State-of-health estimation of lithium-ion batteries using a kernel support vector machine tuned by a new nonlinear gray wolf algorithm

The computer-aided estimation of battery state of health (SOH) has been regarded as an active field of energy management because of the high demand for electric vehicles and consumer electronics. In this study, a new data-driven model is proposed for the capacity prediction and online monitoring of...

Full description

Saved in:
Bibliographic Details
Published inJournal of energy storage Vol. 102; p. 114052
Main Authors Liu, Shiyu, Fang, Lide, Zhao, Xiaoyu, Wang, Shutao, Hu, Chunhai, Gu, Fengshou, Ball, Andrew
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 15.11.2024
Subjects
Online AccessGet full text
ISSN2352-152X
DOI10.1016/j.est.2024.114052

Cover

Abstract The computer-aided estimation of battery state of health (SOH) has been regarded as an active field of energy management because of the high demand for electric vehicles and consumer electronics. In this study, a new data-driven model is proposed for the capacity prediction and online monitoring of lithium-ion batteries, which is formulated based on a kernel support vector machine (KSVM) and a nonlinear Gray Wolf Optimization (NGWO) to capture the health information in electrochemical impedance spectroscopy (EIS) data. The amplitudes of EIS in the frequency range from 0.02 Hz to 20,000 Hz are taken as the input variables of KSVM model to predict the capacity at different cycles of battery charge-discharging. Moreover, GWO is improved through the proposed new inverse S-shaped exponential compound function convergence factor and position ratio-based dynamic weighting scheme to enhance its accuracy in optimizing KSVM parameters. The capacity prediction tasks of single battery (Case 1), different batteries at different temperatures (Case 2) and limited cyclic data (Case 3) are discussed in detail. Experimental results show that compared with other estimation methods, the NGWO-KSVM exhibit the lowest root mean square error (0.073 and 0.075 in Case 1, 0.434 and 0.263 in Case 2), the smallest mean absolute percentage error (0.052 and 0.055 in Case 1, 0.286 and 0.178 in Case 2), and the highest determination coefficient (0.936 and 0.956 in Case 1, and 0.981 and 0.993 in Case 2) for two different batteries in relatively short time. Also the NGWO-KSVM can more effectively utilize a fewer cycles of EIS data to improve capacity estimation performance in Case 3. It provides superior solution for the problem of low accuracy and poor robustness in battery capacity prediction, and has the potential for actual implementation in battery routine monitoring. •A new EIS-machine learning model is proposed to estimate battery SOH.•An inverse S-shaped exponential compound function is proposed to replace the linear convergence factor in GWO.•A position ratio-based dynamic weighting scheme is proposed to control the ranking system of GWO.•The proposed NGWO can improve the accuracy of optimizing KSVM parameters.•The effectiveness of the presented method is validated by three different conditions.
AbstractList The computer-aided estimation of battery state of health (SOH) has been regarded as an active field of energy management because of the high demand for electric vehicles and consumer electronics. In this study, a new data-driven model is proposed for the capacity prediction and online monitoring of lithium-ion batteries, which is formulated based on a kernel support vector machine (KSVM) and a nonlinear Gray Wolf Optimization (NGWO) to capture the health information in electrochemical impedance spectroscopy (EIS) data. The amplitudes of EIS in the frequency range from 0.02 Hz to 20,000 Hz are taken as the input variables of KSVM model to predict the capacity at different cycles of battery charge-discharging. Moreover, GWO is improved through the proposed new inverse S-shaped exponential compound function convergence factor and position ratio-based dynamic weighting scheme to enhance its accuracy in optimizing KSVM parameters. The capacity prediction tasks of single battery (Case 1), different batteries at different temperatures (Case 2) and limited cyclic data (Case 3) are discussed in detail. Experimental results show that compared with other estimation methods, the NGWO-KSVM exhibit the lowest root mean square error (0.073 and 0.075 in Case 1, 0.434 and 0.263 in Case 2), the smallest mean absolute percentage error (0.052 and 0.055 in Case 1, 0.286 and 0.178 in Case 2), and the highest determination coefficient (0.936 and 0.956 in Case 1, and 0.981 and 0.993 in Case 2) for two different batteries in relatively short time. Also the NGWO-KSVM can more effectively utilize a fewer cycles of EIS data to improve capacity estimation performance in Case 3. It provides superior solution for the problem of low accuracy and poor robustness in battery capacity prediction, and has the potential for actual implementation in battery routine monitoring. •A new EIS-machine learning model is proposed to estimate battery SOH.•An inverse S-shaped exponential compound function is proposed to replace the linear convergence factor in GWO.•A position ratio-based dynamic weighting scheme is proposed to control the ranking system of GWO.•The proposed NGWO can improve the accuracy of optimizing KSVM parameters.•The effectiveness of the presented method is validated by three different conditions.
ArticleNumber 114052
Author Gu, Fengshou
Ball, Andrew
Fang, Lide
Wang, Shutao
Hu, Chunhai
Liu, Shiyu
Zhao, Xiaoyu
Author_xml – sequence: 1
  givenname: Shiyu
  surname: Liu
  fullname: Liu, Shiyu
  email: liushiyu0204@163.com
  organization: College of Quality and Technical Supervision, Hebei University, Baoding 071002, China
– sequence: 2
  givenname: Lide
  surname: Fang
  fullname: Fang, Lide
  organization: College of Quality and Technical Supervision, Hebei University, Baoding 071002, China
– sequence: 3
  givenname: Xiaoyu
  surname: Zhao
  fullname: Zhao, Xiaoyu
  organization: Centre for Efficiency and Performance Engineering, University of Huddersfield, Huddersfield HD1 3DH, UK
– sequence: 4
  givenname: Shutao
  surname: Wang
  fullname: Wang, Shutao
  organization: Measurement Technology and Instrumentation Key Lab of Hebei Province, School of Electrical Engineering, Yanshan University, Qinhuangdao, Hebei 066004, China
– sequence: 5
  givenname: Chunhai
  surname: Hu
  fullname: Hu, Chunhai
  organization: Measurement Technology and Instrumentation Key Lab of Hebei Province, School of Electrical Engineering, Yanshan University, Qinhuangdao, Hebei 066004, China
– sequence: 6
  givenname: Fengshou
  surname: Gu
  fullname: Gu, Fengshou
  organization: Centre for Efficiency and Performance Engineering, University of Huddersfield, Huddersfield HD1 3DH, UK
– sequence: 7
  givenname: Andrew
  surname: Ball
  fullname: Ball, Andrew
  organization: Centre for Efficiency and Performance Engineering, University of Huddersfield, Huddersfield HD1 3DH, UK
BookMark eNp9kM9uAiEQhznYpNb6AL3xAruFRXE3PTWm_xKTHtomvRHAwcXuggHU-AJ97mLtqQdPkyHzDfP7rtDAeQcI3VBSUkL57bqEmMqKVJOS0gmZVgM0rNi0Kui0-rxE4xjXhOTBKaUNH6LvtyQTFN4ULcgutTjTtpfJeoe9wZ1Nrd32xbFVMiUIFiLeRutWWOIvCA46HLebjQ8J70AnH3AvdWsd4LR1sMTqkAcd7HG-s8vPMuBVkAe8953Bslv5kL_or9GFkV2E8V8doY_Hh_f5c7F4fXqZ3y8KXTWzVDRMkbrRjawrBVoZujS05lRpzU0uijOqTW0a1TCuGJ1xZrhmoHNexkmj2QjR014dfIwBjNiEHDccBCXi6E-sRTYgjv7EyV9mZv8YbdOvoRSk7c6SdycScqSdhSCituA0LG3IrsTS2zP0D8X2ke0
CitedBy_id crossref_primary_10_1109_ACCESS_2025_3533137
Cites_doi 10.1149/1945-7111/acc09f
10.1016/j.energy.2023.128677
10.1016/j.energy.2021.120116
10.1016/j.est.2024.111656
10.1115/1.4054128
10.1016/j.electacta.2020.136094
10.1016/j.rser.2020.110015
10.1016/j.energy.2023.129768
10.1016/j.ress.2024.110450
10.1016/j.apenergy.2021.117922
10.1016/j.est.2023.109884
10.1016/j.measurement.2021.110293
10.1016/j.energy.2020.119078
10.1038/s41467-020-15235-7
10.1016/j.est.2023.110063
10.1038/s41467-021-26894-5
10.1109/TIE.2020.3034855
10.1109/ACCESS.2020.3026552
10.1016/j.engappai.2020.104015
10.1016/j.electacta.2023.142270
10.1038/s41467-022-29837-w
10.1002/aenm.202101126
10.1109/TVT.2020.3014932
10.1016/j.est.2023.107557
10.1016/j.jclepro.2021.128015
10.1109/TIE.2021.3066946
10.1149/1945-7111/ac7102
10.1016/j.measurement.2023.113341
10.1016/j.est.2023.109069
10.1109/TIE.2023.3247735
10.1016/j.energy.2023.128794
10.1016/j.jpowsour.2020.229154
10.1016/j.energy.2022.125380
10.1016/j.engappai.2021.104407
10.3390/en15186665
10.1016/j.energy.2023.126706
10.1109/TTE.2022.3162164
10.1109/TIM.2021.3125108
10.1016/j.est.2024.110678
10.1109/TTE.2021.3129479
ContentType Journal Article
Copyright 2024 Elsevier Ltd
Copyright_xml – notice: 2024 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.est.2024.114052
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
ExternalDocumentID 10_1016_j_est_2024_114052
S2352152X24036387
GroupedDBID --M
0R~
457
4G.
7-5
AACTN
AAEDT
AAEDW
AAHCO
AAKOC
AALRI
AAOAW
AAQFI
AARIN
AAXKI
AAXUO
ABJNI
ABMAC
ACDAQ
ACGFS
ACRLP
ADBBV
ADEZE
AEBSH
AFJKZ
AFKWA
AFTJW
AGHFR
AGUBO
AHJVU
AIEXJ
AIKHN
AITUG
AJOXV
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
APLSM
AXJTR
BELTK
BJAXD
BKOJK
BLXMC
EBS
EFJIC
FDB
FIRID
FYGXN
KOM
O9-
OAUVE
ROL
SPC
SPCBC
SSB
SSD
SSR
SST
SSZ
T5K
~G-
AATTM
AAYWO
AAYXX
ACLOT
ACVFH
ADCNI
AEIPS
AEUPX
AFPUW
AIGII
AIIUN
AKBMS
AKYEP
ANKPU
APXCP
CITATION
EFKBS
EFLBG
EJD
ID FETCH-LOGICAL-c297t-93b089c9a82becbf1df1861bcc6f61bb631cf8f9b936b31763f6c3ec0163609c3
IEDL.DBID AIKHN
ISSN 2352-152X
IngestDate Thu Apr 24 22:54:16 EDT 2025
Wed Oct 01 01:34:13 EDT 2025
Sat Nov 16 15:58:36 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Lithium-ion battery
State of health
Nonlinear gray wolf algorithm
Machine learning
Electrochemical impedance spectroscopy
Kernel support vector regression
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c297t-93b089c9a82becbf1df1861bcc6f61bb631cf8f9b936b31763f6c3ec0163609c3
ParticipantIDs crossref_primary_10_1016_j_est_2024_114052
crossref_citationtrail_10_1016_j_est_2024_114052
elsevier_sciencedirect_doi_10_1016_j_est_2024_114052
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-11-15
PublicationDateYYYYMMDD 2024-11-15
PublicationDate_xml – month: 11
  year: 2024
  text: 2024-11-15
  day: 15
PublicationDecade 2020
PublicationTitle Journal of energy storage
PublicationYear 2024
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Li, Tian, Li (bb0230) 2023; 67
Dong, Han, Wang (bb0125) 2021; 68
Zhou, Qiu, Zhu, Armaghani, Li, Nguyen, Yagiz (bb0215) 2021; 97
Li, Lyu, Li, Gao, Liu, Zhang (bb0120) 2023; 282
Wu, Fang, Dong, Lin (bb0150) 2023; 262
Lin, Wu, Meng, Wang, Wu (bb0140) 2023; 268
Wang, Zhai, Liu, Zheng, Zhibin, Chen (bb0130) 2024; 77
Liu, Wang, Hu, Qin, Wang, Kong (bb0225) 2022; 187
Li, Yang, Li, Wang, Wang (bb0205) 2022; 15
Zhu, Wang, Huang, Bhushan Gopaluni, Cao, Heere, Ehrenberg (bb0070) 2022; 13
Yang, Wang, Kong (bb0220) 2021; 70
He, Bai, Wang, Wu, Ding (bb0085) 2024; 83
Gou, Xu, Feng (bb0145) 2020; 69
Zhang, Tang, Zhang, Wang, Stimming, Lee (bb0165) 2020; 11
Jiao, Wang, Yang, Liu (bb0115) 2021; 104
Chang, Wang, Jiang, Gao, Jiang (bb0185) 2022; 19
Wu, Meng, Lin, Wang, Wu, Stroe (bb0200) 2024; 252
Zhang, Li, Luo, Fan, Du (bb0010) 2021; 238
Liu, Wang, Li, Wang (bb0160) 2023; 8
Chang, Pan, Wang, Jiang, Tian, Gao, Jiang, Wu (bb0210) 2024; 288
Li, Yang, Li, Zhang, Zhou, Meng, Zhao, Wang, Zhang, Li, Lv (bb0050) 2024; 86
Wang, Tian, Sun, Wang, Xu, Li, Chen (bb0040) 2020; 131
Zhang, Wang, Yang, Cui, Li (bb0045) 2020; 343
Zou, Lin, Li, Liu (bb0020) 2023; 73
Mawonou, Eddahech, Dumur, Beauvois, Godoy (bb0075) 2021; 484
Li, Yuan, Wang (bb0090) 2021; 484
Vignesh, Che, Selvaraj, Tey (bb0035) 2024; 89
Gaberscek (bb0155) 2021; 12
Long, Wang, Cao, Zhou, Fernandez (bb0055) 2023; 450
Ni, Xu, Zhu, Pei (bb0025) 2022; 305
Bavand, Khajehoddin, Ardakani, Tabesh (bb0060) 2022; 8
Luo, Syed, Nicholls, Gray (bb0180) 2023; 170
Shu, Li, Wang, Han, Li, Tang (bb0065) 2024; 9
Xiong, Mo, Yan (bb0100) 2021; 9
Penjuru, Reddy, Nair, Sahoo, Mayan, Jiang, Ahmed, Wang, Roy (bb0175) 2022; 169
Babaeiyazdi, Rezaei-Zare, Shokrzadeh (bb0170) 2021; 223
Wu, Cui, Meng, Peng, Lin (bb0105) 2024; 71
Buchicchio, De Angelis, Santoni, Carbone (bb0195) 2023; 220
Camboim, Moreira, Rosolem, Beck, Arioli, Omae, Ding (bb0190) 2024; 78
Chen, Wang, Liu, Wang, Ding, Pan (bb0110) 2021; 215
Yang, Zhang, Jiang, Zhang, Zhang, Wang (bb0015) 2021; 314
Gao, Liu, Zhu, Zhang, Zhang (bb0030) 2020; 69
Wang, Wu, Takyi-Aninakwa, Fernandez, Stroe, Huang (bb0135) 2023; 284
Weiss, Ruess, Kasnatscheew, Levartovsky, Levy, Minnmann, Stolz, Waldmann, Wohlfahrt-Mehrens, Aurbach, Winter, Ein-Eli, Janek (bb0005) 2021; 11
She, Li, Zou, Wik, Wang, Sun (bb0080) 2022; 8
Zuo, Liang, Zhang, Wei, Zhu, Tan (bb0095) 2023; 282
Babaeiyazdi (10.1016/j.est.2024.114052_bb0170) 2021; 223
Zhang (10.1016/j.est.2024.114052_bb0045) 2020; 343
Mawonou (10.1016/j.est.2024.114052_bb0075) 2021; 484
Wu (10.1016/j.est.2024.114052_bb0200) 2024; 252
Li (10.1016/j.est.2024.114052_bb0120) 2023; 282
Liu (10.1016/j.est.2024.114052_bb0160) 2023; 8
Zhu (10.1016/j.est.2024.114052_bb0070) 2022; 13
Penjuru (10.1016/j.est.2024.114052_bb0175) 2022; 169
Zuo (10.1016/j.est.2024.114052_bb0095) 2023; 282
Jiao (10.1016/j.est.2024.114052_bb0115) 2021; 104
Vignesh (10.1016/j.est.2024.114052_bb0035) 2024; 89
Chang (10.1016/j.est.2024.114052_bb0210) 2024; 288
Shu (10.1016/j.est.2024.114052_bb0065) 2024; 9
Zhang (10.1016/j.est.2024.114052_bb0010) 2021; 238
Gou (10.1016/j.est.2024.114052_bb0145) 2020; 69
Yang (10.1016/j.est.2024.114052_bb0220) 2021; 70
Wang (10.1016/j.est.2024.114052_bb0040) 2020; 131
Wang (10.1016/j.est.2024.114052_bb0130) 2024; 77
She (10.1016/j.est.2024.114052_bb0080) 2022; 8
Xiong (10.1016/j.est.2024.114052_bb0100) 2021; 9
Dong (10.1016/j.est.2024.114052_bb0125) 2021; 68
Ni (10.1016/j.est.2024.114052_bb0025) 2022; 305
Bavand (10.1016/j.est.2024.114052_bb0060) 2022; 8
Wu (10.1016/j.est.2024.114052_bb0105) 2024; 71
He (10.1016/j.est.2024.114052_bb0085) 2024; 83
Zhou (10.1016/j.est.2024.114052_bb0215) 2021; 97
Lin (10.1016/j.est.2024.114052_bb0140) 2023; 268
Zou (10.1016/j.est.2024.114052_bb0020) 2023; 73
Chang (10.1016/j.est.2024.114052_bb0185) 2022; 19
Li (10.1016/j.est.2024.114052_bb0230) 2023; 67
Luo (10.1016/j.est.2024.114052_bb0180) 2023; 170
Camboim (10.1016/j.est.2024.114052_bb0190) 2024; 78
Li (10.1016/j.est.2024.114052_bb0090) 2021; 484
Yang (10.1016/j.est.2024.114052_bb0015) 2021; 314
Gaberscek (10.1016/j.est.2024.114052_bb0155) 2021; 12
Zhang (10.1016/j.est.2024.114052_bb0165) 2020; 11
Weiss (10.1016/j.est.2024.114052_bb0005) 2021; 11
Gao (10.1016/j.est.2024.114052_bb0030) 2020; 69
Chen (10.1016/j.est.2024.114052_bb0110) 2021; 215
Liu (10.1016/j.est.2024.114052_bb0225) 2022; 187
Li (10.1016/j.est.2024.114052_bb0050) 2024; 86
Wu (10.1016/j.est.2024.114052_bb0150) 2023; 262
Long (10.1016/j.est.2024.114052_bb0055) 2023; 450
Wang (10.1016/j.est.2024.114052_bb0135) 2023; 284
Li (10.1016/j.est.2024.114052_bb0205) 2022; 15
Buchicchio (10.1016/j.est.2024.114052_bb0195) 2023; 220
References_xml – volume: 314
  year: 2021
  ident: bb0015
  article-title: Review on state-of-health of lithium-ion batteries: characterizations, estimations and applications
  publication-title: J. Clean. Prod.
– volume: 9
  start-page: 52
  year: 2024
  end-page: 64
  ident: bb0065
  article-title: Online collaborative estimation technology for SOC and SOH of frequency regulation of a lead-carbon battery in a power system with a high proportion of renewable energy
  publication-title: Prot. Contr. Mod. Pow.
– volume: 67
  year: 2023
  ident: bb0230
  article-title: Remaining useful life prediction of lithium-ion batteries using a spatial temporal network model based on capacity self-recovery effect
  publication-title: J. Energy Storage
– volume: 131
  year: 2020
  ident: bb0040
  article-title: A comprehensive review of battery modeling and state estimation approaches for advanced battery management systems
  publication-title: Renew. Sustain. Energy Rev.
– volume: 8
  start-page: 3673
  year: 2022
  end-page: 3685
  ident: bb0060
  article-title: Online estimations of Li-ion battery SOC and SOH applicable to partial charge/discharge
  publication-title: IEEE T. Transp. Electr.
– volume: 89
  year: 2024
  ident: bb0035
  article-title: State of health indicators for second life battery through non-destructive test approaches from repurposer perspective
  publication-title: J. Energy Storage
– volume: 215
  year: 2021
  ident: bb0110
  article-title: Battery state-of-health estimation based on a metabolic extreme learning machine combining degradation state model and error compensation
  publication-title: Energy
– volume: 69
  start-page: 10854
  year: 2020
  end-page: 10867
  ident: bb0145
  article-title: State-of-health estimation and remaining-useful-life prediction for lithium-ion battery using a hybrid data-driven method
  publication-title: IEEE T. Veh. Technol.
– volume: 288
  year: 2024
  ident: bb0210
  article-title: Fast EIS acquisition method based on SSA-DNN prediction model
  publication-title: Energy
– volume: 19
  year: 2022
  ident: bb0185
  article-title: Lithium-ion battery state of health estimation based on electrochemical impedance spectroscopy and cuckoo search algorithm optimized Elman neural network
  publication-title: J. Electrochem. En. Conv. Stor.
– volume: 282
  year: 2023
  ident: bb0095
  article-title: Intelligent estimation on state of health of lithium-ion power batteries based on failure feature extraction
  publication-title: Energy
– volume: 268
  year: 2023
  ident: bb0140
  article-title: State of health estimation with attentional long short-term memory network for lithium-ion batteries
  publication-title: Energy
– volume: 12
  start-page: 6513
  year: 2021
  ident: bb0155
  article-title: Understanding Li-based battery materials via electrochemical impedance spectroscopy
  publication-title: Nat. Commun.
– volume: 8
  start-page: 1604
  year: 2022
  end-page: 1618
  ident: bb0080
  article-title: Offline and online blended machine learning for lithium-ion battery health state estimation
  publication-title: IEEE T. Transp. Electr.
– volume: 223
  year: 2021
  ident: bb0170
  article-title: State of charge prediction of EV Li-ion batteries using EIS: a machine learning approach
  publication-title: Energy
– volume: 13
  start-page: 2261
  year: 2022
  ident: bb0070
  article-title: Data-driven capacity estimation of commercial lithium-ion batteries from voltage relaxation
  publication-title: Nat. Commun.
– volume: 97
  year: 2021
  ident: bb0215
  article-title: Optimization of support vector machine through the use of metaheuristic algorithms in forecasting TBM advance rate
  publication-title: Eng. Appl. Artif. Intel.
– volume: 68
  start-page: 10949
  year: 2021
  end-page: 10958
  ident: bb0125
  article-title: Dynamic Bayesian network-based lithium-ion battery health prognosis for electric vehicles
  publication-title: IEEE T. Ind. Electron.
– volume: 77
  year: 2024
  ident: bb0130
  article-title: Open access dataset, code library and benchmarking deep learning approaches for state-of-health estimation of lithium-ion batteries
  publication-title: J. Energy Storage
– volume: 78
  year: 2024
  ident: bb0190
  article-title: State of health estimation of second-life batteries through electrochemical impedance spectroscopy and dimensionality reduction
  publication-title: J. Energy Storage
– volume: 187
  year: 2022
  ident: bb0225
  article-title: Development of a new NIR-machine learning approach for simultaneous detection of diesel various properties
  publication-title: Measurement
– volume: 86
  year: 2024
  ident: bb0050
  article-title: SOH estimation method for lithium-ion batteries based on an improved equivalent circuit model via electrochemical impedance spectroscopy
  publication-title: J. Energy Storage
– volume: 8
  start-page: 41601
  year: 2023
  ident: bb0160
  article-title: State-of-health estimation of lithium-ion batteries based on electrochemical impedance spectroscopy: a review
  publication-title: Prot. Contr. Mod. Pow.
– volume: 170
  year: 2023
  ident: bb0180
  article-title: An SVM-based health classifier for offline Li-ion batteries by using EIS technology
  publication-title: J. Electrochem. Soc.
– volume: 69
  start-page: 2684
  year: 2020
  end-page: 2696
  ident: bb0030
  article-title: Co-estimation of state-of-charge and state-of health for lithium-ion batteries using an enhanced electrochemical model
  publication-title: IEEE T. Ind. Electron.
– volume: 262
  year: 2023
  ident: bb0150
  article-title: State of health estimation of lithium-ion battery with improved radial basis function neural network
  publication-title: Energy
– volume: 9
  start-page: 1870
  year: 2021
  end-page: 1881
  ident: bb0100
  article-title: Online state-of-health estimation for second-use lithium-ion batteries based on weighted least squares support vector machine
  publication-title: IEEE Access
– volume: 71
  start-page: 604
  year: 2024
  end-page: 614
  ident: bb0105
  article-title: Data-driven transfer-stacking-based state of health estimation for lithium-ion batteries
  publication-title: IEEE T. Ind. Electron.
– volume: 343
  year: 2020
  ident: bb0045
  article-title: Electrochemical model of lithium-ion battery for wide frequency range applications
  publication-title: Electrochim. Acta
– volume: 284
  year: 2023
  ident: bb0135
  article-title: Improved singular filtering-Gaussian process regression-long short-term memory model for whole-life-cycle remaining capacity estimation of lithium-ion batteries adaptive to fast aging and multi-current variations
  publication-title: Energy
– volume: 73
  year: 2023
  ident: bb0020
  article-title: Advancements in artificial neural networks for health management of energy storage lithium-ion batteries: a comprehensive review
  publication-title: J. Energy Storage
– volume: 282
  year: 2023
  ident: bb0120
  article-title: Lithium-ion battery state of health estimation based on multi-source health indicators extraction and sparse Bayesian learning
  publication-title: Energy
– volume: 450
  year: 2023
  ident: bb0055
  article-title: An improved variable forgetting factor recursive least square-double extend Kalman filtering based on global mean particle swarm optimization algorithm for collaborative state of energy and state of health estimation of lithium-ion batteries
  publication-title: Electrochim. Acta
– volume: 484
  year: 2021
  ident: bb0075
  article-title: State-of-health estimators coupled to a random forest approach for lithium-ion battery aging factor ranking
  publication-title: J. Power Sources
– volume: 169
  year: 2022
  ident: bb0175
  article-title: Machine learning aided predictions for capacity fade of Li-ion batteries
  publication-title: J. Electrochem. Soc.
– volume: 83
  year: 2024
  ident: bb0085
  article-title: SOH estimation for lithium-ion batteries: an improved GPR optimization method based on the developed feature extraction
  publication-title: J. Energy Storage
– volume: 15
  start-page: 6665
  year: 2022
  ident: bb0205
  article-title: Electrochemical impedance spectroscopy based on the state of health estimation for lithium-ion batteries
  publication-title: Energies
– volume: 252
  year: 2024
  ident: bb0200
  article-title: Lithium-ion battery state of health estimation using a hybrid model with electrochemical impedance spectroscopy
  publication-title: Reliab. Eng. Syst. Safe.
– volume: 104
  year: 2021
  ident: bb0115
  article-title: More intelligent and robust estimation of battery state-of-charge with an improved regularized extreme learning machine
  publication-title: Eng. Appl. Artif. Intel.
– volume: 11
  start-page: 1706
  year: 2020
  ident: bb0165
  article-title: Identifying degradation patterns of lithium ion batteries from impedance spectroscopy using machine learning
  publication-title: Nat. Commun.
– volume: 220
  year: 2023
  ident: bb0195
  article-title: Uncertainty characterization of a CNN method for Lithium-ion batteries state of charge estimation using EIS data
  publication-title: Measurement
– volume: 70
  start-page: 2517011
  year: 2021
  ident: bb0220
  article-title: Remaining useful life prediction of lithium-ion batteries based on a mixture of ensemble empirical mode decomposition and GWO-SVR model
  publication-title: IEEE T. Instrum. Meas.
– volume: 238
  year: 2021
  ident: bb0010
  article-title: A review on thermal management of lithium-ion batteries for electric vehicles
  publication-title: Energy
– volume: 484
  year: 2021
  ident: bb0090
  article-title: Multi-time-scale framework for prognostic health condition of lithium battery using modified Gaussian process regression and nonlinear regression
  publication-title: J. Power Sources
– volume: 11
  start-page: 2101126
  year: 2021
  ident: bb0005
  article-title: Fast charging of lithium-ion batteries: a review of materials aspects
  publication-title: Adv. Energy Mater.
– volume: 305
  year: 2022
  ident: bb0025
  article-title: Accurate residual capacity estimation of retired LiFePO4 batteries based on mechanism and data-driven model
  publication-title: Appl. Energy
– volume: 170
  year: 2023
  ident: 10.1016/j.est.2024.114052_bb0180
  article-title: An SVM-based health classifier for offline Li-ion batteries by using EIS technology
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/1945-7111/acc09f
– volume: 86
  issue: A
  year: 2024
  ident: 10.1016/j.est.2024.114052_bb0050
  article-title: SOH estimation method for lithium-ion batteries based on an improved equivalent circuit model via electrochemical impedance spectroscopy
  publication-title: J. Energy Storage
– volume: 284
  year: 2023
  ident: 10.1016/j.est.2024.114052_bb0135
  article-title: Improved singular filtering-Gaussian process regression-long short-term memory model for whole-life-cycle remaining capacity estimation of lithium-ion batteries adaptive to fast aging and multi-current variations
  publication-title: Energy
  doi: 10.1016/j.energy.2023.128677
– volume: 223
  year: 2021
  ident: 10.1016/j.est.2024.114052_bb0170
  article-title: State of charge prediction of EV Li-ion batteries using EIS: a machine learning approach
  publication-title: Energy
  doi: 10.1016/j.energy.2021.120116
– volume: 89
  year: 2024
  ident: 10.1016/j.est.2024.114052_bb0035
  article-title: State of health indicators for second life battery through non-destructive test approaches from repurposer perspective
  publication-title: J. Energy Storage
  doi: 10.1016/j.est.2024.111656
– volume: 484
  year: 2021
  ident: 10.1016/j.est.2024.114052_bb0090
  article-title: Multi-time-scale framework for prognostic health condition of lithium battery using modified Gaussian process regression and nonlinear regression
  publication-title: J. Power Sources
– volume: 19
  issue: 3
  year: 2022
  ident: 10.1016/j.est.2024.114052_bb0185
  article-title: Lithium-ion battery state of health estimation based on electrochemical impedance spectroscopy and cuckoo search algorithm optimized Elman neural network
  publication-title: J. Electrochem. En. Conv. Stor.
  doi: 10.1115/1.4054128
– volume: 343
  year: 2020
  ident: 10.1016/j.est.2024.114052_bb0045
  article-title: Electrochemical model of lithium-ion battery for wide frequency range applications
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2020.136094
– volume: 131
  year: 2020
  ident: 10.1016/j.est.2024.114052_bb0040
  article-title: A comprehensive review of battery modeling and state estimation approaches for advanced battery management systems
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2020.110015
– volume: 288
  year: 2024
  ident: 10.1016/j.est.2024.114052_bb0210
  article-title: Fast EIS acquisition method based on SSA-DNN prediction model
  publication-title: Energy
  doi: 10.1016/j.energy.2023.129768
– volume: 8
  start-page: 41601
  issue: 1
  year: 2023
  ident: 10.1016/j.est.2024.114052_bb0160
  article-title: State-of-health estimation of lithium-ion batteries based on electrochemical impedance spectroscopy: a review
  publication-title: Prot. Contr. Mod. Pow.
– volume: 252
  year: 2024
  ident: 10.1016/j.est.2024.114052_bb0200
  article-title: Lithium-ion battery state of health estimation using a hybrid model with electrochemical impedance spectroscopy
  publication-title: Reliab. Eng. Syst. Safe.
  doi: 10.1016/j.ress.2024.110450
– volume: 305
  year: 2022
  ident: 10.1016/j.est.2024.114052_bb0025
  article-title: Accurate residual capacity estimation of retired LiFePO4 batteries based on mechanism and data-driven model
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2021.117922
– volume: 77
  year: 2024
  ident: 10.1016/j.est.2024.114052_bb0130
  article-title: Open access dataset, code library and benchmarking deep learning approaches for state-of-health estimation of lithium-ion batteries
  publication-title: J. Energy Storage
  doi: 10.1016/j.est.2023.109884
– volume: 187
  year: 2022
  ident: 10.1016/j.est.2024.114052_bb0225
  article-title: Development of a new NIR-machine learning approach for simultaneous detection of diesel various properties
  publication-title: Measurement
  doi: 10.1016/j.measurement.2021.110293
– volume: 215
  year: 2021
  ident: 10.1016/j.est.2024.114052_bb0110
  article-title: Battery state-of-health estimation based on a metabolic extreme learning machine combining degradation state model and error compensation
  publication-title: Energy
  doi: 10.1016/j.energy.2020.119078
– volume: 11
  start-page: 1706
  issue: 1
  year: 2020
  ident: 10.1016/j.est.2024.114052_bb0165
  article-title: Identifying degradation patterns of lithium ion batteries from impedance spectroscopy using machine learning
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-020-15235-7
– volume: 78
  year: 2024
  ident: 10.1016/j.est.2024.114052_bb0190
  article-title: State of health estimation of second-life batteries through electrochemical impedance spectroscopy and dimensionality reduction
  publication-title: J. Energy Storage
  doi: 10.1016/j.est.2023.110063
– volume: 12
  start-page: 6513
  issue: 1
  year: 2021
  ident: 10.1016/j.est.2024.114052_bb0155
  article-title: Understanding Li-based battery materials via electrochemical impedance spectroscopy
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-021-26894-5
– volume: 68
  start-page: 10949
  issue: 11
  year: 2021
  ident: 10.1016/j.est.2024.114052_bb0125
  article-title: Dynamic Bayesian network-based lithium-ion battery health prognosis for electric vehicles
  publication-title: IEEE T. Ind. Electron.
  doi: 10.1109/TIE.2020.3034855
– volume: 9
  start-page: 1870
  year: 2021
  ident: 10.1016/j.est.2024.114052_bb0100
  article-title: Online state-of-health estimation for second-use lithium-ion batteries based on weighted least squares support vector machine
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.3026552
– volume: 238
  year: 2021
  ident: 10.1016/j.est.2024.114052_bb0010
  article-title: A review on thermal management of lithium-ion batteries for electric vehicles
  publication-title: Energy
– volume: 97
  year: 2021
  ident: 10.1016/j.est.2024.114052_bb0215
  article-title: Optimization of support vector machine through the use of metaheuristic algorithms in forecasting TBM advance rate
  publication-title: Eng. Appl. Artif. Intel.
  doi: 10.1016/j.engappai.2020.104015
– volume: 450
  year: 2023
  ident: 10.1016/j.est.2024.114052_bb0055
  article-title: An improved variable forgetting factor recursive least square-double extend Kalman filtering based on global mean particle swarm optimization algorithm for collaborative state of energy and state of health estimation of lithium-ion batteries
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2023.142270
– volume: 13
  start-page: 2261
  issue: 1
  year: 2022
  ident: 10.1016/j.est.2024.114052_bb0070
  article-title: Data-driven capacity estimation of commercial lithium-ion batteries from voltage relaxation
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-022-29837-w
– volume: 11
  start-page: 2101126
  issue: 33
  year: 2021
  ident: 10.1016/j.est.2024.114052_bb0005
  article-title: Fast charging of lithium-ion batteries: a review of materials aspects
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.202101126
– volume: 69
  start-page: 10854
  issue: 10
  year: 2020
  ident: 10.1016/j.est.2024.114052_bb0145
  article-title: State-of-health estimation and remaining-useful-life prediction for lithium-ion battery using a hybrid data-driven method
  publication-title: IEEE T. Veh. Technol.
  doi: 10.1109/TVT.2020.3014932
– volume: 67
  year: 2023
  ident: 10.1016/j.est.2024.114052_bb0230
  article-title: Remaining useful life prediction of lithium-ion batteries using a spatial temporal network model based on capacity self-recovery effect
  publication-title: J. Energy Storage
  doi: 10.1016/j.est.2023.107557
– volume: 282
  year: 2023
  ident: 10.1016/j.est.2024.114052_bb0120
  article-title: Lithium-ion battery state of health estimation based on multi-source health indicators extraction and sparse Bayesian learning
  publication-title: Energy
– volume: 314
  year: 2021
  ident: 10.1016/j.est.2024.114052_bb0015
  article-title: Review on state-of-health of lithium-ion batteries: characterizations, estimations and applications
  publication-title: J. Clean. Prod.
  doi: 10.1016/j.jclepro.2021.128015
– volume: 69
  start-page: 2684
  issue: 3
  year: 2020
  ident: 10.1016/j.est.2024.114052_bb0030
  article-title: Co-estimation of state-of-charge and state-of health for lithium-ion batteries using an enhanced electrochemical model
  publication-title: IEEE T. Ind. Electron.
  doi: 10.1109/TIE.2021.3066946
– volume: 169
  issue: 5
  year: 2022
  ident: 10.1016/j.est.2024.114052_bb0175
  article-title: Machine learning aided predictions for capacity fade of Li-ion batteries
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/1945-7111/ac7102
– volume: 220
  year: 2023
  ident: 10.1016/j.est.2024.114052_bb0195
  article-title: Uncertainty characterization of a CNN method for Lithium-ion batteries state of charge estimation using EIS data
  publication-title: Measurement
  doi: 10.1016/j.measurement.2023.113341
– volume: 73
  year: 2023
  ident: 10.1016/j.est.2024.114052_bb0020
  article-title: Advancements in artificial neural networks for health management of energy storage lithium-ion batteries: a comprehensive review
  publication-title: J. Energy Storage
  doi: 10.1016/j.est.2023.109069
– volume: 71
  start-page: 604
  issue: 1
  year: 2024
  ident: 10.1016/j.est.2024.114052_bb0105
  article-title: Data-driven transfer-stacking-based state of health estimation for lithium-ion batteries
  publication-title: IEEE T. Ind. Electron.
  doi: 10.1109/TIE.2023.3247735
– volume: 282
  year: 2023
  ident: 10.1016/j.est.2024.114052_bb0095
  article-title: Intelligent estimation on state of health of lithium-ion power batteries based on failure feature extraction
  publication-title: Energy
  doi: 10.1016/j.energy.2023.128794
– volume: 484
  year: 2021
  ident: 10.1016/j.est.2024.114052_bb0075
  article-title: State-of-health estimators coupled to a random forest approach for lithium-ion battery aging factor ranking
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2020.229154
– volume: 262
  year: 2023
  ident: 10.1016/j.est.2024.114052_bb0150
  article-title: State of health estimation of lithium-ion battery with improved radial basis function neural network
  publication-title: Energy
  doi: 10.1016/j.energy.2022.125380
– volume: 104
  year: 2021
  ident: 10.1016/j.est.2024.114052_bb0115
  article-title: More intelligent and robust estimation of battery state-of-charge with an improved regularized extreme learning machine
  publication-title: Eng. Appl. Artif. Intel.
  doi: 10.1016/j.engappai.2021.104407
– volume: 15
  start-page: 6665
  year: 2022
  ident: 10.1016/j.est.2024.114052_bb0205
  article-title: Electrochemical impedance spectroscopy based on the state of health estimation for lithium-ion batteries
  publication-title: Energies
  doi: 10.3390/en15186665
– volume: 268
  year: 2023
  ident: 10.1016/j.est.2024.114052_bb0140
  article-title: State of health estimation with attentional long short-term memory network for lithium-ion batteries
  publication-title: Energy
  doi: 10.1016/j.energy.2023.126706
– volume: 9
  start-page: 52
  issue: 1
  year: 2024
  ident: 10.1016/j.est.2024.114052_bb0065
  article-title: Online collaborative estimation technology for SOC and SOH of frequency regulation of a lead-carbon battery in a power system with a high proportion of renewable energy
  publication-title: Prot. Contr. Mod. Pow.
– volume: 8
  start-page: 3673
  issue: 2
  year: 2022
  ident: 10.1016/j.est.2024.114052_bb0060
  article-title: Online estimations of Li-ion battery SOC and SOH applicable to partial charge/discharge
  publication-title: IEEE T. Transp. Electr.
  doi: 10.1109/TTE.2022.3162164
– volume: 70
  start-page: 2517011
  year: 2021
  ident: 10.1016/j.est.2024.114052_bb0220
  article-title: Remaining useful life prediction of lithium-ion batteries based on a mixture of ensemble empirical mode decomposition and GWO-SVR model
  publication-title: IEEE T. Instrum. Meas.
  doi: 10.1109/TIM.2021.3125108
– volume: 83
  year: 2024
  ident: 10.1016/j.est.2024.114052_bb0085
  article-title: SOH estimation for lithium-ion batteries: an improved GPR optimization method based on the developed feature extraction
  publication-title: J. Energy Storage
  doi: 10.1016/j.est.2024.110678
– volume: 8
  start-page: 1604
  issue: 2
  year: 2022
  ident: 10.1016/j.est.2024.114052_bb0080
  article-title: Offline and online blended machine learning for lithium-ion battery health state estimation
  publication-title: IEEE T. Transp. Electr.
  doi: 10.1109/TTE.2021.3129479
SSID ssj0001651196
Score 2.3376505
Snippet The computer-aided estimation of battery state of health (SOH) has been regarded as an active field of energy management because of the high demand for...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 114052
SubjectTerms Electrochemical impedance spectroscopy
Kernel support vector regression
Lithium-ion battery
Machine learning
Nonlinear gray wolf algorithm
State of health
Title State-of-health estimation of lithium-ion batteries using a kernel support vector machine tuned by a new nonlinear gray wolf algorithm
URI https://dx.doi.org/10.1016/j.est.2024.114052
Volume 102
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier ScienceDirect Freedom Collection Journals
  issn: 2352-152X
  databaseCode: ACRLP
  dateStart: 20150601
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: true
  ssIdentifier: ssj0001651196
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals [SCFCJ] - NZ
  issn: 2352-152X
  databaseCode: AIKHN
  dateStart: 20150601
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: true
  ssIdentifier: ssj0001651196
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  issn: 2352-152X
  databaseCode: AKRWK
  dateStart: 20150601
  customDbUrl:
  isFulltext: true
  mediaType: online
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001651196
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEA66XvQgPvHNHDwJYds0zaZHEWVV9KLC3kqTTdbVfVF3Ff-Av9uZPnyAevBUUjJNmQkzX5LJN4wdOkH0kqLFMxtILqUxXHunuXVSemW6sSxqA15dq_advOjEnTl2Ut-FobTKyveXPr3w1tWbZqXN5qTfb94IxA4YfTrEKIezqDXPFjD-aN1gC8fnl-3rz60WRYdlZZm5WHCSqc83i0wvdL-4UBSSeHODWPwcob5EnbMVtlzBRTgu_2iVzbnRGlv6QiK4zt4KvMjHnpd3GoF4M8oLiTD2gDD7vj8bcmqagkwT18ZA6e49yODR5SM3gKfZhHA4PBd7-DAsMiwdTGfohMG8YkdE3zAqaTWyHHp59gov44GHbNAb5zjEcIPdnZ3enrR5VV2BW5G0pjyJTKATm2RaoB2ND7s-1Co01iqPD6Oi0HrtE5NEyiDKUJFXNnIWdRapILHRJmvguG6LAZW46kYtl4RE79cNstgSI3ngJH5UarHNglqjqa2ox6kCxiCtc8weUtRNSkZISyNss6MPkUnJu_FXZ1mbKf02eVKMC7-L7fxPbJctUosuJIbxHmtM85nbR2QyNQfVzHsHGwrihg
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwELYWOACHqkArti1lDpyQrE1sx0mOCHW1FNgLIO0tir32dmFfSndb8Qf43czkAVSiHDhFeUwczTjjz_bMN4wdOUH0kiLmuQ0UV8oYnniXcOuU8toMI1XWBrzs696N-jmIBi122uTCUFhl7fsrn1566_pKp9ZmZzEed64EYgccfQbEKIe9KF5jGyqSMf6dGydn573-81KLps2yqsxcJDjJNPubZaQXul-cKApFvLlBJF4foV6MOt2P7EMNF-Gk-qId1nKzXbb9gkRwjz2UeJHPPa9yGoF4M6qERJh7QJj9a7yacjo1JZkmzo2Bwt1HkMOdK2ZuAr9XC8Lh8Kdcw4dpGWHpYLlCJwzmHh9E9A2zilYjL2BU5Pfwdz7xkE9G8wKbmH5iN90f16c9XldX4Fak8ZKn0gRJatM8EWhH48OhDxMdGmu1x4PRMrQ-8alJpTaIMrT02kpnUWdSB6mVn9k6tuv2GVCJq6GMXRoSvd8wyCNLjOSBU_hSlYg2CxqNZramHqcKGJOsiTG7zVA3GRkhq4zQZsdPIouKd-Oth1VjpuyfzpPhuPB_sS_vEztkm73ry4vs4qx__pVt0R1KTgyjb2x9WazcAaKUpfle98JHwr7lZw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=State-of-health+estimation+of+lithium-ion+batteries+using+a+kernel+support+vector+machine+tuned+by+a+new+nonlinear+gray+wolf+algorithm&rft.jtitle=Journal+of+energy+storage&rft.au=Liu%2C+Shiyu&rft.au=Fang%2C+Lide&rft.au=Zhao%2C+Xiaoyu&rft.au=Wang%2C+Shutao&rft.date=2024-11-15&rft.pub=Elsevier+Ltd&rft.issn=2352-152X&rft.volume=102&rft_id=info:doi/10.1016%2Fj.est.2024.114052&rft.externalDocID=S2352152X24036387
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2352-152X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2352-152X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2352-152X&client=summon