Intuitionistic fuzzy local information C-means algorithm for image segmentation
Image segmentation allows us to separate an image into distinct, non-overlapping parts by utilizing specific features such as hue, texture, and shape. The technique is prevalent in different domains, including target detection, medical imaging, and pattern recognition owing to its importance in anal...
        Saved in:
      
    
          | Published in | Information sciences Vol. 681; p. 121205 | 
|---|---|
| Main Authors | , , , , , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
            Elsevier Inc
    
        01.10.2024
     | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 0020-0255 1872-6291  | 
| DOI | 10.1016/j.ins.2024.121205 | 
Cover
| Abstract | Image segmentation allows us to separate an image into distinct, non-overlapping parts by utilizing specific features such as hue, texture, and shape. The technique is prevalent in different domains, including target detection, medical imaging, and pattern recognition owing to its importance in analyzing the image. The fuzzy C-means (FCM) algorithm is a popular method for image segmentation and pattern recognition. However, uncertainty and unknown noise in the data impair the effectiveness of the algorithm. Alternatively, uncertainty in real world can be addressed by the intuitionistic fuzzy set (IFS). This article presents a new approach to image representation using IFS and local information about the image. We introduce the concept of filtering into the intuitionistic fuzzy set and utilize a specially designed exponential distance for IFS. We propose the intuitionistic fuzzy local information C-means (IFLICM) algorithm. The goal of IFLICM is to increase the tolerance to noise and the maintain the details in image better than existing FCM variants. We test the performance of our algorithm on a public dataset and compare it with existing FCM methods and Double Deep-Image-Prior (Double-DIP). The experimental results demonstrate that IFLICM is highly effective in image segmentation and outperforms existing methods.
•We use an IFS to represent uncertainty, combine local information propose a novel image representation method.•We propose an exponential distance measure for IFSs, and show its superiority by illustrating examples.•We develop a novel image segmentation algorithm, intuitionistic fuzzy local information C-means (IFLICM).•We complete performance evaluation, the results show great improvement and robustness of proposed method. | 
    
|---|---|
| AbstractList | Image segmentation allows us to separate an image into distinct, non-overlapping parts by utilizing specific features such as hue, texture, and shape. The technique is prevalent in different domains, including target detection, medical imaging, and pattern recognition owing to its importance in analyzing the image. The fuzzy C-means (FCM) algorithm is a popular method for image segmentation and pattern recognition. However, uncertainty and unknown noise in the data impair the effectiveness of the algorithm. Alternatively, uncertainty in real world can be addressed by the intuitionistic fuzzy set (IFS). This article presents a new approach to image representation using IFS and local information about the image. We introduce the concept of filtering into the intuitionistic fuzzy set and utilize a specially designed exponential distance for IFS. We propose the intuitionistic fuzzy local information C-means (IFLICM) algorithm. The goal of IFLICM is to increase the tolerance to noise and the maintain the details in image better than existing FCM variants. We test the performance of our algorithm on a public dataset and compare it with existing FCM methods and Double Deep-Image-Prior (Double-DIP). The experimental results demonstrate that IFLICM is highly effective in image segmentation and outperforms existing methods.
•We use an IFS to represent uncertainty, combine local information propose a novel image representation method.•We propose an exponential distance measure for IFSs, and show its superiority by illustrating examples.•We develop a novel image segmentation algorithm, intuitionistic fuzzy local information C-means (IFLICM).•We complete performance evaluation, the results show great improvement and robustness of proposed method. | 
    
| ArticleNumber | 121205 | 
    
| Author | Zeng, Wenyi Zhang, Yinghui Xie, Zheng Yin, Qian Ma, Rong Cui, Hanshuai Xu, Zeshui  | 
    
| Author_xml | – sequence: 1 givenname: Hanshuai orcidid: 0000-0001-5988-5470 surname: Cui fullname: Cui, Hanshuai organization: School of Artificial Intelligence, Beijing Normal University, Beijing, 100875, China – sequence: 2 givenname: Zheng surname: Xie fullname: Xie, Zheng email: xiezheng.bnu@outlook.com organization: School of Artificial Intelligence, Beijing Normal University, Beijing, 100875, China – sequence: 3 givenname: Wenyi orcidid: 0000-0002-8908-3329 surname: Zeng fullname: Zeng, Wenyi email: zengwy@bnu.edu.cn organization: School of Artificial Intelligence, Beijing Normal University, Beijing, 100875, China – sequence: 4 givenname: Rong surname: Ma fullname: Ma, Rong email: macrosse@163.com organization: School of Artificial Intelligence, Beijing Normal University, Beijing, 100875, China – sequence: 5 givenname: Yinghui surname: Zhang fullname: Zhang, Yinghui organization: School of Artificial Intelligence, Beijing Normal University, Beijing, 100875, China – sequence: 6 givenname: Qian orcidid: 0000-0002-0354-5490 surname: Yin fullname: Yin, Qian organization: School of Artificial Intelligence, Beijing Normal University, Beijing, 100875, China – sequence: 7 givenname: Zeshui orcidid: 0000-0003-3547-2908 surname: Xu fullname: Xu, Zeshui organization: Business School, Sichuan University, Chengdu, 610064, China  | 
    
| BookMark | eNp9kE1PAjEQhhuDiYD-AG_9A7tOu2xL48kQP0hIuOi5Kd0plux2TVtM4Ne7iCcPnObwzjN555mQUegDEnLPoGTAxMOu9CGVHPisZJxxqK_ImM0lLwRXbETGABwK4HV9QyYp7QBgJoUYk_Uy5L3Pvg8-ZW-p2x-PB9r21rTUB9fHzpxCuig6NCFR02776PNnR4eM-s5skSbcdhjy7-ItuXamTXj3N6fk4-X5ffFWrNavy8XTqrBcyVwoB4CKO7ZREp2VXLnKQIWCNfMZCKmcbSpTGwcbUYNQsuLcNmLeCNhYW8lqStj5ro19ShGd_opDm3jQDPTJiN7pwYg-GdFnIwMj_zHWn1vnaHx7kXw8kzi89O0x6mQ9BouNj2izbnp_gf4BQVJ-hA | 
    
| CitedBy_id | crossref_primary_10_2478_amns_2024_2898 | 
    
| Cites_doi | 10.1016/S0165-0114(98)00244-9 10.1109/TFUZZ.2006.889763 10.1109/42.996338 10.1080/01969727308546046 10.1117/1.3115362 10.1049/ip-vis:20000218 10.1016/S0165-0114(86)80034-3 10.1016/j.patcog.2009.04.013 10.1016/j.ijar.2023.02.013 10.1109/TPAMI.1980.4766964 10.1016/0165-0114(94)90229-1 10.1142/S0218488508005406 10.1109/TSMCB.2004.831165 10.1016/j.fss.2007.12.030 10.1016/j.patrec.2005.03.018 10.1109/3468.668967 10.1109/TIP.2010.2040763 10.1016/0165-0114(94)90331-X 10.1109/TPAMI.2010.161 10.1109/TIP.2012.2219547 10.1016/0165-0114(89)90215-7 10.1006/cviu.2001.0951 10.1109/TFUZZ.2018.2883033 10.3969/j.issn.1004-4132.2010.04.009 10.1016/j.patrec.2019.02.017 10.1016/j.asoc.2010.05.005 10.1016/j.fss.2018.01.019 10.1016/j.patcog.2006.07.011 10.1016/j.asoc.2015.12.022  | 
    
| ContentType | Journal Article | 
    
| Copyright | 2024 Elsevier Inc. | 
    
| Copyright_xml | – notice: 2024 Elsevier Inc. | 
    
| DBID | AAYXX CITATION  | 
    
| DOI | 10.1016/j.ins.2024.121205 | 
    
| DatabaseName | CrossRef | 
    
| DatabaseTitle | CrossRef | 
    
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Engineering Library & Information Science  | 
    
| EISSN | 1872-6291 | 
    
| ExternalDocumentID | 10_1016_j_ins_2024_121205 S0020025524011198  | 
    
| GrantInformation_xml | – fundername: Joint Research Fund in Astronomy under a Cooperative Agreement grantid: U2031136 – fundername: National Science Foundation of China grantid: 12371454 funderid: https://doi.org/10.13039/501100001809  | 
    
| GroupedDBID | --K --M --Z -~X .DC .~1 0R~ 1B1 1OL 1RT 1~. 1~5 29I 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN 9JO AAAKF AAAKG AABNK AACTN AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AARIN AAXUO AAYFN ABAOU ABBOA ABEFU ABFNM ABJNI ABMAC ABTAH ABUCO ABXDB ACDAQ ACGFS ACNNM ACRLP ACZNC ADBBV ADEZE ADGUI ADJOM ADMUD ADTZH AEBSH AECPX AEKER AENEX AFFNX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIGVJ AIKHN AITUG AJOXV AKRWK ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD APLSM ARUGR ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ HAMUX HLZ HVGLF HZ~ H~9 IHE J1W JJJVA KOM LG9 LY1 M41 MHUIS MO0 MS~ N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SBC SDF SDG SDP SDS SES SEW SPC SPCBC SSB SSD SST SSV SSW SSZ T5K TN5 TWZ UHS WH7 WUQ XPP YYP ZMT ZY4 ~02 ~G- 77I AATTM AAXKI AAYWO AAYXX ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO ADVLN AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKYEP ANKPU APXCP CITATION EFKBS EFLBG ~HD  | 
    
| ID | FETCH-LOGICAL-c297t-9f00e92f1b97efc729f3a03e61d840679fcd3a5af0b650697322cd68d60bcc373 | 
    
| IEDL.DBID | .~1 | 
    
| ISSN | 0020-0255 | 
    
| IngestDate | Wed Oct 01 02:12:11 EDT 2025 Thu Apr 24 23:04:41 EDT 2025 Sat Aug 10 15:31:57 EDT 2024  | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Keywords | GKWFLICM nIFCM MRI IFLICM Fuzzy C-means algorithm RLFCM FLICM DSFCM_N mIFCM IFS Double DIP Distance measure IT2FCM IT2PFCM IFCM KWFLICM FCM_S2 FCM_S1 Clustering FCM Image segmentation Intuitionistic fuzzy set FGFCM IIFCM EnFCM FCM_S  | 
    
| Language | English | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c297t-9f00e92f1b97efc729f3a03e61d840679fcd3a5af0b650697322cd68d60bcc373 | 
    
| ORCID | 0000-0002-8908-3329 0000-0003-3547-2908 0000-0001-5988-5470 0000-0002-0354-5490  | 
    
| ParticipantIDs | crossref_primary_10_1016_j_ins_2024_121205 crossref_citationtrail_10_1016_j_ins_2024_121205 elsevier_sciencedirect_doi_10_1016_j_ins_2024_121205  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | October 2024 2024-10-00  | 
    
| PublicationDateYYYYMMDD | 2024-10-01 | 
    
| PublicationDate_xml | – month: 10 year: 2024 text: October 2024  | 
    
| PublicationDecade | 2020 | 
    
| PublicationTitle | Information sciences | 
    
| PublicationYear | 2024 | 
    
| Publisher | Elsevier Inc | 
    
| Publisher_xml | – name: Elsevier Inc | 
    
| References | Fan, Han, Wang (br0120) 2009; 42 Zeng, Cui, Liu, Yin, Xu (br0310) 2022; 19 Arbelaez, Maire, Fowlkes, Malik (br0020) 2010; 33 Vlachos, Sergiadis (br0260) 2005 Wei, Wang, Wu, Zhu (br0340) 2023; 157 Chaira (br0090) 2011; 11 Chen, Zhang (br0100) 2004; 34 Xu, Wu (br0290) 2010; 21 Jiao, Wang, Wei, Zhang (br0330) 2023 Ahmed, Yamany, Mohamed, Farag, Moriarty (br0010) 2002; 21 Atanassov (br0060) 1994; 64 Xu, Chen (br0280) 2008; 16 Atanassov (br0040) 1989; 33 Pham (br0200) 2001; 84 Liew, Leung, Lau (br0170) 2000; 147 Tolias, Panas (br0230) 1998; 28 Gonzalez, Woods, Masters (br0150) 2009; 14 Zadeh (br0300) 1965 Atanassov (br0050) 1994; 61 Gong, Liang, Shi, Ma, Ma (br0140) 2012; 22 Krinidis, Chatzis (br0160) 2010; 19 Verma, Agrawal, Sharan (br0240) 2016; 46 Pedrycz, Rai (br0190) 2008; 159 Memon, Lee (br0180) 2018; 340 Hwang, Rhee (br0350) 2007; 15 Cai, Chen, Zhang (br0080) 2007; 40 Gandelsman, Shocher, Irani (br0130) 2019 Zhang, Bai, Fan, Wang (br0320) 2018; 27 Dunn (br0110) 1973; 3 Bezdek (br0070) 1980; PAMI-2 Szilagyi, Benyo, Szilágyi, Adam (br0210) 2003 Verma, Gupta, Kumar (br0250) 2019; 122 Atanassov (br0030) 1986; 20 Szmidt, Kacprzyk (br0220) 2000; 114 Wang, Xin (br0270) 2005; 26 Xu (10.1016/j.ins.2024.121205_br0290) 2010; 21 Fan (10.1016/j.ins.2024.121205_br0120) 2009; 42 Verma (10.1016/j.ins.2024.121205_br0240) 2016; 46 Szmidt (10.1016/j.ins.2024.121205_br0220) 2000; 114 Atanassov (10.1016/j.ins.2024.121205_br0030) 1986; 20 Cai (10.1016/j.ins.2024.121205_br0080) 2007; 40 Liew (10.1016/j.ins.2024.121205_br0170) 2000; 147 Zeng (10.1016/j.ins.2024.121205_br0310) 2022; 19 Gong (10.1016/j.ins.2024.121205_br0140) 2012; 22 Gonzalez (10.1016/j.ins.2024.121205_br0150) 2009; 14 Szilagyi (10.1016/j.ins.2024.121205_br0210) 2003 Verma (10.1016/j.ins.2024.121205_br0250) 2019; 122 Zadeh (10.1016/j.ins.2024.121205_br0300) 1965 Ahmed (10.1016/j.ins.2024.121205_br0010) 2002; 21 Atanassov (10.1016/j.ins.2024.121205_br0050) 1994; 61 Memon (10.1016/j.ins.2024.121205_br0180) 2018; 340 Xu (10.1016/j.ins.2024.121205_br0280) 2008; 16 Wei (10.1016/j.ins.2024.121205_br0340) 2023; 157 Pedrycz (10.1016/j.ins.2024.121205_br0190) 2008; 159 Atanassov (10.1016/j.ins.2024.121205_br0040) 1989; 33 Wang (10.1016/j.ins.2024.121205_br0270) 2005; 26 Tolias (10.1016/j.ins.2024.121205_br0230) 1998; 28 Jiao (10.1016/j.ins.2024.121205_br0330) 2023 Gandelsman (10.1016/j.ins.2024.121205_br0130) 2019 Dunn (10.1016/j.ins.2024.121205_br0110) 1973; 3 Zhang (10.1016/j.ins.2024.121205_br0320) 2018; 27 Vlachos (10.1016/j.ins.2024.121205_br0260) 2005 Arbelaez (10.1016/j.ins.2024.121205_br0020) 2010; 33 Chaira (10.1016/j.ins.2024.121205_br0090) 2011; 11 Pham (10.1016/j.ins.2024.121205_br0200) 2001; 84 Hwang (10.1016/j.ins.2024.121205_br0350) 2007; 15 Krinidis (10.1016/j.ins.2024.121205_br0160) 2010; 19 Chen (10.1016/j.ins.2024.121205_br0100) 2004; 34 Bezdek (10.1016/j.ins.2024.121205_br0070) 1980; PAMI-2 Atanassov (10.1016/j.ins.2024.121205_br0060) 1994; 64  | 
    
| References_xml | – volume: 3 start-page: 32 year: 1973 end-page: 57 ident: br0110 article-title: A fuzzy relative of the ISODATA process and its use in detecting compact well-separated clusters publication-title: J. Cybern. – volume: 114 start-page: 505 year: 2000 end-page: 518 ident: br0220 article-title: Distances between intuitionistic fuzzy sets publication-title: Fuzzy Sets Syst. – year: 2019 ident: br0130 article-title: D̈ouble-DIP:̈ unsupervised image decomposition via coupled deep-image-priors publication-title: 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) – volume: 22 start-page: 573 year: 2012 end-page: 584 ident: br0140 article-title: Fuzzy c-means clustering with local information and kernel metric for image segmentation publication-title: IEEE Trans. Image Process. – volume: 157 start-page: 1 year: 2023 end-page: 32 ident: br0340 article-title: Interval type-2 possibilistic fuzzy clustering noisy image segmentation algorithm with adaptive spatial constraints and local feature weighting & clustering weighting publication-title: Int. J. Approx. Reason. – start-page: 8 year: 1965 ident: br0300 article-title: Fuzzy sets. inf. control publication-title: Inf. Control – volume: 15 start-page: 107 year: 2007 end-page: 120 ident: br0350 article-title: Uncertain fuzzy clustering: interval type-2 fuzzy approach to publication-title: IEEE Trans. Fuzzy Syst. – volume: 84 start-page: 285 year: 2001 end-page: 297 ident: br0200 article-title: Spatial models for fuzzy clustering publication-title: Comput. Vis. Image Underst. – volume: 26 start-page: 2063 year: 2005 end-page: 2069 ident: br0270 article-title: Distance measure between intuitionistic fuzzy sets publication-title: Pattern Recognit. Lett. – volume: 42 start-page: 2527 year: 2009 end-page: 2540 ident: br0120 article-title: Single point iterative weighted fuzzy C-means clustering algorithm for remote sensing image segmentation publication-title: Pattern Recognit. – volume: PAMI-2 start-page: 1 year: 1980 end-page: 8 ident: br0070 article-title: A convergence theorem for the fuzzy ISODATA clustering algorithms publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – volume: 27 start-page: 185 year: 2018 end-page: 199 ident: br0320 article-title: Deviation-sparse fuzzy c-means with neighbor information constraint publication-title: IEEE Trans. Fuzzy Syst. – volume: 21 start-page: 580 year: 2010 end-page: 590 ident: br0290 article-title: Intuitionistic fuzzy C-means clustering algorithms publication-title: J. Syst. Eng. Electron. – volume: 147 start-page: 185 year: 2000 end-page: 192 ident: br0170 article-title: Fuzzy image clustering incorporating spatial continuity publication-title: IEE Proc., Vis. Image Signal Process. – start-page: 724 year: 2003 end-page: 726 ident: br0210 article-title: MR brain image segmentation using an enhanced fuzzy c-means algorithm publication-title: Proceedings of the 25th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (IEEE Cat. No. 03CH37439), vol. 1 – volume: 64 start-page: 159 year: 1994 end-page: 174 ident: br0060 article-title: Operators over interval valued intuitionistic fuzzy sets publication-title: Fuzzy Sets Syst. – volume: 20 start-page: 87 year: 1986 end-page: 96 ident: br0030 article-title: Intuitionistic fuzzy sets publication-title: Fuzzy Sets Syst. – volume: 21 start-page: 193 year: 2002 end-page: 199 ident: br0010 article-title: A modified fuzzy c-means algorithm for bias field estimation and segmentation of MRI data publication-title: IEEE Trans. Med. Imaging – volume: 122 start-page: 45 year: 2019 end-page: 52 ident: br0250 article-title: A modified intuitionistic fuzzy c-means algorithm incorporating hesitation degree publication-title: Pattern Recognit. Lett. – start-page: 1 year: 2023 end-page: 14 ident: br0330 article-title: An adaptive fuzzy c-mean noise image segmentation algorithm combining local and regional information publication-title: IEEE Trans. Fuzzy Syst. – volume: 159 start-page: 2399 year: 2008 end-page: 2427 ident: br0190 article-title: Collaborative clustering with the use of fuzzy C-means and its quantification publication-title: Fuzzy Sets Syst. – volume: 61 start-page: 137 year: 1994 end-page: 142 ident: br0050 article-title: New operations defined over the intuitionistic fuzzy sets publication-title: Fuzzy Sets Syst. – volume: 33 start-page: 898 year: 2010 end-page: 916 ident: br0020 article-title: Contour detection and hierarchical image segmentation publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – volume: 28 start-page: 359 year: 1998 end-page: 369 ident: br0230 article-title: Image segmentation by a fuzzy clustering algorithm using adaptive spatially constrained membership functions publication-title: IEEE Trans. Syst. Man Cybern., Part A, Syst. Hum. – volume: 19 start-page: 127 year: 2022 end-page: 137 ident: br0310 article-title: Novel distance measure between intuitionistic fuzzy sets and its application in pattern recognition publication-title: Iran. J. Fuzzy Syst. – volume: 33 start-page: 37 year: 1989 end-page: 45 ident: br0040 article-title: More on intuitionistic fuzzy sets publication-title: Fuzzy Sets Syst. – volume: 14 year: 2009 ident: br0150 article-title: Digital image processing, third edition publication-title: J. Biomed. Opt. – volume: 46 start-page: 543 year: 2016 end-page: 557 ident: br0240 article-title: An improved intuitionistic fuzzy c-means clustering algorithm incorporating local information for brain image segmentation publication-title: Appl. Soft Comput. – volume: 16 start-page: 529 year: 2008 end-page: 555 ident: br0280 article-title: An overview of distance and similarity measures of intuitionistic fuzzy sets publication-title: Int. J. Uncertain. Fuzziness Knowl.-Based Syst. – volume: 40 start-page: 825 year: 2007 end-page: 838 ident: br0080 article-title: Fast and robust fuzzy c-means clustering algorithms incorporating local information for image segmentation publication-title: Pattern Recognit. – volume: 11 start-page: 1711 year: 2011 end-page: 1717 ident: br0090 article-title: A novel intuitionistic fuzzy C means clustering algorithm and its application to medical images publication-title: Appl. Soft Comput. – volume: 19 start-page: 1328 year: 2010 end-page: 1337 ident: br0160 article-title: A robust fuzzy local information C-means clustering algorithm publication-title: IEEE Trans. Image Process. – volume: 34 start-page: 1907 year: 2004 end-page: 1916 ident: br0100 article-title: Robust image segmentation using FCM with spatial constraints based on new kernel-induced distance measure publication-title: IEEE Trans. Syst. Man Cybern., Part B, Cybern. – start-page: 2 year: 2005 end-page: 7 ident: br0260 article-title: Towards intuitionistic fuzzy image processing publication-title: International Conference on Computational Intelligence for Modelling, Control and Automation and International Conference on Intelligent Agents, Web Technologies and Internet Commerce (CIMCA-IAWTIC'06), vol. 1 – volume: 340 start-page: 91 year: 2018 end-page: 108 ident: br0180 article-title: Generalised kernel weighted fuzzy C-means clustering algorithm with local information publication-title: Fuzzy Sets Syst. – volume: 114 start-page: 505 issue: 3 year: 2000 ident: 10.1016/j.ins.2024.121205_br0220 article-title: Distances between intuitionistic fuzzy sets publication-title: Fuzzy Sets Syst. doi: 10.1016/S0165-0114(98)00244-9 – volume: 15 start-page: 107 issue: 1 year: 2007 ident: 10.1016/j.ins.2024.121205_br0350 article-title: Uncertain fuzzy clustering: interval type-2 fuzzy approach to C-means publication-title: IEEE Trans. Fuzzy Syst. doi: 10.1109/TFUZZ.2006.889763 – start-page: 724 year: 2003 ident: 10.1016/j.ins.2024.121205_br0210 article-title: MR brain image segmentation using an enhanced fuzzy c-means algorithm – volume: 21 start-page: 193 issue: 3 year: 2002 ident: 10.1016/j.ins.2024.121205_br0010 article-title: A modified fuzzy c-means algorithm for bias field estimation and segmentation of MRI data publication-title: IEEE Trans. Med. Imaging doi: 10.1109/42.996338 – volume: 3 start-page: 32 issue: 3 year: 1973 ident: 10.1016/j.ins.2024.121205_br0110 article-title: A fuzzy relative of the ISODATA process and its use in detecting compact well-separated clusters publication-title: J. Cybern. doi: 10.1080/01969727308546046 – volume: 14 year: 2009 ident: 10.1016/j.ins.2024.121205_br0150 article-title: Digital image processing, third edition publication-title: J. Biomed. Opt. doi: 10.1117/1.3115362 – volume: 147 start-page: 185 issue: 2 year: 2000 ident: 10.1016/j.ins.2024.121205_br0170 article-title: Fuzzy image clustering incorporating spatial continuity publication-title: IEE Proc., Vis. Image Signal Process. doi: 10.1049/ip-vis:20000218 – volume: 20 start-page: 87 issue: 1 year: 1986 ident: 10.1016/j.ins.2024.121205_br0030 article-title: Intuitionistic fuzzy sets publication-title: Fuzzy Sets Syst. doi: 10.1016/S0165-0114(86)80034-3 – volume: 42 start-page: 2527 issue: 11 year: 2009 ident: 10.1016/j.ins.2024.121205_br0120 article-title: Single point iterative weighted fuzzy C-means clustering algorithm for remote sensing image segmentation publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2009.04.013 – volume: 157 start-page: 1 year: 2023 ident: 10.1016/j.ins.2024.121205_br0340 article-title: Interval type-2 possibilistic fuzzy clustering noisy image segmentation algorithm with adaptive spatial constraints and local feature weighting & clustering weighting publication-title: Int. J. Approx. Reason. doi: 10.1016/j.ijar.2023.02.013 – volume: PAMI-2 start-page: 1 issue: 1 year: 1980 ident: 10.1016/j.ins.2024.121205_br0070 article-title: A convergence theorem for the fuzzy ISODATA clustering algorithms publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.1980.4766964 – volume: 61 start-page: 137 issue: 2 year: 1994 ident: 10.1016/j.ins.2024.121205_br0050 article-title: New operations defined over the intuitionistic fuzzy sets publication-title: Fuzzy Sets Syst. doi: 10.1016/0165-0114(94)90229-1 – volume: 16 start-page: 529 issue: 04 year: 2008 ident: 10.1016/j.ins.2024.121205_br0280 article-title: An overview of distance and similarity measures of intuitionistic fuzzy sets publication-title: Int. J. Uncertain. Fuzziness Knowl.-Based Syst. doi: 10.1142/S0218488508005406 – year: 2019 ident: 10.1016/j.ins.2024.121205_br0130 article-title: D̈ouble-DIP:̈ unsupervised image decomposition via coupled deep-image-priors – start-page: 8 year: 1965 ident: 10.1016/j.ins.2024.121205_br0300 article-title: Fuzzy sets. inf. control publication-title: Inf. Control – volume: 34 start-page: 1907 issue: 4 year: 2004 ident: 10.1016/j.ins.2024.121205_br0100 article-title: Robust image segmentation using FCM with spatial constraints based on new kernel-induced distance measure publication-title: IEEE Trans. Syst. Man Cybern., Part B, Cybern. doi: 10.1109/TSMCB.2004.831165 – volume: 159 start-page: 2399 issue: 18 year: 2008 ident: 10.1016/j.ins.2024.121205_br0190 article-title: Collaborative clustering with the use of fuzzy C-means and its quantification publication-title: Fuzzy Sets Syst. doi: 10.1016/j.fss.2007.12.030 – volume: 26 start-page: 2063 issue: 13 year: 2005 ident: 10.1016/j.ins.2024.121205_br0270 article-title: Distance measure between intuitionistic fuzzy sets publication-title: Pattern Recognit. Lett. doi: 10.1016/j.patrec.2005.03.018 – volume: 28 start-page: 359 issue: 3 year: 1998 ident: 10.1016/j.ins.2024.121205_br0230 article-title: Image segmentation by a fuzzy clustering algorithm using adaptive spatially constrained membership functions publication-title: IEEE Trans. Syst. Man Cybern., Part A, Syst. Hum. doi: 10.1109/3468.668967 – volume: 19 start-page: 1328 issue: 5 year: 2010 ident: 10.1016/j.ins.2024.121205_br0160 article-title: A robust fuzzy local information C-means clustering algorithm publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2010.2040763 – volume: 64 start-page: 159 issue: 2 year: 1994 ident: 10.1016/j.ins.2024.121205_br0060 article-title: Operators over interval valued intuitionistic fuzzy sets publication-title: Fuzzy Sets Syst. doi: 10.1016/0165-0114(94)90331-X – start-page: 2 year: 2005 ident: 10.1016/j.ins.2024.121205_br0260 article-title: Towards intuitionistic fuzzy image processing – volume: 19 start-page: 127 issue: 3 year: 2022 ident: 10.1016/j.ins.2024.121205_br0310 article-title: Novel distance measure between intuitionistic fuzzy sets and its application in pattern recognition publication-title: Iran. J. Fuzzy Syst. – start-page: 1 year: 2023 ident: 10.1016/j.ins.2024.121205_br0330 article-title: An adaptive fuzzy c-mean noise image segmentation algorithm combining local and regional information publication-title: IEEE Trans. Fuzzy Syst. – volume: 33 start-page: 898 issue: 5 year: 2010 ident: 10.1016/j.ins.2024.121205_br0020 article-title: Contour detection and hierarchical image segmentation publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2010.161 – volume: 22 start-page: 573 issue: 2 year: 2012 ident: 10.1016/j.ins.2024.121205_br0140 article-title: Fuzzy c-means clustering with local information and kernel metric for image segmentation publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2012.2219547 – volume: 33 start-page: 37 issue: 1 year: 1989 ident: 10.1016/j.ins.2024.121205_br0040 article-title: More on intuitionistic fuzzy sets publication-title: Fuzzy Sets Syst. doi: 10.1016/0165-0114(89)90215-7 – volume: 84 start-page: 285 issue: 2 year: 2001 ident: 10.1016/j.ins.2024.121205_br0200 article-title: Spatial models for fuzzy clustering publication-title: Comput. Vis. Image Underst. doi: 10.1006/cviu.2001.0951 – volume: 27 start-page: 185 issue: 1 year: 2018 ident: 10.1016/j.ins.2024.121205_br0320 article-title: Deviation-sparse fuzzy c-means with neighbor information constraint publication-title: IEEE Trans. Fuzzy Syst. doi: 10.1109/TFUZZ.2018.2883033 – volume: 21 start-page: 580 issue: 4 year: 2010 ident: 10.1016/j.ins.2024.121205_br0290 article-title: Intuitionistic fuzzy C-means clustering algorithms publication-title: J. Syst. Eng. Electron. doi: 10.3969/j.issn.1004-4132.2010.04.009 – volume: 122 start-page: 45 year: 2019 ident: 10.1016/j.ins.2024.121205_br0250 article-title: A modified intuitionistic fuzzy c-means algorithm incorporating hesitation degree publication-title: Pattern Recognit. Lett. doi: 10.1016/j.patrec.2019.02.017 – volume: 11 start-page: 1711 issue: 2 year: 2011 ident: 10.1016/j.ins.2024.121205_br0090 article-title: A novel intuitionistic fuzzy C means clustering algorithm and its application to medical images publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2010.05.005 – volume: 340 start-page: 91 year: 2018 ident: 10.1016/j.ins.2024.121205_br0180 article-title: Generalised kernel weighted fuzzy C-means clustering algorithm with local information publication-title: Fuzzy Sets Syst. doi: 10.1016/j.fss.2018.01.019 – volume: 40 start-page: 825 issue: 3 year: 2007 ident: 10.1016/j.ins.2024.121205_br0080 article-title: Fast and robust fuzzy c-means clustering algorithms incorporating local information for image segmentation publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2006.07.011 – volume: 46 start-page: 543 year: 2016 ident: 10.1016/j.ins.2024.121205_br0240 article-title: An improved intuitionistic fuzzy c-means clustering algorithm incorporating local information for brain image segmentation publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2015.12.022  | 
    
| SSID | ssj0004766 | 
    
| Score | 2.4465983 | 
    
| Snippet | Image segmentation allows us to separate an image into distinct, non-overlapping parts by utilizing specific features such as hue, texture, and shape. The... | 
    
| SourceID | crossref elsevier  | 
    
| SourceType | Enrichment Source Index Database Publisher  | 
    
| StartPage | 121205 | 
    
| SubjectTerms | Clustering Distance measure Fuzzy C-means algorithm Image segmentation Intuitionistic fuzzy set  | 
    
| Title | Intuitionistic fuzzy local information C-means algorithm for image segmentation | 
    
| URI | https://dx.doi.org/10.1016/j.ins.2024.121205 | 
    
| Volume | 681 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1872-6291 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0004766 issn: 0020-0255 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier ScienceDirect customDbUrl: eissn: 1872-6291 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0004766 issn: 0020-0255 databaseCode: .~1 dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Complete Freedom Collection [SCCMFC] customDbUrl: eissn: 1872-6291 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0004766 issn: 0020-0255 databaseCode: ACRLP dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals [SCFCJ] customDbUrl: eissn: 1872-6291 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0004766 issn: 0020-0255 databaseCode: AIKHN dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1872-6291 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0004766 issn: 0020-0255 databaseCode: AKRWK dateStart: 19681201 isFulltext: true providerName: Library Specific Holdings  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3PT8IwFG4IXvRgFDWiQnowHkwmW9dt9EiIBDTiRRJuS3_iDBsEx0EO_u22W6eYqAeP2_qS5bV932v6ve8BcNk1om8eDhyFo8i0MAsdKhR1BFKiSwKNuIV258M4HE7w3TSY1kC_qoUxtEob-8uYXkRr-6ZjvdlZJomp8UVFRqwxSW9YYgp-MY5MF4Ob9y-aB47K-0pzTDKjq5vNguOVZEaxG2GjsYBMB7ufsGkLbwYHYN8mirBX_sshqMmsAfa25AMboGWLDuAVtFVFxsvQbtcj8DjSgFJQsgo1ZqjWm80bLNALJlsGfSeVGrEgnc8WqyR_TqH-BpNUhxr4KmepLU_KjsFkcPvUHzq2gYLDEYlyhyjXlQQpj5FIKq7zaOVT15ehJ_S5LoyI4sKnAVUu04laaIR7EBdhV4Qu49yP_BNQzxaZPAXQY9wlVKdbyqOYhZIIiRmXniKMI-XLJnAr18XcqoubJhfzuKKRvcTa27Hxdlx6uwmuP02WpbTGX4NxNR_xt_UR69D_u9nZ_8zOwa55Kkl7F6Cer9aypZOPnLWL1dUGO73R_XD8AUGu2RM | 
    
| linkProvider | Elsevier | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3PT8IwFH5BPKgHo6gRf_ZgPJhMtq7b6NEQCSjgBRJuy9a1OMMGwXGQg3-77dYpJurB69qXNG_t-76m730P4KqpRN8s4hiCeJ5qYeYaQSQCI8IialJHIm6u3dkfuJ0ReRg74wq0yloYlVapY38R0_Norb80tDcb8zhWNb44Z8QSk-SBpc0N2CQO9tQN7Pb9K8-DeMWDpbonqenl02ae5BWnSrIbEyWygFULu5_AaQ1w2nuwq5kiuisWsw8VntZgZ00_sAbnuuoAXSNdVqTcjPR5PYCnrkSUPCcrl2NGYrlavaEcvlC8ZtAyEi4hCwXTyWwRZ88JkmMoTmSsQa98kuj6pPQQRu37Yatj6A4KBsPUywwqTJNTLKyQelwwSaSFHZg2d61IXuxcjwoW2YETCDOUTM1Vyj2YRW4zcs2QMduzj6CazlJ-DMgKmUkDybeEFZDQ5TTiJGTcEjRkWNi8DmbpOp9peXHV5WLql3lkL770tq-87RfersPNp8m80Nb4azIp_4f_bYP4Mvb_bnbyP7NL2OoM-z2_1x08nsK2Giky-M6gmi2W_FwykSy8yHfaB2pB2qg | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Intuitionistic+fuzzy+local+information+C-means+algorithm+for+image+segmentation&rft.jtitle=Information+sciences&rft.au=Cui%2C+Hanshuai&rft.au=Xie%2C+Zheng&rft.au=Zeng%2C+Wenyi&rft.au=Ma%2C+Rong&rft.date=2024-10-01&rft.pub=Elsevier+Inc&rft.issn=0020-0255&rft.eissn=1872-6291&rft.volume=681&rft_id=info:doi/10.1016%2Fj.ins.2024.121205&rft.externalDocID=S0020025524011198 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0020-0255&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0020-0255&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0020-0255&client=summon |