Accelerated Random Search for constrained global optimization assisted by Radial Basis Function surrogates

The Accelerated Random Search (ARS) algorithm (Appel et al., 2004) is a stochastic algorithm for the global optimization of black-box functions subject only to bound constraints. ARS iteratively samples uniformly within a box centered at the current best point. If the sample point is worse than the...

Full description

Saved in:
Bibliographic Details
Published inJournal of computational and applied mathematics Vol. 340; pp. 276 - 295
Main Authors Nuñez, Luigi, Regis, Rommel G., Varela, Kayla
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.10.2018
Subjects
Online AccessGet full text
ISSN0377-0427
1879-1778
DOI10.1016/j.cam.2018.02.017

Cover

Abstract The Accelerated Random Search (ARS) algorithm (Appel et al., 2004) is a stochastic algorithm for the global optimization of black-box functions subject only to bound constraints. ARS iteratively samples uniformly within a box centered at the current best point. If the sample point is worse than the current best point, then the size of the box is reduced, thereby making it more likely to generate an improving solution if the current best point is not yet a local minimum. Otherwise, if the sample point is an improvement over the current best point, then the size of the box is reset to the initial value so that the box covers the entire search space. ARS has been shown theoretically and numerically to converge to the global minimum faster than the Pure Random Search (PRS) algorithm on bound-constrained problems. This article develops the Constrained ARS (CARS) algorithm, which is an extension of ARS for optimization problems with black-box inequality constraints. Under some mild conditions on the constrained optimization problem, we prove the convergence to the global minimum in a probabilistic sense of a class of stochastic search algorithms called Scattered Uniform Random Search (SCAT-URS) algorithms, which includes CARS as a special case. To improve performance of CARS on computationally expensive simulation-based problems, we incorporate Radial Basis Function (RBF) surrogate models to approximate the objective and constrained functions, and refer to the resulting algorithm as CARS-RBF. Numerical experiments show that CARS consistently and substantially outperforms both the Pure Random Search (PRS) and Accelerated Particle Swarm Optimization (APSO) algorithms (Yang, 2010) on 31 test problems with dimensions ranging from 2 to 20. Moreover, CARS-RBF is an improvement over CARS, outperforms a sequential penalty derivative-algorithm, and competes with ConstrLMSRBF (Regis, 2011) on the same test problems. Finally, sensitivity analysis of CARS-RBF to the type of RBF model used shows that the cubic RBF model generally yields the best results on the test problems among six types of RBF models considered, including the thin plate spline, Gaussian and multiquadric models. •Developed extension of Accelerated Random Search (ARS) to constrained optimization.•Proved convergence of more general class of Scattered Uniform Random Search algorithms.•Constrained ARS (CARS) compares favorably with alternatives on 31 benchmark problems.•Radial basis function (RBF) surrogates approximate objective and constraints in CARS.•CARS with RBF is an improvement over CARS and is competitive with alternatives.
AbstractList The Accelerated Random Search (ARS) algorithm (Appel et al., 2004) is a stochastic algorithm for the global optimization of black-box functions subject only to bound constraints. ARS iteratively samples uniformly within a box centered at the current best point. If the sample point is worse than the current best point, then the size of the box is reduced, thereby making it more likely to generate an improving solution if the current best point is not yet a local minimum. Otherwise, if the sample point is an improvement over the current best point, then the size of the box is reset to the initial value so that the box covers the entire search space. ARS has been shown theoretically and numerically to converge to the global minimum faster than the Pure Random Search (PRS) algorithm on bound-constrained problems. This article develops the Constrained ARS (CARS) algorithm, which is an extension of ARS for optimization problems with black-box inequality constraints. Under some mild conditions on the constrained optimization problem, we prove the convergence to the global minimum in a probabilistic sense of a class of stochastic search algorithms called Scattered Uniform Random Search (SCAT-URS) algorithms, which includes CARS as a special case. To improve performance of CARS on computationally expensive simulation-based problems, we incorporate Radial Basis Function (RBF) surrogate models to approximate the objective and constrained functions, and refer to the resulting algorithm as CARS-RBF. Numerical experiments show that CARS consistently and substantially outperforms both the Pure Random Search (PRS) and Accelerated Particle Swarm Optimization (APSO) algorithms (Yang, 2010) on 31 test problems with dimensions ranging from 2 to 20. Moreover, CARS-RBF is an improvement over CARS, outperforms a sequential penalty derivative-algorithm, and competes with ConstrLMSRBF (Regis, 2011) on the same test problems. Finally, sensitivity analysis of CARS-RBF to the type of RBF model used shows that the cubic RBF model generally yields the best results on the test problems among six types of RBF models considered, including the thin plate spline, Gaussian and multiquadric models. •Developed extension of Accelerated Random Search (ARS) to constrained optimization.•Proved convergence of more general class of Scattered Uniform Random Search algorithms.•Constrained ARS (CARS) compares favorably with alternatives on 31 benchmark problems.•Radial basis function (RBF) surrogates approximate objective and constraints in CARS.•CARS with RBF is an improvement over CARS and is competitive with alternatives.
Author Varela, Kayla
Nuñez, Luigi
Regis, Rommel G.
Author_xml – sequence: 1
  givenname: Luigi
  orcidid: 0000-0001-5138-0945
  surname: Nuñez
  fullname: Nuñez, Luigi
  organization: Department of Mathematics, Saint Joseph’s University, Philadelphia, PA 19131, USA
– sequence: 2
  givenname: Rommel G.
  orcidid: 0000-0002-3468-5146
  surname: Regis
  fullname: Regis, Rommel G.
  email: rregis@sju.edu
  organization: Department of Mathematics, Saint Joseph’s University, Philadelphia, PA 19131, USA
– sequence: 3
  givenname: Kayla
  surname: Varela
  fullname: Varela, Kayla
  organization: US Census Bureau, Suitland, MD 20746, USA
BookMark eNp9kNFKwzAUhoNMcJs-gHd9gdaTtGtavJrDqTAQdPchTU9nSpuMpBPm05tuXnmxqwPnnO-H_5uRibEGCbmnkFCg-UObKNknDGiRAEuA8isypQUvY8p5MSFTSDmPIWP8hsy8bwEgL2k2Je1SKezQyQHr6EOa2vbRJ0qnvqLGukhZ4wcntQnXXWcr2UV2P-he_8hBWxNJ77Uf0eoY6FqH-5MMq2h9MOr04Q_O2V2I97fkupGdx7u_OSfb9fN29Rpv3l_eVstNrFjJh1hWaYbYgMQ0VUh5keXAsqqQwAFKxXBRF3leAvC84rzM0wXLGpUjx7JUFUvnhJ5jlbPeO2zE3uleuqOgIEZXohXBlRhdCWAiuAoM_8coPZwajuW7i-TjmcTQ6FujE15pNApr7VANorb6Av0L7FyHtA
CitedBy_id crossref_primary_10_1016_j_cma_2024_117039
crossref_primary_10_1016_j_jtice_2021_104185
crossref_primary_10_3103_S1060992X19040088
crossref_primary_10_1360_SCM_2023_0092
crossref_primary_10_3390_math10030481
crossref_primary_10_3390_mca28020057
crossref_primary_10_1007_s40722_022_00268_5
crossref_primary_10_1109_TCYB_2020_3031620
crossref_primary_10_1155_2021_5541650
crossref_primary_10_1007_s10898_020_00917_9
crossref_primary_10_1016_j_cam_2024_115794
crossref_primary_10_1007_s43069_024_00403_y
crossref_primary_10_1007_s00500_020_05211_0
crossref_primary_10_3390_math10162906
crossref_primary_10_1109_TEVC_2021_3078486
crossref_primary_10_1007_s11590_024_02109_w
crossref_primary_10_1016_j_ins_2020_07_069
crossref_primary_10_3390_math9182334
crossref_primary_10_1007_s10898_020_00912_0
crossref_primary_10_1016_j_swevo_2022_101146
Cites_doi 10.1023/A:1008306431147
10.1016/j.ejor.2010.07.005
10.1137/070691814
10.1007/s10898-017-0496-y
10.1080/00401706.2015.1014065
10.1007/s00158-011-0658-3
10.1109/TEVC.2002.800884
10.1137/070692662
10.1080/0305215X.2011.570758
10.1007/s10898-016-0427-3
10.1109/TSMCC.2005.855506
10.1287/opre.21.6.1267
10.1111/itor.12292
10.1137/040603371
10.1080/03052150410001647966
10.1016/j.jocs.2015.08.003
10.1111/itor.12190
10.1080/0305215X.2013.765000
10.1002/fld.2282
10.1109/TEVC.2013.2262111
10.1109/TEVC.2004.836819
10.1504/IJPD.2009.026179
10.1007/s10898-016-0455-z
10.1109/CEC.2012.6256111
10.1162/evco.1996.4.1.1
10.1080/10556788.2016.1226305
10.1145/2330163.2330210
10.1016/j.cor.2010.09.013
10.1007/s10898-005-3693-z
10.1007/BF00935752
10.1109/CEC.2006.1688386
10.1137/090750639
10.1016/j.swevo.2011.05.001
10.1023/A:1011255519438
10.1137/S105262340240063X
10.1145/1916461.1916468
10.1007/s10957-016-0977-z
10.1002/aic.14442
10.1145/1389095.1389289
10.1109/TEVC.2010.2093582
10.1287/moor.6.1.19
10.1016/S1474-0346(02)00011-3
10.1137/080724083
10.1109/CEC.2006.1688315
10.1016/j.jocs.2015.11.004
10.1109/TAI.2003.1250183
10.1016/S0045-7825(99)00389-8
10.1080/0305215X.2012.685074
10.1109/4235.873238
ContentType Journal Article
Copyright 2018 Elsevier B.V.
Copyright_xml – notice: 2018 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.cam.2018.02.017
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 1879-1778
EndPage 295
ExternalDocumentID 10_1016_j_cam_2018_02_017
S0377042718300888
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1RT
1~.
1~5
4.4
457
4G.
5GY
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAFTH
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAXUO
ABAOU
ABJNI
ABMAC
ABVKL
ABYKQ
ACAZW
ACDAQ
ACGFS
ACRLP
ADBBV
ADEZE
AEBSH
AEKER
AENEX
AEXQZ
AFKWA
AFTJW
AGUBO
AGYEJ
AHHHB
AIEXJ
AIGVJ
AIKHN
AITUG
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ARUGR
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FIRID
FNPLU
FYGXN
G-Q
GBLVA
HVGLF
IHE
IXB
J1W
KOM
LG9
M26
M41
MHUIS
MO0
N9A
O-L
O9-
OAUVE
OK1
OZT
P-8
P-9
P2P
PC.
Q38
RIG
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SPC
SPCBC
SSW
SSZ
T5K
TN5
UPT
XPP
YQT
ZMT
~02
~G-
29K
5VS
AAFWJ
AAQFI
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABEFU
ABFNM
ABWVN
ABXDB
ACLOT
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
ADVLN
AEIPS
AEUPX
AFJKZ
AFPUW
AGHFR
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AXJTR
AZFZN
CITATION
D-I
EFKBS
FGOYB
G-2
HZ~
NHB
R2-
SEW
WUQ
ZY4
~HD
ID FETCH-LOGICAL-c297t-ab34eef0ae33ce17846024b8a07009c2e5d86690076b77963524fc6e7e99cb23
IEDL.DBID .~1
ISSN 0377-0427
IngestDate Thu Apr 24 22:55:16 EDT 2025
Thu Oct 09 00:20:02 EDT 2025
Fri Feb 23 02:31:35 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Radial basis function
Expensive optimization
Constrained global optimization
Surrogate model
Random search
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c297t-ab34eef0ae33ce17846024b8a07009c2e5d86690076b77963524fc6e7e99cb23
ORCID 0000-0001-5138-0945
0000-0002-3468-5146
PageCount 20
ParticipantIDs crossref_primary_10_1016_j_cam_2018_02_017
crossref_citationtrail_10_1016_j_cam_2018_02_017
elsevier_sciencedirect_doi_10_1016_j_cam_2018_02_017
PublicationCentury 2000
PublicationDate 2018-10-01
2018-10-00
PublicationDateYYYYMMDD 2018-10-01
PublicationDate_xml – month: 10
  year: 2018
  text: 2018-10-01
  day: 01
PublicationDecade 2010
PublicationTitle Journal of computational and applied mathematics
PublicationYear 2018
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References L. Shi, K. Rasheed, ASAGA: an adaptive surrogate-assisted genetic algorithm, in: Proceedings of the Genetic and Evolutionary Computation Conference, GECCO 2008, 2008, pp. 1049–1056.
Zhou, Ong, Nair, Keane, Lum (b45) 2007; 37
Floudas, Pardalos (b67) 1990
B. Tessema, G.G. Yen, A self adaptive penalty function based algorithm for constrained optimization, in: IEEE Congress on Evolutionary Computation, 2006, CEC 2006, 2006, pp. 246–253.
Jin (b53) 2011; 1
Solis, Wets (b4) 1981; 6
Müller, Woodbury (b34) 2017; 69
Baba (b7) 1981; 33
Runarsson, Yao (b21) 2000; 4
Boukouvala, Ierapetritou (b35) 2014; 60
Conn, Scheinberg, Vicente (b18) 2009
T. Takahama, S. Sakai, Efficient constrained optimization by the epsilon constrained rank-based differential evolution, in: Proceedings of 2012 IEEE Congress on Evolutionary Computation, CEC2012, Brisbane, Australia, 2012, pp. 62–69.
Feliot, Bect, Vazquez (b36) 2017; 67
Gramacy, Gray, Le Digabel, Lee, Ranjan, Wells, Wild (b37) 2016; 58
Regis (b47) 2014; 18
Mezura-Montes, Cetina-Dominguez (b63) 2012; 218
Emmerich, Giotis, Özdemir, Bäck, Giannakoglou (b44) 2002
Isaacs, Ray, Smith (b46) 2009; 9
Coello Coello, Landa-Becerra (b27) 2004; 36
Moré, Wild (b69) 2009; 20
R. Mallipeddi, P.N. Suganthan, Problem definitions and evaluation criteria for the cec 2010 competition on constrained real-parameter optimization, Tech. rep., Nanyang Technological University, Singapore, 2010.
Beightler, Phillips (b66) 1976
Husain, Lee, Kim (b10) 2011; 66
Le Digabel (b17) 2011; 37
Abramson, Asaki, Dennis, Magallanez, Sottile (b40) 2012; 45
Datta, Deb (b24) 2013
Zabinsky (b2) 2003
Araujo, Wanner, Guimarães, Takahashi (b41) 2009; vol. 198
T.P. Runarsson, Approximate evolution strategy using stochastic ranking, in: IEEE Congress on Evolutionary Computation, 2006, pp. 745–752.
Jin, Olhofer, Sendhoff (b43) 2002; 6
Appel, LaBarre, Radulović (b6) 2004; 14
Powell (b19) 1994
Liu, Koziel, Zhang (b52) 2016; 12
Regis (b14) 2011; 38
Wang, Cai (b23) 2012; 16
Regis (b57) 2014; 46
Pinter (b8) 1984; 15
Regis, Wild (b39) 2017; 32
Powell (b56) 1992
Kontoleontos, Asouti, Giannakoglou (b11) 2012; 44
I. Loshchilov, M. Schoenauer, M. Sebag, Self-adaptive surrogate-assisted covariance matrix adaptation evolution strategy, in: Proceedings of the Genetic and Evolutionary Computation Conference, GECCO 2012, 2012, pp. 321–328.
Zhigljavsky, Žilinskas (b3) 2008
Regis (b55) 2010; 207
Audet, Dennis Jr. (b15) 2006; 17
Montaño, Coello Coello, Mezura-Montes (b51) 2012
Deb (b64) 2000; 186
Krityakierne, Shoemaker (b38) 2017; 24
Michalewicz, Schoenauer (b60) 1996; 4
Yang (b1) 2010
Ky, D’Ambrosio, Hamadi, Liberti (b12) 2017; 24
Hesse (b68) 1973; 21
Gutmann (b31) 2001; 19
Hedar, Fukushima (b62) 2006; 35
Regis (b9) 2016; 170
Coello Coello, Mezura-Montes (b65) 2002; 16
Gieseke, Kramer (b48) 2013; vol. 7835
E. Mezura-Montes, C.A. Coello Coello, R. Landa-Becerra, Engineering optimization using simple evolutionary algorithm, in: Proceedings of the 15th IEEE International Conference on Tools with Artificial Intelligence, 2003, pp. 149–156.
Li, Wu, Zhao, Chen (b33) 2017; 67
Liuzzi, Lucidi, Sciandrone (b13) 2010; 20
Jones, Schonlau, Welch (b30) 1998; 13
Wild, Regis, Shoemaker (b58) 2008; 30
Forrester, Sobester, Keane (b29) 2008
Spall (b5) 2003
Runarsson (b50) 2004; vol. 3242
Audet, Dennis Jr. (b16) 2009; 20
Mezura-Montes, Coello Coello (b28) 2005; 9
Deb, Datta (b25) 2013; 45
Koziel, Leifsson (b32) 2015; 11
Resnick (b59) 1999
Abramson (10.1016/j.cam.2018.02.017_b40) 2012; 45
Zabinsky (10.1016/j.cam.2018.02.017_b2) 2003
10.1016/j.cam.2018.02.017_b61
Beightler (10.1016/j.cam.2018.02.017_b66) 1976
10.1016/j.cam.2018.02.017_b20
Appel (10.1016/j.cam.2018.02.017_b6) 2004; 14
10.1016/j.cam.2018.02.017_b22
Regis (10.1016/j.cam.2018.02.017_b39) 2017; 32
10.1016/j.cam.2018.02.017_b26
Liuzzi (10.1016/j.cam.2018.02.017_b13) 2010; 20
Powell (10.1016/j.cam.2018.02.017_b56) 1992
Yang (10.1016/j.cam.2018.02.017_b1) 2010
Zhou (10.1016/j.cam.2018.02.017_b45) 2007; 37
Baba (10.1016/j.cam.2018.02.017_b7) 1981; 33
Hedar (10.1016/j.cam.2018.02.017_b62) 2006; 35
Zhigljavsky (10.1016/j.cam.2018.02.017_b3) 2008
Coello Coello (10.1016/j.cam.2018.02.017_b65) 2002; 16
Solis (10.1016/j.cam.2018.02.017_b4) 1981; 6
Powell (10.1016/j.cam.2018.02.017_b19) 1994
10.1016/j.cam.2018.02.017_b54
Regis (10.1016/j.cam.2018.02.017_b55) 2010; 207
Runarsson (10.1016/j.cam.2018.02.017_b50) 2004; vol. 3242
Emmerich (10.1016/j.cam.2018.02.017_b44) 2002
Runarsson (10.1016/j.cam.2018.02.017_b21) 2000; 4
Gieseke (10.1016/j.cam.2018.02.017_b48) 2013; vol. 7835
Montaño (10.1016/j.cam.2018.02.017_b51) 2012
Regis (10.1016/j.cam.2018.02.017_b9) 2016; 170
Mezura-Montes (10.1016/j.cam.2018.02.017_b28) 2005; 9
Deb (10.1016/j.cam.2018.02.017_b25) 2013; 45
Jin (10.1016/j.cam.2018.02.017_b43) 2002; 6
Wild (10.1016/j.cam.2018.02.017_b58) 2008; 30
Pinter (10.1016/j.cam.2018.02.017_b8) 1984; 15
Wang (10.1016/j.cam.2018.02.017_b23) 2012; 16
Spall (10.1016/j.cam.2018.02.017_b5) 2003
Araujo (10.1016/j.cam.2018.02.017_b41) 2009; vol. 198
10.1016/j.cam.2018.02.017_b42
Gramacy (10.1016/j.cam.2018.02.017_b37) 2016; 58
Koziel (10.1016/j.cam.2018.02.017_b32) 2015; 11
Kontoleontos (10.1016/j.cam.2018.02.017_b11) 2012; 44
Krityakierne (10.1016/j.cam.2018.02.017_b38) 2017; 24
10.1016/j.cam.2018.02.017_b49
Forrester (10.1016/j.cam.2018.02.017_b29) 2008
Feliot (10.1016/j.cam.2018.02.017_b36) 2017; 67
Michalewicz (10.1016/j.cam.2018.02.017_b60) 1996; 4
Li (10.1016/j.cam.2018.02.017_b33) 2017; 67
Ky (10.1016/j.cam.2018.02.017_b12) 2017; 24
Resnick (10.1016/j.cam.2018.02.017_b59) 1999
Regis (10.1016/j.cam.2018.02.017_b14) 2011; 38
Boukouvala (10.1016/j.cam.2018.02.017_b35) 2014; 60
Liu (10.1016/j.cam.2018.02.017_b52) 2016; 12
Coello Coello (10.1016/j.cam.2018.02.017_b27) 2004; 36
Regis (10.1016/j.cam.2018.02.017_b47) 2014; 18
Audet (10.1016/j.cam.2018.02.017_b15) 2006; 17
Jin (10.1016/j.cam.2018.02.017_b53) 2011; 1
Jones (10.1016/j.cam.2018.02.017_b30) 1998; 13
Datta (10.1016/j.cam.2018.02.017_b24) 2013
Deb (10.1016/j.cam.2018.02.017_b64) 2000; 186
Mezura-Montes (10.1016/j.cam.2018.02.017_b63) 2012; 218
Le Digabel (10.1016/j.cam.2018.02.017_b17) 2011; 37
Isaacs (10.1016/j.cam.2018.02.017_b46) 2009; 9
Moré (10.1016/j.cam.2018.02.017_b69) 2009; 20
Hesse (10.1016/j.cam.2018.02.017_b68) 1973; 21
Müller (10.1016/j.cam.2018.02.017_b34) 2017; 69
Gutmann (10.1016/j.cam.2018.02.017_b31) 2001; 19
Floudas (10.1016/j.cam.2018.02.017_b67) 1990
Conn (10.1016/j.cam.2018.02.017_b18) 2009
Audet (10.1016/j.cam.2018.02.017_b16) 2009; 20
Regis (10.1016/j.cam.2018.02.017_b57) 2014; 46
Husain (10.1016/j.cam.2018.02.017_b10) 2011; 66
References_xml – volume: 18
  start-page: 326
  year: 2014
  end-page: 347
  ident: b47
  article-title: Evolutionary programming for high-dimensional constrained expensive black-box optimization using radial basis functions
  publication-title: IEEE Trans. Evol. Comput.
– volume: 38
  start-page: 837
  year: 2011
  end-page: 853
  ident: b14
  article-title: Stochastic radial basis function algorithms for large-scale optimization involving expensive black-box objective and constraint functions
  publication-title: Comput. Oper. Res.
– reference: B. Tessema, G.G. Yen, A self adaptive penalty function based algorithm for constrained optimization, in: IEEE Congress on Evolutionary Computation, 2006, CEC 2006, 2006, pp. 246–253.
– volume: 20
  start-page: 445
  year: 2009
  end-page: 472
  ident: b16
  article-title: A progressive barrier for derivative-free nonlinear programming
  publication-title: SIAM J. Optim.
– year: 2003
  ident: b5
  article-title: Introduction to Stochastic Search and Optimization
– volume: 15
  start-page: 405
  year: 1984
  end-page: 427
  ident: b8
  article-title: Convergence properties of stochastic optimization procedures
  publication-title: Optimization
– reference: E. Mezura-Montes, C.A. Coello Coello, R. Landa-Becerra, Engineering optimization using simple evolutionary algorithm, in: Proceedings of the 15th IEEE International Conference on Tools with Artificial Intelligence, 2003, pp. 149–156.
– volume: 12
  start-page: 28
  year: 2016
  end-page: 37
  ident: b52
  article-title: A multi-fidelity surrogate-model-assisted evolutionary algorithm for computationally expensive optimization problems
  publication-title: J. Comput. Sci.
– reference: R. Mallipeddi, P.N. Suganthan, Problem definitions and evaluation criteria for the cec 2010 competition on constrained real-parameter optimization, Tech. rep., Nanyang Technological University, Singapore, 2010.
– volume: 6
  start-page: 481
  year: 2002
  end-page: 494
  ident: b43
  article-title: A framework for evolutionary optimization with approximate fitness functions
  publication-title: IEEE Trans. Evol. Comput.
– volume: 9
  start-page: 188
  year: 2009
  end-page: 217
  ident: b46
  article-title: Multiobjective design optimization using multiple adaptive spatially distributed surrogates
  publication-title: Int. J. Prod. Dev.
– volume: 44
  start-page: 157
  year: 2012
  end-page: 173
  ident: b11
  article-title: An asynchronous metamodel-assisted memetic algorithm for CFD-based shape optimization
  publication-title: Eng. Optim.
– volume: 14
  start-page: 708
  year: 2004
  end-page: 731
  ident: b6
  article-title: On accelerated random search
  publication-title: SIAM J. Optim.
– volume: 24
  start-page: 1139
  year: 2017
  end-page: 1172
  ident: b38
  article-title: SOMS: surrogate multistart algorithm for use with nonlinear programming for global optimization
  publication-title: Int. Trans. Oper. Res.
– year: 1990
  ident: b67
  article-title: A Collection of Test Problems for Constrained Global Optimization Algorithms
– start-page: 1188
  year: 2012
  end-page: 1195
  ident: b51
  article-title: Multi-objective airfoil shape optimization using a multiple-surrogate approach
  publication-title: Proceedings of the IEEE Congress on Evolutionary Computation 2012
– year: 2003
  ident: b2
  article-title: Stochastic Adaptive Search in Global Optimization
– volume: 67
  start-page: 97
  year: 2017
  end-page: 133
  ident: b36
  article-title: A Bayesian approach to constrained single- and multi-objective optimization
  publication-title: J. Global Optim.
– year: 1999
  ident: b59
  article-title: A Probability Path
– volume: 36
  start-page: 219
  year: 2004
  end-page: 236
  ident: b27
  article-title: Efficient evolutionary optimization through the use of a cultural algorithm
  publication-title: Eng. Optim.
– volume: 60
  start-page: 2462
  year: 2014
  end-page: 2474
  ident: b35
  article-title: Derivative-free optimization for expensive constrained problems using a novel expected improvement objective function
  publication-title: AIChE J.
– reference: T.P. Runarsson, Approximate evolution strategy using stochastic ranking, in: IEEE Congress on Evolutionary Computation, 2006, pp. 745–752.
– volume: 21
  start-page: 1267
  year: 1973
  end-page: 1280
  ident: b68
  article-title: A heuristic search procedure for estimating a global solution of nonconvex programming problems
  publication-title: Oper. Res.
– reference: I. Loshchilov, M. Schoenauer, M. Sebag, Self-adaptive surrogate-assisted covariance matrix adaptation evolution strategy, in: Proceedings of the Genetic and Evolutionary Computation Conference, GECCO 2012, 2012, pp. 321–328.
– volume: 16
  start-page: 193
  year: 2002
  end-page: 203
  ident: b65
  article-title: Constraint-handling in genetic algorithms through the use of dominance-based tournament selection
  publication-title: Adv. Eng. Inf.
– volume: 17
  start-page: 188
  year: 2006
  end-page: 217
  ident: b15
  article-title: Mesh adaptive direct search algorithms for constrained optimization
  publication-title: SIAM J. Optim.
– volume: 32
  start-page: 552
  year: 2017
  end-page: 580
  ident: b39
  article-title: CONORBIT: constrained optimization by radial basis function interpolation in trust regions
  publication-title: Optim. Methods Softw.
– volume: 69
  start-page: 117
  year: 2017
  end-page: 136
  ident: b34
  article-title: GOSAC: global optimization with surrogate approximation of constraints
  publication-title: J. Global Optim.
– volume: 20
  start-page: 2614
  year: 2010
  end-page: 2635
  ident: b13
  article-title: Sequential penalty derivative-free methods for nonlinear constrained optimization
  publication-title: SIAM J. Optim.
– volume: 19
  start-page: 201
  year: 2001
  end-page: 227
  ident: b31
  article-title: A radial basis function method for global optimization
  publication-title: J. Global Optim.
– volume: vol. 7835
  start-page: 459
  year: 2013
  end-page: 468
  ident: b48
  article-title: Towards non-linear constraint estimation for expensive optimization
  publication-title: EvoApplications
– volume: 35
  start-page: 521
  year: 2006
  end-page: 549
  ident: b62
  article-title: Derivative-free filter simulated annealing method for constrained continuous global optimization
  publication-title: J. Global Optim.
– volume: 11
  start-page: 1
  year: 2015
  end-page: 11
  ident: b32
  article-title: Efficient knowledge-based optimization of expensive computational models using adaptive response correction
  publication-title: J. Comput. Sci.
– year: 2010
  ident: b1
  article-title: Nature-Inspired Metaheuristic Algorithms
– year: 2009
  ident: b18
  publication-title: Introduction to Derivative-Free Optimization
– volume: 13
  start-page: 455
  year: 1998
  end-page: 492
  ident: b30
  article-title: Efficient global optimization of expensive black-box functions
  publication-title: J. Global Optim.
– volume: 30
  start-page: 3197
  year: 2008
  end-page: 3219
  ident: b58
  article-title: ORBIT: optimization by radial basis function interpolation in trust-regions
  publication-title: SIAM J. Sci. Comput.
– volume: 6
  start-page: 19
  year: 1981
  end-page: 30
  ident: b4
  article-title: Minimization by random search techniques
  publication-title: Math. Oper. Res.
– volume: 58
  start-page: 1
  year: 2016
  end-page: 11
  ident: b37
  article-title: Modeling an augmented Lagrangian for blackbox constrained optimization
  publication-title: Technometrics
– start-page: 2720
  year: 2013
  end-page: 2727
  ident: b24
  article-title: Individual penalty based constraint handling using a hybrid bi-objective and penalty function approach
  publication-title: 2013 IEEE Congress on Evolutionary Computation
– volume: 20
  start-page: 172
  year: 2009
  end-page: 191
  ident: b69
  article-title: Benchmarking derivative-free optimization algorithms
  publication-title: SIAM J. Optim.
– volume: 37
  start-page: 44:1
  year: 2011
  end-page: 44:15
  ident: b17
  article-title: Algorithm 909: NOMAD: Nonlinear optimization with the mads algorithm
  publication-title: ACM Trans. Math. Software
– year: 2008
  ident: b29
  article-title: Engineering Design via Surrogate Modelling: A Practical Guide
– volume: 218
  start-page: 10943
  year: 2012
  end-page: 10973
  ident: b63
  article-title: Empirical analysis of a modified artificial bee colony for constrained numerical optimization
  publication-title: Appl. Math. Comput.
– year: 1976
  ident: b66
  article-title: Applied Geometric Programming
– volume: 37
  start-page: 66
  year: 2007
  end-page: 76
  ident: b45
  article-title: Combining global and local surrogate models to accelerate evolutionary optimization
  publication-title: IEEE Trans. Syst. Man Cybern. C
– start-page: 105
  year: 1992
  end-page: 210
  ident: b56
  article-title: The theory of radial basis function approximation in 1990
  publication-title: Advances in Numerical Analysis, Volume 2: Wavelets, Subdivision Algorithms and Radial Basis Functions
– start-page: 51
  year: 1994
  end-page: 67
  ident: b19
  article-title: A direct search optimization methods that models the objective and constraint functions by linear interpolation
  publication-title: Advances in Optimization and Numerical Analysis
– volume: 67
  start-page: 343
  year: 2017
  end-page: 366
  ident: b33
  article-title: A Kriging-based constrained global optimization algorithm for expensive black-box functions with infeasible initial points
  publication-title: J. Global Optim.
– volume: 45
  start-page: 53
  year: 2012
  end-page: 64
  ident: b40
  article-title: An efficient class of direct search surrogate methods for solving expensive optimization problems with cpu-time-related functions
  publication-title: Struct. Multidiscip. Optim.
– volume: 33
  start-page: 451
  year: 1981
  end-page: 461
  ident: b7
  article-title: Convergence of a random optimization method for constrained optimization problems
  publication-title: J. Optim. Theory Appl.
– volume: 170
  start-page: 932
  year: 2016
  end-page: 959
  ident: b9
  article-title: On the convergence of adaptive stochastic search methods for constrained and multi-objective black-box optimization
  publication-title: J. Optim. Theory Appl.
– volume: 66
  start-page: 742
  year: 2011
  end-page: 759
  ident: b10
  article-title: Enhanced multi-objective optimization of a dimpled channel through evolutionary algorithms and multiple surrogate methods
  publication-title: Internat. J. Numer. Methods Fluids
– volume: 9
  start-page: 1
  year: 2005
  end-page: 17
  ident: b28
  article-title: A simple multimembered evolution strategy to solve constrained optimization problems
  publication-title: IEEE Trans. Evol. Comput.
– reference: T. Takahama, S. Sakai, Efficient constrained optimization by the epsilon constrained rank-based differential evolution, in: Proceedings of 2012 IEEE Congress on Evolutionary Computation, CEC2012, Brisbane, Australia, 2012, pp. 62–69.
– volume: vol. 3242
  start-page: 401
  year: 2004
  end-page: 410
  ident: b50
  article-title: Constrained evolutionary optimization by approximate ranking and surrogate models
  publication-title: Parallel Problem Solving from Nature VII
– volume: 186
  start-page: 311
  year: 2000
  end-page: 338
  ident: b64
  article-title: An efficient constraint handling method for genetic algorithms
  publication-title: Comput. Methods Appl. Mech. Engrg.
– volume: 46
  start-page: 218
  year: 2014
  end-page: 243
  ident: b57
  article-title: Constrained optimization by radial basis function interpolation for high-dimensional expensive black-box problems with infeasible initial points
  publication-title: Eng. Optim.
– volume: vol. 198
  start-page: 193
  year: 2009
  end-page: 217
  ident: b41
  article-title: Constrained optimization based on quadratic approximations in genetic algorithms
  publication-title: Constraint-Handling in Evolutionary Computation
– volume: 207
  start-page: 1187
  year: 2010
  end-page: 1202
  ident: b55
  article-title: Convergence guarantees for generalized adaptive stochastic search methods for continuous global optimization
  publication-title: European J. Oper. Res.
– volume: 24
  start-page: 393
  year: 2017
  end-page: 424
  ident: b12
  article-title: Surrogate-based methods for black-box optimization
  publication-title: Int. Trans. Oper. Res.
– volume: 1
  start-page: 61
  year: 2011
  end-page: 70
  ident: b53
  article-title: Surrogate-assisted evolutionary computation: recent advances and future challenges
  publication-title: Swarm Evol. Comput.
– volume: 4
  start-page: 1
  year: 1996
  end-page: 32
  ident: b60
  article-title: Evolutionary algorithms for constrained parameter optimization problems
  publication-title: Evol. Comput.
– volume: 16
  start-page: 117
  year: 2012
  end-page: 134
  ident: b23
  article-title: Combining multiobjective optimization with differential evolution to solve constrained optimization problems
  publication-title: IEEE Trans. Evol. Comput.
– reference: L. Shi, K. Rasheed, ASAGA: an adaptive surrogate-assisted genetic algorithm, in: Proceedings of the Genetic and Evolutionary Computation Conference, GECCO 2008, 2008, pp. 1049–1056.
– volume: 45
  start-page: 503
  year: 2013
  end-page: 527
  ident: b25
  article-title: A bi-objective constrained optimization algorithm using a hybrid evolutionary and penalty function approach
  publication-title: Eng. Optim.
– year: 2008
  ident: b3
  article-title: Stochastic Global Optimization
– start-page: 362
  year: 2002
  end-page: 370
  ident: b44
  article-title: Metamodel-assisted evolution strategies
  publication-title: Parallel Problem Solving from Nature VII
– volume: 4
  start-page: 284
  year: 2000
  end-page: 294
  ident: b21
  article-title: Stochastic ranking for constrained evolutionary optimization
  publication-title: IEEE Trans. Evol. Comput.
– volume: 13
  start-page: 455
  issue: 4
  year: 1998
  ident: 10.1016/j.cam.2018.02.017_b30
  article-title: Efficient global optimization of expensive black-box functions
  publication-title: J. Global Optim.
  doi: 10.1023/A:1008306431147
– volume: 207
  start-page: 1187
  issue: 3
  year: 2010
  ident: 10.1016/j.cam.2018.02.017_b55
  article-title: Convergence guarantees for generalized adaptive stochastic search methods for continuous global optimization
  publication-title: European J. Oper. Res.
  doi: 10.1016/j.ejor.2010.07.005
– volume: 30
  start-page: 3197
  issue: 6
  year: 2008
  ident: 10.1016/j.cam.2018.02.017_b58
  article-title: ORBIT: optimization by radial basis function interpolation in trust-regions
  publication-title: SIAM J. Sci. Comput.
  doi: 10.1137/070691814
– volume: 218
  start-page: 10943
  issue: 22
  year: 2012
  ident: 10.1016/j.cam.2018.02.017_b63
  article-title: Empirical analysis of a modified artificial bee colony for constrained numerical optimization
  publication-title: Appl. Math. Comput.
– year: 2008
  ident: 10.1016/j.cam.2018.02.017_b29
– volume: 69
  start-page: 117
  issue: 1
  year: 2017
  ident: 10.1016/j.cam.2018.02.017_b34
  article-title: GOSAC: global optimization with surrogate approximation of constraints
  publication-title: J. Global Optim.
  doi: 10.1007/s10898-017-0496-y
– year: 2010
  ident: 10.1016/j.cam.2018.02.017_b1
– volume: 58
  start-page: 1
  issue: 1
  year: 2016
  ident: 10.1016/j.cam.2018.02.017_b37
  article-title: Modeling an augmented Lagrangian for blackbox constrained optimization
  publication-title: Technometrics
  doi: 10.1080/00401706.2015.1014065
– volume: 45
  start-page: 53
  issue: 1
  year: 2012
  ident: 10.1016/j.cam.2018.02.017_b40
  article-title: An efficient class of direct search surrogate methods for solving expensive optimization problems with cpu-time-related functions
  publication-title: Struct. Multidiscip. Optim.
  doi: 10.1007/s00158-011-0658-3
– volume: 6
  start-page: 481
  issue: 5
  year: 2002
  ident: 10.1016/j.cam.2018.02.017_b43
  article-title: A framework for evolutionary optimization with approximate fitness functions
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2002.800884
– year: 2008
  ident: 10.1016/j.cam.2018.02.017_b3
– start-page: 51
  year: 1994
  ident: 10.1016/j.cam.2018.02.017_b19
  article-title: A direct search optimization methods that models the objective and constraint functions by linear interpolation
– volume: 20
  start-page: 445
  issue: 1
  year: 2009
  ident: 10.1016/j.cam.2018.02.017_b16
  article-title: A progressive barrier for derivative-free nonlinear programming
  publication-title: SIAM J. Optim.
  doi: 10.1137/070692662
– volume: 44
  start-page: 157
  issue: 3
  year: 2012
  ident: 10.1016/j.cam.2018.02.017_b11
  article-title: An asynchronous metamodel-assisted memetic algorithm for CFD-based shape optimization
  publication-title: Eng. Optim.
  doi: 10.1080/0305215X.2011.570758
– year: 1999
  ident: 10.1016/j.cam.2018.02.017_b59
– volume: 67
  start-page: 97
  issue: 1
  year: 2017
  ident: 10.1016/j.cam.2018.02.017_b36
  article-title: A Bayesian approach to constrained single- and multi-objective optimization
  publication-title: J. Global Optim.
  doi: 10.1007/s10898-016-0427-3
– volume: 37
  start-page: 66
  issue: 1
  year: 2007
  ident: 10.1016/j.cam.2018.02.017_b45
  article-title: Combining global and local surrogate models to accelerate evolutionary optimization
  publication-title: IEEE Trans. Syst. Man Cybern. C
  doi: 10.1109/TSMCC.2005.855506
– volume: 21
  start-page: 1267
  year: 1973
  ident: 10.1016/j.cam.2018.02.017_b68
  article-title: A heuristic search procedure for estimating a global solution of nonconvex programming problems
  publication-title: Oper. Res.
  doi: 10.1287/opre.21.6.1267
– volume: 24
  start-page: 393
  issue: 3
  year: 2017
  ident: 10.1016/j.cam.2018.02.017_b12
  article-title: Surrogate-based methods for black-box optimization
  publication-title: Int. Trans. Oper. Res.
  doi: 10.1111/itor.12292
– volume: 17
  start-page: 188
  issue: 2
  year: 2006
  ident: 10.1016/j.cam.2018.02.017_b15
  article-title: Mesh adaptive direct search algorithms for constrained optimization
  publication-title: SIAM J. Optim.
  doi: 10.1137/040603371
– ident: 10.1016/j.cam.2018.02.017_b61
– year: 1990
  ident: 10.1016/j.cam.2018.02.017_b67
– volume: 36
  start-page: 219
  issue: 2
  year: 2004
  ident: 10.1016/j.cam.2018.02.017_b27
  article-title: Efficient evolutionary optimization through the use of a cultural algorithm
  publication-title: Eng. Optim.
  doi: 10.1080/03052150410001647966
– volume: 11
  start-page: 1
  year: 2015
  ident: 10.1016/j.cam.2018.02.017_b32
  article-title: Efficient knowledge-based optimization of expensive computational models using adaptive response correction
  publication-title: J. Comput. Sci.
  doi: 10.1016/j.jocs.2015.08.003
– volume: 24
  start-page: 1139
  issue: 5
  year: 2017
  ident: 10.1016/j.cam.2018.02.017_b38
  article-title: SOMS: surrogate multistart algorithm for use with nonlinear programming for global optimization
  publication-title: Int. Trans. Oper. Res.
  doi: 10.1111/itor.12190
– volume: 46
  start-page: 218
  issue: 2
  year: 2014
  ident: 10.1016/j.cam.2018.02.017_b57
  article-title: Constrained optimization by radial basis function interpolation for high-dimensional expensive black-box problems with infeasible initial points
  publication-title: Eng. Optim.
  doi: 10.1080/0305215X.2013.765000
– volume: 66
  start-page: 742
  issue: 6
  year: 2011
  ident: 10.1016/j.cam.2018.02.017_b10
  article-title: Enhanced multi-objective optimization of a dimpled channel through evolutionary algorithms and multiple surrogate methods
  publication-title: Internat. J. Numer. Methods Fluids
  doi: 10.1002/fld.2282
– volume: 18
  start-page: 326
  issue: 3
  year: 2014
  ident: 10.1016/j.cam.2018.02.017_b47
  article-title: Evolutionary programming for high-dimensional constrained expensive black-box optimization using radial basis functions
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2013.2262111
– volume: 9
  start-page: 1
  issue: 1
  year: 2005
  ident: 10.1016/j.cam.2018.02.017_b28
  article-title: A simple multimembered evolution strategy to solve constrained optimization problems
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2004.836819
– year: 1976
  ident: 10.1016/j.cam.2018.02.017_b66
– volume: 9
  start-page: 188
  issue: 1–3
  year: 2009
  ident: 10.1016/j.cam.2018.02.017_b46
  article-title: Multiobjective design optimization using multiple adaptive spatially distributed surrogates
  publication-title: Int. J. Prod. Dev.
  doi: 10.1504/IJPD.2009.026179
– start-page: 2720
  year: 2013
  ident: 10.1016/j.cam.2018.02.017_b24
  article-title: Individual penalty based constraint handling using a hybrid bi-objective and penalty function approach
– volume: 67
  start-page: 343
  issue: 1
  year: 2017
  ident: 10.1016/j.cam.2018.02.017_b33
  article-title: A Kriging-based constrained global optimization algorithm for expensive black-box functions with infeasible initial points
  publication-title: J. Global Optim.
  doi: 10.1007/s10898-016-0455-z
– ident: 10.1016/j.cam.2018.02.017_b26
  doi: 10.1109/CEC.2012.6256111
– volume: 4
  start-page: 1
  issue: 1
  year: 1996
  ident: 10.1016/j.cam.2018.02.017_b60
  article-title: Evolutionary algorithms for constrained parameter optimization problems
  publication-title: Evol. Comput.
  doi: 10.1162/evco.1996.4.1.1
– volume: 32
  start-page: 552
  issue: 3
  year: 2017
  ident: 10.1016/j.cam.2018.02.017_b39
  article-title: CONORBIT: constrained optimization by radial basis function interpolation in trust regions
  publication-title: Optim. Methods Softw.
  doi: 10.1080/10556788.2016.1226305
– year: 2003
  ident: 10.1016/j.cam.2018.02.017_b5
– ident: 10.1016/j.cam.2018.02.017_b49
  doi: 10.1145/2330163.2330210
– volume: 38
  start-page: 837
  issue: 5
  year: 2011
  ident: 10.1016/j.cam.2018.02.017_b14
  article-title: Stochastic radial basis function algorithms for large-scale optimization involving expensive black-box objective and constraint functions
  publication-title: Comput. Oper. Res.
  doi: 10.1016/j.cor.2010.09.013
– volume: vol. 3242
  start-page: 401
  year: 2004
  ident: 10.1016/j.cam.2018.02.017_b50
  article-title: Constrained evolutionary optimization by approximate ranking and surrogate models
– volume: 35
  start-page: 521
  issue: 4
  year: 2006
  ident: 10.1016/j.cam.2018.02.017_b62
  article-title: Derivative-free filter simulated annealing method for constrained continuous global optimization
  publication-title: J. Global Optim.
  doi: 10.1007/s10898-005-3693-z
– volume: 33
  start-page: 451
  issue: 4
  year: 1981
  ident: 10.1016/j.cam.2018.02.017_b7
  article-title: Convergence of a random optimization method for constrained optimization problems
  publication-title: J. Optim. Theory Appl.
  doi: 10.1007/BF00935752
– ident: 10.1016/j.cam.2018.02.017_b54
  doi: 10.1109/CEC.2006.1688386
– volume: 20
  start-page: 2614
  issue: 5
  year: 2010
  ident: 10.1016/j.cam.2018.02.017_b13
  article-title: Sequential penalty derivative-free methods for nonlinear constrained optimization
  publication-title: SIAM J. Optim.
  doi: 10.1137/090750639
– volume: 1
  start-page: 61
  issue: 2
  year: 2011
  ident: 10.1016/j.cam.2018.02.017_b53
  article-title: Surrogate-assisted evolutionary computation: recent advances and future challenges
  publication-title: Swarm Evol. Comput.
  doi: 10.1016/j.swevo.2011.05.001
– year: 2003
  ident: 10.1016/j.cam.2018.02.017_b2
– volume: 19
  start-page: 201
  issue: 3
  year: 2001
  ident: 10.1016/j.cam.2018.02.017_b31
  article-title: A radial basis function method for global optimization
  publication-title: J. Global Optim.
  doi: 10.1023/A:1011255519438
– start-page: 1188
  year: 2012
  ident: 10.1016/j.cam.2018.02.017_b51
  article-title: Multi-objective airfoil shape optimization using a multiple-surrogate approach
– volume: 14
  start-page: 708
  issue: 3
  year: 2004
  ident: 10.1016/j.cam.2018.02.017_b6
  article-title: On accelerated random search
  publication-title: SIAM J. Optim.
  doi: 10.1137/S105262340240063X
– volume: 37
  start-page: 44:1
  issue: 4
  year: 2011
  ident: 10.1016/j.cam.2018.02.017_b17
  article-title: Algorithm 909: NOMAD: Nonlinear optimization with the mads algorithm
  publication-title: ACM Trans. Math. Software
  doi: 10.1145/1916461.1916468
– volume: 170
  start-page: 932
  issue: 3
  year: 2016
  ident: 10.1016/j.cam.2018.02.017_b9
  article-title: On the convergence of adaptive stochastic search methods for constrained and multi-objective black-box optimization
  publication-title: J. Optim. Theory Appl.
  doi: 10.1007/s10957-016-0977-z
– year: 2009
  ident: 10.1016/j.cam.2018.02.017_b18
– volume: 60
  start-page: 2462
  issue: 7
  year: 2014
  ident: 10.1016/j.cam.2018.02.017_b35
  article-title: Derivative-free optimization for expensive constrained problems using a novel expected improvement objective function
  publication-title: AIChE J.
  doi: 10.1002/aic.14442
– ident: 10.1016/j.cam.2018.02.017_b42
  doi: 10.1145/1389095.1389289
– volume: 16
  start-page: 117
  issue: 1
  year: 2012
  ident: 10.1016/j.cam.2018.02.017_b23
  article-title: Combining multiobjective optimization with differential evolution to solve constrained optimization problems
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2010.2093582
– volume: 6
  start-page: 19
  issue: 1
  year: 1981
  ident: 10.1016/j.cam.2018.02.017_b4
  article-title: Minimization by random search techniques
  publication-title: Math. Oper. Res.
  doi: 10.1287/moor.6.1.19
– volume: 16
  start-page: 193
  year: 2002
  ident: 10.1016/j.cam.2018.02.017_b65
  article-title: Constraint-handling in genetic algorithms through the use of dominance-based tournament selection
  publication-title: Adv. Eng. Inf.
  doi: 10.1016/S1474-0346(02)00011-3
– volume: 20
  start-page: 172
  issue: 1
  year: 2009
  ident: 10.1016/j.cam.2018.02.017_b69
  article-title: Benchmarking derivative-free optimization algorithms
  publication-title: SIAM J. Optim.
  doi: 10.1137/080724083
– ident: 10.1016/j.cam.2018.02.017_b22
  doi: 10.1109/CEC.2006.1688315
– volume: vol. 7835
  start-page: 459
  year: 2013
  ident: 10.1016/j.cam.2018.02.017_b48
  article-title: Towards non-linear constraint estimation for expensive optimization
– start-page: 105
  year: 1992
  ident: 10.1016/j.cam.2018.02.017_b56
  article-title: The theory of radial basis function approximation in 1990
– volume: vol. 198
  start-page: 193
  year: 2009
  ident: 10.1016/j.cam.2018.02.017_b41
  article-title: Constrained optimization based on quadratic approximations in genetic algorithms
– volume: 12
  start-page: 28
  year: 2016
  ident: 10.1016/j.cam.2018.02.017_b52
  article-title: A multi-fidelity surrogate-model-assisted evolutionary algorithm for computationally expensive optimization problems
  publication-title: J. Comput. Sci.
  doi: 10.1016/j.jocs.2015.11.004
– volume: 15
  start-page: 405
  issue: 3
  year: 1984
  ident: 10.1016/j.cam.2018.02.017_b8
  article-title: Convergence properties of stochastic optimization procedures
  publication-title: Optimization
– ident: 10.1016/j.cam.2018.02.017_b20
  doi: 10.1109/TAI.2003.1250183
– volume: 186
  start-page: 311
  issue: 2–4
  year: 2000
  ident: 10.1016/j.cam.2018.02.017_b64
  article-title: An efficient constraint handling method for genetic algorithms
  publication-title: Comput. Methods Appl. Mech. Engrg.
  doi: 10.1016/S0045-7825(99)00389-8
– start-page: 362
  year: 2002
  ident: 10.1016/j.cam.2018.02.017_b44
  article-title: Metamodel-assisted evolution strategies
– volume: 45
  start-page: 503
  issue: 5
  year: 2013
  ident: 10.1016/j.cam.2018.02.017_b25
  article-title: A bi-objective constrained optimization algorithm using a hybrid evolutionary and penalty function approach
  publication-title: Eng. Optim.
  doi: 10.1080/0305215X.2012.685074
– volume: 4
  start-page: 284
  issue: 3
  year: 2000
  ident: 10.1016/j.cam.2018.02.017_b21
  article-title: Stochastic ranking for constrained evolutionary optimization
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/4235.873238
SSID ssj0006914
Score 2.4032907
Snippet The Accelerated Random Search (ARS) algorithm (Appel et al., 2004) is a stochastic algorithm for the global optimization of black-box functions subject only to...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 276
SubjectTerms Constrained global optimization
Expensive optimization
Radial basis function
Random search
Surrogate model
Title Accelerated Random Search for constrained global optimization assisted by Radial Basis Function surrogates
URI https://dx.doi.org/10.1016/j.cam.2018.02.017
Volume 340
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1879-1778
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0006914
  issn: 0377-0427
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier Free Content
  customDbUrl:
  eissn: 1879-1778
  dateEnd: 20211105
  omitProxy: true
  ssIdentifier: ssj0006914
  issn: 0377-0427
  databaseCode: IXB
  dateStart: 19750301
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier ScienceDirect (LUT)
  customDbUrl:
  eissn: 1879-1778
  dateEnd: 20211105
  omitProxy: true
  ssIdentifier: ssj0006914
  issn: 0377-0427
  databaseCode: ACRLP
  dateStart: 19950220
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals [SCFCJ]
  customDbUrl:
  eissn: 1879-1778
  dateEnd: 20211015
  omitProxy: true
  ssIdentifier: ssj0006914
  issn: 0377-0427
  databaseCode: AIKHN
  dateStart: 19950220
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect (Elsevier)
  customDbUrl:
  eissn: 1879-1778
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0006914
  issn: 0377-0427
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1879-1778
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0006914
  issn: 0377-0427
  databaseCode: AKRWK
  dateStart: 19750301
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELaqssCAeIryqDwwIYXm4cTx2FZUBdQOUKRuke3YUivaVH0MLPx27vIoIAEDo507KTnb912Su-8IuU69VPvcSkfFcNwYQIojdcgcG6ZxKoURTGGB82AY9V_Ywzgc10i3qoXBtMrS9xc-PffW5UyrtGZrMZm0nt2Ac-wUAZsSgCzGgl_GOHYxuH3_TPOIRMHvDcIOSld_NvMcLy2xGN2Lc9rOvGfZD9j0BW96B2S_DBRpu7iXQ1Iz8yOyN9iyrK6OybStNaAGkj2k9EnO02xGi_RhCqEo1Rj6YQcIuFrwftAMHMSsrLykEDbjGqdUvYE2FpDQjoQp2gOsyyVWm-Uyw-9sqxMy6t2Nun2n7J3gaF_wtSNVwIyxrjRBoI3HIcwANFaxhCPuCu0bWIsI3oxdHinO4RSGPrM6MtwIoZUfnJL6PJubM0JD4VnpKSSuA69q_Dg0FkDekxCrBNaqBnEroyW65BXHh3tNqgSyaQJ2TtDOiesnYOcGudmqLApSjb-EWbUSybedkYDT_13t_H9qF2QXR0W63iWpr5cbcwVhx1o1833VJDvt-8f-EEb3484HBTfYoA
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELZKGYAB8RTl6YEJKTRxnDgeS0VVoO0ARWKzbMeRWtGk6mNg4bdzzqOABAys9p2UnO37zsnddwhdxl6sCUukoyI4bhQgxZE6oE4SxFEsueFU2QLn_iDsPtP7l-ClhtpVLYxNqyx9f-HTc29djjRLazano1HzyfUZs50iYFMCkEXRGlqnAWH2Bnb9_pnnEfKC4BukHSte_drMk7y0tNXoXpTzduZNy34Apy-A09lB22WkiFvFw-yimkn30FZ_RbM630fjltYAG5btIcaPMo2zCS7yhzHEoljb2M-2gIDZgvgDZ-AhJmXpJYa42S5yjNUbaNsKEnwjYQh3AOxyiflyNsvsh7b5ARp2boftrlM2T3A04WzhSOVTYxJXGt_XxmMQZwAcq0jCGXe5JgYWI4SrsctCxRgcw4DQRIeGGc61Iv4hqqdZao4QDriXSE9Z5jpwq4ZEgUkA5T0JwYqfJKqB3MpoQpfE4vblXkWVQTYWYGdh7SxcIsDODXS1UpkWrBp_CdNqJcS3rSHA6_-udvw_tQu00R32e6J3N3g4QZt2psjdO0X1xWxpziAGWajzfI99ABdI2TE
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Accelerated+Random+Search+for+constrained+global+optimization+assisted+by+Radial+Basis+Function+surrogates&rft.jtitle=Journal+of+computational+and+applied+mathematics&rft.au=Nu%C3%B1ez%2C+Luigi&rft.au=Regis%2C+Rommel+G.&rft.au=Varela%2C+Kayla&rft.date=2018-10-01&rft.pub=Elsevier+B.V&rft.issn=0377-0427&rft.eissn=1879-1778&rft.volume=340&rft.spage=276&rft.epage=295&rft_id=info:doi/10.1016%2Fj.cam.2018.02.017&rft.externalDocID=S0377042718300888
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0377-0427&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0377-0427&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0377-0427&client=summon