Mining spatial association rules in image databases

In this paper, we propose a novel spatial mining algorithm, called 9DLT-Miner, to mine the spatial association rules from an image database, where every image is represented by the 9DLT representation. The proposed method consists of two phases. First, we find all frequent patterns of length one. Ne...

Full description

Saved in:
Bibliographic Details
Published inInformation sciences Vol. 177; no. 7; pp. 1593 - 1608
Main Authors Lee, Anthony J.T., Hong, Ruey-Wen, Ko, Wei-Min, Tsao, Wen-Kwang, Lin, Hsiu-Hui
Format Journal Article
LanguageEnglish
Published Elsevier Inc 01.04.2007
Subjects
Online AccessGet full text
ISSN0020-0255
1872-6291
DOI10.1016/j.ins.2006.09.018

Cover

Abstract In this paper, we propose a novel spatial mining algorithm, called 9DLT-Miner, to mine the spatial association rules from an image database, where every image is represented by the 9DLT representation. The proposed method consists of two phases. First, we find all frequent patterns of length one. Next, we use frequent k-patterns ( k ⩾ 1) to generate all candidate ( k + 1)-patterns. For each candidate pattern generated, we scan the database to count the pattern’s support and check if it is frequent. The steps in the second phase are repeated until no more frequent patterns can be found. Since our proposed algorithm prunes most of impossible candidates, it is more efficient than the Apriori algorithm. The experiment results show that 9DLT-Miner runs 2–5 times faster than the Apriori algorithm.
AbstractList In this paper, we propose a novel spatial mining algorithm, called 9DLT-Miner, to mine the spatial association rules from an image database, where every image is represented by the 9DLT representation. The proposed method consists of two phases. First, we find all frequent patterns of length one. Next, we use frequent k-patterns ( k ⩾ 1) to generate all candidate ( k + 1)-patterns. For each candidate pattern generated, we scan the database to count the pattern’s support and check if it is frequent. The steps in the second phase are repeated until no more frequent patterns can be found. Since our proposed algorithm prunes most of impossible candidates, it is more efficient than the Apriori algorithm. The experiment results show that 9DLT-Miner runs 2–5 times faster than the Apriori algorithm.
Author Tsao, Wen-Kwang
Lin, Hsiu-Hui
Lee, Anthony J.T.
Ko, Wei-Min
Hong, Ruey-Wen
Author_xml – sequence: 1
  givenname: Anthony J.T.
  surname: Lee
  fullname: Lee, Anthony J.T.
  email: jtlee@ntu.edu.tw
– sequence: 2
  givenname: Ruey-Wen
  surname: Hong
  fullname: Hong, Ruey-Wen
  email: d90004@im.ntu.edu.tw
– sequence: 3
  givenname: Wei-Min
  surname: Ko
  fullname: Ko, Wei-Min
  email: r92030@im.ntu.edu.tw
– sequence: 4
  givenname: Wen-Kwang
  surname: Tsao
  fullname: Tsao, Wen-Kwang
  email: d93725001@ntu.edu.tw
– sequence: 5
  givenname: Hsiu-Hui
  surname: Lin
  fullname: Lin, Hsiu-Hui
  email: d8725003@im.ntu.edu.tw
BookMark eNp9z71OwzAQwHELFYm28ABseYGEs-M4jphQxZdUxAKzdbEvlaPgVHZA4u1JKRNDp7vlf7rfii3CGIixaw4FB65u-sKHVAgAVUBTANdnbMl1LXIlGr5gSwABOYiqumCrlHoAkLVSS1a--ODDLkt7nDwOGaY0Wj_vY8ji50Ap8yHzH7ijzOGELSZKl-y8wyHR1d9cs_eH-7fNU759fXze3G1zK5p6yrFSHFtJqnQaXSmkbrHDjpN1kkA6q8FpaUFZ0QG1VcldbWVZNa4lSbou16w-3rVxTClSZ6yffl-bIvrBcDAHu-nNbDcHu4HGzPa55P_KfZwR8ftkc3tsaCZ9eYomWU_BkvOR7GTc6E_UP-FzdPY
CitedBy_id crossref_primary_10_1016_j_ins_2007_03_007
crossref_primary_10_1016_j_procs_2022_09_525
crossref_primary_10_1016_j_eswa_2024_123577
crossref_primary_10_1007_s11069_013_0833_5
crossref_primary_10_1016_j_ins_2008_03_009
crossref_primary_10_1155_2022_5659280
crossref_primary_10_1016_j_knosys_2015_05_013
crossref_primary_10_1016_j_scitotenv_2007_12_029
crossref_primary_10_1016_j_eswa_2011_02_146
crossref_primary_10_5626_JCSE_2014_8_2_65
crossref_primary_10_1002_wics_1242
crossref_primary_10_1002_widm_1110
crossref_primary_10_3390_e24101401
crossref_primary_10_1016_j_ins_2009_02_016
crossref_primary_10_1016_j_datak_2008_02_001
crossref_primary_10_1016_j_ins_2008_11_033
crossref_primary_10_1016_j_ins_2009_07_012
crossref_primary_10_1016_j_jss_2013_02_010
crossref_primary_10_1016_j_jss_2008_08_028
crossref_primary_10_1007_s11069_013_0556_7
crossref_primary_10_1016_j_ins_2008_05_006
crossref_primary_10_1016_j_eswa_2010_04_006
crossref_primary_10_1016_j_ins_2009_05_023
crossref_primary_10_1016_j_knosys_2013_12_008
crossref_primary_10_1142_S0219649214500191
crossref_primary_10_1016_j_ins_2008_10_027
crossref_primary_10_3390_fractalfract6110669
crossref_primary_10_1007_s11227_019_03041_y
crossref_primary_10_1109_TII_2015_2400411
crossref_primary_10_4028_www_scientific_net_AMR_108_111_598
Cites_doi 10.1145/956750.956818
10.1016/S0020-0255(99)00068-7
10.1016/j.ins.2005.07.005
10.1109/69.599932
10.1137/1.9781611972726.28
10.1016/S0020-0255(03)00005-7
10.1109/ICDE.2004.1319986
10.1016/j.ins.2005.01.019
10.1016/S0020-0255(03)00190-7
10.1016/j.ins.2003.03.017
10.1109/TKDE.2005.60
10.1016/j.ins.2005.11.003
10.1016/j.ins.2005.05.005
10.1016/j.jss.2005.03.005
10.1007/3-540-47724-1_13
10.1016/j.ins.2004.12.007
10.1016/j.ins.2005.01.010
10.1145/170036.170072
10.1145/502512.502564
10.1109/TPAMI.1987.4767923
10.1016/S0020-0255(02)00400-0
10.1016/S0020-0255(02)00264-5
10.1016/0020-0255(94)00107-M
10.1016/j.ins.2003.05.013
10.1109/69.553156
10.1016/j.ins.2003.09.021
10.1006/jvci.2000.0460
10.1016/S0306-4379(02)00112-6
10.1145/1014052.1014095
10.1109/TKDE.2004.92
10.1145/319950.320050
10.1109/CVPR.1997.609410
10.1016/j.ins.2004.12.006
ContentType Journal Article
Copyright 2006 Elsevier Inc.
Copyright_xml – notice: 2006 Elsevier Inc.
DBID AAYXX
CITATION
DOI 10.1016/j.ins.2006.09.018
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Library & Information Science
EISSN 1872-6291
EndPage 1608
ExternalDocumentID 10_1016_j_ins_2006_09_018
S0020025506002945
GroupedDBID --K
--M
--Z
-~X
.DC
.~1
0R~
1B1
1OL
1RT
1~.
1~5
29I
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
9JO
AAAKF
AAAKG
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARIN
AAXUO
AAYFN
ABAOU
ABBOA
ABEFU
ABFNM
ABJNI
ABMAC
ABTAH
ABUCO
ABXDB
ABYKQ
ACAZW
ACDAQ
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADGUI
ADJOM
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFFNX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIGVJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
APLSM
ARUGR
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HAMUX
HLZ
HVGLF
HZ~
H~9
IHE
J1W
JJJVA
KOM
LG9
LY1
M41
MHUIS
MO0
MS~
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SBC
SDF
SDG
SDP
SDS
SES
SEW
SPC
SPCBC
SSB
SSD
SST
SSV
SSW
SSZ
T5K
TN5
TWZ
UHS
WH7
WUQ
XPP
YYP
ZMT
ZY4
~02
~G-
77I
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
ADVLN
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
ID FETCH-LOGICAL-c297t-a561ab4e63d8ad3248bafaf1ecd4e04dc80d84c06c2f0eb531d7c4359dbe4e873
IEDL.DBID AIKHN
ISSN 0020-0255
IngestDate Thu Apr 24 22:51:08 EDT 2025
Wed Oct 01 04:53:31 EDT 2025
Fri Feb 23 02:32:08 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 7
Keywords Spatial data mining
9DLT string
Image database
Spatial association rule
Language English
License https://www.elsevier.com/tdm/userlicense/1.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c297t-a561ab4e63d8ad3248bafaf1ecd4e04dc80d84c06c2f0eb531d7c4359dbe4e873
PageCount 16
ParticipantIDs crossref_citationtrail_10_1016_j_ins_2006_09_018
crossref_primary_10_1016_j_ins_2006_09_018
elsevier_sciencedirect_doi_10_1016_j_ins_2006_09_018
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2007-04-01
PublicationDateYYYYMMDD 2007-04-01
PublicationDate_xml – month: 04
  year: 2007
  text: 2007-04-01
  day: 01
PublicationDecade 2000
PublicationTitle Information sciences
PublicationYear 2007
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References Koperski, Han (bib21) 1995; vol. 951
Wang (bib41) 2003; 154
Hsu, Chen, Ling (bib14) 2004; 166
Chen, Wei (bib9) 2002; 147
V. Megalooikonomou, Evaluating the performance of association mining methods in 3D medical image databases, in: Proc. of the 2nd SIAM International Conference on Data Mining, Arlington, VA, 2002, pp. 474–494.
Lin, Lee (bib26) 2004; 165
Fayyad, Smyth (bib12) 1993
J. Wang, J. Han, BIDE: efficient mining of closed sequences, in: Proc. of the IEEE International Conference on Data Engineering, Boston, Massachusetts, 2004, pp. 79–90.
Ng, Han (bib33) 1994
Chang, Lee (bib6) 1991; 7
Lee, Wang (bib24) 2003; 28
Yu, Chong, Lu, Zhang, Zhou (bib43) 2006; 176
Wang, Tseng, Hong (bib39) 2006; 176
Yager (bib42) 2006; 176
Knorr, Ng (bib20) 1996; 8
Nardelli, Proietti (bib32) 1995; 84
W. Lu, J. Han, B.C. Ooi, Discovery of general knowledge in large spatial databases, in: Proc. of Far East Workshop on Geographic Information Systems, Singapore, 1993, pp. 275–289.
R. Agrawal, T. Imielinski, A. Swami, Mining association rules between sets of items in large databases, in: Proc. of ACM-SIGMOD International Conference on Management of Data, Washington, DC, 1993, pp. 207–216.
Lee, Lin, Wang (bib23) 2006; 79
X. Zhang, N. Mamoulis, D.W. Cheung, Y. Shou, Fast mining of spatial collocations, in: Proc. of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Seattle, Washington, 2004, pp. 384–393.
Petrakis, Faloutsos (bib36) 1997; 9
Bordogna, Chiesa, Geneletti (bib4) 2006; 176
Y. Morimoto, Mining frequent neighbor class sets in spatial databases, in: Proc. of ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Francisco, CA, 2001, pp.353-358.
Pang, Zhang, Wang (bib34) 2005; 175
Ballard, Brown (bib3) 1982
Han, Kamber (bib13) 2006
Chang (bib7) 1989
Li, Zhu, Wang, Jajodia (bib25) 2006; 176
Lin, Li, Tsang (bib27) 1999; 120
Y.J. Kim, C.B. Sim, J.W. Chang, Supporting ranking in iconic image databases, in: Proc. of the ACM International Conference on Information and Knowledge Management, Kansas City, 1999, pp. 450–457.
S. Shekhar, Y. Huang, Discovering spatial co-location patterns: a summary of results, in: Proc. of the 7th International. Symposium on Spatial and Temporal Databases (SSTD), 2001, pp. 236–256.
Shekhar, Zhang, Huang, Vatsavai (bib38) 2003
D. Comaniciu, P. Meer, Robust analysis of feature spaces: color image segmentation, in: Proc. of IEEE International Conference on Computer Vision and Pattern Recognition, San Juan, Puerto Rico, 1997, pp. 750–755.
Chan, Chang (bib5) 2001; 12
Huang, Lee (bib17) 2004; 16
Lagus, Kaski, Kohonen (bib22) 2004; 163
Zaki, Hsiao (bib44) 2005; 17
Perrin, Petry (bib35) 2003; 151
M. Ester, H.P. Kriegel, J. Sander, X. Xu, A density-based algorithm for discovering clusters in large spatial databases with noise, in: Proc. of the 2nd International Conference on Knowledge Discovery and Data Mining, Portland, Oregon, 1996, pp. 226–231.
R. Agrawal, R. Srikant, Fast algorithms for mining association rules, in: Proc. of International Conference on Very Large Data Bases, Santiago, Chile, 1994, pp. 487–499.
Hu, Tzeng, Chen (bib16) 2004; 159
Lingras, Hogo, Snorek, West (bib28) 2005; 172
Chang, Shi, Yan (bib8) 1987; 9
W. Hsu, J. Dai, M. Lee, Mining viewpoint patterns in image databases, in: Proc. of the Ninth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Washington DC, 2003, pp. 553–558.
Y.C. Huang, Mining frequent spatial co-relation patterns, Master Thesis, Department of Computer Science, National Chengchi University, Taiwan, 2004.
Yager (10.1016/j.ins.2006.09.018_bib42) 2006; 176
Zaki (10.1016/j.ins.2006.09.018_bib44) 2005; 17
10.1016/j.ins.2006.09.018_bib10
Chang (10.1016/j.ins.2006.09.018_bib8) 1987; 9
10.1016/j.ins.2006.09.018_bib31
Ballard (10.1016/j.ins.2006.09.018_bib3) 1982
Lee (10.1016/j.ins.2006.09.018_bib23) 2006; 79
10.1016/j.ins.2006.09.018_bib30
Nardelli (10.1016/j.ins.2006.09.018_bib32) 1995; 84
Huang (10.1016/j.ins.2006.09.018_bib17) 2004; 16
Wang (10.1016/j.ins.2006.09.018_bib39) 2006; 176
Bordogna (10.1016/j.ins.2006.09.018_bib4) 2006; 176
10.1016/j.ins.2006.09.018_bib11
10.1016/j.ins.2006.09.018_bib18
Shekhar (10.1016/j.ins.2006.09.018_bib38) 2003
10.1016/j.ins.2006.09.018_bib15
10.1016/j.ins.2006.09.018_bib37
Perrin (10.1016/j.ins.2006.09.018_bib35) 2003; 151
Lee (10.1016/j.ins.2006.09.018_bib24) 2003; 28
Pang (10.1016/j.ins.2006.09.018_bib34) 2005; 175
Chang (10.1016/j.ins.2006.09.018_bib7) 1989
Chan (10.1016/j.ins.2006.09.018_bib5) 2001; 12
Li (10.1016/j.ins.2006.09.018_bib25) 2006; 176
10.1016/j.ins.2006.09.018_bib1
10.1016/j.ins.2006.09.018_bib2
Chen (10.1016/j.ins.2006.09.018_bib9) 2002; 147
Wang (10.1016/j.ins.2006.09.018_bib41) 2003; 154
10.1016/j.ins.2006.09.018_bib40
Hsu (10.1016/j.ins.2006.09.018_bib14) 2004; 166
Han (10.1016/j.ins.2006.09.018_bib13) 2006
10.1016/j.ins.2006.09.018_bib45
Lagus (10.1016/j.ins.2006.09.018_bib22) 2004; 163
10.1016/j.ins.2006.09.018_bib29
Knorr (10.1016/j.ins.2006.09.018_bib20) 1996; 8
Lin (10.1016/j.ins.2006.09.018_bib26) 2004; 165
Lingras (10.1016/j.ins.2006.09.018_bib28) 2005; 172
10.1016/j.ins.2006.09.018_bib19
Chang (10.1016/j.ins.2006.09.018_bib6) 1991; 7
Koperski (10.1016/j.ins.2006.09.018_bib21) 1995; vol. 951
Ng (10.1016/j.ins.2006.09.018_bib33) 1994
Hu (10.1016/j.ins.2006.09.018_bib16) 2004; 159
Yu (10.1016/j.ins.2006.09.018_bib43) 2006; 176
Fayyad (10.1016/j.ins.2006.09.018_bib12) 1993
Petrakis (10.1016/j.ins.2006.09.018_bib36) 1997; 9
Lin (10.1016/j.ins.2006.09.018_bib27) 1999; 120
References_xml – year: 1989
  ident: bib7
  article-title: Principles of Pictorial Information Systems Design
– volume: 151
  start-page: 125
  year: 2003
  end-page: 152
  ident: bib35
  article-title: Extraction and representation of contextual information for knowledge discovery in texts
  publication-title: Information Sciences
– volume: 176
  start-page: 577
  year: 2006
  end-page: 588
  ident: bib42
  article-title: An extension of the naive Bayesian classifier
  publication-title: Information Sciences
– start-page: 27
  year: 1993
  end-page: 44
  ident: bib12
  article-title: Image database exploration: progress and challenges
  publication-title: Proc. of Knowledge Discovery in Database Workshop
– volume: vol. 951
  start-page: 47
  year: 1995
  end-page: 66
  ident: bib21
  article-title: Discovery of spatial association rules in geographic information databases
  publication-title: Proc. of International Symposium on Advance in Spatial Databases, SSD
– volume: 176
  start-page: 1752
  year: 2006
  end-page: 1780
  ident: bib39
  article-title: Flexible online association rule mining based on multidimensional pattern relations
  publication-title: Information Sciences
– reference: V. Megalooikonomou, Evaluating the performance of association mining methods in 3D medical image databases, in: Proc. of the 2nd SIAM International Conference on Data Mining, Arlington, VA, 2002, pp. 474–494.
– reference: Y.C. Huang, Mining frequent spatial co-relation patterns, Master Thesis, Department of Computer Science, National Chengchi University, Taiwan, 2004.
– volume: 147
  start-page: 201
  year: 2002
  end-page: 228
  ident: bib9
  article-title: Fuzzy association rules and the extended mining algorithms
  publication-title: Information Sciences
– volume: 17
  start-page: 462
  year: 2005
  end-page: 478
  ident: bib44
  article-title: Efficient algorithms for mining closed itemsets and their lattice structure
  publication-title: IEEE Transactions on Knowledge and Data Engineering
– volume: 9
  start-page: 413
  year: 1987
  end-page: 427
  ident: bib8
  article-title: Iconic indexing by 2-D strings
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
– volume: 84
  start-page: 67
  year: 1995
  end-page: 83
  ident: bib32
  article-title: Efficient secondary memory processing of window queries on spatial data
  publication-title: Information Sciences
– year: 2006
  ident: bib13
  article-title: Data Mining: Concepts and Techniques
– volume: 159
  start-page: 69
  year: 2004
  end-page: 86
  ident: bib16
  article-title: Deriving two-stage learning sequences from knowledge in fuzzy sequential pattern mining
  publication-title: Information Sciences
– reference: W. Hsu, J. Dai, M. Lee, Mining viewpoint patterns in image databases, in: Proc. of the Ninth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Washington DC, 2003, pp. 553–558.
– reference: R. Agrawal, T. Imielinski, A. Swami, Mining association rules between sets of items in large databases, in: Proc. of ACM-SIGMOD International Conference on Management of Data, Washington, DC, 1993, pp. 207–216.
– volume: 12
  start-page: 107
  year: 2001
  end-page: 122
  ident: bib5
  article-title: Spatial similarity retrieval in video databases
  publication-title: Journal of Visual Communication and Image Representation
– reference: Y.J. Kim, C.B. Sim, J.W. Chang, Supporting ranking in iconic image databases, in: Proc. of the ACM International Conference on Information and Knowledge Management, Kansas City, 1999, pp. 450–457.
– volume: 9
  start-page: 435
  year: 1997
  end-page: 447
  ident: bib36
  article-title: Similarity searching in medical image databases
  publication-title: IEEE Transactions on Knowledge and Data Engineering
– reference: Y. Morimoto, Mining frequent neighbor class sets in spatial databases, in: Proc. of ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Francisco, CA, 2001, pp.353-358.
– volume: 165
  start-page: 187
  year: 2004
  end-page: 205
  ident: bib26
  article-title: Interactive sequence discovery by incremental mining
  publication-title: Information Sciences
– volume: 79
  start-page: 79
  year: 2006
  end-page: 92
  ident: bib23
  article-title: Mining association rules with multi-dimensional constraints
  publication-title: The Journal of Systems and Software
– reference: W. Lu, J. Han, B.C. Ooi, Discovery of general knowledge in large spatial databases, in: Proc. of Far East Workshop on Geographic Information Systems, Singapore, 1993, pp. 275–289.
– volume: 176
  start-page: 366
  year: 2006
  end-page: 389
  ident: bib4
  article-title: Linguistic modelling of imperfect spatial information as a basis for simplifying spatial analysis
  publication-title: Information Sciences
– reference: S. Shekhar, Y. Huang, Discovering spatial co-location patterns: a summary of results, in: Proc. of the 7th International. Symposium on Spatial and Temporal Databases (SSTD), 2001, pp. 236–256.
– reference: R. Agrawal, R. Srikant, Fast algorithms for mining association rules, in: Proc. of International Conference on Very Large Data Bases, Santiago, Chile, 1994, pp. 487–499.
– volume: 176
  start-page: 1003
  year: 2006
  end-page: 1031
  ident: bib25
  article-title: Looking into the seeds of time: Discovering temporal patterns in large transaction sets
  publication-title: Information Sciences
– volume: 120
  start-page: 197
  year: 1999
  end-page: 208
  ident: bib27
  article-title: Applying on-line bitmap indexing to reduce counting costs in mining association rules
  publication-title: Information Sciences
– year: 1982
  ident: bib3
  article-title: Computer Vision
– start-page: 144
  year: 1994
  end-page: 155
  ident: bib33
  article-title: Efficient and effective clustering method for spatial data mining
  publication-title: Proc. of International Conference on Very Large Data Bases
– volume: 166
  start-page: 31
  year: 2004
  end-page: 47
  ident: bib14
  article-title: Algorithms for mining association rules in bag databases
  publication-title: Information Sciences
– start-page: 357
  year: 2003
  end-page: 380
  ident: bib38
  article-title: Trends in spatial data mining
  publication-title: Data Mining: Next Generation Challenges and Future Directions
– volume: 16
  start-page: 1486
  year: 2004
  end-page: 1496
  ident: bib17
  article-title: Image database design based on 9D-SPA representation for spatial relations
  publication-title: IEEE Transactions on Knowledge and Data Engineering
– volume: 163
  start-page: 135
  year: 2004
  end-page: 156
  ident: bib22
  article-title: Mining massive document collections by the WEBSOM method
  publication-title: Information Sciences
– volume: 176
  start-page: 1986
  year: 2006
  end-page: 2015
  ident: bib43
  article-title: A false negative approach to mining frequent itemsets from high speed transactional data streams
  publication-title: Information Sciences
– reference: D. Comaniciu, P. Meer, Robust analysis of feature spaces: color image segmentation, in: Proc. of IEEE International Conference on Computer Vision and Pattern Recognition, San Juan, Puerto Rico, 1997, pp. 750–755.
– reference: M. Ester, H.P. Kriegel, J. Sander, X. Xu, A density-based algorithm for discovering clusters in large spatial databases with noise, in: Proc. of the 2nd International Conference on Knowledge Discovery and Data Mining, Portland, Oregon, 1996, pp. 226–231.
– volume: 175
  start-page: 160
  year: 2005
  end-page: 176
  ident: bib34
  article-title: Tongue image analysis for appendicitis diagnosis
  publication-title: Information Sciences
– volume: 7
  start-page: 405
  year: 1991
  end-page: 422
  ident: bib6
  article-title: Retrieval of symbolic pictures
  publication-title: Journal of Information Science and Engineering
– volume: 8
  start-page: 884
  year: 1996
  end-page: 897
  ident: bib20
  article-title: Finding aggregate proximity relationships and commonalities in spatial data mining
  publication-title: IEEE Transactions on Knowledge and Data Engineering
– volume: 172
  start-page: 215
  year: 2005
  end-page: 240
  ident: bib28
  article-title: Temporal analysis of clusters of supermarket customers: conventional vs. interval set approach
  publication-title: Information Sciences
– reference: J. Wang, J. Han, BIDE: efficient mining of closed sequences, in: Proc. of the IEEE International Conference on Data Engineering, Boston, Massachusetts, 2004, pp. 79–90.
– reference: X. Zhang, N. Mamoulis, D.W. Cheung, Y. Shou, Fast mining of spatial collocations, in: Proc. of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Seattle, Washington, 2004, pp. 384–393.
– volume: 28
  start-page: 929
  year: 2003
  end-page: 948
  ident: bib24
  article-title: Efficient data mining for calling path patterns in GSM networks
  publication-title: Information Systems
– volume: 154
  start-page: 39
  year: 2003
  end-page: 58
  ident: bib41
  article-title: Image indexing and similarity retrieval based on spatial relationship model
  publication-title: Information Sciences
– ident: 10.1016/j.ins.2006.09.018_bib2
– ident: 10.1016/j.ins.2006.09.018_bib15
  doi: 10.1145/956750.956818
– volume: vol. 951
  start-page: 47
  year: 1995
  ident: 10.1016/j.ins.2006.09.018_bib21
  article-title: Discovery of spatial association rules in geographic information databases
– year: 1989
  ident: 10.1016/j.ins.2006.09.018_bib7
– volume: 120
  start-page: 197
  year: 1999
  ident: 10.1016/j.ins.2006.09.018_bib27
  article-title: Applying on-line bitmap indexing to reduce counting costs in mining association rules
  publication-title: Information Sciences
  doi: 10.1016/S0020-0255(99)00068-7
– volume: 176
  start-page: 366
  year: 2006
  ident: 10.1016/j.ins.2006.09.018_bib4
  article-title: Linguistic modelling of imperfect spatial information as a basis for simplifying spatial analysis
  publication-title: Information Sciences
  doi: 10.1016/j.ins.2005.07.005
– volume: 9
  start-page: 435
  issue: 3
  year: 1997
  ident: 10.1016/j.ins.2006.09.018_bib36
  article-title: Similarity searching in medical image databases
  publication-title: IEEE Transactions on Knowledge and Data Engineering
  doi: 10.1109/69.599932
– ident: 10.1016/j.ins.2006.09.018_bib30
  doi: 10.1137/1.9781611972726.28
– volume: 154
  start-page: 39
  year: 2003
  ident: 10.1016/j.ins.2006.09.018_bib41
  article-title: Image indexing and similarity retrieval based on spatial relationship model
  publication-title: Information Sciences
  doi: 10.1016/S0020-0255(03)00005-7
– ident: 10.1016/j.ins.2006.09.018_bib40
  doi: 10.1109/ICDE.2004.1319986
– volume: 176
  start-page: 1003
  year: 2006
  ident: 10.1016/j.ins.2006.09.018_bib25
  article-title: Looking into the seeds of time: Discovering temporal patterns in large transaction sets
  publication-title: Information Sciences
  doi: 10.1016/j.ins.2005.01.019
– volume: 159
  start-page: 69
  year: 2004
  ident: 10.1016/j.ins.2006.09.018_bib16
  article-title: Deriving two-stage learning sequences from knowledge in fuzzy sequential pattern mining
  publication-title: Information Sciences
  doi: 10.1016/S0020-0255(03)00190-7
– volume: 163
  start-page: 135
  year: 2004
  ident: 10.1016/j.ins.2006.09.018_bib22
  article-title: Mining massive document collections by the WEBSOM method
  publication-title: Information Sciences
  doi: 10.1016/j.ins.2003.03.017
– volume: 17
  start-page: 462
  issue: 4
  year: 2005
  ident: 10.1016/j.ins.2006.09.018_bib44
  article-title: Efficient algorithms for mining closed itemsets and their lattice structure
  publication-title: IEEE Transactions on Knowledge and Data Engineering
  doi: 10.1109/TKDE.2005.60
– volume: 176
  start-page: 1986
  year: 2006
  ident: 10.1016/j.ins.2006.09.018_bib43
  article-title: A false negative approach to mining frequent itemsets from high speed transactional data streams
  publication-title: Information Sciences
  doi: 10.1016/j.ins.2005.11.003
– volume: 176
  start-page: 1752
  year: 2006
  ident: 10.1016/j.ins.2006.09.018_bib39
  article-title: Flexible online association rule mining based on multidimensional pattern relations
  publication-title: Information Sciences
  doi: 10.1016/j.ins.2005.05.005
– volume: 79
  start-page: 79
  issue: 1
  year: 2006
  ident: 10.1016/j.ins.2006.09.018_bib23
  article-title: Mining association rules with multi-dimensional constraints
  publication-title: The Journal of Systems and Software
  doi: 10.1016/j.jss.2005.03.005
– ident: 10.1016/j.ins.2006.09.018_bib37
  doi: 10.1007/3-540-47724-1_13
– ident: 10.1016/j.ins.2006.09.018_bib18
– volume: 172
  start-page: 215
  year: 2005
  ident: 10.1016/j.ins.2006.09.018_bib28
  article-title: Temporal analysis of clusters of supermarket customers: conventional vs. interval set approach
  publication-title: Information Sciences
  doi: 10.1016/j.ins.2004.12.007
– ident: 10.1016/j.ins.2006.09.018_bib29
– volume: 175
  start-page: 160
  year: 2005
  ident: 10.1016/j.ins.2006.09.018_bib34
  article-title: Tongue image analysis for appendicitis diagnosis
  publication-title: Information Sciences
  doi: 10.1016/j.ins.2005.01.010
– ident: 10.1016/j.ins.2006.09.018_bib1
  doi: 10.1145/170036.170072
– year: 2006
  ident: 10.1016/j.ins.2006.09.018_bib13
– ident: 10.1016/j.ins.2006.09.018_bib31
  doi: 10.1145/502512.502564
– volume: 9
  start-page: 413
  year: 1987
  ident: 10.1016/j.ins.2006.09.018_bib8
  article-title: Iconic indexing by 2-D strings
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
  doi: 10.1109/TPAMI.1987.4767923
– start-page: 27
  year: 1993
  ident: 10.1016/j.ins.2006.09.018_bib12
  article-title: Image database exploration: progress and challenges
– volume: 151
  start-page: 125
  year: 2003
  ident: 10.1016/j.ins.2006.09.018_bib35
  article-title: Extraction and representation of contextual information for knowledge discovery in texts
  publication-title: Information Sciences
  doi: 10.1016/S0020-0255(02)00400-0
– volume: 147
  start-page: 201
  year: 2002
  ident: 10.1016/j.ins.2006.09.018_bib9
  article-title: Fuzzy association rules and the extended mining algorithms
  publication-title: Information Sciences
  doi: 10.1016/S0020-0255(02)00264-5
– start-page: 357
  year: 2003
  ident: 10.1016/j.ins.2006.09.018_bib38
  article-title: Trends in spatial data mining
– volume: 84
  start-page: 67
  year: 1995
  ident: 10.1016/j.ins.2006.09.018_bib32
  article-title: Efficient secondary memory processing of window queries on spatial data
  publication-title: Information Sciences
  doi: 10.1016/0020-0255(94)00107-M
– volume: 166
  start-page: 31
  year: 2004
  ident: 10.1016/j.ins.2006.09.018_bib14
  article-title: Algorithms for mining association rules in bag databases
  publication-title: Information Sciences
  doi: 10.1016/j.ins.2003.05.013
– volume: 8
  start-page: 884
  issue: 6
  year: 1996
  ident: 10.1016/j.ins.2006.09.018_bib20
  article-title: Finding aggregate proximity relationships and commonalities in spatial data mining
  publication-title: IEEE Transactions on Knowledge and Data Engineering
  doi: 10.1109/69.553156
– volume: 165
  start-page: 187
  year: 2004
  ident: 10.1016/j.ins.2006.09.018_bib26
  article-title: Interactive sequence discovery by incremental mining
  publication-title: Information Sciences
  doi: 10.1016/j.ins.2003.09.021
– volume: 12
  start-page: 107
  year: 2001
  ident: 10.1016/j.ins.2006.09.018_bib5
  article-title: Spatial similarity retrieval in video databases
  publication-title: Journal of Visual Communication and Image Representation
  doi: 10.1006/jvci.2000.0460
– volume: 7
  start-page: 405
  issue: 3
  year: 1991
  ident: 10.1016/j.ins.2006.09.018_bib6
  article-title: Retrieval of symbolic pictures
  publication-title: Journal of Information Science and Engineering
– start-page: 144
  year: 1994
  ident: 10.1016/j.ins.2006.09.018_bib33
  article-title: Efficient and effective clustering method for spatial data mining
– year: 1982
  ident: 10.1016/j.ins.2006.09.018_bib3
– volume: 28
  start-page: 929
  issue: 8
  year: 2003
  ident: 10.1016/j.ins.2006.09.018_bib24
  article-title: Efficient data mining for calling path patterns in GSM networks
  publication-title: Information Systems
  doi: 10.1016/S0306-4379(02)00112-6
– ident: 10.1016/j.ins.2006.09.018_bib45
  doi: 10.1145/1014052.1014095
– volume: 16
  start-page: 1486
  issue: 12
  year: 2004
  ident: 10.1016/j.ins.2006.09.018_bib17
  article-title: Image database design based on 9D-SPA representation for spatial relations
  publication-title: IEEE Transactions on Knowledge and Data Engineering
  doi: 10.1109/TKDE.2004.92
– ident: 10.1016/j.ins.2006.09.018_bib11
– ident: 10.1016/j.ins.2006.09.018_bib19
  doi: 10.1145/319950.320050
– ident: 10.1016/j.ins.2006.09.018_bib10
  doi: 10.1109/CVPR.1997.609410
– volume: 176
  start-page: 577
  year: 2006
  ident: 10.1016/j.ins.2006.09.018_bib42
  article-title: An extension of the naive Bayesian classifier
  publication-title: Information Sciences
  doi: 10.1016/j.ins.2004.12.006
SSID ssj0004766
Score 2.128502
Snippet In this paper, we propose a novel spatial mining algorithm, called 9DLT-Miner, to mine the spatial association rules from an image database, where every image...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 1593
SubjectTerms 9DLT string
Image database
Spatial association rule
Spatial data mining
Title Mining spatial association rules in image databases
URI https://dx.doi.org/10.1016/j.ins.2006.09.018
Volume 177
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Complete Freedom Collection [SCCMFC]
  customDbUrl:
  eissn: 1872-6291
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004766
  issn: 0020-0255
  databaseCode: ACRLP
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals [SCFCJ]
  customDbUrl:
  eissn: 1872-6291
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004766
  issn: 0020-0255
  databaseCode: AIKHN
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Science Direct
  customDbUrl:
  eissn: 1872-6291
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004766
  issn: 0020-0255
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1872-6291
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004766
  issn: 0020-0255
  databaseCode: AKRWK
  dateStart: 19681201
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8JAEJ7wuOjBKGpEhezBeDApLO2WtkdCJKiBkyTcmn01qcFKKFz97c62W9FEPXhtOk3zdfebbzsvgBs_MpMAlUD284XDXCpxz3Ht8ATlCOMD7hcHxdl8OF2wx6W_rMG4qoUxaZWW-0tOL9jaXulbNPvrNDU1vm6hiGkRWmJ-HZrof8KwAc3Rw9N0vi-PDMqQpTkpGYMquFmkeaVZbkMSUY-a0R8_uacvLmdyDEdWK5JR-TonUNNZCw6_dBBsQcfWHZBbYguLDNDE7thT8GbFAAiSm8RpfBbffw2y2a10TtKMpK9IKsTkihqflp_BYnL_PJ46dk6CI90o2DocNRAXTA89FXKFCikUPOHJQEvFNGVKhlSFTNKhdBOqBaKvAokyKVJCMx0G3jk0srdMXwBR-KGSCMnTpR5LlIe7WbiJaaKWBJop3QZawRNL20TczLJYxVW22EuMiJrhlsOYRjEi2oa7T5N12UHjr5tZhXn8bRnEyPC_m13-z-wKDspftSYR5xoa281Od1BjbEUX6r33QdeupA8pnc_A
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3PT8IwFH5BPKgHo6gRFe3BeDAZlK37dTREggqcIOHWtGubzOAkDK7-7bZbJ5ioB69LuyyvfV-_7n3vPYBbPzadAAXX6Odzh7g40T7HpMOUpiOEdZlfXBRH42AwJc8zf1aDXpULY2SVFvtLTC_Q2j7pWGt2FmlqcnzdghHjIrRE_B3YJb4bmhtY-2Oj8yBhGbA09yQzvAptFiKvNMttQCJuY9P446fDaevA6R_BoWWK6KH8mGOoyawBB1v1AxvQslkH6A7ZtCJjZmT99QS8UdH-AeVGNq3fxTZrgZbrucxRmqH0TUMKMkpRc6LlpzDtP056A8d2SXASNw5XDtMMiHEiA09ETGh-FHGmmOrKRBCJiUgiLCKS4CBxFZZc216EiSZJseCSyCj0zqCevWfyHJDQy6RiDZ0u9ogSnvZl7ipTQk2FkgjZBFyZhya2hLjpZDGnlVbslWqLmtaWAcUx1RZtwv3XlEVZP-OvwaSyOf22CajG99-nXfxv2g3sDSajIR0-jV8uYb_8aWskOVdQXy3XsqXZxopfF7vpE97k0Ig
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Mining+spatial+association+rules+in+image+databases&rft.jtitle=Information+sciences&rft.au=Lee%2C+Anthony+J.T.&rft.au=Hong%2C+Ruey-Wen&rft.au=Ko%2C+Wei-Min&rft.au=Tsao%2C+Wen-Kwang&rft.date=2007-04-01&rft.pub=Elsevier+Inc&rft.issn=0020-0255&rft.eissn=1872-6291&rft.volume=177&rft.issue=7&rft.spage=1593&rft.epage=1608&rft_id=info:doi/10.1016%2Fj.ins.2006.09.018&rft.externalDocID=S0020025506002945
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0020-0255&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0020-0255&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0020-0255&client=summon