Spheres of Strings Under the Levenshtein Distance

Let Σ be a nonempty set of characters, called an alphabet. The run-length encoding (RLE) algorithm processes any nonempty string u over Σ and produces two outputs: a k-tuple (b1,b2,…,bk), where each bi is a character and bi+1≠bi; and a corresponding k-tuple (q1,q2,…,qk) of positive integers, so that...

Full description

Saved in:
Bibliographic Details
Published inAxioms Vol. 14; no. 8; p. 550
Main Authors Algarni, Said, Echi, Othman
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 22.07.2025
Subjects
Online AccessGet full text
ISSN2075-1680
2075-1680
DOI10.3390/axioms14080550

Cover

Abstract Let Σ be a nonempty set of characters, called an alphabet. The run-length encoding (RLE) algorithm processes any nonempty string u over Σ and produces two outputs: a k-tuple (b1,b2,…,bk), where each bi is a character and bi+1≠bi; and a corresponding k-tuple (q1,q2,…,qk) of positive integers, so that the original string can be reconstructed as u=b1q1b2q2…bkqk. The integer k is termed the run-length of u, and symbolized by ρ(u). By convention, we let ρ(ε)=0. In the Euclidean space (Rn,∥·∥2), the volume of a sphere is determined solely by the dimension n and the radius, following well-established formulas. However, for spheres of strings under the edit metric, the situation is more complex, and no general formulas have been identified. This work intended to show that the volume of the sphere SL(u,1), composed of all strings of Levenshtein distance 1 from u, is dependent on the specific structure of the “RLE-decomposition” of u. Notably, this volume equals (2l(u)+1)s−2l(u)−ρ(u), where ρ(u) represents the run-length of u and l(u) denotes its length (i.e., the number of characters in u). Given an integer p≥2, we present a partial result concerning the computation of the volume |SL(u,p)| in the specific case where the run-length ρ(u)=1. More precisely, for a fixed integer n≥1 and a character a∈Σ, we explicitly compute the volume of the Levenshtein sphere of radius p, centered at the string u=an. This case corresponds to the simplest run structure and serves as a foundational step toward understanding the general behavior of Levenshtein spheres.
AbstractList Let Σ be a nonempty set of characters, called an alphabet. The run-length encoding (RLE) algorithm processes any nonempty string u over Σ and produces two outputs: a k-tuple (b1,b2,…,bk), where each bi is a character and bi+1≠bi; and a corresponding k-tuple (q1,q2,…,qk) of positive integers, so that the original string can be reconstructed as u=b1q1b2q2…bkqk. The integer k is termed the run-length of u, and symbolized by ρ(u). By convention, we let ρ(ε)=0. In the Euclidean space (Rn,∥·∥2), the volume of a sphere is determined solely by the dimension n and the radius, following well-established formulas. However, for spheres of strings under the edit metric, the situation is more complex, and no general formulas have been identified. This work intended to show that the volume of the sphere SL(u,1), composed of all strings of Levenshtein distance 1 from u, is dependent on the specific structure of the “RLE-decomposition” of u. Notably, this volume equals (2l(u)+1)s−2l(u)−ρ(u), where ρ(u) represents the run-length of u and l(u) denotes its length (i.e., the number of characters in u). Given an integer p≥2, we present a partial result concerning the computation of the volume |SL(u,p)| in the specific case where the run-length ρ(u)=1. More precisely, for a fixed integer n≥1 and a character a∈Σ, we explicitly compute the volume of the Levenshtein sphere of radius p, centered at the string u=an. This case corresponds to the simplest run structure and serves as a foundational step toward understanding the general behavior of Levenshtein spheres.
Let Σ be a nonempty set of characters, called an alphabet. The run-length encoding (RLE) algorithm processes any nonempty string u over Σ and produces two outputs: a k-tuple (b1,b2,…,bk) , where each bi is a character and bi+1≠bi ; and a corresponding k-tuple (q1,q2,…,qk) of positive integers, so that the original string can be reconstructed as u=b1q1b2q2…bkqk . The integer k is termed the run-length of u, and symbolized by ρ(u) . By convention, we let ρ(ε)=0 . In the Euclidean space ( R n,∥·∥2) , the volume of a sphere is determined solely by the dimension n and the radius, following well-established formulas. However, for spheres of strings under the edit metric, the situation is more complex, and no general formulas have been identified. This work intended to show that the volume of the sphere S L(u,1) , composed of all strings of Levenshtein distance 1 from u, is dependent on the specific structure of the “ RLE -decomposition” of u. Notably, this volume equals (2 l (u)+1)s− 2 l (u)−ρ(u) , where ρ(u) represents the run-length of u and l (u) denotes its length (i.e., the number of characters in u). Given an integer p≥2 , we present a partial result concerning the computation of the volume | S L(u,p)| in the specific case where the run-length ρ(u)=1 . More precisely, for a fixed integer n≥1 and a character a∈Σ , we explicitly compute the volume of the Levenshtein sphere of radius p, centered at the string u=an . This case corresponds to the simplest run structure and serves as a foundational step toward understanding the general behavior of Levenshtein spheres.
Let Σ be a nonempty set of characters, called an alphabet. The run-length encoding (RLE) algorithm processes any nonempty string u over Σ and produces two outputs: a k-tuple (b[sub.1],b[sub.2],…,b[sub.k]), where each b[sub.i] is a character and b[sub.i+1]≠b[sub.i]; and a corresponding k-tuple (q[sub.1],q[sub.2],…,q[sub.k]) of positive integers, so that the original string can be reconstructed as u=b[sub.1] [sup.q1]b[sub.2] [sup.q2]…b[sub.k] [sup.qk]. The integer k is termed the run-length of u, and symbolized by ρ(u). By convention, we let ρ(ε)=0. In the Euclidean space (R[sup.n],∥·∥[sub.2]), the volume of a sphere is determined solely by the dimension n and the radius, following well-established formulas. However, for spheres of strings under the edit metric, the situation is more complex, and no general formulas have been identified. This work intended to show that the volume of the sphere S[sub.L](u,1), composed of all strings of Levenshtein distance 1 from u, is dependent on the specific structure of the “RLE-decomposition” of u. Notably, this volume equals (2l(u)+1)s−(2l(u)−ρ(u)), where ρ(u) represents the run-length of u and l(u) denotes its length (i.e., the number of characters in u). Given an integer p≥2, we present a partial result concerning the computation of the volume |S[sub.L](u,p)| in the specific case where the run-length ρ(u)=1. More precisely, for a fixed integer n≥1 and a character a∈Σ, we explicitly compute the volume of the Levenshtein sphere of radius p, centered at the string u=a[sup.n]. This case corresponds to the simplest run structure and serves as a foundational step toward understanding the general behavior of Levenshtein spheres.
Audience Academic
Author Echi, Othman
Algarni, Said
Author_xml – sequence: 1
  givenname: Said
  orcidid: 0009-0007-2197-9122
  surname: Algarni
  fullname: Algarni, Said
– sequence: 2
  givenname: Othman
  orcidid: 0000-0002-0082-7644
  surname: Echi
  fullname: Echi, Othman
BookMark eNqFUU1PGzEQtSqQoMCV80o9B_yxXttHRClFisSBcrZm7XHiKLFTe1Pg3-M2FYVTZw4zGr335uszOUg5ISHnjF4IYeglPMe8qaynmkpJP5FjTpWcsUHTg3f5ETmrdUWbGSY0E8eEPWyXWLB2OXQPU4lpUbvH5LF00xK7Of7CVJcTxtR9jXWC5PCUHAZYVzz7G0_I47ebH9ffZ_P727vrq_nMcaOmmQmjGXoRWhvf9_2AXgepuETGHdUjd8ox6kcPwME5MbpBKzX6QTM9ag4oTsjdXtdnWNltiRsoLzZDtH8KuSwslCm6NVpqtKNMDN5Da6k89A6klKPQPrigTNO63Gvt0hZenmC9fhNk1P4-oP14wMb4smdsS_65wzrZVd6V1Ba2gvfCNFTPG-pij1pAGyOmkKcCrrnHTXTtQyG2-pWWQmqumPlHcCXXWjD8b45XMYuQ1Q
Cites_doi 10.1016/j.dam.2021.01.028
10.1016/j.tcs.2017.10.026
10.1002/j.1538-7305.1950.tb00463.x
10.1051/ita/2017008
10.1051/ita/2014022
10.1007/s10579-009-9114-z
10.1145/375360.375365
10.1093/bioinformatics/btz354
10.1145/1327452.1327494
10.3115/1075218.1075255
ContentType Journal Article
Copyright COPYRIGHT 2025 MDPI AG
2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: COPYRIGHT 2025 MDPI AG
– notice: 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
3V.
7SC
7TB
7XB
8AL
8FD
8FE
8FG
8FK
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
FR3
GNUQQ
HCIFZ
JQ2
K7-
KR7
L6V
L7M
L~C
L~D
M0N
M7S
P62
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PTHSS
Q9U
ADTOC
UNPAY
DOA
DOI 10.3390/axioms14080550
DatabaseName CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
Mechanical & Transportation Engineering Abstracts
ProQuest Central (purchase pre-March 2016)
Computing Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Central
Engineering Research Database
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
Civil Engineering Abstracts
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Computing Database
Engineering Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
Engineering Collection
ProQuest Central Basic
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies Database with Aerospace
Engineering Collection
Advanced Technologies & Aerospace Collection
Civil Engineering Abstracts
ProQuest Computing
Engineering Database
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
DatabaseTitleList Publicly Available Content Database
CrossRef


Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 2075-1680
ExternalDocumentID oai_doaj_org_article_098c0136dda6437da4ca555b38dfcf79
10.3390/axioms14080550
A853582719
10_3390_axioms14080550
GeographicLocations Alaska
GeographicLocations_xml – name: Alaska
GroupedDBID 5VS
8FE
8FG
AADQD
AAFWJ
AAYXX
ABDBF
ABJCF
ABUWG
ACUHS
ADBBV
AFKRA
AFPKN
AFZYC
ALMA_UNASSIGNED_HOLDINGS
AMVHM
ARAPS
AZQEC
BCNDV
BENPR
BGLVJ
BPHCQ
CCPQU
CITATION
DWQXO
EAD
EAP
ESX
GNUQQ
GROUPED_DOAJ
HCIFZ
IAO
ITC
K6V
K7-
KQ8
L6V
M7S
MODMG
M~E
OK1
PHGZM
PHGZT
PIMPY
PQGLB
PQQKQ
PROAC
PTHSS
QF4
QN7
3V.
7SC
7TB
7XB
8AL
8FD
8FK
FR3
JQ2
KR7
L7M
L~C
L~D
M0N
P62
PKEHL
PQEST
PQUKI
PUEGO
Q9U
ADTOC
IPNFZ
RIG
UNPAY
ID FETCH-LOGICAL-c297t-9fb9643f381d4446ed8f5725e12c08b2c7c10dbdaa2acc3bc6877bd6818b82ae3
IEDL.DBID BENPR
ISSN 2075-1680
IngestDate Fri Oct 03 12:22:13 EDT 2025
Tue Aug 19 23:29:26 EDT 2025
Wed Aug 27 13:26:19 EDT 2025
Mon Oct 20 16:52:29 EDT 2025
Thu Oct 16 04:33:41 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 8
Language English
License cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c297t-9fb9643f381d4446ed8f5725e12c08b2c7c10dbdaa2acc3bc6877bd6818b82ae3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-0082-7644
0009-0007-2197-9122
OpenAccessLink https://www.proquest.com/docview/3243980542?pq-origsite=%requestingapplication%&accountid=15518
PQID 3243980542
PQPubID 2032429
ParticipantIDs doaj_primary_oai_doaj_org_article_098c0136dda6437da4ca555b38dfcf79
unpaywall_primary_10_3390_axioms14080550
proquest_journals_3243980542
gale_infotracacademiconefile_A853582719
crossref_primary_10_3390_axioms14080550
PublicationCentury 2000
PublicationDate 2025-07-22
PublicationDateYYYYMMDD 2025-07-22
PublicationDate_xml – month: 07
  year: 2025
  text: 2025-07-22
  day: 22
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Axioms
PublicationYear 2025
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Navarro (ref_18) 2001; 33
Wang (ref_14) 2021; 294
Wang (ref_15) 2017; 51
Stein (ref_2) 2011; 45
Hamming (ref_6) 1950; 29
ref_3
Bakhtary (ref_16) 2014; 48
ref_17
DeBlasio (ref_11) 2019; 35
ref_8
Koyano (ref_13) 2023; 458
ref_5
Andoni (ref_9) 2018; 51
Amir (ref_10) 2018; 710
ref_4
Malon (ref_12) 1961; 10
ref_7
Levenshtein (ref_1) 1966; 10
References_xml – ident: ref_7
– ident: ref_8
– volume: 294
  start-page: 98
  year: 2021
  ident: ref_14
  article-title: Connectivity and diagnosability of center k-ary n-cubes
  publication-title: Discrete Appl. Math.
  doi: 10.1016/j.dam.2021.01.028
– ident: ref_4
– ident: ref_5
– volume: 710
  start-page: 2
  year: 2018
  ident: ref_10
  article-title: Period recovery of strings over the Hamming and edit distances
  publication-title: Theor. Comput. Sci.
  doi: 10.1016/j.tcs.2017.10.026
– volume: 29
  start-page: 147
  year: 1950
  ident: ref_6
  article-title: Error detecting and error correcting codes
  publication-title: Bell Syst. Tech. J.
  doi: 10.1002/j.1538-7305.1950.tb00463.x
– volume: 51
  start-page: 71
  year: 2017
  ident: ref_15
  article-title: The connectivity and nature diagnosability of expanded k-ary n-cubes
  publication-title: RAIRO Theor. Inform. Appl.
  doi: 10.1051/ita/2017008
– volume: 10
  start-page: 260
  year: 1961
  ident: ref_12
  article-title: On the encoding of arbitrary geometric configurations
  publication-title: IRE Trans. EC
– volume: 48
  start-page: 495
  year: 2014
  ident: ref_16
  article-title: On minimal Hamming compatible distances
  publication-title: RAIRO Theor. Inform. Appl.
  doi: 10.1051/ita/2014022
– volume: 458
  start-page: 128202
  year: 2023
  ident: ref_13
  article-title: Volume formula and growth rates of the balls of strings under the edit distances
  publication-title: Appl. Math. Comput.
– volume: 10
  start-page: 707
  year: 1966
  ident: ref_1
  article-title: Binary codes capable of correcting deletions, insertions, and reversals
  publication-title: Sov. Phys. Dokl.
– volume: 45
  start-page: 45
  year: 2011
  ident: ref_2
  article-title: Cross-language plagiarism detection
  publication-title: Lang Resour. Eval.
  doi: 10.1007/s10579-009-9114-z
– volume: 33
  start-page: 31
  year: 2001
  ident: ref_18
  article-title: A guided tour to approximate string matching
  publication-title: ACM Comput. Surv.
  doi: 10.1145/375360.375365
– volume: 35
  start-page: i127
  year: 2019
  ident: ref_11
  article-title: Locality-sensitive hashing for the edit distance
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btz354
– ident: ref_17
– volume: 51
  start-page: 117
  year: 2018
  ident: ref_9
  article-title: Near-optimal hashing algorithms for approximate nearest neighbor in high dimensions
  publication-title: Commun. ACM
  doi: 10.1145/1327452.1327494
– ident: ref_3
  doi: 10.3115/1075218.1075255
SSID ssj0000913813
Score 2.3003175
Snippet Let Σ be a nonempty set of characters, called an alphabet. The run-length encoding (RLE) algorithm processes any nonempty string u over Σ and produces two...
SourceID doaj
unpaywall
proquest
gale
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
StartPage 550
SubjectTerms Bioinformatics
Codes
Coding theory
Computational linguistics
Data compression
Data transmission
Decomposition
edit distance
Error correction & detection
Euclidean geometry
Hamming distance
inclusion–exclusion principle
Integers
Language processing
Natural language interfaces
run-length encoding
sphere of strings
Spheres
Strings
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEA7iRT2IT1xf9CDopdimySY5-loWUS8qeAvJpEFBdxdbUf-9M21dVjx48VoGOv2myXzTdL5h7KD0TujoRCqDN6kQTqdeQpZKE52KwgAANThf3_SH9-LyQT7MjPqif8JaeeAWuOPMaCBdsRAcnTEFJ8BJKX2hQ4Somta9TJuZYqrZg02OqahoVRoLrOuP3cfT-KXCckJnkprsZ7JQI9b_e0teYgtvo4n7fHfPzzM5Z7DCljuymJy0Tq6yuXK0xpaup0qr1TrLb0kXoKyScUxua_pIVyXNLKMEjZIr0meqHmmiZXJOTBFDvMHuBxd3Z8O0G4OQAjeqTk30JJoV8YGCwOqtDDpKxWWZc8i056Agz4IPznEHUHjoa6V86GMq9pq7sthk86PxqNxiCemFFQZyEYwW0OdeASA_pMNYOg6VPXb4DYudtGoXFqsEAtD-BLDHTgm1qRWpVDcXMHa2i539K3Z4O8Lc0lqqXx24riUAnSVVKnuCXEJqrnK03P0Oi-0WWWWRCxYGvRG8x46mofrD8e3_cHyHLXKaA5yplPNdNl-_vpV7SE5qv9-8h18gyuGi
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ1Lj9MwEIAt6B5gD7wRhQXlgAQXbxPHju0TKo_VCrErpKXScrLscQwrlrZqUl6_npnWrRY4gLhGE2WSGWdm_PiGscdt8NIkL7mKwXIpveFBQcmVTV4naQGADjgfHTeHE_n6VJ3mCbcub6vEUvxs9ZMWGM941ZhyVMmRGRFRex7Tsy95JokgkxjPbGUus51GYS4-YDuT47fj99RRbnPvmtRYY20_8t_OZp87LClMqeig_YVItAL2__lb3mVXltO5__7Vn59fiDsH15nbaLzebvJpf9mHffjxG8zx_1_pBruWU9JivPahm-xSO73Fdo-2PNfuNqtOiD7QdsUsFSc9TQV2xapjUoFCxRuiQHUfqW9m8ZLyUXSkO2xy8Ordi0Oemy1wEFb33KZAaK6EETxKrBHbaJLSQrWVgNIEARqqMobovfAAdYDGaB1igwE_GOHb-i4bTGfT9h4riEpWW6hktEZCI4IGwCyUlnxp0VUN2ZPNh3fzNVPDYS1CJnK_mmjInpNdtlLEwl5dmC0-uDy0XGkNEHkuRk-rkNFL8EqpUJuYIGmLjyOrOhqx_cKDzwcPUFliX7kxZizKCF2h5N7G8C4P5c5hxllb1EaKIXu6dYa_KH7_30UfsKuCegqXmguxxwb9Ytk-xESnD4-yN_8EOeX3gg
  priority: 102
  providerName: Unpaywall
Title Spheres of Strings Under the Levenshtein Distance
URI https://www.proquest.com/docview/3243980542
https://www.mdpi.com/2075-1680/14/8/550/pdf?version=1753190918
https://doaj.org/article/098c0136dda6437da4ca555b38dfcf79
UnpaywallVersion publishedVersion
Volume 14
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 2075-1680
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000913813
  issn: 2075-1680
  databaseCode: KQ8
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2075-1680
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000913813
  issn: 2075-1680
  databaseCode: DOA
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVEBS
  databaseName: EBSCOhost Academic Search Ultimate
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 2075-1680
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000913813
  issn: 2075-1680
  databaseCode: ABDBF
  dateStart: 20120901
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVEBS
  databaseName: EBSCOhost Mathematics Source - trial do 30.11.2025
  customDbUrl:
  eissn: 2075-1680
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913813
  issn: 2075-1680
  databaseCode: AMVHM
  dateStart: 20120901
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/mathematics-source
  providerName: EBSCOhost
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources (Open Access)
  customDbUrl:
  eissn: 2075-1680
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000913813
  issn: 2075-1680
  databaseCode: M~E
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 2075-1680
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000913813
  issn: 2075-1680
  databaseCode: BENPR
  dateStart: 20120301
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 2075-1680
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000913813
  issn: 2075-1680
  databaseCode: 8FG
  dateStart: 20120301
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3db9MwED9t3QPsYeJTlI0qD0jwEi1x7Np-QKiDlQmxamJUGk-WP2I2aTSlyQT899ylSRlCgsdEluPc2b47n-_3A3heOstVtDwVwemUc6tSJ3yWCh2tjFx776nA-XQ2Ppnz9xfiYgtmfS0MXavs98R2ow6VpzPyQzT8hVboYLDXy28psUZRdrWn0LAdtUJ41UKMbcMOI2SsAewcHc_OPm5OXQgFU-XFGr2xwHj_0P64qr7WGGZg31R8f8s6tSD-f2_Vu3DnZrG0P7_b6-tbtmh6D_Y6JzKZrLV-H7bKxQPYPd0gsNYPIT8nvICyTqqYnDd0eFcnLcdRgo2SD4TbVF8S02XyljxIVP0jmE-PP705STt6hNQzLZtUR0dgWhF_KHCM6sqgopBMlDnzmXLMS59nwQVrGYqncH6spHRhjCbaKWbL4jEMFtWifAIJ4YgV2uc8aMX9mDnpPfqNlKSlNKkYwoteLGa5RsEwGD2QAM2fAhzCEUlt04rQq9sX1eqL6RaDybTyhBUXgqW8YbDcWyGEK1SIPkqNnyOZG1pjzcp625UK4GAJrcpM0McQiskcWx70ajHd4qvN76kyhJcbVf1n4E__3dM-3GXE_JvJlLEDGDSrm_IZuiONG8G2mr4bdTNt1Ab1-DSfnU0-_wJV-OKo
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwEB5ROFAOVZ_qFtrm0Kq9RCSOvbYPCEEBLWV3VRWQuLl-JG0lulk2QZQ_x2_rTDbZUlVqT1wjy3bGY8-Mx_N9AG9yZ7kqLI9FcDrm3KrYCZ_EQhdWFlx776nAeTTuD075xzNxtgQ3XS0MPavszsTmoA6lpzvyTTT8mVboYLDt6UVMrFGUXe0oNGxLrRC2GoixtrDjKL--whCu2jrcw_V-y9jB_smHQdyyDMSeaVnHunCESVWg6Qocg6M8qEJIJvKU-UQ55qVPk-CCtQxHyZzvKyld6KOlc4rZPMN-78EKz7jG4G9ld3_86fPilodQN1WazdEis0wnm_bn9_JHhWEN_gsV-9-yhg1pwN-mYQ1WLydTe31lz89v2b6Dh_CgdVqjnbmWPYKlfPIY1kYLxNfqCaTHhE-QV1FZRMc1XRZWUcOpFGGjaEg4UdU3YtaM9shjRVV7Cqd3IqhnsDwpJ_lziAi3LNM-5UEr7vvMSe_RT6WkMKVlRQ_edWIx0znqhsFohQRo_hRgD3ZJaotWhJbdfChnX027-UyilSdsuhAs5SmD5d4KIVymQuELqXE4krmhPV3PrLdtaQJOltCxzA76NEIxmWLLjW5ZTLvZK_NbNXvwfrFU_5n4i3_39BpWByejoRkejo_W4T4j1uFExoxtwHI9u8xfoitUu1etvkXw5a5V_BeS_h0Y
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKkYAeEE-xUCAHEFyiTRx7bR8QKixLSx9CKpV6c-1xTCuVzbJJVfrX-HXMZJOlCAlOvUaW7YzHnhmP5_sYe1F6J3R0IpXBm1QIp1MvIUuliU5FYQCACpx390abB-LToTxcYT_7Whh6Vtmfie1BHSqgO_IhGv7CaHQw-DB2zyI-jydvZ99TYpCiTGtPp7FQke3y4hzDt_rN1hjX-iXnkw9f3m-mHcNACtyoJjXREx5VRLMVBAZGZdBRKi7LnEOmPQcFeRZ8cI47gMLDSCvlwwitnNfclQX2e41dV4TiTlXqk4_L-x3C29R5scCJLAqTDd2Pk-pbjQEN_gWV-V-ygy1dwN9GYY3dPJvO3MW5Oz29ZPUmd9jtzl1NNhb6dZetlNN7bG13ifVa32f5PiETlHVSxWS_oWvCOmnZlBJslOwQQlR9TJyayZh8VVSyB-zgSsT0kK1Oq2n5iCWEWFYYyEUwWsCIewWAHiqlgykhKwfsVS8WO1vgbViMU0iA9k8BDtg7ktqyFeFktx-q-VfbbTubGQ2ESheCowxlcAKclNIXOkSIyuBwJHNLu7mZO3BdUQJOlnCx7AZ6M1JzlWPL9X5ZbLfNa_tbKQfs9XKp_jPxx__u6Tm7gYptd7b2tp-wW5zohjOVcr7OVpv5WfkUfaDGP2uVLWFHV63dvwDISxqy
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ1Lj9MwEIAt6B5gD7wRhQXlgAQXbxPHju0TKo_VCrErpKXScrLscQwrlrZqUl6_npnWrRY4gLhGE2WSGWdm_PiGscdt8NIkL7mKwXIpveFBQcmVTV4naQGADjgfHTeHE_n6VJ3mCbcub6vEUvxs9ZMWGM941ZhyVMmRGRFRex7Tsy95JokgkxjPbGUus51GYS4-YDuT47fj99RRbnPvmtRYY20_8t_OZp87LClMqeig_YVItAL2__lb3mVXltO5__7Vn59fiDsH15nbaLzebvJpf9mHffjxG8zx_1_pBruWU9JivPahm-xSO73Fdo-2PNfuNqtOiD7QdsUsFSc9TQV2xapjUoFCxRuiQHUfqW9m8ZLyUXSkO2xy8Ordi0Oemy1wEFb33KZAaK6EETxKrBHbaJLSQrWVgNIEARqqMobovfAAdYDGaB1igwE_GOHb-i4bTGfT9h4riEpWW6hktEZCI4IGwCyUlnxp0VUN2ZPNh3fzNVPDYS1CJnK_mmjInpNdtlLEwl5dmC0-uDy0XGkNEHkuRk-rkNFL8EqpUJuYIGmLjyOrOhqx_cKDzwcPUFliX7kxZizKCF2h5N7G8C4P5c5hxllb1EaKIXu6dYa_KH7_30UfsKuCegqXmguxxwb9Ytk-xESnD4-yN_8EOeX3gg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Spheres+of+Strings+Under+the+Levenshtein+Distance&rft.jtitle=Axioms&rft.au=Algarni%2C+Said&rft.au=Echi%2C+Othman&rft.date=2025-07-22&rft.pub=MDPI+AG&rft.issn=2075-1680&rft.eissn=2075-1680&rft.volume=14&rft.issue=8&rft_id=info:doi/10.3390%2Faxioms14080550&rft.externalDocID=A853582719
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2075-1680&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2075-1680&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2075-1680&client=summon