A data-driven robust optimization algorithm for black-box cases: An application to hyper-parameter optimization of machine learning algorithms

[Display omitted] •A novel Black-Box data-driven robust optimization approach is proposed.•A Gaussian process is used in a Bayesian optimization framework to design the approach.•The approach is consistent with the data in a predefined confidence level.•A hyper-parameter optimization for deep learni...

Full description

Saved in:
Bibliographic Details
Published inComputers & industrial engineering Vol. 160; p. 107581
Main Authors Seifi, Farshad, Azizi, Mohammad Javad, Akhavan Niaki, Seyed Taghi
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.10.2021
Subjects
Online AccessGet full text
ISSN0360-8352
1879-0550
DOI10.1016/j.cie.2021.107581

Cover

Abstract [Display omitted] •A novel Black-Box data-driven robust optimization approach is proposed.•A Gaussian process is used in a Bayesian optimization framework to design the approach.•The approach is consistent with the data in a predefined confidence level.•A hyper-parameter optimization for deep learning is investigated as an application.•The optimal hyper-parameters are robust with respect to noise. The huge availability of data in the last decade has raised the opportunity for the better use of data in decision-making processes. The idea of using the existing data to achieve a more coherent reality solution has led to a branch of optimization called data-driven optimization. On the one hand, the presence of uncertain variables in these datasets makes it crucial to design robust optimization methods in this area. On the other hand, in many real-world problems, the closed-form of the objective function is not available and a meta-model based framework is necessary. Motivated by the above points, in this paper a Gaussian process is used in a Bayesian optimization framework to design a method that is consistent with the data in a predefined confidence level. The advantage of the proposed method is that it is computationally tractable in addition to being robust and independent of the objective function’s form. As one of the applications of the proposed algorithm, hyper-parameter optimization for deep learning is investigated. The proposed method can help find the optimal hyper-parameters that are robust with respect to noise.
AbstractList [Display omitted] •A novel Black-Box data-driven robust optimization approach is proposed.•A Gaussian process is used in a Bayesian optimization framework to design the approach.•The approach is consistent with the data in a predefined confidence level.•A hyper-parameter optimization for deep learning is investigated as an application.•The optimal hyper-parameters are robust with respect to noise. The huge availability of data in the last decade has raised the opportunity for the better use of data in decision-making processes. The idea of using the existing data to achieve a more coherent reality solution has led to a branch of optimization called data-driven optimization. On the one hand, the presence of uncertain variables in these datasets makes it crucial to design robust optimization methods in this area. On the other hand, in many real-world problems, the closed-form of the objective function is not available and a meta-model based framework is necessary. Motivated by the above points, in this paper a Gaussian process is used in a Bayesian optimization framework to design a method that is consistent with the data in a predefined confidence level. The advantage of the proposed method is that it is computationally tractable in addition to being robust and independent of the objective function’s form. As one of the applications of the proposed algorithm, hyper-parameter optimization for deep learning is investigated. The proposed method can help find the optimal hyper-parameters that are robust with respect to noise.
ArticleNumber 107581
Author Azizi, Mohammad Javad
Seifi, Farshad
Akhavan Niaki, Seyed Taghi
Author_xml – sequence: 1
  givenname: Farshad
  surname: Seifi
  fullname: Seifi, Farshad
  email: farshad.seifi@ie.sharif.edu
  organization: Department of Industrial Engineering, Sharif University of Technology, Iran
– sequence: 2
  givenname: Mohammad Javad
  surname: Azizi
  fullname: Azizi, Mohammad Javad
  email: Azizim@USC.edu
  organization: Department of Industrial & Systems Engineering, University of Southern California, Los Angeles, CA 90007, United States
– sequence: 3
  givenname: Seyed Taghi
  surname: Akhavan Niaki
  fullname: Akhavan Niaki, Seyed Taghi
  email: Niaki@Sharif.edu
  organization: Department of Industrial Engineering, Sharif University of Technology, P.O. Box 11155-9414, Azadi Ave, Tehran 1458889694, Iran
BookMark eNp9kE1OwzAQhS1UJNrCAdj5Ail2nF9YVRV_UiU23UcTe9y6JHFkm4pyCM5MSpEQLLoazeh9b2behIw62yEh15zNOOPZzXYmDc5iFvOhz9OCn5ExL_IyYmnKRmTMRMaiQqTxBZl4v2WMJWnJx-RzThUEiJQzO-yos_WbD9T2wbTmA4KxHYVmbZ0Jm5Zq62jdgHyNavtOJXj0t3Q-KPq-MfKoDpZu9j26qAcHLQZ0f92spi3IjemQNgiuM936d4O_JOcaGo9XP3VKVg_3q8VTtHx5fF7Ml5GMyzxEIBKBieKxUrFkulaljrVGHUulSqaFVEwVWS4F45DVkGBRJFiXiSxFkQoQU5IfbaWz3jvUlTTh-77gwDQVZ9Uh1Wo7zLE6pFodUx1I_o_snWnB7U8yd0cGh492Bl3lB0knURmHMlTKmhP0F7MWlqA
CitedBy_id crossref_primary_10_1016_j_cie_2022_108028
crossref_primary_10_3934_mbe_2024275
crossref_primary_10_1016_j_iswa_2024_200390
crossref_primary_10_3390_ma17194791
crossref_primary_10_1038_s43016_022_00617_5
crossref_primary_10_1016_j_autcon_2022_104666
crossref_primary_10_1016_j_cie_2024_110492
Cites_doi 10.1287/opre.2014.1314
10.4018/978-1-930708-31-0.ch001
10.1287/opre.21.5.1154
10.1007/s10107-011-0494-7
10.1137/130925013
10.1287/mnsc.1120.1641
10.1287/educ.2015.0134
10.1080/17442508708833436
10.1038/nature14236
10.1287/opre.1030.0065
10.1137/S0895479896298130
10.1038/nature16961
10.1287/opre.1090.0741
10.1016/j.cor.2017.07.002
10.1137/050622328
10.1007/s10107-017-1125-8
10.1016/j.cor.2018.04.011
10.1287/opre.1050.0216
10.1007/s10898-012-9899-y
10.1287/moor.23.4.769
10.1515/jnma-2017-0020
10.5267/j.ijiec.2016.5.003
10.1115/1.3653121
10.1007/s10107-003-0396-4
10.1007/s10107-017-1172-1
10.1287/moor.1040.0129
ContentType Journal Article
Copyright 2021 Elsevier Ltd
Copyright_xml – notice: 2021 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.cie.2021.107581
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Engineering
EISSN 1879-0550
ExternalDocumentID 10_1016_j_cie_2021_107581
S036083522100485X
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
1B1
1RT
1~.
1~5
29F
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
9JO
AAAKG
AABNK
AACTN
AAEDT
AAEDW
AAFWJ
AAIAV
AAIKC
AAIKJ
AAKOC
AALRI
AAMNW
AAOAW
AAQFI
AAQXK
AARIN
AAXUO
ABAOU
ABMAC
ABUCO
ABXDB
ABYKQ
ACAZW
ACDAQ
ACGFO
ACGFS
ACNCT
ACNNM
ACRLP
ADBBV
ADEZE
ADGUI
ADMUD
ADRHT
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AIEXJ
AIGVJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
APLSM
ARUGR
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BKOMP
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
G8K
GBLVA
HAMUX
HLZ
HVGLF
HZ~
H~9
IHE
J1W
JJJVA
KOM
LX9
LY1
LY7
M41
MHUIS
MO0
MS~
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
R2-
RIG
RNS
ROL
RPZ
RXW
SBC
SDF
SDG
SDP
SDS
SES
SET
SEW
SPC
SPCBC
SSB
SSD
SST
SSW
SSZ
T5K
TAE
TN5
WUQ
XPP
ZMT
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABJNI
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
ID FETCH-LOGICAL-c297t-a343e4d12dd2c0fbd9f2ffef2cdd90f3cd0d867c301a6ba4e884eb94c93853a3
IEDL.DBID .~1
ISSN 0360-8352
IngestDate Thu Apr 24 22:57:14 EDT 2025
Thu Oct 09 00:32:52 EDT 2025
Fri Feb 23 02:43:04 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Deep learning
Robust optimization
Gaussian process
Hyper-parameter tuning
Black-box optimization
Bayesian optimization
Data-driven optimization
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c297t-a343e4d12dd2c0fbd9f2ffef2cdd90f3cd0d867c301a6ba4e884eb94c93853a3
ParticipantIDs crossref_citationtrail_10_1016_j_cie_2021_107581
crossref_primary_10_1016_j_cie_2021_107581
elsevier_sciencedirect_doi_10_1016_j_cie_2021_107581
PublicationCentury 2000
PublicationDate October 2021
2021-10-00
PublicationDateYYYYMMDD 2021-10-01
PublicationDate_xml – month: 10
  year: 2021
  text: October 2021
PublicationDecade 2020
PublicationTitle Computers & industrial engineering
PublicationYear 2021
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Taigman, Yang, Ranzato, Wolf (b0260) 2014
Bertsimas, Gupta, Kallus (b0045) 2018; 167
Bertsimas, Sim (b0040) 2004; 52
Liu, Wu, Xiao, Zhang (b0150) 2018; 26
Feurer, Klein, Eggensperger, Springenberg, Blum, Hutter (b0110) 2015
Xin, L., Goldberg, D. A. (2013). Time (in) consistency of multistage distributionally robust inventory models with moment constraints. arXiv preprint arXiv:1304.3074.
Soyster (b0245) 1973; 21
Milford, Wyeth (b0180) 2012
Nemirovski, Shapiro (b0205) 2006; 17
Sutskever, I., Vinyals, O., Le, Q. V. (2014). Sequence to sequence learning with neural networks. In Advances in neural information processing systems (pp. 3104–3112).
Chen, X., Lin, Q., Xu, G. (2019). Distributionally robust optimization with confidence bands for probability density functions. arXiv preprint arXiv:1901.02169.
Rasmussen, Williams (b0220) 2005
Taguchi, G., (1986). Introduction to quality engineering: designing quality into products and processes. Asian Productivity Organization.
Igel (b0130) 2005
Gao, R., Kleywegt, A. J. (2016). Distributionally robust stochastic optimization with Wasserstein distance. arXiv preprint arXiv:1604.02199.
Marla, Vaze, Barnhart (b0160) 2018; 98
Zymler, Kuhn, Rustem (b0280) 2013; 137
Esfahani, Kuhn (b0095) 2018; 171
Esteban-Pérez, A., Morales, J. M. (2019). Data-driven distributionally robust optimization via optimal transport with order cone constraints. arXiv preprint arXiv:1903.01769.
Shafieezadeh-Abadeh, S., Kuhn, D., Esfahani, P. M. (2017). Regularization via mass transportation. arXiv preprint arXiv:1710.10016.
Dupačová (b0085) 1987; 20
Kushner (b0145) 1964; 86
(b0215) 1995
Falkner, S., Klein, A., and Hutter, F. (2018). BOHB: Robust and efficient hyperparameter optimization at scale. arXiv preprint arXiv:1807.01774.
Ben-Tal, El Ghaoui, Nemirovski (b0020) 2009
Duchi, J., Glynn, P., Namkoong, H. (2016). Statistics of robust optimization: A generalized empirical likelihood approach. arXiv preprint arXiv:1610.03425.
Ben-Tal, Hertog, Waegenaere, Melenberg, Rennen (b0025) 2013; 59
Ben-Tal, Nemirovski (b0015) 1998; 23
Silver, Huang, Maddison, Guez, Sifre, Van Den Driessche, Schrittwieser, Antonoglou, Panneershelvam, Lanctot (b0235) 2016; 529
Delage, Ye (b0075) 2010; 58
Marzat, Walter, Piet-Lahanier (b0165) 2013; 55
Bertsimas, Sethuraman (b0030) 2000
Iyengar (b0135) 2005; 30
Mehrotra, Papp (b0170) 2014; 24
Mendoza, Klein, Feurer, Springenberg, Urban, Burkart, Dippel, Lindauer, Hutter (b0175) 2019
Feurer, Hutter (b0115) 2019
Wiesemann, Kuhn, Sim (b0270) 2014; 62
Nakao, Shen, Chen (b0195) 2017; 88
Smith, K. A. (2002). Neural networks for business: an introduction. Neural Networks in Business: Techniques and Applications, IGI Global: 1-24.
Lizotte (b0155) 2008
Wang, J., Clark, S. C., Liu, E., Frazier, P. I. (2016). Parallel bayesian global optimization of expensive functions. arXiv preprint arXiv:1602.05149.
Scarf (b0225) 1957
Bertsimas, Sim (b0035) 2003; 98
Boyd, Vandenberghe (b0060) 2004
Blanchet, J., Kang, Y., Zhang, F., He, F., Hu, Z. (2017a). Doubly robust data-driven distributionally robust optimization. arXiv preprint arXiv:1705.07168.
Krizhevsky, A., Sutskever, I., Hinton, G. E. (2012). Imagenet classification with deep convolutional neural networks. In Advances in neural information processing systemsconference (NIPS 2012) 1097-105.
Nilim, El Ghaoui (b0210) 2005; 53
Mnih, Kavukcuoglu, Silver, Rusu, Veness, Bellemare, Graves, Riedmiller, Fidjeland, Ostrovski (b0185) 2015; 518
Moghaddam, Mahlooji (b0190) 2016; 7
El Ghaoui, Lebret (b0090) 1997; 18
Blanchet, J., Kang, Y., Zhang, F., Murthy, K. (2017b). Data-driven optimal transport cost selection for distributionally robust optimization. arXiv preprint arXiv:1705.07152.
Namkoong, Duchi (b0200) 2016
Bayraksan, G., Love, D. K. (2015). Data-driven stochastic programming using phi-divergences. In The Operations Research Revolution (INFORMS), https://doi.org/10.1287/educ.2015.0134.
Azizi, Seifi, Moghadam (b0005) 2019
Gao, R., Kleywegt, A. J. (2017). Distributionally robust stochastic optimization with dependence structure. arXiv preprint arXiv:1701.04200.
Iyengar (10.1016/j.cie.2021.107581_b0135) 2005; 30
10.1016/j.cie.2021.107581_b0250
10.1016/j.cie.2021.107581_b0055
10.1016/j.cie.2021.107581_b0010
10.1016/j.cie.2021.107581_b0255
Mnih (10.1016/j.cie.2021.107581_b0185) 2015; 518
Liu (10.1016/j.cie.2021.107581_b0150) 2018; 26
Mehrotra (10.1016/j.cie.2021.107581_b0170) 2014; 24
Dupačová (10.1016/j.cie.2021.107581_b0085) 1987; 20
Nilim (10.1016/j.cie.2021.107581_b0210) 2005; 53
Ben-Tal (10.1016/j.cie.2021.107581_b0020) 2009
Moghaddam (10.1016/j.cie.2021.107581_b0190) 2016; 7
10.1016/j.cie.2021.107581_b0050
Marzat (10.1016/j.cie.2021.107581_b0165) 2013; 55
Marla (10.1016/j.cie.2021.107581_b0160) 2018; 98
Wiesemann (10.1016/j.cie.2021.107581_b0270) 2014; 62
Feurer (10.1016/j.cie.2021.107581_b0115) 2019
Nemirovski (10.1016/j.cie.2021.107581_b0205) 2006; 17
Bertsimas (10.1016/j.cie.2021.107581_b0045) 2018; 167
Taigman (10.1016/j.cie.2021.107581_b0260) 2014
Nakao (10.1016/j.cie.2021.107581_b0195) 2017; 88
Boyd (10.1016/j.cie.2021.107581_b0060) 2004
10.1016/j.cie.2021.107581_b0240
Rasmussen (10.1016/j.cie.2021.107581_b0220) 2005
10.1016/j.cie.2021.107581_b0120
Azizi (10.1016/j.cie.2021.107581_b0005) 2019
10.1016/j.cie.2021.107581_b0125
Mendoza (10.1016/j.cie.2021.107581_b0175) 2019
El Ghaoui (10.1016/j.cie.2021.107581_b0090) 1997; 18
Ben-Tal (10.1016/j.cie.2021.107581_b0015) 1998; 23
10.1016/j.cie.2021.107581_b0080
Kushner (10.1016/j.cie.2021.107581_b0145) 1964; 86
Delage (10.1016/j.cie.2021.107581_b0075) 2010; 58
Silver (10.1016/j.cie.2021.107581_b0235) 2016; 529
Ben-Tal (10.1016/j.cie.2021.107581_b0025) 2013; 59
10.1016/j.cie.2021.107581_b0275
10.1016/j.cie.2021.107581_b0230
Namkoong (10.1016/j.cie.2021.107581_b0200) 2016
Scarf (10.1016/j.cie.2021.107581_b0225) 1957
Bertsimas (10.1016/j.cie.2021.107581_b0030) 2000
10.1016/j.cie.2021.107581_b0070
Esfahani (10.1016/j.cie.2021.107581_b0095) 2018; 171
Bertsimas (10.1016/j.cie.2021.107581_b0040) 2004; 52
10.1016/j.cie.2021.107581_b0105
Feurer (10.1016/j.cie.2021.107581_b0110) 2015
Lizotte (10.1016/j.cie.2021.107581_b0155) 2008
(10.1016/j.cie.2021.107581_b0215) 1995
10.1016/j.cie.2021.107581_b0140
10.1016/j.cie.2021.107581_b0100
10.1016/j.cie.2021.107581_b0265
Zymler (10.1016/j.cie.2021.107581_b0280) 2013; 137
Soyster (10.1016/j.cie.2021.107581_b0245) 1973; 21
Bertsimas (10.1016/j.cie.2021.107581_b0035) 2003; 98
Igel (10.1016/j.cie.2021.107581_b0130) 2005
Milford (10.1016/j.cie.2021.107581_b0180) 2012
References_xml – reference: Taguchi, G., (1986). Introduction to quality engineering: designing quality into products and processes. Asian Productivity Organization.
– start-page: 534
  year: 2005
  end-page: 546
  ident: b0130
  article-title: Multi-objective model selection for support vector machines
  publication-title: International Conference on Evolutionary Multi-Criterion Optimization
– volume: 171
  start-page: 115
  year: 2018
  end-page: 166
  ident: b0095
  article-title: Data-driven distributionally robust optimization using the Wasserstein metric: Performance guarantees and tractable reformulations
  publication-title: Mathematical Programming
– volume: 98
  start-page: 165
  year: 2018
  end-page: 184
  ident: b0160
  article-title: Robust optimization: Lessons learned from aircraft routing
  publication-title: Computers & Operations Research
– year: 2008
  ident: b0155
  article-title: Practical Bayesian Optimization
– reference: Chen, X., Lin, Q., Xu, G. (2019). Distributionally robust optimization with confidence bands for probability density functions. arXiv preprint arXiv:1901.02169.
– volume: 59
  start-page: 341
  year: 2013
  end-page: 357
  ident: b0025
  article-title: Robust solutions of optimization problems affected by uncertain probabilities
  publication-title: Management Science
– reference: Sutskever, I., Vinyals, O., Le, Q. V. (2014). Sequence to sequence learning with neural networks. In Advances in neural information processing systems (pp. 3104–3112).
– volume: 86
  start-page: 97
  year: 1964
  end-page: 106
  ident: b0145
  article-title: A new method of locating the maximum point of an arbitrary multipeak curve in the presence of noise
  publication-title: Journal of Basic Engineering
– volume: 26
  start-page: 141
  year: 2018
  end-page: 150
  ident: b0150
  article-title: A note on distributionally robust optimization under moment uncertainty
  publication-title: Journal of Numerical Mathematics
– reference: Xin, L., Goldberg, D. A. (2013). Time (in) consistency of multistage distributionally robust inventory models with moment constraints. arXiv preprint arXiv:1304.3074.
– reference: Shafieezadeh-Abadeh, S., Kuhn, D., Esfahani, P. M. (2017). Regularization via mass transportation. arXiv preprint arXiv:1710.10016.
– volume: 20
  start-page: 73
  year: 1987
  end-page: 88
  ident: b0085
  article-title: The minimax approach to stochastic programming and an illustrative application
  publication-title: Stochastics: An International Journal of Probability and Stochastic Processes
– volume: 53
  start-page: 780
  year: 2005
  end-page: 798
  ident: b0210
  article-title: Robust control of Markov decision processes with uncertain transition matrices
  publication-title: Operations Research
– start-page: 1701
  year: 2014
  end-page: 1708
  ident: b0260
  article-title: Deepface: Closing the gap to human-level performance in face verification
  publication-title: Proceedings of the IEEE conference on computer vision and pattern recognition
– reference: Wang, J., Clark, S. C., Liu, E., Frazier, P. I. (2016). Parallel bayesian global optimization of expensive functions. arXiv preprint arXiv:1602.05149.
– volume: 137
  start-page: 167
  year: 2013
  end-page: 198
  ident: b0280
  article-title: Distributionally robust joint chance constraints with second-order moment information
  publication-title: Mathematical Programming
– reference: Gao, R., Kleywegt, A. J. (2017). Distributionally robust stochastic optimization with dependence structure. arXiv preprint arXiv:1701.04200.
– reference: Duchi, J., Glynn, P., Namkoong, H. (2016). Statistics of robust optimization: A generalized empirical likelihood approach. arXiv preprint arXiv:1610.03425.
– volume: 55
  start-page: 707
  year: 2013
  end-page: 727
  ident: b0165
  article-title: Worst-case global optimization of black-box functions through Kriging and relaxation
  publication-title: Journal of Global Optimization
– reference: Blanchet, J., Kang, Y., Zhang, F., Murthy, K. (2017b). Data-driven optimal transport cost selection for distributionally robust optimization. arXiv preprint arXiv:1705.07152.
– reference: Esteban-Pérez, A., Morales, J. M. (2019). Data-driven distributionally robust optimization via optimal transport with order cone constraints. arXiv preprint arXiv:1903.01769.
– start-page: 1643
  year: 2012
  end-page: 1649
  ident: b0180
  article-title: SeqSLAM: Visual route-based navigation for sunny summer days and stormy winter nights
  publication-title: IEEE International Conference on Robotics and Automation
– volume: 24
  start-page: 1670
  year: 2014
  end-page: 1697
  ident: b0170
  article-title: A cutting surface algorithm for semi-infinite convex programming with an application to moment robust optimization
  publication-title: SIAM Journal on Optimization
– volume: 30
  start-page: 257
  year: 2005
  end-page: 280
  ident: b0135
  article-title: Robust dynamic programming
  publication-title: Mathematics of Operations Research
– start-page: 1
  year: 2019
  end-page: 17
  ident: b0005
  article-title: A robust simulation optimization algorithm using kriging and particle swarm optimization: Application to surgery room optimization
  publication-title: Communications in Statistics-Simulation and Computation
– volume: 58
  start-page: 595
  year: 2010
  end-page: 612
  ident: b0075
  article-title: Distributionally robust optimization under moment uncertainty with application to data-driven problems
  publication-title: Operations Research
– volume: 98
  start-page: 49
  year: 2003
  end-page: 71
  ident: b0035
  article-title: Robust discrete optimization and network flows
  publication-title: Mathematical Programming
– volume: 23
  start-page: 769
  year: 1998
  end-page: 805
  ident: b0015
  article-title: Robust convex optimization
  publication-title: Mathematics of Operations Research
– reference: Bayraksan, G., Love, D. K. (2015). Data-driven stochastic programming using phi-divergences. In The Operations Research Revolution (INFORMS), https://doi.org/10.1287/educ.2015.0134.
– volume: 518
  start-page: 529
  year: 2015
  ident: b0185
  article-title: Human-level control through deep reinforcement learning
  publication-title: Nature
– volume: 21
  start-page: 1154
  year: 1973
  end-page: 1157
  ident: b0245
  article-title: Convex programming with set-inclusive constraints and applications to inexact linear programming
  publication-title: Operations Research
– year: 1995
  ident: b0215
  publication-title: Stochastic Programming
– volume: 88
  start-page: 44
  year: 2017
  end-page: 57
  ident: b0195
  article-title: Network design in scarce data environment using moment-based distributionally robust optimization
  publication-title: Computers & Operations Research
– year: 2019
  ident: b0115
  article-title: Hyperparameter optimization
  publication-title: Automated Machine Learning
– year: 2004
  ident: b0060
  article-title: Convex optimization
– reference: Gao, R., Kleywegt, A. J. (2016). Distributionally robust stochastic optimization with Wasserstein distance. arXiv preprint arXiv:1604.02199.
– reference: Krizhevsky, A., Sutskever, I., Hinton, G. E. (2012). Imagenet classification with deep convolutional neural networks. In Advances in neural information processing systemsconference (NIPS 2012) 1097-105.
– reference: Smith, K. A. (2002). Neural networks for business: an introduction. Neural Networks in Business: Techniques and Applications, IGI Global: 1-24.
– year: 2019
  ident: b0175
  article-title: Towards automatically-tuned deep neural networks
  publication-title: in, JMLR: Workshop and Conference Proceedings 1:1–8 (Springer)
– start-page: 2208
  year: 2016
  end-page: 2216
  ident: b0200
  article-title: Stochastic gradient methods for distributionally robust optimization with f-divergences
  publication-title: Advances in Neural Information Processing Systems
– volume: 529
  start-page: 484
  year: 2016
  ident: b0235
  article-title: Mastering the game of Go with deep neural networks and tree search
  publication-title: Nature
– volume: 18
  start-page: 1035
  year: 1997
  end-page: 1064
  ident: b0090
  article-title: Robust solutions to least-squares problems with uncertain data
  publication-title: SIAM Journal on Matrix Analysis and Applications
– volume: 7
  start-page: 517
  year: 2016
  end-page: 534
  ident: b0190
  article-title: Robust simulation optimization using φ-divergence
  publication-title: International Journal of Industrial Engineering Computations
– volume: 62
  start-page: 1358
  year: 2014
  end-page: 1376
  ident: b0270
  article-title: Distributionally robust convex optimization
  publication-title: Operations Research
– year: 2015
  ident: b0110
  article-title: Efficient and robust automated machine learning
  publication-title: Advances in Neural Information Processing Systems
– volume: 17
  start-page: 969
  year: 2006
  end-page: 996
  ident: b0205
  article-title: Convex approximations of chance constrained programs
  publication-title: SIAM Journal on Optimization
– year: 2009
  ident: b0020
  article-title: Robust optimization
– year: 2005
  ident: b0220
  article-title: Gaussian processes for machine learning (adaptive computation and machine learning)
– reference: Blanchet, J., Kang, Y., Zhang, F., He, F., Hu, Z. (2017a). Doubly robust data-driven distributionally robust optimization. arXiv preprint arXiv:1705.07168.
– reference: Falkner, S., Klein, A., and Hutter, F. (2018). BOHB: Robust and efficient hyperparameter optimization at scale. arXiv preprint arXiv:1807.01774.
– year: 2000
  ident: b0030
  article-title: Moment problems and semidefinite optimization
  publication-title: Handbook of Semidefinite Programming
– volume: 52
  start-page: 35
  year: 2004
  end-page: 53
  ident: b0040
  article-title: The price of robustness
  publication-title: Operations Research
– volume: 167
  start-page: 235
  year: 2018
  end-page: 292
  ident: b0045
  article-title: Data-driven robust optimization
  publication-title: Mathematical Programming
– year: 1957
  ident: b0225
  article-title: A min-max solution of an inventory problemStudies in the mathematical theory of inventory and production
– ident: 10.1016/j.cie.2021.107581_b0125
– year: 2019
  ident: 10.1016/j.cie.2021.107581_b0175
  article-title: Towards automatically-tuned deep neural networks
  publication-title: in, JMLR: Workshop and Conference Proceedings 1:1–8 (Springer)
– ident: 10.1016/j.cie.2021.107581_b0070
– year: 2008
  ident: 10.1016/j.cie.2021.107581_b0155
– volume: 62
  start-page: 1358
  year: 2014
  ident: 10.1016/j.cie.2021.107581_b0270
  article-title: Distributionally robust convex optimization
  publication-title: Operations Research
  doi: 10.1287/opre.2014.1314
– year: 1957
  ident: 10.1016/j.cie.2021.107581_b0225
– ident: 10.1016/j.cie.2021.107581_b0230
– ident: 10.1016/j.cie.2021.107581_b0140
– ident: 10.1016/j.cie.2021.107581_b0240
  doi: 10.4018/978-1-930708-31-0.ch001
– start-page: 2208
  year: 2016
  ident: 10.1016/j.cie.2021.107581_b0200
  article-title: Stochastic gradient methods for distributionally robust optimization with f-divergences
  publication-title: Advances in Neural Information Processing Systems
– ident: 10.1016/j.cie.2021.107581_b0050
– ident: 10.1016/j.cie.2021.107581_b0080
– year: 2005
  ident: 10.1016/j.cie.2021.107581_b0220
– start-page: 534
  year: 2005
  ident: 10.1016/j.cie.2021.107581_b0130
  article-title: Multi-objective model selection for support vector machines
– volume: 21
  start-page: 1154
  year: 1973
  ident: 10.1016/j.cie.2021.107581_b0245
  article-title: Convex programming with set-inclusive constraints and applications to inexact linear programming
  publication-title: Operations Research
  doi: 10.1287/opre.21.5.1154
– volume: 137
  start-page: 167
  year: 2013
  ident: 10.1016/j.cie.2021.107581_b0280
  article-title: Distributionally robust joint chance constraints with second-order moment information
  publication-title: Mathematical Programming
  doi: 10.1007/s10107-011-0494-7
– volume: 24
  start-page: 1670
  year: 2014
  ident: 10.1016/j.cie.2021.107581_b0170
  article-title: A cutting surface algorithm for semi-infinite convex programming with an application to moment robust optimization
  publication-title: SIAM Journal on Optimization
  doi: 10.1137/130925013
– volume: 59
  start-page: 341
  year: 2013
  ident: 10.1016/j.cie.2021.107581_b0025
  article-title: Robust solutions of optimization problems affected by uncertain probabilities
  publication-title: Management Science
  doi: 10.1287/mnsc.1120.1641
– ident: 10.1016/j.cie.2021.107581_b0010
  doi: 10.1287/educ.2015.0134
– ident: 10.1016/j.cie.2021.107581_b0105
– volume: 20
  start-page: 73
  year: 1987
  ident: 10.1016/j.cie.2021.107581_b0085
  article-title: The minimax approach to stochastic programming and an illustrative application
  publication-title: Stochastics: An International Journal of Probability and Stochastic Processes
  doi: 10.1080/17442508708833436
– volume: 518
  start-page: 529
  year: 2015
  ident: 10.1016/j.cie.2021.107581_b0185
  article-title: Human-level control through deep reinforcement learning
  publication-title: Nature
  doi: 10.1038/nature14236
– ident: 10.1016/j.cie.2021.107581_b0055
– year: 2019
  ident: 10.1016/j.cie.2021.107581_b0115
  article-title: Hyperparameter optimization
– year: 2000
  ident: 10.1016/j.cie.2021.107581_b0030
  article-title: Moment problems and semidefinite optimization
– volume: 52
  start-page: 35
  year: 2004
  ident: 10.1016/j.cie.2021.107581_b0040
  article-title: The price of robustness
  publication-title: Operations Research
  doi: 10.1287/opre.1030.0065
– year: 2009
  ident: 10.1016/j.cie.2021.107581_b0020
– volume: 18
  start-page: 1035
  year: 1997
  ident: 10.1016/j.cie.2021.107581_b0090
  article-title: Robust solutions to least-squares problems with uncertain data
  publication-title: SIAM Journal on Matrix Analysis and Applications
  doi: 10.1137/S0895479896298130
– ident: 10.1016/j.cie.2021.107581_b0100
– start-page: 1701
  year: 2014
  ident: 10.1016/j.cie.2021.107581_b0260
  article-title: Deepface: Closing the gap to human-level performance in face verification
– start-page: 1
  year: 2019
  ident: 10.1016/j.cie.2021.107581_b0005
  article-title: A robust simulation optimization algorithm using kriging and particle swarm optimization: Application to surgery room optimization
  publication-title: Communications in Statistics-Simulation and Computation
– volume: 529
  start-page: 484
  year: 2016
  ident: 10.1016/j.cie.2021.107581_b0235
  article-title: Mastering the game of Go with deep neural networks and tree search
  publication-title: Nature
  doi: 10.1038/nature16961
– year: 2004
  ident: 10.1016/j.cie.2021.107581_b0060
– year: 2015
  ident: 10.1016/j.cie.2021.107581_b0110
  article-title: Efficient and robust automated machine learning
  publication-title: Advances in Neural Information Processing Systems
– ident: 10.1016/j.cie.2021.107581_b0255
– volume: 58
  start-page: 595
  year: 2010
  ident: 10.1016/j.cie.2021.107581_b0075
  article-title: Distributionally robust optimization under moment uncertainty with application to data-driven problems
  publication-title: Operations Research
  doi: 10.1287/opre.1090.0741
– volume: 88
  start-page: 44
  year: 2017
  ident: 10.1016/j.cie.2021.107581_b0195
  article-title: Network design in scarce data environment using moment-based distributionally robust optimization
  publication-title: Computers & Operations Research
  doi: 10.1016/j.cor.2017.07.002
– volume: 17
  start-page: 969
  year: 2006
  ident: 10.1016/j.cie.2021.107581_b0205
  article-title: Convex approximations of chance constrained programs
  publication-title: SIAM Journal on Optimization
  doi: 10.1137/050622328
– volume: 167
  start-page: 235
  year: 2018
  ident: 10.1016/j.cie.2021.107581_b0045
  article-title: Data-driven robust optimization
  publication-title: Mathematical Programming
  doi: 10.1007/s10107-017-1125-8
– ident: 10.1016/j.cie.2021.107581_b0275
– volume: 98
  start-page: 165
  year: 2018
  ident: 10.1016/j.cie.2021.107581_b0160
  article-title: Robust optimization: Lessons learned from aircraft routing
  publication-title: Computers & Operations Research
  doi: 10.1016/j.cor.2018.04.011
– volume: 53
  start-page: 780
  year: 2005
  ident: 10.1016/j.cie.2021.107581_b0210
  article-title: Robust control of Markov decision processes with uncertain transition matrices
  publication-title: Operations Research
  doi: 10.1287/opre.1050.0216
– start-page: 1643
  year: 2012
  ident: 10.1016/j.cie.2021.107581_b0180
  article-title: SeqSLAM: Visual route-based navigation for sunny summer days and stormy winter nights
– volume: 55
  start-page: 707
  year: 2013
  ident: 10.1016/j.cie.2021.107581_b0165
  article-title: Worst-case global optimization of black-box functions through Kriging and relaxation
  publication-title: Journal of Global Optimization
  doi: 10.1007/s10898-012-9899-y
– ident: 10.1016/j.cie.2021.107581_b0250
– ident: 10.1016/j.cie.2021.107581_b0120
– volume: 23
  start-page: 769
  year: 1998
  ident: 10.1016/j.cie.2021.107581_b0015
  article-title: Robust convex optimization
  publication-title: Mathematics of Operations Research
  doi: 10.1287/moor.23.4.769
– volume: 26
  start-page: 141
  year: 2018
  ident: 10.1016/j.cie.2021.107581_b0150
  article-title: A note on distributionally robust optimization under moment uncertainty
  publication-title: Journal of Numerical Mathematics
  doi: 10.1515/jnma-2017-0020
– volume: 7
  start-page: 517
  year: 2016
  ident: 10.1016/j.cie.2021.107581_b0190
  article-title: Robust simulation optimization using φ-divergence
  publication-title: International Journal of Industrial Engineering Computations
  doi: 10.5267/j.ijiec.2016.5.003
– year: 1995
  ident: 10.1016/j.cie.2021.107581_b0215
– ident: 10.1016/j.cie.2021.107581_b0265
– volume: 86
  start-page: 97
  year: 1964
  ident: 10.1016/j.cie.2021.107581_b0145
  article-title: A new method of locating the maximum point of an arbitrary multipeak curve in the presence of noise
  publication-title: Journal of Basic Engineering
  doi: 10.1115/1.3653121
– volume: 98
  start-page: 49
  year: 2003
  ident: 10.1016/j.cie.2021.107581_b0035
  article-title: Robust discrete optimization and network flows
  publication-title: Mathematical Programming
  doi: 10.1007/s10107-003-0396-4
– volume: 171
  start-page: 115
  year: 2018
  ident: 10.1016/j.cie.2021.107581_b0095
  article-title: Data-driven distributionally robust optimization using the Wasserstein metric: Performance guarantees and tractable reformulations
  publication-title: Mathematical Programming
  doi: 10.1007/s10107-017-1172-1
– volume: 30
  start-page: 257
  year: 2005
  ident: 10.1016/j.cie.2021.107581_b0135
  article-title: Robust dynamic programming
  publication-title: Mathematics of Operations Research
  doi: 10.1287/moor.1040.0129
SSID ssj0004591
Score 2.3870351
Snippet [Display omitted] •A novel Black-Box data-driven robust optimization approach is proposed.•A Gaussian process is used in a Bayesian optimization framework to...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 107581
SubjectTerms Bayesian optimization
Black-box optimization
Data-driven optimization
Deep learning
Gaussian process
Hyper-parameter tuning
Robust optimization
Title A data-driven robust optimization algorithm for black-box cases: An application to hyper-parameter optimization of machine learning algorithms
URI https://dx.doi.org/10.1016/j.cie.2021.107581
Volume 160
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1879-0550
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004591
  issn: 0360-8352
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier ScienceDirect
  customDbUrl:
  eissn: 1879-0550
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004591
  issn: 0360-8352
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Complete Freedom Collection [SCCMFC]
  customDbUrl:
  eissn: 1879-0550
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004591
  issn: 0360-8352
  databaseCode: ACRLP
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals [SCFCJ]
  customDbUrl:
  eissn: 1879-0550
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004591
  issn: 0360-8352
  databaseCode: AIKHN
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1879-0550
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004591
  issn: 0360-8352
  databaseCode: AKRWK
  dateStart: 19770101
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELYqWGDgUUC85YEJyTRx3DzYqoqqgNSFInWL_IQi0lRpkJj4Cfxmzo1DWwkY2GLrzon8uPscf75D6ILythIyFrDEdUxYon0Sh_DEQw14gnM77JZtMQj7j-xu1B41ULe-C2Nplc72VzZ9bq1dTcv1Zms6HrcewPZW-MEGPYvbI3uDnUU2i8HVh78UMbzKmgfCxErXJ5tzjhc0C1tE6kMZcLP_s29a8je9HbTlgCLuVN-yixp60kTbDjRityRnTbS5FFFwD312sOV8ElVYK4aLXLzNSpyDXcjchUvMX5_yYlw-ZxjwKhb2Bx4R-TuW4M9m17gDEotDbVzm-Bm2qgWxMcIzy51ZbS03OJvzMTV2CSieFm-Y7aNh72bY7ROXcoFImkQl4QELNFM-VYpKzwiVGGqMNlQqlXgmkMpTcRhJMAs8FJzpOGZaJEwmAfh9HhygtUk-0YcImwg0tA5iDVvQCHAiNZQJCRoAYBKpj5BX93UqXThymxXjNa15Zy9Qr1M7PGk1PEfo8ltlWsXi-EuY1QOYrkyoFHzF72rH_1M7QRu2VLH8TtFaWbzpM0ArpTifT8dztN65ve8PvgDZ4uyM
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1JT-swEB6xHIAD8FjE_nzghGTaOG4WbhUCleVxeUXqLfJaimiD0iBx4ifwmxk3DhQJOHBLnBkn8tgz38TjGYBDJlpaqkTiEjcJ5akJaBLhlYgM4gkhnNhdtMVN1Lnll71WbwZO67MwLqzS6_5Kp0-0tW9p-NFsPA4Gjf-oeyv84JKeJa3eLMzzFoudB3b8EkylDK_K5iE1deT11uYkyAv7RR-RBXiPwDn42jhNGZzzVVj2SJG0q4_5AzNmtAYrHjUSvybHa7A0lVJwHV7bxAV9Ul04NUaKXD6NS5KjYhj6E5dEPPTzYlDeDQkCViLdHzwq82ei0KCNT0gbKT52tUmZkzv0VQvqkoQPXfDM595yS4aTgExDfAWK_scbxhvQPT_rnnaor7lAFUvjkoqQh4brgGnNVNNKnVpmrbFMaZ02bah0UydRrFAviEgKbpKEG5lylYZo-EW4CXOjfGS2gNgYOYwJE4M-aIxAkVnGpUIORDCpMtvQrMc6Uz4fuSuL8ZDVgWf32G4yJ56sEs82HL2zPFbJOH4i5rUAs08zKkNj8T3bzu_Y_sJCp_vvOru-uLnahUX3pAr524O5sngy-whdSnkwmZpvXFHuIQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+data-driven+robust+optimization+algorithm+for+black-box+cases%3A+An+application+to+hyper-parameter+optimization+of+machine+learning+algorithms&rft.jtitle=Computers+%26+industrial+engineering&rft.au=Seifi%2C+Farshad&rft.au=Azizi%2C+Mohammad+Javad&rft.au=Akhavan+Niaki%2C+Seyed+Taghi&rft.date=2021-10-01&rft.pub=Elsevier+Ltd&rft.issn=0360-8352&rft.eissn=1879-0550&rft.volume=160&rft_id=info:doi/10.1016%2Fj.cie.2021.107581&rft.externalDocID=S036083522100485X
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0360-8352&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0360-8352&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0360-8352&client=summon