Spheres of Strings Under the Levenshtein Distance
Let Σ be a nonempty set of characters, called an alphabet. The run-length encoding (RLE) algorithm processes any nonempty string u over Σ and produces two outputs: a k-tuple (b1,b2,…,bk), where each bi is a character and bi+1≠bi; and a corresponding k-tuple (q1,q2,…,qk) of positive integers, so that...
        Saved in:
      
    
          | Published in | Axioms Vol. 14; no. 8; p. 550 | 
|---|---|
| Main Authors | , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        Basel
          MDPI AG
    
        22.07.2025
     | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 2075-1680 2075-1680  | 
| DOI | 10.3390/axioms14080550 | 
Cover
| Abstract | Let Σ be a nonempty set of characters, called an alphabet. The run-length encoding (RLE) algorithm processes any nonempty string u over Σ and produces two outputs: a k-tuple (b1,b2,…,bk), where each bi is a character and bi+1≠bi; and a corresponding k-tuple (q1,q2,…,qk) of positive integers, so that the original string can be reconstructed as u=b1q1b2q2…bkqk. The integer k is termed the run-length of u, and symbolized by ρ(u). By convention, we let ρ(ε)=0. In the Euclidean space (Rn,∥·∥2), the volume of a sphere is determined solely by the dimension n and the radius, following well-established formulas. However, for spheres of strings under the edit metric, the situation is more complex, and no general formulas have been identified. This work intended to show that the volume of the sphere SL(u,1), composed of all strings of Levenshtein distance 1 from u, is dependent on the specific structure of the “RLE-decomposition” of u. Notably, this volume equals (2l(u)+1)s−2l(u)−ρ(u), where ρ(u) represents the run-length of u and l(u) denotes its length (i.e., the number of characters in u). Given an integer p≥2, we present a partial result concerning the computation of the volume |SL(u,p)| in the specific case where the run-length ρ(u)=1. More precisely, for a fixed integer n≥1 and a character a∈Σ, we explicitly compute the volume of the Levenshtein sphere of radius p, centered at the string u=an. This case corresponds to the simplest run structure and serves as a foundational step toward understanding the general behavior of Levenshtein spheres. | 
    
|---|---|
| AbstractList | Let Σ be a nonempty set of characters, called an alphabet. The run-length encoding (RLE) algorithm processes any nonempty string u over Σ and produces two outputs: a k-tuple (b1,b2,…,bk), where each bi is a character and bi+1≠bi; and a corresponding k-tuple (q1,q2,…,qk) of positive integers, so that the original string can be reconstructed as u=b1q1b2q2…bkqk. The integer k is termed the run-length of u, and symbolized by ρ(u). By convention, we let ρ(ε)=0. In the Euclidean space (Rn,∥·∥2), the volume of a sphere is determined solely by the dimension n and the radius, following well-established formulas. However, for spheres of strings under the edit metric, the situation is more complex, and no general formulas have been identified. This work intended to show that the volume of the sphere SL(u,1), composed of all strings of Levenshtein distance 1 from u, is dependent on the specific structure of the “RLE-decomposition” of u. Notably, this volume equals (2l(u)+1)s−2l(u)−ρ(u), where ρ(u) represents the run-length of u and l(u) denotes its length (i.e., the number of characters in u). Given an integer p≥2, we present a partial result concerning the computation of the volume |SL(u,p)| in the specific case where the run-length ρ(u)=1. More precisely, for a fixed integer n≥1 and a character a∈Σ, we explicitly compute the volume of the Levenshtein sphere of radius p, centered at the string u=an. This case corresponds to the simplest run structure and serves as a foundational step toward understanding the general behavior of Levenshtein spheres. Let Σ be a nonempty set of characters, called an alphabet. The run-length encoding (RLE) algorithm processes any nonempty string u over Σ and produces two outputs: a k-tuple (b1,b2,…,bk) , where each bi is a character and bi+1≠bi ; and a corresponding k-tuple (q1,q2,…,qk) of positive integers, so that the original string can be reconstructed as u=b1q1b2q2…bkqk . The integer k is termed the run-length of u, and symbolized by ρ(u) . By convention, we let ρ(ε)=0 . In the Euclidean space ( R n,∥·∥2) , the volume of a sphere is determined solely by the dimension n and the radius, following well-established formulas. However, for spheres of strings under the edit metric, the situation is more complex, and no general formulas have been identified. This work intended to show that the volume of the sphere S L(u,1) , composed of all strings of Levenshtein distance 1 from u, is dependent on the specific structure of the “ RLE -decomposition” of u. Notably, this volume equals (2 l (u)+1)s− 2 l (u)−ρ(u) , where ρ(u) represents the run-length of u and l (u) denotes its length (i.e., the number of characters in u). Given an integer p≥2 , we present a partial result concerning the computation of the volume | S L(u,p)| in the specific case where the run-length ρ(u)=1 . More precisely, for a fixed integer n≥1 and a character a∈Σ , we explicitly compute the volume of the Levenshtein sphere of radius p, centered at the string u=an . This case corresponds to the simplest run structure and serves as a foundational step toward understanding the general behavior of Levenshtein spheres. Let Σ be a nonempty set of characters, called an alphabet. The run-length encoding (RLE) algorithm processes any nonempty string u over Σ and produces two outputs: a k-tuple (b[sub.1],b[sub.2],…,b[sub.k]), where each b[sub.i] is a character and b[sub.i+1]≠b[sub.i]; and a corresponding k-tuple (q[sub.1],q[sub.2],…,q[sub.k]) of positive integers, so that the original string can be reconstructed as u=b[sub.1] [sup.q1]b[sub.2] [sup.q2]…b[sub.k] [sup.qk]. The integer k is termed the run-length of u, and symbolized by ρ(u). By convention, we let ρ(ε)=0. In the Euclidean space (R[sup.n],∥·∥[sub.2]), the volume of a sphere is determined solely by the dimension n and the radius, following well-established formulas. However, for spheres of strings under the edit metric, the situation is more complex, and no general formulas have been identified. This work intended to show that the volume of the sphere S[sub.L](u,1), composed of all strings of Levenshtein distance 1 from u, is dependent on the specific structure of the “RLE-decomposition” of u. Notably, this volume equals (2l(u)+1)s−(2l(u)−ρ(u)), where ρ(u) represents the run-length of u and l(u) denotes its length (i.e., the number of characters in u). Given an integer p≥2, we present a partial result concerning the computation of the volume |S[sub.L](u,p)| in the specific case where the run-length ρ(u)=1. More precisely, for a fixed integer n≥1 and a character a∈Σ, we explicitly compute the volume of the Levenshtein sphere of radius p, centered at the string u=a[sup.n]. This case corresponds to the simplest run structure and serves as a foundational step toward understanding the general behavior of Levenshtein spheres.  | 
    
| Audience | Academic | 
    
| Author | Echi, Othman Algarni, Said  | 
    
| Author_xml | – sequence: 1 givenname: Said orcidid: 0009-0007-2197-9122 surname: Algarni fullname: Algarni, Said – sequence: 2 givenname: Othman orcidid: 0000-0002-0082-7644 surname: Echi fullname: Echi, Othman  | 
    
| BookMark | eNqFUU1PGzEQtSqQoMCV80o9B_yxXttHRClFisSBcrZm7XHiKLFTe1Pg3-M2FYVTZw4zGr335uszOUg5ISHnjF4IYeglPMe8qaynmkpJP5FjTpWcsUHTg3f5ETmrdUWbGSY0E8eEPWyXWLB2OXQPU4lpUbvH5LF00xK7Of7CVJcTxtR9jXWC5PCUHAZYVzz7G0_I47ebH9ffZ_P727vrq_nMcaOmmQmjGXoRWhvf9_2AXgepuETGHdUjd8ox6kcPwME5MbpBKzX6QTM9ag4oTsjdXtdnWNltiRsoLzZDtH8KuSwslCm6NVpqtKNMDN5Da6k89A6klKPQPrigTNO63Gvt0hZenmC9fhNk1P4-oP14wMb4smdsS_65wzrZVd6V1Ba2gvfCNFTPG-pij1pAGyOmkKcCrrnHTXTtQyG2-pWWQmqumPlHcCXXWjD8b45XMYuQ1Q | 
    
| Cites_doi | 10.1016/j.dam.2021.01.028 10.1016/j.tcs.2017.10.026 10.1002/j.1538-7305.1950.tb00463.x 10.1051/ita/2017008 10.1051/ita/2014022 10.1007/s10579-009-9114-z 10.1145/375360.375365 10.1093/bioinformatics/btz354 10.1145/1327452.1327494 10.3115/1075218.1075255  | 
    
| ContentType | Journal Article | 
    
| Copyright | COPYRIGHT 2025 MDPI AG 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.  | 
    
| Copyright_xml | – notice: COPYRIGHT 2025 MDPI AG – notice: 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.  | 
    
| DBID | AAYXX CITATION 3V. 7SC 7TB 7XB 8AL 8FD 8FE 8FG 8FK ABJCF ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO FR3 GNUQQ HCIFZ JQ2 K7- KR7 L6V L7M L~C L~D M0N M7S P62 PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PTHSS Q9U ADTOC UNPAY DOA  | 
    
| DOI | 10.3390/axioms14080550 | 
    
| DatabaseName | CrossRef ProQuest Central (Corporate) Computer and Information Systems Abstracts Mechanical & Transportation Engineering Abstracts ProQuest Central (purchase pre-March 2016) Computing Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central Advanced Technologies & Computer Science Collection ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One Community College ProQuest Central Engineering Research Database ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database Civil Engineering Abstracts ProQuest Engineering Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts  Academic Computer and Information Systems Abstracts Professional Computing Database Engineering Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition Engineering Collection ProQuest Central Basic Unpaywall for CDI: Periodical Content Unpaywall DOAJ Directory of Open Access Journals  | 
    
| DatabaseTitle | CrossRef Publicly Available Content Database Computer Science Database ProQuest Central Student Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) Mechanical & Transportation Engineering Abstracts ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest Central Korea ProQuest Central (New) Advanced Technologies Database with Aerospace Engineering Collection Advanced Technologies & Aerospace Collection Civil Engineering Abstracts ProQuest Computing Engineering Database ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection Computer and Information Systems Abstracts Professional ProQuest One Academic UKI Edition Materials Science & Engineering Collection Engineering Research Database ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni)  | 
    
| DatabaseTitleList | Publicly Available Content Database CrossRef  | 
    
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Mathematics | 
    
| EISSN | 2075-1680 | 
    
| ExternalDocumentID | oai_doaj_org_article_098c0136dda6437da4ca555b38dfcf79 10.3390/axioms14080550 A853582719 10_3390_axioms14080550  | 
    
| GeographicLocations | Alaska | 
    
| GeographicLocations_xml | – name: Alaska | 
    
| GroupedDBID | 5VS 8FE 8FG AADQD AAFWJ AAYXX ABDBF ABJCF ABUWG ACUHS ADBBV AFKRA AFPKN AFZYC ALMA_UNASSIGNED_HOLDINGS AMVHM ARAPS AZQEC BCNDV BENPR BGLVJ BPHCQ CCPQU CITATION DWQXO EAD EAP ESX GNUQQ GROUPED_DOAJ HCIFZ IAO ITC K6V K7- KQ8 L6V M7S MODMG M~E OK1 PHGZM PHGZT PIMPY PQGLB PQQKQ PROAC PTHSS QF4 QN7 3V. 7SC 7TB 7XB 8AL 8FD 8FK FR3 JQ2 KR7 L7M L~C L~D M0N P62 PKEHL PQEST PQUKI PUEGO Q9U ADTOC IPNFZ RIG UNPAY  | 
    
| ID | FETCH-LOGICAL-c297t-9fb9643f381d4446ed8f5725e12c08b2c7c10dbdaa2acc3bc6877bd6818b82ae3 | 
    
| IEDL.DBID | BENPR | 
    
| ISSN | 2075-1680 | 
    
| IngestDate | Fri Oct 03 12:22:13 EDT 2025 Tue Aug 19 23:29:26 EDT 2025 Wed Aug 27 13:26:19 EDT 2025 Mon Oct 20 16:52:29 EDT 2025 Thu Oct 16 04:33:41 EDT 2025  | 
    
| IsDoiOpenAccess | true | 
    
| IsOpenAccess | true | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Issue | 8 | 
    
| Language | English | 
    
| License | cc-by | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c297t-9fb9643f381d4446ed8f5725e12c08b2c7c10dbdaa2acc3bc6877bd6818b82ae3 | 
    
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14  | 
    
| ORCID | 0000-0002-0082-7644 0009-0007-2197-9122  | 
    
| OpenAccessLink | https://www.proquest.com/docview/3243980542?pq-origsite=%requestingapplication%&accountid=15518 | 
    
| PQID | 3243980542 | 
    
| PQPubID | 2032429 | 
    
| ParticipantIDs | doaj_primary_oai_doaj_org_article_098c0136dda6437da4ca555b38dfcf79 unpaywall_primary_10_3390_axioms14080550 proquest_journals_3243980542 gale_infotracacademiconefile_A853582719 crossref_primary_10_3390_axioms14080550  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2025-07-22 | 
    
| PublicationDateYYYYMMDD | 2025-07-22 | 
    
| PublicationDate_xml | – month: 07 year: 2025 text: 2025-07-22 day: 22  | 
    
| PublicationDecade | 2020 | 
    
| PublicationPlace | Basel | 
    
| PublicationPlace_xml | – name: Basel | 
    
| PublicationTitle | Axioms | 
    
| PublicationYear | 2025 | 
    
| Publisher | MDPI AG | 
    
| Publisher_xml | – name: MDPI AG | 
    
| References | Navarro (ref_18) 2001; 33 Wang (ref_14) 2021; 294 Wang (ref_15) 2017; 51 Stein (ref_2) 2011; 45 Hamming (ref_6) 1950; 29 ref_3 Bakhtary (ref_16) 2014; 48 ref_17 DeBlasio (ref_11) 2019; 35 ref_8 Koyano (ref_13) 2023; 458 ref_5 Andoni (ref_9) 2018; 51 Amir (ref_10) 2018; 710 ref_4 Malon (ref_12) 1961; 10 ref_7 Levenshtein (ref_1) 1966; 10  | 
    
| References_xml | – ident: ref_7 – ident: ref_8 – volume: 294 start-page: 98 year: 2021 ident: ref_14 article-title: Connectivity and diagnosability of center k-ary n-cubes publication-title: Discrete Appl. Math. doi: 10.1016/j.dam.2021.01.028 – ident: ref_4 – ident: ref_5 – volume: 710 start-page: 2 year: 2018 ident: ref_10 article-title: Period recovery of strings over the Hamming and edit distances publication-title: Theor. Comput. Sci. doi: 10.1016/j.tcs.2017.10.026 – volume: 29 start-page: 147 year: 1950 ident: ref_6 article-title: Error detecting and error correcting codes publication-title: Bell Syst. Tech. J. doi: 10.1002/j.1538-7305.1950.tb00463.x – volume: 51 start-page: 71 year: 2017 ident: ref_15 article-title: The connectivity and nature diagnosability of expanded k-ary n-cubes publication-title: RAIRO Theor. Inform. Appl. doi: 10.1051/ita/2017008 – volume: 10 start-page: 260 year: 1961 ident: ref_12 article-title: On the encoding of arbitrary geometric configurations publication-title: IRE Trans. EC – volume: 48 start-page: 495 year: 2014 ident: ref_16 article-title: On minimal Hamming compatible distances publication-title: RAIRO Theor. Inform. Appl. doi: 10.1051/ita/2014022 – volume: 458 start-page: 128202 year: 2023 ident: ref_13 article-title: Volume formula and growth rates of the balls of strings under the edit distances publication-title: Appl. Math. Comput. – volume: 10 start-page: 707 year: 1966 ident: ref_1 article-title: Binary codes capable of correcting deletions, insertions, and reversals publication-title: Sov. Phys. Dokl. – volume: 45 start-page: 45 year: 2011 ident: ref_2 article-title: Cross-language plagiarism detection publication-title: Lang Resour. Eval. doi: 10.1007/s10579-009-9114-z – volume: 33 start-page: 31 year: 2001 ident: ref_18 article-title: A guided tour to approximate string matching publication-title: ACM Comput. Surv. doi: 10.1145/375360.375365 – volume: 35 start-page: i127 year: 2019 ident: ref_11 article-title: Locality-sensitive hashing for the edit distance publication-title: Bioinformatics doi: 10.1093/bioinformatics/btz354 – ident: ref_17 – volume: 51 start-page: 117 year: 2018 ident: ref_9 article-title: Near-optimal hashing algorithms for approximate nearest neighbor in high dimensions publication-title: Commun. ACM doi: 10.1145/1327452.1327494 – ident: ref_3 doi: 10.3115/1075218.1075255  | 
    
| SSID | ssj0000913813 | 
    
| Score | 2.3003175 | 
    
| Snippet | Let Σ be a nonempty set of characters, called an alphabet. The run-length encoding (RLE) algorithm processes any nonempty string u over Σ and produces two... | 
    
| SourceID | doaj unpaywall proquest gale crossref  | 
    
| SourceType | Open Website Open Access Repository Aggregation Database Index Database  | 
    
| StartPage | 550 | 
    
| SubjectTerms | Bioinformatics Codes Coding theory Computational linguistics Data compression Data transmission Decomposition edit distance Error correction & detection Euclidean geometry Hamming distance inclusion–exclusion principle Integers Language processing Natural language interfaces run-length encoding sphere of strings Spheres Strings  | 
    
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEA7iRT2IT1xf9CDopdimySY5-loWUS8qeAvJpEFBdxdbUf-9M21dVjx48VoGOv2myXzTdL5h7KD0TujoRCqDN6kQTqdeQpZKE52KwgAANThf3_SH9-LyQT7MjPqif8JaeeAWuOPMaCBdsRAcnTEFJ8BJKX2hQ4Somta9TJuZYqrZg02OqahoVRoLrOuP3cfT-KXCckJnkprsZ7JQI9b_e0teYgtvo4n7fHfPzzM5Z7DCljuymJy0Tq6yuXK0xpaup0qr1TrLb0kXoKyScUxua_pIVyXNLKMEjZIr0meqHmmiZXJOTBFDvMHuBxd3Z8O0G4OQAjeqTk30JJoV8YGCwOqtDDpKxWWZc8i056Agz4IPznEHUHjoa6V86GMq9pq7sthk86PxqNxiCemFFQZyEYwW0OdeASA_pMNYOg6VPXb4DYudtGoXFqsEAtD-BLDHTgm1qRWpVDcXMHa2i539K3Z4O8Lc0lqqXx24riUAnSVVKnuCXEJqrnK03P0Oi-0WWWWRCxYGvRG8x46mofrD8e3_cHyHLXKaA5yplPNdNl-_vpV7SE5qv9-8h18gyuGi priority: 102 providerName: Directory of Open Access Journals – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ1Lj9MwEIAt6B5gD7wRhQXlgAQXbxPHju0TKo_VCrErpKXScrLscQwrlrZqUl6_npnWrRY4gLhGE2WSGWdm_PiGscdt8NIkL7mKwXIpveFBQcmVTV4naQGADjgfHTeHE_n6VJ3mCbcub6vEUvxs9ZMWGM941ZhyVMmRGRFRex7Tsy95JokgkxjPbGUus51GYS4-YDuT47fj99RRbnPvmtRYY20_8t_OZp87LClMqeig_YVItAL2__lb3mVXltO5__7Vn59fiDsH15nbaLzebvJpf9mHffjxG8zx_1_pBruWU9JivPahm-xSO73Fdo-2PNfuNqtOiD7QdsUsFSc9TQV2xapjUoFCxRuiQHUfqW9m8ZLyUXSkO2xy8Ordi0Oemy1wEFb33KZAaK6EETxKrBHbaJLSQrWVgNIEARqqMobovfAAdYDGaB1igwE_GOHb-i4bTGfT9h4riEpWW6hktEZCI4IGwCyUlnxp0VUN2ZPNh3fzNVPDYS1CJnK_mmjInpNdtlLEwl5dmC0-uDy0XGkNEHkuRk-rkNFL8EqpUJuYIGmLjyOrOhqx_cKDzwcPUFliX7kxZizKCF2h5N7G8C4P5c5hxllb1EaKIXu6dYa_KH7_30UfsKuCegqXmguxxwb9Ytk-xESnD4-yN_8EOeX3gg priority: 102 providerName: Unpaywall  | 
    
| Title | Spheres of Strings Under the Levenshtein Distance | 
    
| URI | https://www.proquest.com/docview/3243980542 https://www.mdpi.com/2075-1680/14/8/550/pdf?version=1753190918 https://doaj.org/article/098c0136dda6437da4ca555b38dfcf79  | 
    
| UnpaywallVersion | publishedVersion | 
    
| Volume | 14 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 2075-1680 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000913813 issn: 2075-1680 databaseCode: KQ8 dateStart: 20120101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2075-1680 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000913813 issn: 2075-1680 databaseCode: DOA dateStart: 20120101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVEBS databaseName: EBSCOhost Academic Search Ultimate customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 2075-1680 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000913813 issn: 2075-1680 databaseCode: ABDBF dateStart: 20120901 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVEBS databaseName: EBSCOhost Mathematics Source - trial do 30.11.2025 customDbUrl: eissn: 2075-1680 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000913813 issn: 2075-1680 databaseCode: AMVHM dateStart: 20120901 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/mathematics-source providerName: EBSCOhost – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources (Open Access) customDbUrl: eissn: 2075-1680 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000913813 issn: 2075-1680 databaseCode: M~E dateStart: 20120101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 2075-1680 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000913813 issn: 2075-1680 databaseCode: BENPR dateStart: 20120301 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 2075-1680 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000913813 issn: 2075-1680 databaseCode: 8FG dateStart: 20120301 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3db9MwED9t3QPsYeJTlI0qD0jwEi1x7Np-QKiDlQmxamJUGk-WP2I2aTSlyQT899ylSRlCgsdEluPc2b47n-_3A3heOstVtDwVwemUc6tSJ3yWCh2tjFx776nA-XQ2Ppnz9xfiYgtmfS0MXavs98R2ow6VpzPyQzT8hVboYLDXy28psUZRdrWn0LAdtUJ41UKMbcMOI2SsAewcHc_OPm5OXQgFU-XFGr2xwHj_0P64qr7WGGZg31R8f8s6tSD-f2_Vu3DnZrG0P7_b6-tbtmh6D_Y6JzKZrLV-H7bKxQPYPd0gsNYPIT8nvICyTqqYnDd0eFcnLcdRgo2SD4TbVF8S02XyljxIVP0jmE-PP705STt6hNQzLZtUR0dgWhF_KHCM6sqgopBMlDnzmXLMS59nwQVrGYqncH6spHRhjCbaKWbL4jEMFtWifAIJ4YgV2uc8aMX9mDnpPfqNlKSlNKkYwoteLGa5RsEwGD2QAM2fAhzCEUlt04rQq9sX1eqL6RaDybTyhBUXgqW8YbDcWyGEK1SIPkqNnyOZG1pjzcp625UK4GAJrcpM0McQiskcWx70ajHd4qvN76kyhJcbVf1n4E__3dM-3GXE_JvJlLEDGDSrm_IZuiONG8G2mr4bdTNt1Ab1-DSfnU0-_wJV-OKo | 
    
| linkProvider | ProQuest | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwEB5ROFAOVZ_qFtrm0Kq9RCSOvbYPCEEBLWV3VRWQuLl-JG0lulk2QZQ_x2_rTDbZUlVqT1wjy3bGY8-Mx_N9AG9yZ7kqLI9FcDrm3KrYCZ_EQhdWFlx776nAeTTuD075xzNxtgQ3XS0MPavszsTmoA6lpzvyTTT8mVboYLDt6UVMrFGUXe0oNGxLrRC2GoixtrDjKL--whCu2jrcw_V-y9jB_smHQdyyDMSeaVnHunCESVWg6Qocg6M8qEJIJvKU-UQ55qVPk-CCtQxHyZzvKyld6KOlc4rZPMN-78EKz7jG4G9ld3_86fPilodQN1WazdEis0wnm_bn9_JHhWEN_gsV-9-yhg1pwN-mYQ1WLydTe31lz89v2b6Dh_CgdVqjnbmWPYKlfPIY1kYLxNfqCaTHhE-QV1FZRMc1XRZWUcOpFGGjaEg4UdU3YtaM9shjRVV7Cqd3IqhnsDwpJ_lziAi3LNM-5UEr7vvMSe_RT6WkMKVlRQ_edWIx0znqhsFohQRo_hRgD3ZJaotWhJbdfChnX027-UyilSdsuhAs5SmD5d4KIVymQuELqXE4krmhPV3PrLdtaQJOltCxzA76NEIxmWLLjW5ZTLvZK_NbNXvwfrFU_5n4i3_39BpWByejoRkejo_W4T4j1uFExoxtwHI9u8xfoitUu1etvkXw5a5V_BeS_h0Y | 
    
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKkYAeEE-xUCAHEFyiTRx7bR8QKixLSx9CKpV6c-1xTCuVzbJJVfrX-HXMZJOlCAlOvUaW7YzHnhmP5_sYe1F6J3R0IpXBm1QIp1MvIUuliU5FYQCACpx390abB-LToTxcYT_7Whh6Vtmfie1BHSqgO_IhGv7CaHQw-DB2zyI-jydvZ99TYpCiTGtPp7FQke3y4hzDt_rN1hjX-iXnkw9f3m-mHcNACtyoJjXREx5VRLMVBAZGZdBRKi7LnEOmPQcFeRZ8cI47gMLDSCvlwwitnNfclQX2e41dV4TiTlXqk4_L-x3C29R5scCJLAqTDd2Pk-pbjQEN_gWV-V-ygy1dwN9GYY3dPJvO3MW5Oz29ZPUmd9jtzl1NNhb6dZetlNN7bG13ifVa32f5PiETlHVSxWS_oWvCOmnZlBJslOwQQlR9TJyayZh8VVSyB-zgSsT0kK1Oq2n5iCWEWFYYyEUwWsCIewWAHiqlgykhKwfsVS8WO1vgbViMU0iA9k8BDtg7ktqyFeFktx-q-VfbbTubGQ2ESheCowxlcAKclNIXOkSIyuBwJHNLu7mZO3BdUQJOlnCx7AZ6M1JzlWPL9X5ZbLfNa_tbKQfs9XKp_jPxx__u6Tm7gYptd7b2tp-wW5zohjOVcr7OVpv5WfkUfaDGP2uVLWFHV63dvwDISxqy | 
    
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ1Lj9MwEIAt6B5gD7wRhQXlgAQXbxPHju0TKo_VCrErpKXScrLscQwrlrZqUl6_npnWrRY4gLhGE2WSGWdm_PiGscdt8NIkL7mKwXIpveFBQcmVTV4naQGADjgfHTeHE_n6VJ3mCbcub6vEUvxs9ZMWGM941ZhyVMmRGRFRex7Tsy95JokgkxjPbGUus51GYS4-YDuT47fj99RRbnPvmtRYY20_8t_OZp87LClMqeig_YVItAL2__lb3mVXltO5__7Vn59fiDsH15nbaLzebvJpf9mHffjxG8zx_1_pBruWU9JivPahm-xSO73Fdo-2PNfuNqtOiD7QdsUsFSc9TQV2xapjUoFCxRuiQHUfqW9m8ZLyUXSkO2xy8Ordi0Oemy1wEFb33KZAaK6EETxKrBHbaJLSQrWVgNIEARqqMobovfAAdYDGaB1igwE_GOHb-i4bTGfT9h4riEpWW6hktEZCI4IGwCyUlnxp0VUN2ZPNh3fzNVPDYS1CJnK_mmjInpNdtlLEwl5dmC0-uDy0XGkNEHkuRk-rkNFL8EqpUJuYIGmLjyOrOhqx_cKDzwcPUFliX7kxZizKCF2h5N7G8C4P5c5hxllb1EaKIXu6dYa_KH7_30UfsKuCegqXmguxxwb9Ytk-xESnD4-yN_8EOeX3gg | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Spheres+of+Strings+Under+the+Levenshtein+Distance&rft.jtitle=Axioms&rft.au=Algarni%2C+Said&rft.au=Echi%2C+Othman&rft.date=2025-07-22&rft.pub=MDPI+AG&rft.issn=2075-1680&rft.eissn=2075-1680&rft.volume=14&rft.issue=8&rft_id=info:doi/10.3390%2Faxioms14080550&rft.externalDocID=A853582719 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2075-1680&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2075-1680&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2075-1680&client=summon |