Reinforcement Learning-based control using Q-learning and gravitational search algorithm with experimental validation on a nonlinear servo system

•A combination of Deep Q-Learning algorithm and metaheuristic GSA is offered.•GSA initializes the weights and the biases of the neural networks.•A comparison with classical random, metaheuristic PSO and GWO is carried out.•The validation is done on real-time nonlinear servo system position control.•...

Full description

Saved in:
Bibliographic Details
Published inInformation sciences Vol. 583; pp. 99 - 120
Main Authors Zamfirache, Iuliu Alexandru, Precup, Radu-Emil, Roman, Raul-Cristian, Petriu, Emil M.
Format Journal Article
LanguageEnglish
Published Elsevier Inc 01.01.2022
Subjects
Online AccessGet full text
ISSN0020-0255
1872-6291
DOI10.1016/j.ins.2021.10.070

Cover

Abstract •A combination of Deep Q-Learning algorithm and metaheuristic GSA is offered.•GSA initializes the weights and the biases of the neural networks.•A comparison with classical random, metaheuristic PSO and GWO is carried out.•The validation is done on real-time nonlinear servo system position control.•The drawbacks of randomly initialized neural networks are mitigated. This paper presents a novel Reinforcement Learning (RL)-based control approach that uses a combination of a Deep Q-Learning (DQL) algorithm and a metaheuristic Gravitational Search Algorithm (GSA). The GSA is employed to initialize the weights and the biases of the Neural Network (NN) involved in DQL in order to avoid the instability, which is the main drawback of the traditional randomly initialized NNs. The quality of a particular set of weights and biases is measured at each iteration of the GSA-based initialization using a fitness function aiming to achieve the predefined optimal control or learning objective. The data generated during the RL process is used in training a NN-based controller that will be able to autonomously achieve the optimal reference tracking control objective. The proposed approach is compared with other similar techniques which use different algorithms in the initialization step, namely the traditional random algorithm, the Grey Wolf Optimizer algorithm, and the Particle Swarm Optimization algorithm. The NN-based controllers based on each of these techniques are compared using performance indices specific to optimal control as settling time, rise time, peak time, overshoot, and minimum cost function value. Real-time experiments are conducted in order to validate and test the proposed new approach in the framework of the optimal reference tracking control of a nonlinear position servo system. The experimental results show the superiority of this approach versus the other three competing approaches.
AbstractList •A combination of Deep Q-Learning algorithm and metaheuristic GSA is offered.•GSA initializes the weights and the biases of the neural networks.•A comparison with classical random, metaheuristic PSO and GWO is carried out.•The validation is done on real-time nonlinear servo system position control.•The drawbacks of randomly initialized neural networks are mitigated. This paper presents a novel Reinforcement Learning (RL)-based control approach that uses a combination of a Deep Q-Learning (DQL) algorithm and a metaheuristic Gravitational Search Algorithm (GSA). The GSA is employed to initialize the weights and the biases of the Neural Network (NN) involved in DQL in order to avoid the instability, which is the main drawback of the traditional randomly initialized NNs. The quality of a particular set of weights and biases is measured at each iteration of the GSA-based initialization using a fitness function aiming to achieve the predefined optimal control or learning objective. The data generated during the RL process is used in training a NN-based controller that will be able to autonomously achieve the optimal reference tracking control objective. The proposed approach is compared with other similar techniques which use different algorithms in the initialization step, namely the traditional random algorithm, the Grey Wolf Optimizer algorithm, and the Particle Swarm Optimization algorithm. The NN-based controllers based on each of these techniques are compared using performance indices specific to optimal control as settling time, rise time, peak time, overshoot, and minimum cost function value. Real-time experiments are conducted in order to validate and test the proposed new approach in the framework of the optimal reference tracking control of a nonlinear position servo system. The experimental results show the superiority of this approach versus the other three competing approaches.
Author Petriu, Emil M.
Zamfirache, Iuliu Alexandru
Roman, Raul-Cristian
Precup, Radu-Emil
Author_xml – sequence: 1
  givenname: Iuliu Alexandru
  surname: Zamfirache
  fullname: Zamfirache, Iuliu Alexandru
  email: iuliu.zamfirache@student.upt.ro
  organization: Politehnica University of Timisoara, Department of Automation and Applied Informatics, Bd. V. Parvan 2, 300223 Timisoara, Romania
– sequence: 2
  givenname: Radu-Emil
  surname: Precup
  fullname: Precup, Radu-Emil
  email: radu.precup@aut.upt.ro
  organization: Politehnica University of Timisoara, Department of Automation and Applied Informatics, Bd. V. Parvan 2, 300223 Timisoara, Romania
– sequence: 3
  givenname: Raul-Cristian
  surname: Roman
  fullname: Roman, Raul-Cristian
  email: raul.roman@aut.upt.ro
  organization: Politehnica University of Timisoara, Department of Automation and Applied Informatics, Bd. V. Parvan 2, 300223 Timisoara, Romania
– sequence: 4
  givenname: Emil M.
  surname: Petriu
  fullname: Petriu, Emil M.
  email: petriu@uottawa.ca
  organization: University of Ottawa, School of Electrical Engineering and Computer Science, 800 King Edward, Ottawa, ON K1N 6N5 Canada
BookMark eNp9kNtKAzEQhoNUsK0-gHd5ga1Jut108UqKJyiIotchm8y2KWlSkrjax_CNzdpeeVEYZpjDN_D_IzRw3gFC15RMKKHVzWZiXJwwwmjuJ4STMzSkc86KitV0gIaEMFIQNptdoFGMG0JIyatqiH7ewLjWBwVbcAkvQQZn3KpoZASNlXcpeIs_Y57h18Ie11g6jVdBdibJZLyTFse8Umss7coHk9Zb_JUzhu8dBNO_ziedtEb_3eMcEmcJ1rjMZTh0Hsd9TLC9ROettBGujnWMPh7u3xdPxfLl8XlxtywUq3kqJJWsmdfQlo2qqdZMVcB005BpWZcSCKU1Y43S0GatGuZN7iRUSnFeclK30zHih78q-BgDtEId1aQgjRWUiN5ZsRHZWdE724-ys5mk_8hd1ijD_iRze2AgS-oMBBGVAadAmwAqCe3NCfoXF4mZCw
CitedBy_id crossref_primary_10_1016_j_engappai_2023_106128
crossref_primary_10_1007_s10489_022_03792_x
crossref_primary_10_23939_istcmtm2024_02_040
crossref_primary_10_3390_math11051094
crossref_primary_10_1016_j_engappai_2022_105277
crossref_primary_10_1155_2023_3560441
crossref_primary_10_1016_j_asoc_2024_111250
crossref_primary_10_1016_j_engappai_2023_105838
crossref_primary_10_1007_s10489_023_04955_0
crossref_primary_10_1109_TIM_2022_3225023
crossref_primary_10_1109_TCYB_2023_3312320
crossref_primary_10_1016_j_engappai_2024_108272
crossref_primary_10_1109_TCYB_2023_3312047
crossref_primary_10_1016_j_asoc_2022_109450
crossref_primary_10_1016_j_eswa_2023_119999
crossref_primary_10_1155_2022_6976875
crossref_primary_10_1007_s12555_022_1127_z
crossref_primary_10_3390_su142114590
crossref_primary_10_3390_machines12120831
crossref_primary_10_1016_j_ins_2022_11_094
crossref_primary_10_1007_s10586_024_04381_y
crossref_primary_10_1016_j_mlwa_2022_100409
crossref_primary_10_1109_TSMC_2024_3431453
crossref_primary_10_1016_j_eswa_2022_118139
crossref_primary_10_3390_act13090376
crossref_primary_10_3390_aerospace9030138
crossref_primary_10_1016_j_ins_2024_120250
crossref_primary_10_1007_s00521_024_10741_x
crossref_primary_10_1016_j_compbiomed_2023_107210
crossref_primary_10_1007_s10489_022_03962_x
crossref_primary_10_1016_j_eswa_2023_120112
crossref_primary_10_1109_TFUZZ_2022_3170646
crossref_primary_10_1007_s42979_025_03750_7
crossref_primary_10_1016_j_ins_2023_03_138
crossref_primary_10_3390_jmse10030383
crossref_primary_10_1016_j_engappai_2023_106469
crossref_primary_10_1016_j_neunet_2023_08_044
crossref_primary_10_3390_a15090326
crossref_primary_10_1109_TCYB_2022_3198997
crossref_primary_10_1002_widm_1548
crossref_primary_10_59277_ROMJIST_2023_1_07
crossref_primary_10_37394_23203_2024_19_22
crossref_primary_10_1016_j_asoc_2024_112316
crossref_primary_10_1016_j_engappai_2023_106353
crossref_primary_10_1007_s00521_023_08243_3
crossref_primary_10_1016_j_engappai_2022_105488
crossref_primary_10_1016_j_ins_2022_08_079
crossref_primary_10_1109_TCYB_2023_3325425
crossref_primary_10_1016_j_prime_2024_100537
crossref_primary_10_1016_j_ins_2022_08_114
crossref_primary_10_1016_j_ins_2023_118949
crossref_primary_10_1016_j_ces_2024_120762
crossref_primary_10_1007_s12530_023_09495_z
crossref_primary_10_1109_TMECH_2022_3231405
crossref_primary_10_1007_s10462_023_10613_1
crossref_primary_10_3390_sym14030623
crossref_primary_10_1016_j_swevo_2024_101841
crossref_primary_10_1007_s11042_024_19918_x
crossref_primary_10_1016_j_engappai_2023_106242
crossref_primary_10_1016_j_engappai_2023_106240
crossref_primary_10_1016_j_ins_2023_01_005
crossref_primary_10_1109_TFUZZ_2022_3205045
crossref_primary_10_1007_s42235_024_00548_w
crossref_primary_10_1109_TFUZZ_2022_3170984
crossref_primary_10_1007_s00521_022_07775_4
crossref_primary_10_1007_s12530_022_09439_z
crossref_primary_10_3390_math10203853
crossref_primary_10_1016_j_ins_2022_08_028
crossref_primary_10_1016_j_ifacol_2023_10_578
crossref_primary_10_1016_j_ins_2023_03_043
crossref_primary_10_3390_electronics11203372
crossref_primary_10_1016_j_eswa_2023_119672
crossref_primary_10_1016_j_ins_2023_02_005
crossref_primary_10_1371_journal_pone_0283207
crossref_primary_10_1016_j_asoc_2024_111687
crossref_primary_10_1038_s41598_024_75374_5
crossref_primary_10_1007_s10489_022_04227_3
crossref_primary_10_1016_j_eswa_2023_121238
crossref_primary_10_1177_00202940221144476
crossref_primary_10_1016_j_heliyon_2024_e31771
crossref_primary_10_1016_j_eswa_2023_120145
crossref_primary_10_1007_s10489_022_03786_9
crossref_primary_10_1371_journal_pone_0310365
crossref_primary_10_1016_j_engappai_2023_106050
crossref_primary_10_1109_JAS_2024_124227
crossref_primary_10_1016_j_eswa_2023_121085
crossref_primary_10_1016_j_eswa_2024_125388
crossref_primary_10_1016_j_conengprac_2023_105485
crossref_primary_10_1016_j_ins_2022_08_019
crossref_primary_10_1007_s10586_024_04501_8
crossref_primary_10_1016_j_eswa_2022_119421
crossref_primary_10_1109_TSMC_2023_3247466
crossref_primary_10_1109_TCYB_2022_3211499
crossref_primary_10_1007_s12065_024_00922_x
crossref_primary_10_1109_ACCESS_2024_3396909
crossref_primary_10_1109_TMECH_2022_3219115
crossref_primary_10_34133_research_0442
crossref_primary_10_1016_j_clet_2025_100891
crossref_primary_10_1080_03081079_2024_2326424
crossref_primary_10_1016_j_engappai_2022_105454
crossref_primary_10_1007_s10489_022_03879_5
crossref_primary_10_1016_j_engappai_2022_105738
crossref_primary_10_1016_j_engappai_2022_104805
crossref_primary_10_1109_TII_2022_3197204
crossref_primary_10_1016_j_eswa_2023_119770
crossref_primary_10_1016_j_eswa_2022_119416
crossref_primary_10_1016_j_ins_2024_121196
crossref_primary_10_1155_2022_2676545
crossref_primary_10_1002_asjc_2941
crossref_primary_10_1016_j_asoc_2022_109672
crossref_primary_10_1109_TNSE_2024_3473941
crossref_primary_10_1016_j_engappai_2022_105060
crossref_primary_10_1016_j_advengsoft_2023_103411
crossref_primary_10_1016_j_knosys_2023_110940
crossref_primary_10_1016_j_eswa_2023_119940
crossref_primary_10_1016_j_eswa_2022_119246
crossref_primary_10_1080_19397038_2023_2287478
crossref_primary_10_3233_ICA_220693
crossref_primary_10_1109_ACCESS_2024_3390679
crossref_primary_10_1016_j_ins_2024_121640
crossref_primary_10_1016_j_ins_2023_01_042
crossref_primary_10_1080_03081079_2022_2086542
crossref_primary_10_1016_j_engappai_2023_106040
crossref_primary_10_1186_s40537_023_00727_2
crossref_primary_10_1080_09500340_2024_2394959
Cites_doi 10.1109/TIE.2016.2607698
10.1002/9781119769262.ch9
10.1016/j.swevo.2011.02.002
10.1016/j.arcontrol.2018.09.005
10.1016/j.trc.2018.12.018
10.1016/j.asoc.2020.106099
10.1142/S0129183121501370
10.1109/BHI.2018.8333436
10.1109/MCS.2012.2214134
10.1016/j.enbuild.2018.03.051
10.1155/2021/8834324
10.1016/j.engappai.2017.07.005
10.1109/ICASERT.2019.8934450
10.1109/CEC.2019.8790035
10.1109/37.126844
10.1016/j.ins.2009.03.004
10.1109/EAIS.2013.6604098
10.1109/MSP.2017.2743240
10.24846/v29i4y202002
10.1109/TCYB.2019.2899654
10.1016/j.ins.2013.05.035
10.1016/j.neucom.2020.03.061
10.4018/IJSIR.2016070102
10.1016/j.ejcon.2020.08.001
10.1109/IRC.2019.00121
10.1016/j.advengsoft.2013.12.007
10.1007/s11047-009-9175-3
10.1016/j.ins.2020.09.043
10.1007/s10489-014-0645-7
10.1016/j.asoc.2020.106766
10.2514/6.2021-2563
10.1016/j.ins.2018.10.025
10.1016/j.asoc.2019.106010
10.1016/j.aei.2020.101097
10.1109/TIM.2020.2983531
10.15837/ijccc.2017.6.3111
10.1109/TFUZZ.2019.2917808
ContentType Journal Article
Copyright 2021 Elsevier Inc.
Copyright_xml – notice: 2021 Elsevier Inc.
DBID AAYXX
CITATION
DOI 10.1016/j.ins.2021.10.070
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Library & Information Science
EISSN 1872-6291
EndPage 120
ExternalDocumentID 10_1016_j_ins_2021_10_070
S002002552101094X
GroupedDBID --K
--M
--Z
-~X
.DC
.~1
0R~
1B1
1OL
1RT
1~.
1~5
29I
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
9JO
AAAKF
AAAKG
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARIN
AAXUO
AAYFN
ABAOU
ABBOA
ABEFU
ABFNM
ABJNI
ABMAC
ABTAH
ABUCO
ABXDB
ABYKQ
ACAZW
ACDAQ
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADGUI
ADJOM
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFFNX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIGVJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
APLSM
ARUGR
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HAMUX
HLZ
HVGLF
HZ~
H~9
IHE
J1W
JJJVA
KOM
LG9
LY1
M41
MHUIS
MO0
MS~
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SBC
SDF
SDG
SDP
SDS
SES
SEW
SPC
SPCBC
SSB
SSD
SST
SSV
SSW
SSZ
T5K
TN5
TWZ
UHS
WH7
WUQ
XPP
YYP
ZMT
ZY4
~02
~G-
77I
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
ADVLN
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
ID FETCH-LOGICAL-c297t-a1a2b89ef4bc91dd2c6e2dbb03494ae011922bcdef000de8b22bae6cc774709f3
IEDL.DBID .~1
ISSN 0020-0255
IngestDate Wed Oct 01 05:16:45 EDT 2025
Thu Apr 24 23:03:42 EDT 2025
Fri Feb 23 02:42:00 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Gravitational search algorithm
Q-learning
Servo systems
Optimal reference tracking control
NN training
Reinforcement learning
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c297t-a1a2b89ef4bc91dd2c6e2dbb03494ae011922bcdef000de8b22bae6cc774709f3
PageCount 22
ParticipantIDs crossref_citationtrail_10_1016_j_ins_2021_10_070
crossref_primary_10_1016_j_ins_2021_10_070
elsevier_sciencedirect_doi_10_1016_j_ins_2021_10_070
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate January 2022
2022-01-00
PublicationDateYYYYMMDD 2022-01-01
PublicationDate_xml – month: 01
  year: 2022
  text: January 2022
PublicationDecade 2020
PublicationTitle Information sciences
PublicationYear 2022
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References Rashedi (b0165) 2007
S. I. Meerza, M. Islam, M. M. Uzzal, Q-learning based particle swarm optimization algorithm for optimal path planning of swarm of mobile robots, in: Proc. 2019 1
Osaba, Del Ser, Camacho, Bilbao, Yang (b0250) 2020; 87
Sutton, Barto (b0005) 2017
Zhang, Li, Ha, Yin, Chen (b0210) 2020; 45
Derrac, García, Molina, Herrera (b0245) 2011; 1
Precup, Roman, Teban, Albu, Petriu, Pozna (b0040) 2020; 29
Liu, Zhao, Liu (b0120) 2020; 97
Galluppi, Formentin, Novara, Savaresi (b0035) 2019; 141
P. K. Ram, P. Kuila, GSA‐based approach for gene selection from microarray gene expression data, in: M. Srinivas, G. Sucharitha, A. Matta, P. Chatterjee (Eds.), Machine Learning Algorithms and Applications, Scrivener Publishing, Wiley, Beverly, MA, 2021, pp. 159–174.
Mirjalili, Mirjalili, Lewis (b0145) 2014; 69
Li, Cheng, Shi, Huang (b0200) 2012
Olivas, Amaya, Ortiz-Bayliss, Conant-Pablos, Terashima-Marín (b0105) 2021; 2021
Hein, Hentschel, Runkler, Udluft (b0125) 2017; 65
Rashedi, Nezamabadi-pour, Saryazdi (b0170) 2009; 179
A. González Pérez, C. B. Allen, D. J. Poole, GSA-SOM: A metaheuristic optimisation algorithm guided by machine learning and application to aerodynamic design, in: Proc. AIAA Aviation 2021 Forum, Virtual Event, pp. 2563–2568.
Arulkumaran, Deisenroth, Brundage, Bharath (b0025) 2017; 34
Mirjalili (b0155) 2015; 43
V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou, D. Wierstra, M. Riedmiller, Playing Atari with deep reinforcement learning, arXiv:1312.5602 (2013).
Asha, Deep neural networks-based classification optimization by reducing the feature dimensionality with the variants of gravitational search algorithm, International Journal of Modern Physics C 32 (10) (2021) 2150137.
Piperagkas, Georgoulas, Parsopoulos, Stylios, Likas (b0130) 2012
S. Halkjær, O. Winther, The effect of correlated input data on the dynamics of learning, in: Proc. 9
accessed 11 September 2021.
Chen, Norford, Samuelson, Malkawi (b0070) 2018; 169
Precup, Teban, Albu, Borlea, Zamfirache, Petriu (b0235) 2020; 69
Olivas, Valdez, Melin, Sombra, Castillo (b0180) 2019; 476
Qu, Gai, Zhong, Zhang (b0160) 2020; 89
Lewis, Vrabie, Vamvoudakis (b0015) 2012; 32
Ferdaus, Pratama, Anavatti, Garratt, Pan (b0240) 2020; 28
Sutton, Barto, Williams (b0010) 1992; 12
D. Hein, A. Hentschel, T. Runkler, S. Udluft, Reinforcement learning with Particle Swarm Optimization Policy (PSO-P) in continuous state and action spaces, International Journal of Swarm Intelligence Research 7 (3) (2016) 23–42.
Roman, Precup, Petriu (b0045) 2021; 58
Goulart, Pereira (b0115) 2020; 140
Buşoniu, de Bruin, Tolić, Kober, Palunko (b0020) 2018; 46
A. Sehgal, H. M. La, S. J. Louis, H. Nguyen, Deep reinforcement learning using genetic algorithm for parameter optimization, in: Proc. 2019 Third IEEE International Conference on Robotic Computing, Naples, Italy, 2019, pp. 596–601.
Qi, Luo, Wu, Boriboonsomsin, Barth (b0065) 2019; 99
David, Precup, Petriu, Rădac, Preitl (b0225) 2013; 247
Chi, Hui, Huang, Hou (b0030) 2020; 50
Yu, Ren, Dong (b0085) 2020; 20
Precup, David, Petriu (b0150) 2017; 64
Precup, David (b0090) 2019
Dzitac, Filip, Manolescu (b0055) 2017; 12
Y.-X. Liu, H. Lu, S. Cheng, Y.-H. Shi, An adaptive online parameter control algorithm for particle swarm optimization based on reinforcement learning, in: Proc. 2019 IEEE Congress on Evolutionary Computation, Wellington, New Zealand, 2019, pp. 815–822.
Data obtained by 30 independent runs of four optimization algorithms
Zheng, Xie, Lam, Wang (b0060) 2021; 548
F. P. Such, V. Madhavan, E. Conti, J. Lehman, K. O. Stanley, J. Clune, Deep neuroevolution: Genetic algorithms are a competitive alternative for training deep neural networks for reinforcement learning, arXiv:1712.06567 (2017).
T. Salimans, J. Ho, X. Chen, S. Sidor, I. Sutskever, Evolution strategies as a scalable alternative to reinforcement learning, arXiv:1703.03864 (2017).
Huang, Liu, He, Ma, Lu, Su (b0080) 2020; 402
International Conference on Neural Information Processing Systems, Denver, CO, USA, 1996, pp. 169–175.
International Conference on Advances in Science, Engineering and Robotics Technology, Dhaka, Bangladesh, 2019, pp. 1–5.
P. Angelov, I. Škrjanc, S. Blažič, Robust evolving cloud-based controller for a hydraulic plant, in: Proc. 2013 IEEE Conference on Evolving and Adaptive Intelligent Systems, Singapore, 2013, pp. 1–8.
P. D. Ngo, S. Wei, A. Holubová, J. Muzik, F. Godtliebsen, Reinforcement-learning optimal control for type-1 diabetes, in: Proc. 2018 IEEE EMBS International Conference on Biomedical & Health Informatics, Las Vegas, NV, USA, 2018, pp. 333–336.
Rashedi, Nezamabadi-pour, Saryazdi (b0175) 2010; 9
Roman (10.1016/j.ins.2021.10.070_b0045) 2021; 58
Buşoniu (10.1016/j.ins.2021.10.070_b0020) 2018; 46
Chen (10.1016/j.ins.2021.10.070_b0070) 2018; 169
Hein (10.1016/j.ins.2021.10.070_b0125) 2017; 65
Ferdaus (10.1016/j.ins.2021.10.070_b0240) 2020; 28
Precup (10.1016/j.ins.2021.10.070_b0090) 2019
Precup (10.1016/j.ins.2021.10.070_b0235) 2020; 69
Zheng (10.1016/j.ins.2021.10.070_b0060) 2021; 548
Sutton (10.1016/j.ins.2021.10.070_b0010) 1992; 12
Mirjalili (10.1016/j.ins.2021.10.070_b0145) 2014; 69
10.1016/j.ins.2021.10.070_b0100
10.1016/j.ins.2021.10.070_b0220
Qu (10.1016/j.ins.2021.10.070_b0160) 2020; 89
10.1016/j.ins.2021.10.070_b0185
10.1016/j.ins.2021.10.070_b0140
Sutton (10.1016/j.ins.2021.10.070_b0005) 2017
10.1016/j.ins.2021.10.070_b0190
Derrac (10.1016/j.ins.2021.10.070_b0245) 2011; 1
Yu (10.1016/j.ins.2021.10.070_b0085) 2020; 20
10.1016/j.ins.2021.10.070_b0110
10.1016/j.ins.2021.10.070_b0230
10.1016/j.ins.2021.10.070_b0075
10.1016/j.ins.2021.10.070_b0195
Zhang (10.1016/j.ins.2021.10.070_b0210) 2020; 45
Olivas (10.1016/j.ins.2021.10.070_b0180) 2019; 476
10.1016/j.ins.2021.10.070_b0205
Lewis (10.1016/j.ins.2021.10.070_b0015) 2012; 32
Chi (10.1016/j.ins.2021.10.070_b0030) 2020; 50
Piperagkas (10.1016/j.ins.2021.10.070_b0130) 2012
Precup (10.1016/j.ins.2021.10.070_b0150) 2017; 64
Mirjalili (10.1016/j.ins.2021.10.070_b0155) 2015; 43
Olivas (10.1016/j.ins.2021.10.070_b0105) 2021; 2021
Liu (10.1016/j.ins.2021.10.070_b0120) 2020; 97
David (10.1016/j.ins.2021.10.070_b0225) 2013; 247
Osaba (10.1016/j.ins.2021.10.070_b0250) 2020; 87
Qi (10.1016/j.ins.2021.10.070_b0065) 2019; 99
10.1016/j.ins.2021.10.070_b0215
Huang (10.1016/j.ins.2021.10.070_b0080) 2020; 402
10.1016/j.ins.2021.10.070_b0135
Galluppi (10.1016/j.ins.2021.10.070_b0035) 2019; 141
Goulart (10.1016/j.ins.2021.10.070_b0115) 2020; 140
Dzitac (10.1016/j.ins.2021.10.070_b0055) 2017; 12
Precup (10.1016/j.ins.2021.10.070_b0040) 2020; 29
Rashedi (10.1016/j.ins.2021.10.070_b0175) 2010; 9
Rashedi (10.1016/j.ins.2021.10.070_b0170) 2009; 179
Rashedi (10.1016/j.ins.2021.10.070_b0165) 2007
Arulkumaran (10.1016/j.ins.2021.10.070_b0025) 2017; 34
10.1016/j.ins.2021.10.070_b0095
Li (10.1016/j.ins.2021.10.070_b0200) 2012
10.1016/j.ins.2021.10.070_b0050
References_xml – reference: D. Hein, A. Hentschel, T. Runkler, S. Udluft, Reinforcement learning with Particle Swarm Optimization Policy (PSO-P) in continuous state and action spaces, International Journal of Swarm Intelligence Research 7 (3) (2016) 23–42.
– volume: 34
  start-page: 26
  year: 2017
  end-page: 38
  ident: b0025
  article-title: Deep reinforcement learning: a brief survey
  publication-title: IEEE Signal Process Mag.
– reference: F. P. Such, V. Madhavan, E. Conti, J. Lehman, K. O. Stanley, J. Clune, Deep neuroevolution: Genetic algorithms are a competitive alternative for training deep neural networks for reinforcement learning, arXiv:1712.06567 (2017).
– reference: P. K. Ram, P. Kuila, GSA‐based approach for gene selection from microarray gene expression data, in: M. Srinivas, G. Sucharitha, A. Matta, P. Chatterjee (Eds.), Machine Learning Algorithms and Applications, Scrivener Publishing, Wiley, Beverly, MA, 2021, pp. 159–174.
– volume: 69
  start-page: 46
  year: 2014
  end-page: 61
  ident: b0145
  article-title: Grey wolf optimizer
  publication-title: Adv. Eng. Softw.
– volume: 12
  start-page: 19
  year: 1992
  end-page: 22
  ident: b0010
  article-title: Reinforcement learning is direct adaptive optimal control
  publication-title: IEEE Control Syst. Mag.
– reference: A. Sehgal, H. M. La, S. J. Louis, H. Nguyen, Deep reinforcement learning using genetic algorithm for parameter optimization, in: Proc. 2019 Third IEEE International Conference on Robotic Computing, Naples, Italy, 2019, pp. 596–601.
– volume: 58
  start-page: 373
  year: 2021
  end-page: 387
  ident: b0045
  article-title: Hybrid data-driven fuzzy active disturbance rejection control for tower crane systems
  publication-title: Eur. J. Control
– volume: 46
  start-page: 8
  year: 2018
  end-page: 28
  ident: b0020
  article-title: Reinforcement learning for control: performance, stability, and deep approximators
  publication-title: Annu. Rev. Control
– volume: 28
  start-page: 1542
  year: 2020
  end-page: 1556
  ident: b0240
  article-title: Generic evolving self-organizing neuro-fuzzy control of bio-inspired unmanned aerial vehicles
  publication-title: IEEE Trans. Fuzzy Syst.
– reference: P. Angelov, I. Škrjanc, S. Blažič, Robust evolving cloud-based controller for a hydraulic plant, in: Proc. 2013 IEEE Conference on Evolving and Adaptive Intelligent Systems, Singapore, 2013, pp. 1–8.
– volume: 87
  year: 2020
  ident: b0250
  article-title: Community detection in networks using bio-inspired optimization: latest developments, new results and perspectives with a selection of recent meta-heuristics
  publication-title: Appl. Soft Comput.
– start-page: 65
  year: 2012
  end-page: 72
  ident: b0130
  article-title: Integrating particle swarm optimization with reinforcement learning in noisy problems
  publication-title: Proc. 14
– volume: 29
  start-page: 399
  year: 2020
  end-page: 410
  ident: b0040
  article-title: Model-free control of finger dynamics in prosthetic hand myoelectric-based control systems
  publication-title: Stud. Inf. Control
– volume: 99
  start-page: 67
  year: 2019
  end-page: 81
  ident: b0065
  article-title: Deep reinforcement learning enabled self-learning control for energy efficient driving
  publication-title: Transp. Res. Part C: Emerg. Technol.
– reference: T. Salimans, J. Ho, X. Chen, S. Sidor, I. Sutskever, Evolution strategies as a scalable alternative to reinforcement learning, arXiv:1703.03864 (2017).
– reference: S. I. Meerza, M. Islam, M. M. Uzzal, Q-learning based particle swarm optimization algorithm for optimal path planning of swarm of mobile robots, in: Proc. 2019 1
– volume: 43
  start-page: 150
  year: 2015
  end-page: 161
  ident: b0155
  article-title: How effective is the grey wolf optimizer in training multi-layer perceptrons
  publication-title: Appl. Intelligence
– volume: 97
  start-page: 106766
  year: 2020
  ident: b0120
  article-title: Fault tolerant tracking control for nonlinear systems with actuator failures through particle swarm optimization-based adaptive dynamic programming
  publication-title: Appl. Soft Comput.
– volume: 20
  start-page: 1
  year: 2020
  end-page: 8
  ident: b0085
  article-title: Supervised-actor-critic reinforcement learning for intelligent mechanical ventilation and sedative dosing in intensive care units
  publication-title: BMC Med. Inf. Decis. Making
– year: 2019
  ident: b0090
  article-title: Nature-inspired Optimization Algorithms for Fuzzy Controlled Servo Systems
– reference: , accessed 11 September 2021.
– volume: 9
  start-page: 727
  year: 2010
  end-page: 745
  ident: b0175
  article-title: BGSA: binary gravitational search algorithm
  publication-title: Nat. Comput.
– volume: 247
  start-page: 154
  year: 2013
  end-page: 173
  ident: b0225
  article-title: Gravitational search algorithm-based design of fuzzy control systems with a reduced parametric sensitivity
  publication-title: Inf. Sci.
– volume: 140
  year: 2020
  ident: b0115
  article-title: Autonomous pH control by reinforcement learning for electroplating industry wastewater
  publication-title: Comput. Chem. Eng.
– reference: International Conference on Advances in Science, Engineering and Robotics Technology, Dhaka, Bangladesh, 2019, pp. 1–5.
– volume: 476
  start-page: 159
  year: 2019
  end-page: 175
  ident: b0180
  article-title: Interval type-2 fuzzy logic for dynamic parameter adaptation in a modified gravitational search algorithm
  publication-title: Inf. Sci.
– start-page: 553
  year: 2012
  end-page: 558
  ident: b0200
  article-title: Brief introduction of Back Propagation (BP) neural network algorithm and its improvement
  publication-title: Advances in Computer Science and Information Engineering, Advances in Intelligent and Soft Computing
– reference: Y.-X. Liu, H. Lu, S. Cheng, Y.-H. Shi, An adaptive online parameter control algorithm for particle swarm optimization based on reinforcement learning, in: Proc. 2019 IEEE Congress on Evolutionary Computation, Wellington, New Zealand, 2019, pp. 815–822.
– reference: Asha, Deep neural networks-based classification optimization by reducing the feature dimensionality with the variants of gravitational search algorithm, International Journal of Modern Physics C 32 (10) (2021) 2150137.
– reference: V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou, D. Wierstra, M. Riedmiller, Playing Atari with deep reinforcement learning, arXiv:1312.5602 (2013).
– volume: 50
  start-page: 4358
  year: 2020
  end-page: 4369
  ident: b0030
  article-title: Adjacent-agent dynamic linearization-based iterative learning formation control
  publication-title: IEEE Trans. Cybern.
– reference: S. Halkjær, O. Winther, The effect of correlated input data on the dynamics of learning, in: Proc. 9
– reference: Data obtained by 30 independent runs of four optimization algorithms,
– reference: P. D. Ngo, S. Wei, A. Holubová, J. Muzik, F. Godtliebsen, Reinforcement-learning optimal control for type-1 diabetes, in: Proc. 2018 IEEE EMBS International Conference on Biomedical & Health Informatics, Las Vegas, NV, USA, 2018, pp. 333–336.
– reference: A. González Pérez, C. B. Allen, D. J. Poole, GSA-SOM: A metaheuristic optimisation algorithm guided by machine learning and application to aerodynamic design, in: Proc. AIAA Aviation 2021 Forum, Virtual Event, pp. 2563–2568.
– reference: International Conference on Neural Information Processing Systems, Denver, CO, USA, 1996, pp. 169–175.
– volume: 169
  start-page: 195
  year: 2018
  end-page: 205
  ident: b0070
  article-title: Optimal control of HVAC and window systems for natural ventilation through reinforcement learning
  publication-title: Energy Build.
– year: 2007
  ident: b0165
  article-title: Gravitational Search Algorithm
– volume: 179
  start-page: 2232
  year: 2009
  end-page: 2248
  ident: b0170
  article-title: GSA: A gravitational search algorithm
  publication-title: Inf. Sci.
– volume: 2021
  start-page: 8834324
  year: 2021
  ident: b0105
  article-title: Enhancing hyperheuristics for the knapsack problem through fuzzy logic
  publication-title: Comput. Intelligence Neurosci.
– volume: 141
  start-page: 1
  year: 2019
  end-page: 12
  ident: b0035
  article-title: Multivariable D2-IBC and application to vehicle stability control
  publication-title: ASME J. Dyn. Syst., Meas. Control
– volume: 402
  start-page: 50
  year: 2020
  end-page: 65
  ident: b0080
  article-title: Reinforcement learning-based control for nonlinear discrete-time systems with unknown control directions and control constraints
  publication-title: Neurocomputing
– volume: 548
  start-page: 233
  year: 2021
  end-page: 253
  ident: b0060
  article-title: Membership-function-dependent stability analysis and local controller design for T-S fuzzy systems: a space-enveloping approach
  publication-title: Inf. Sci.
– volume: 12
  start-page: 748
  year: 2017
  end-page: 789
  ident: b0055
  article-title: Fuzzy logic is not fuzzy: World-renowned computer scientist Lotfi A. Zadeh
  publication-title: Int. J. Comput. Commun. Control
– volume: 1
  start-page: 3
  year: 2011
  end-page: 18
  ident: b0245
  article-title: A practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithms
  publication-title: Swarm Evol. Comput.
– volume: 32
  start-page: 76
  year: 2012
  end-page: 105
  ident: b0015
  article-title: Reinforcement learning and feedback control: using natural decision methods to design optimal adaptive controllers
  publication-title: IEEE Control Syst. Mag.
– volume: 69
  start-page: 4625
  year: 2020
  end-page: 4636
  ident: b0235
  article-title: Evolving fuzzy models for prosthetic hand myoelectric-based control
  publication-title: IEEE Trans. Instrum. Meas.
– year: 2017
  ident: b0005
  article-title: Reinforcement Learning: An Introduction
– volume: 45
  year: 2020
  ident: b0210
  article-title: Reinforcement learning based optimizer for improvement of predicting tunneling-induced ground responses
  publication-title: Adv. Eng. Inf.
– volume: 64
  start-page: 527
  year: 2017
  end-page: 534
  ident: b0150
  article-title: Grey wolf optimizer algorithm-based tuning of fuzzy control systems with reduced parametric sensitivity
  publication-title: IEEE Trans. Ind. Electron.
– volume: 89
  year: 2020
  ident: b0160
  article-title: A novel reinforcement learning based grey wolf optimizer algorithm for Unmanned Aerial Vehicles (UAVs) path planning
  publication-title: Appl. Soft Comput.
– volume: 65
  start-page: 87
  year: 2017
  end-page: 98
  ident: b0125
  article-title: Particle swarm optimization for generating interpretable fuzzy reinforcement learning policies
  publication-title: Eng. Appl. Artif. Intell.
– volume: 64
  start-page: 527
  issue: 1
  year: 2017
  ident: 10.1016/j.ins.2021.10.070_b0150
  article-title: Grey wolf optimizer algorithm-based tuning of fuzzy control systems with reduced parametric sensitivity
  publication-title: IEEE Trans. Ind. Electron.
  doi: 10.1109/TIE.2016.2607698
– year: 2007
  ident: 10.1016/j.ins.2021.10.070_b0165
– ident: 10.1016/j.ins.2021.10.070_b0185
  doi: 10.1002/9781119769262.ch9
– volume: 1
  start-page: 3
  issue: 1
  year: 2011
  ident: 10.1016/j.ins.2021.10.070_b0245
  article-title: A practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithms
  publication-title: Swarm Evol. Comput.
  doi: 10.1016/j.swevo.2011.02.002
– volume: 46
  start-page: 8
  year: 2018
  ident: 10.1016/j.ins.2021.10.070_b0020
  article-title: Reinforcement learning for control: performance, stability, and deep approximators
  publication-title: Annu. Rev. Control
  doi: 10.1016/j.arcontrol.2018.09.005
– volume: 99
  start-page: 67
  year: 2019
  ident: 10.1016/j.ins.2021.10.070_b0065
  article-title: Deep reinforcement learning enabled self-learning control for energy efficient driving
  publication-title: Transp. Res. Part C: Emerg. Technol.
  doi: 10.1016/j.trc.2018.12.018
– volume: 89
  year: 2020
  ident: 10.1016/j.ins.2021.10.070_b0160
  article-title: A novel reinforcement learning based grey wolf optimizer algorithm for Unmanned Aerial Vehicles (UAVs) path planning
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2020.106099
– ident: 10.1016/j.ins.2021.10.070_b0195
  doi: 10.1142/S0129183121501370
– ident: 10.1016/j.ins.2021.10.070_b0075
  doi: 10.1109/BHI.2018.8333436
– volume: 140
  year: 2020
  ident: 10.1016/j.ins.2021.10.070_b0115
  article-title: Autonomous pH control by reinforcement learning for electroplating industry wastewater
  publication-title: Comput. Chem. Eng.
– volume: 32
  start-page: 76
  issue: 6
  year: 2012
  ident: 10.1016/j.ins.2021.10.070_b0015
  article-title: Reinforcement learning and feedback control: using natural decision methods to design optimal adaptive controllers
  publication-title: IEEE Control Syst. Mag.
  doi: 10.1109/MCS.2012.2214134
– volume: 169
  start-page: 195
  year: 2018
  ident: 10.1016/j.ins.2021.10.070_b0070
  article-title: Optimal control of HVAC and window systems for natural ventilation through reinforcement learning
  publication-title: Energy Build.
  doi: 10.1016/j.enbuild.2018.03.051
– volume: 2021
  start-page: 8834324
  year: 2021
  ident: 10.1016/j.ins.2021.10.070_b0105
  article-title: Enhancing hyperheuristics for the knapsack problem through fuzzy logic
  publication-title: Comput. Intelligence Neurosci.
  doi: 10.1155/2021/8834324
– volume: 65
  start-page: 87
  year: 2017
  ident: 10.1016/j.ins.2021.10.070_b0125
  article-title: Particle swarm optimization for generating interpretable fuzzy reinforcement learning policies
  publication-title: Eng. Appl. Artif. Intell.
  doi: 10.1016/j.engappai.2017.07.005
– ident: 10.1016/j.ins.2021.10.070_b0140
  doi: 10.1109/ICASERT.2019.8934450
– ident: 10.1016/j.ins.2021.10.070_b0215
  doi: 10.1109/CEC.2019.8790035
– volume: 12
  start-page: 19
  issue: 2
  year: 1992
  ident: 10.1016/j.ins.2021.10.070_b0010
  article-title: Reinforcement learning is direct adaptive optimal control
  publication-title: IEEE Control Syst. Mag.
  doi: 10.1109/37.126844
– ident: 10.1016/j.ins.2021.10.070_b0220
– ident: 10.1016/j.ins.2021.10.070_b0205
– volume: 179
  start-page: 2232
  issue: 13
  year: 2009
  ident: 10.1016/j.ins.2021.10.070_b0170
  article-title: GSA: A gravitational search algorithm
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2009.03.004
– ident: 10.1016/j.ins.2021.10.070_b0050
  doi: 10.1109/EAIS.2013.6604098
– volume: 34
  start-page: 26
  issue: 6
  year: 2017
  ident: 10.1016/j.ins.2021.10.070_b0025
  article-title: Deep reinforcement learning: a brief survey
  publication-title: IEEE Signal Process Mag.
  doi: 10.1109/MSP.2017.2743240
– volume: 29
  start-page: 399
  issue: 4
  year: 2020
  ident: 10.1016/j.ins.2021.10.070_b0040
  article-title: Model-free control of finger dynamics in prosthetic hand myoelectric-based control systems
  publication-title: Stud. Inf. Control
  doi: 10.24846/v29i4y202002
– volume: 50
  start-page: 4358
  issue: 10
  year: 2020
  ident: 10.1016/j.ins.2021.10.070_b0030
  article-title: Adjacent-agent dynamic linearization-based iterative learning formation control
  publication-title: IEEE Trans. Cybern.
  doi: 10.1109/TCYB.2019.2899654
– volume: 247
  start-page: 154
  year: 2013
  ident: 10.1016/j.ins.2021.10.070_b0225
  article-title: Gravitational search algorithm-based design of fuzzy control systems with a reduced parametric sensitivity
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2013.05.035
– volume: 402
  start-page: 50
  year: 2020
  ident: 10.1016/j.ins.2021.10.070_b0080
  article-title: Reinforcement learning-based control for nonlinear discrete-time systems with unknown control directions and control constraints
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2020.03.061
– ident: 10.1016/j.ins.2021.10.070_b0135
  doi: 10.4018/IJSIR.2016070102
– volume: 58
  start-page: 373
  year: 2021
  ident: 10.1016/j.ins.2021.10.070_b0045
  article-title: Hybrid data-driven fuzzy active disturbance rejection control for tower crane systems
  publication-title: Eur. J. Control
  doi: 10.1016/j.ejcon.2020.08.001
– ident: 10.1016/j.ins.2021.10.070_b0100
  doi: 10.1109/IRC.2019.00121
– volume: 69
  start-page: 46
  year: 2014
  ident: 10.1016/j.ins.2021.10.070_b0145
  article-title: Grey wolf optimizer
  publication-title: Adv. Eng. Softw.
  doi: 10.1016/j.advengsoft.2013.12.007
– volume: 9
  start-page: 727
  issue: 3
  year: 2010
  ident: 10.1016/j.ins.2021.10.070_b0175
  article-title: BGSA: binary gravitational search algorithm
  publication-title: Nat. Comput.
  doi: 10.1007/s11047-009-9175-3
– year: 2017
  ident: 10.1016/j.ins.2021.10.070_b0005
– volume: 20
  start-page: 1
  issue: 3
  year: 2020
  ident: 10.1016/j.ins.2021.10.070_b0085
  article-title: Supervised-actor-critic reinforcement learning for intelligent mechanical ventilation and sedative dosing in intensive care units
  publication-title: BMC Med. Inf. Decis. Making
– volume: 548
  start-page: 233
  year: 2021
  ident: 10.1016/j.ins.2021.10.070_b0060
  article-title: Membership-function-dependent stability analysis and local controller design for T-S fuzzy systems: a space-enveloping approach
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2020.09.043
– volume: 43
  start-page: 150
  issue: 1
  year: 2015
  ident: 10.1016/j.ins.2021.10.070_b0155
  article-title: How effective is the grey wolf optimizer in training multi-layer perceptrons
  publication-title: Appl. Intelligence
  doi: 10.1007/s10489-014-0645-7
– volume: 141
  start-page: 1
  issue: 10
  year: 2019
  ident: 10.1016/j.ins.2021.10.070_b0035
  article-title: Multivariable D2-IBC and application to vehicle stability control
  publication-title: ASME J. Dyn. Syst., Meas. Control
– volume: 97
  start-page: 106766
  issue: Part A
  year: 2020
  ident: 10.1016/j.ins.2021.10.070_b0120
  article-title: Fault tolerant tracking control for nonlinear systems with actuator failures through particle swarm optimization-based adaptive dynamic programming
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2020.106766
– start-page: 553
  year: 2012
  ident: 10.1016/j.ins.2021.10.070_b0200
  article-title: Brief introduction of Back Propagation (BP) neural network algorithm and its improvement
– year: 2019
  ident: 10.1016/j.ins.2021.10.070_b0090
– start-page: 65
  year: 2012
  ident: 10.1016/j.ins.2021.10.070_b0130
  article-title: Integrating particle swarm optimization with reinforcement learning in noisy problems
– ident: 10.1016/j.ins.2021.10.070_b0190
  doi: 10.2514/6.2021-2563
– volume: 476
  start-page: 159
  year: 2019
  ident: 10.1016/j.ins.2021.10.070_b0180
  article-title: Interval type-2 fuzzy logic for dynamic parameter adaptation in a modified gravitational search algorithm
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2018.10.025
– ident: 10.1016/j.ins.2021.10.070_b0230
– ident: 10.1016/j.ins.2021.10.070_b0110
– volume: 87
  year: 2020
  ident: 10.1016/j.ins.2021.10.070_b0250
  article-title: Community detection in networks using bio-inspired optimization: latest developments, new results and perspectives with a selection of recent meta-heuristics
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2019.106010
– volume: 45
  year: 2020
  ident: 10.1016/j.ins.2021.10.070_b0210
  article-title: Reinforcement learning based optimizer for improvement of predicting tunneling-induced ground responses
  publication-title: Adv. Eng. Inf.
  doi: 10.1016/j.aei.2020.101097
– volume: 69
  start-page: 4625
  issue: 7
  year: 2020
  ident: 10.1016/j.ins.2021.10.070_b0235
  article-title: Evolving fuzzy models for prosthetic hand myoelectric-based control
  publication-title: IEEE Trans. Instrum. Meas.
  doi: 10.1109/TIM.2020.2983531
– volume: 12
  start-page: 748
  issue: 6
  year: 2017
  ident: 10.1016/j.ins.2021.10.070_b0055
  article-title: Fuzzy logic is not fuzzy: World-renowned computer scientist Lotfi A. Zadeh
  publication-title: Int. J. Comput. Commun. Control
  doi: 10.15837/ijccc.2017.6.3111
– volume: 28
  start-page: 1542
  issue: 8
  year: 2020
  ident: 10.1016/j.ins.2021.10.070_b0240
  article-title: Generic evolving self-organizing neuro-fuzzy control of bio-inspired unmanned aerial vehicles
  publication-title: IEEE Trans. Fuzzy Syst.
  doi: 10.1109/TFUZZ.2019.2917808
– ident: 10.1016/j.ins.2021.10.070_b0095
SSID ssj0004766
Score 2.6617792
Snippet •A combination of Deep Q-Learning algorithm and metaheuristic GSA is offered.•GSA initializes the weights and the biases of the neural networks.•A comparison...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 99
SubjectTerms Gravitational search algorithm
NN training
Optimal reference tracking control
Q-learning
Reinforcement learning
Servo systems
Title Reinforcement Learning-based control using Q-learning and gravitational search algorithm with experimental validation on a nonlinear servo system
URI https://dx.doi.org/10.1016/j.ins.2021.10.070
Volume 583
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1872-6291
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004766
  issn: 0020-0255
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Science Direct
  customDbUrl:
  eissn: 1872-6291
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004766
  issn: 0020-0255
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Science Direct
  customDbUrl:
  eissn: 1872-6291
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004766
  issn: 0020-0255
  databaseCode: AIKHN
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect (Elsevier)
  customDbUrl:
  eissn: 1872-6291
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004766
  issn: 0020-0255
  databaseCode: ACRLP
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1872-6291
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004766
  issn: 0020-0255
  databaseCode: AKRWK
  dateStart: 19681201
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3PS8MwFA6iFz2ITsVfG-8gHoTONnZJexRxTEVBcbBbSZN0VuY2xrz6P_gf-16a6gT1IPTSkKRpXpKXvLz3fYwd6YRrozRBIUoy3Uiccx0uAitR2SZWmNBxEdzeiV4_vh50Bkvsoo6FIbdKv_ZXa7pbrX3Kqe_N02lZUowvdztiPLREeEgZUAR7LInFoP325eYRy-q-ko5JlLu-2XQ-XuWYELt51CYHL-Ir_kk3Leib7gZb9xtFOK_assmW7LjB1hbgAxus6YMO4Bh8VBH1MvjpusXeH6zDRdXOBAgeSnUYkOYy4J3UgTzfh3AfeP6IIaixAWIl8ujd2IhqOoAaDSezcv70AmS9hUVyAMABW1b0TICPgnEFwaFmQGbfCVSI0dus3718vOgFnoIh0DyV80BFiudJaos412lkDNfCcpPnDtVGWQKM4zzXxhbY1cYmOb4pK7TGXaUM0-Jshy3jB-0ug5QLPA2FCiWisTaRS6w5EvIsVokwhdhjYd35mfZ_SDQZo6x2RHvOUF4ZyYuSUF577OSzyLQC5_grc1xLNPs2wjJUHr8X2_9fsQO2yilQwhlrDtnyfPZqm7h9mectNz5bbOX86qZ39wFcH_Jn
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEB58HNSD-MS3cxAPQnWb7SbtUURZn6Ao7K2kSXat6CrLevU_-I-dSVNdQT0IvTQkaZpJMo_MfAOwY1JhrDYMhajYdKNoz7WEjJwiZps6aRs-F8HllWzfJWedVmcMjupYGHarDGd_dab70zqUHITZPHgpS47xFV4iJqUlJiWlMw6TSUso1sD23778PBJVXViynsTV66tN7-RV9hmyW8T77OHFCYt_Yk4jDOdkDmaDpIiH1WDmYcz1F2BmBD9wATZD1AHuYggr4mnGsF8X4f3GeWBU422AGLBUexGzLovBSx3Z9b2H11FIINFD3bfIaYkCfDcNotoPqB97z4NyeP-EbL7F0ewASCu2rPIzIT0a-xUGhx4g232fsYKMXoK7k-Pbo3YUcjBERmRqGOlYiyLNXDcpTBZbK4x0whaFh7XRjhHjhCiMdV2aauvSgt60k8aQWKkaWbe5DBP0QbcCmAlJ6lBDE0UM9SYLRT3HUjUTnUrblavQqCc_N-EPOU_GY157oj3kRK-c6cVFRK9V2Pts8lKhc_xVOakpmn9bYjlxj9-brf2v2TZMtW8vL_KL06vzdZgWHDXhLTcbMDEcvLpNkmWGxZZfqx_47PP8
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Reinforcement+Learning-based+control+using+Q-learning+and+gravitational+search+algorithm+with+experimental+validation+on+a+nonlinear+servo+system&rft.jtitle=Information+sciences&rft.au=Zamfirache%2C+Iuliu+Alexandru&rft.au=Precup%2C+Radu-Emil&rft.au=Roman%2C+Raul-Cristian&rft.au=Petriu%2C+Emil+M.&rft.date=2022-01-01&rft.pub=Elsevier+Inc&rft.issn=0020-0255&rft.eissn=1872-6291&rft.volume=583&rft.spage=99&rft.epage=120&rft_id=info:doi/10.1016%2Fj.ins.2021.10.070&rft.externalDocID=S002002552101094X
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0020-0255&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0020-0255&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0020-0255&client=summon