.017_b57 article-title: Constrained optimization by radial basis function interpolation for high-dimensional expensive black-box problems with infeasible initial points publication-title: Eng. Optim. doi: 10.1080/0305215X.2013.765000 – volume: 66 start-page: 742 issue: 6 year: 2011 ident: 10.1016/j.cam.2018.02.017_b10 article-title: Enhanced multi-objective optimization of a dimpled channel through evolutionary algorithms and multiple surrogate methods publication-title: Internat. J. Numer. Methods Fluids doi: 10.1002/fld.2282 – volume: 18 start-page: 326 issue: 3 year: 2014 ident: 10.1016/j.cam.2018.02.017_b47 article-title: Evolutionary programming for high-dimensional constrained expensive black-box optimization using radial basis functions publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/TEVC.2013.2262111 – volume: 9 start-page: 1 issue: 1 year: 2005 ident: 10.1016/j.cam.2018.02.017_b28 article-title: A simple multimembered evolution strategy to solve constrained optimization problems publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/TEVC.2004.836819 – year: 1976 ident: 10.1016/j.cam.2018.02.017_b66 – volume: 9 start-page: 188 issue: 1–3 year: 2009 ident: 10.1016/j.cam.2018.02.017_b46 article-title: Multiobjective design optimization using multiple adaptive spatially distributed surrogates publication-title: Int. J. Prod. Dev. doi: 10.1504/IJPD.2009.026179 – start-page: 2720 year: 2013 ident: 10.1016/j.cam.2018.02.017_b24 article-title: Individual penalty based constraint handling using a hybrid bi-objective and penalty function approach – volume: 67 start-page: 343 issue: 1 year: 2017 ident: 10.1016/j.cam.2018.02.017_b33 article-title: A Kriging-based constrained global optimization algorithm for expensive black-box functions with infeasible initial points publication-title: J. Global Optim. doi: 10.1007/s10898-016-0455-z – ident: 10.1016/j.cam.2018.02.017_b26 doi: 10.1109/CEC.2012.6256111 – volume: 4 start-page: 1 issue: 1 year: 1996 ident: 10.1016/j.cam.2018.02.017_b60 article-title: Evolutionary algorithms for constrained parameter optimization problems publication-title: Evol. Comput. doi: 10.1162/evco.1996.4.1.1 – volume: 32 start-page: 552 issue: 3 year: 2017 ident: 10.1016/j.cam.2018.02.017_b39 article-title: CONORBIT: constrained optimization by radial basis function interpolation in trust regions publication-title: Optim. Methods Softw. doi: 10.1080/10556788.2016.1226305 – year: 2003 ident: 10.1016/j.cam.2018.02.017_b5 – ident: 10.1016/j.cam.2018.02.017_b49 doi: 10.1145/2330163.2330210 – volume: 38 start-page: 837 issue: 5 year: 2011 ident: 10.1016/j.cam.2018.02.017_b14 article-title: Stochastic radial basis function algorithms for large-scale optimization involving expensive black-box objective and constraint functions publication-title: Comput. Oper. Res. doi: 10.1016/j.cor.2010.09.013 – volume: vol. 3242 start-page: 401 year: 2004 ident: 10.1016/j.cam.2018.02.017_b50 article-title: Constrained evolutionary optimization by approximate ranking and surrogate models – volume: 35 start-page: 521 issue: 4 year: 2006 ident: 10.1016/j.cam.2018.02.017_b62 article-title: Derivative-free filter simulated annealing method for constrained continuous global optimization publication-title: J. Global Optim. doi: 10.1007/s10898-005-3693-z – volume: 33 start-page: 451 issue: 4 year: 1981 ident: 10.1016/j.cam.2018.02.017_b7 article-title: Convergence of a random optimization method for constrained optimization problems publication-title: J. Optim. Theory Appl. doi: 10.1007/BF00935752 – ident: 10.1016/j.cam.2018.02.017_b54 doi: 10.1109/CEC.2006.1688386 – volume: 20 start-page: 2614 issue: 5 year: 2010 ident: 10.1016/j.cam.2018.02.017_b13 article-title: Sequential penalty derivative-free methods for nonlinear constrained optimization publication-title: SIAM J. Optim. doi: 10.1137/090750639 – volume: 1 start-page: 61 issue: 2 year: 2011 ident: 10.1016/j.cam.2018.02.017_b53 article-title: Surrogate-assisted evolutionary computation: recent advances and future challenges publication-title: Swarm Evol. Comput. doi: 10.1016/j.swevo.2011.05.001 – year: 2003 ident: 10.1016/j.cam.2018.02.017_b2 – volume: 19 start-page: 201 issue: 3 year: 2001 ident: 10.1016/j.cam.2018.02.017_b31 article-title: A radial basis function method for global optimization publication-title: J. Global Optim. doi: 10.1023/A:1011255519438 – start-page: 1188 year: 2012 ident: 10.1016/j.cam.2018.02.017_b51 article-title: Multi-objective airfoil shape optimization using a multiple-surrogate approach – volume: 14 start-page: 708 issue: 3 year: 2004 ident: 10.1016/j.cam.2018.02.017_b6 article-title: On accelerated random search publication-title: SIAM J. Optim. doi: 10.1137/S105262340240063X – volume: 37 start-page: 44:1 issue: 4 year: 2011 ident: 10.1016/j.cam.2018.02.017_b17 article-title: Algorithm 909: NOMAD: Nonlinear optimization with the mads algorithm publication-title: ACM Trans. Math. Software doi: 10.1145/1916461.1916468 – volume: 170 start-page: 932 issue: 3 year: 2016 ident: 10.1016/j.cam.2018.02.017_b9 article-title: On the convergence of adaptive stochastic search methods for constrained and multi-objective black-box optimization publication-title: J. Optim. Theory Appl. doi: 10.1007/s10957-016-0977-z – year: 2009 ident: 10.1016/j.cam.2018.02.017_b18 – volume: 60 start-page: 2462 issue: 7 year: 2014 ident: 10.1016/j.cam.2018.02.017_b35 article-title: Derivative-free optimization for expensive constrained problems using a novel expected improvement objective function publication-title: AIChE J. doi: 10.1002/aic.14442 – ident: 10.1016/j.cam.2018.02.017_b42 doi: 10.1145/1389095.1389289 – volume: 16 start-page: 117 issue: 1 year: 2012 ident: 10.1016/j.cam.2018.02.017_b23 article-title: Combining multiobjective optimization with differential evolution to solve constrained optimization problems publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/TEVC.2010.2093582 – volume: 6 start-page: 19 issue: 1 year: 1981 ident: 10.1016/j.cam.2018.02.017_b4 article-title: Minimization by random search techniques publication-title: Math. Oper. Res. doi: 10.1287/moor.6.1.19 – volume: 16 start-page: 193 year: 2002 ident: 10.1016/j.cam.2018.02.017_b65 article-title: Constraint-handling in genetic algorithms through the use of dominance-based tournament selection publication-title: Adv. Eng. Inf. doi: 10.1016/S1474-0346(02)00011-3 – volume: 20 start-page: 172 issue: 1 year: 2009 ident: 10.1016/j.cam.2018.02.017_b69 article-title: Benchmarking derivative-free optimization algorithms publication-title: SIAM J. Optim. doi: 10.1137/080724083 – ident: 10.1016/j.cam.2018.02.017_b22 doi: 10.1109/CEC.2006.1688315 – volume: vol. 7835 start-page: 459 year: 2013 ident: 10.1016/j.cam.2018.02.017_b48 article-title: Towards non-linear constraint estimation for expensive optimization – start-page: 105 year: 1992 ident: 10.1016/j.cam.2018.02.017_b56 article-title: The theory of radial basis function approximation in 1990 – volume: vol. 198 start-page: 193 year: 2009 ident: 10.1016/j.cam.2018.02.017_b41 article-title: Constrained optimization based on quadratic approximations in genetic algorithms – volume: 12 start-page: 28 year: 2016 ident: 10.1016/j.cam.2018.02.017_b52 article-title: A multi-fidelity surrogate-model-assisted evolutionary algorithm for computationally expensive optimization problems publication-title: J. Comput. Sci. doi: 10.1016/j.jocs.2015.11.004 – volume: 15 start-page: 405 issue: 3 year: 1984 ident: 10.1016/j.cam.2018.02.017_b8 article-title: Convergence properties of stochastic optimization procedures publication-title: Optimization – ident: 10.1016/j.cam.2018.02.017_b20 doi: 10.1109/TAI.2003.1250183 – volume: 186 start-page: 311 issue: 2–4 year: 2000 ident: 10.1016/j.cam.2018.02.017_b64 article-title: An efficient constraint handling method for genetic algorithms publication-title: Comput. Methods Appl. Mech. Engrg. doi: 10.1016/S0045-7825(99)00389-8 – start-page: 362 year: 2002 ident: 10.1016/j.cam.2018.02.017_b44 article-title: Metamodel-assisted evolution strategies – volume: 45 start-page: 503 issue: 5 year: 2013 ident: 10.1016/j.cam.2018.02.017_b25 article-title: A bi-objective constrained optimization algorithm using a hybrid evolutionary and penalty function approach publication-title: Eng. Optim. doi: 10.1080/0305215X.2012.685074 – volume: 4 start-page: 284 issue: 3 year: 2000 ident: 10.1016/j.cam.2018.02.017_b21 article-title: Stochastic ranking for constrained evolutionary optimization publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/4235.873238 |
| SSID | ssj0006914 |
| Score | 2.4032907 |
| Snippet | The Accelerated Random Search (ARS) algorithm (Appel et al., 2004) is a stochastic algorithm for the global optimization of black-box functions subject only to... |
| SourceID | crossref elsevier |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 276 |
| SubjectTerms | Constrained global optimization Expensive optimization Radial basis function Random search Surrogate model |
| Title | Accelerated Random Search for constrained global optimization assisted by Radial Basis Function surrogates |
| URI | https://dx.doi.org/10.1016/j.cam.2018.02.017 |
| Volume | 340 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1879-1778 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0006914 issn: 0377-0427 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier Free Content customDbUrl: eissn: 1879-1778 dateEnd: 20211105 omitProxy: true ssIdentifier: ssj0006914 issn: 0377-0427 databaseCode: IXB dateStart: 19750301 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier ScienceDirect (LUT) customDbUrl: eissn: 1879-1778 dateEnd: 20211105 omitProxy: true ssIdentifier: ssj0006914 issn: 0377-0427 databaseCode: ACRLP dateStart: 19950220 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals [SCFCJ] customDbUrl: eissn: 1879-1778 dateEnd: 20211015 omitProxy: true ssIdentifier: ssj0006914 issn: 0377-0427 databaseCode: AIKHN dateStart: 19950220 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: ScienceDirect (Elsevier) customDbUrl: eissn: 1879-1778 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0006914 issn: 0377-0427 databaseCode: .~1 dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1879-1778 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0006914 issn: 0377-0427 databaseCode: AKRWK dateStart: 19750301 isFulltext: true providerName: Library Specific Holdings |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELaqssCAeIryqDwwIYXm4cTx2FZUBdQOUKRuke3YUivaVH0MLPx27vIoIAEDo507KTnb912Su-8IuU69VPvcSkfFcNwYQIojdcgcG6ZxKoURTGGB82AY9V_Ywzgc10i3qoXBtMrS9xc-PffW5UyrtGZrMZm0nt2Ac-wUAZsSgCzGgl_GOHYxuH3_TPOIRMHvDcIOSld_NvMcLy2xGN2Lc9rOvGfZD9j0BW96B2S_DBRpu7iXQ1Iz8yOyN9iyrK6OybStNaAGkj2k9EnO02xGi_RhCqEo1Rj6YQcIuFrwftAMHMSsrLykEDbjGqdUvYE2FpDQjoQp2gOsyyVWm-Uyw-9sqxMy6t2Nun2n7J3gaF_wtSNVwIyxrjRBoI3HIcwANFaxhCPuCu0bWIsI3oxdHinO4RSGPrM6MtwIoZUfnJL6PJubM0JD4VnpKSSuA69q_Dg0FkDekxCrBNaqBnEroyW65BXHh3tNqgSyaQJ2TtDOiesnYOcGudmqLApSjb-EWbUSybedkYDT_13t_H9qF2QXR0W63iWpr5cbcwVhx1o1833VJDvt-8f-EEb3484HBTfYoA |
| linkProvider | Elsevier |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELZKGYAB8RTl6YEJKTRxnDgeS0VVoO0ARWKzbMeRWtGk6mNg4bdzzqOABAys9p2UnO37zsnddwhdxl6sCUukoyI4bhQgxZE6oE4SxFEsueFU2QLn_iDsPtP7l-ClhtpVLYxNqyx9f-HTc29djjRLazano1HzyfUZs50iYFMCkEXRGlqnAWH2Bnb9_pnnEfKC4BukHSte_drMk7y0tNXoXpTzduZNy34Apy-A09lB22WkiFvFw-yimkn30FZ_RbM630fjltYAG5btIcaPMo2zCS7yhzHEoljb2M-2gIDZgvgDZ-AhJmXpJYa42S5yjNUbaNsKEnwjYQh3AOxyiflyNsvsh7b5ARp2boftrlM2T3A04WzhSOVTYxJXGt_XxmMQZwAcq0jCGXe5JgYWI4SrsctCxRgcw4DQRIeGGc61Iv4hqqdZao4QDriXSE9Z5jpwq4ZEgUkA5T0JwYqfJKqB3MpoQpfE4vblXkWVQTYWYGdh7SxcIsDODXS1UpkWrBp_CdNqJcS3rSHA6_-udvw_tQu00R32e6J3N3g4QZt2psjdO0X1xWxpziAGWajzfI99ABdI2TE |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Accelerated+Random+Search+for+constrained+global+optimization+assisted+by+Radial+Basis+Function+surrogates&rft.jtitle=Journal+of+computational+and+applied+mathematics&rft.au=Nu%C3%B1ez%2C+Luigi&rft.au=Regis%2C+Rommel+G.&rft.au=Varela%2C+Kayla&rft.date=2018-10-01&rft.pub=Elsevier+B.V&rft.issn=0377-0427&rft.eissn=1879-1778&rft.volume=340&rft.spage=276&rft.epage=295&rft_id=info:doi/10.1016%2Fj.cam.2018.02.017&rft.externalDocID=S0377042718300888 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0377-0427&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0377-0427&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0377-0427&client=summon |