State-of-health estimation of lithium-ion batteries using a kernel support vector machine tuned by a new nonlinear gray wolf algorithm
The computer-aided estimation of battery state of health (SOH) has been regarded as an active field of energy management because of the high demand for electric vehicles and consumer electronics. In this study, a new data-driven model is proposed for the capacity prediction and online monitoring of...
        Saved in:
      
    
          | Published in | Journal of energy storage Vol. 102; p. 114052 | 
|---|---|
| Main Authors | , , , , , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
            Elsevier Ltd
    
        15.11.2024
     | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 2352-152X | 
| DOI | 10.1016/j.est.2024.114052 | 
Cover
| Abstract | The computer-aided estimation of battery state of health (SOH) has been regarded as an active field of energy management because of the high demand for electric vehicles and consumer electronics. In this study, a new data-driven model is proposed for the capacity prediction and online monitoring of lithium-ion batteries, which is formulated based on a kernel support vector machine (KSVM) and a nonlinear Gray Wolf Optimization (NGWO) to capture the health information in electrochemical impedance spectroscopy (EIS) data. The amplitudes of EIS in the frequency range from 0.02 Hz to 20,000 Hz are taken as the input variables of KSVM model to predict the capacity at different cycles of battery charge-discharging. Moreover, GWO is improved through the proposed new inverse S-shaped exponential compound function convergence factor and position ratio-based dynamic weighting scheme to enhance its accuracy in optimizing KSVM parameters. The capacity prediction tasks of single battery (Case 1), different batteries at different temperatures (Case 2) and limited cyclic data (Case 3) are discussed in detail. Experimental results show that compared with other estimation methods, the NGWO-KSVM exhibit the lowest root mean square error (0.073 and 0.075 in Case 1, 0.434 and 0.263 in Case 2), the smallest mean absolute percentage error (0.052 and 0.055 in Case 1, 0.286 and 0.178 in Case 2), and the highest determination coefficient (0.936 and 0.956 in Case 1, and 0.981 and 0.993 in Case 2) for two different batteries in relatively short time. Also the NGWO-KSVM can more effectively utilize a fewer cycles of EIS data to improve capacity estimation performance in Case 3. It provides superior solution for the problem of low accuracy and poor robustness in battery capacity prediction, and has the potential for actual implementation in battery routine monitoring.
•A new EIS-machine learning model is proposed to estimate battery SOH.•An inverse S-shaped exponential compound function is proposed to replace the linear convergence factor in GWO.•A position ratio-based dynamic weighting scheme is proposed to control the ranking system of GWO.•The proposed NGWO can improve the accuracy of optimizing KSVM parameters.•The effectiveness of the presented method is validated by three different conditions. | 
    
|---|---|
| AbstractList | The computer-aided estimation of battery state of health (SOH) has been regarded as an active field of energy management because of the high demand for electric vehicles and consumer electronics. In this study, a new data-driven model is proposed for the capacity prediction and online monitoring of lithium-ion batteries, which is formulated based on a kernel support vector machine (KSVM) and a nonlinear Gray Wolf Optimization (NGWO) to capture the health information in electrochemical impedance spectroscopy (EIS) data. The amplitudes of EIS in the frequency range from 0.02 Hz to 20,000 Hz are taken as the input variables of KSVM model to predict the capacity at different cycles of battery charge-discharging. Moreover, GWO is improved through the proposed new inverse S-shaped exponential compound function convergence factor and position ratio-based dynamic weighting scheme to enhance its accuracy in optimizing KSVM parameters. The capacity prediction tasks of single battery (Case 1), different batteries at different temperatures (Case 2) and limited cyclic data (Case 3) are discussed in detail. Experimental results show that compared with other estimation methods, the NGWO-KSVM exhibit the lowest root mean square error (0.073 and 0.075 in Case 1, 0.434 and 0.263 in Case 2), the smallest mean absolute percentage error (0.052 and 0.055 in Case 1, 0.286 and 0.178 in Case 2), and the highest determination coefficient (0.936 and 0.956 in Case 1, and 0.981 and 0.993 in Case 2) for two different batteries in relatively short time. Also the NGWO-KSVM can more effectively utilize a fewer cycles of EIS data to improve capacity estimation performance in Case 3. It provides superior solution for the problem of low accuracy and poor robustness in battery capacity prediction, and has the potential for actual implementation in battery routine monitoring.
•A new EIS-machine learning model is proposed to estimate battery SOH.•An inverse S-shaped exponential compound function is proposed to replace the linear convergence factor in GWO.•A position ratio-based dynamic weighting scheme is proposed to control the ranking system of GWO.•The proposed NGWO can improve the accuracy of optimizing KSVM parameters.•The effectiveness of the presented method is validated by three different conditions. | 
    
| ArticleNumber | 114052 | 
    
| Author | Gu, Fengshou Ball, Andrew Fang, Lide Wang, Shutao Hu, Chunhai Liu, Shiyu Zhao, Xiaoyu  | 
    
| Author_xml | – sequence: 1 givenname: Shiyu surname: Liu fullname: Liu, Shiyu email: liushiyu0204@163.com organization: College of Quality and Technical Supervision, Hebei University, Baoding 071002, China – sequence: 2 givenname: Lide surname: Fang fullname: Fang, Lide organization: College of Quality and Technical Supervision, Hebei University, Baoding 071002, China – sequence: 3 givenname: Xiaoyu surname: Zhao fullname: Zhao, Xiaoyu organization: Centre for Efficiency and Performance Engineering, University of Huddersfield, Huddersfield HD1 3DH, UK – sequence: 4 givenname: Shutao surname: Wang fullname: Wang, Shutao organization: Measurement Technology and Instrumentation Key Lab of Hebei Province, School of Electrical Engineering, Yanshan University, Qinhuangdao, Hebei 066004, China – sequence: 5 givenname: Chunhai surname: Hu fullname: Hu, Chunhai organization: Measurement Technology and Instrumentation Key Lab of Hebei Province, School of Electrical Engineering, Yanshan University, Qinhuangdao, Hebei 066004, China – sequence: 6 givenname: Fengshou surname: Gu fullname: Gu, Fengshou organization: Centre for Efficiency and Performance Engineering, University of Huddersfield, Huddersfield HD1 3DH, UK – sequence: 7 givenname: Andrew surname: Ball fullname: Ball, Andrew organization: Centre for Efficiency and Performance Engineering, University of Huddersfield, Huddersfield HD1 3DH, UK  | 
    
| BookMark | eNp9kM9uAiEQhznYpNb6AL3xAruFRXE3PTWm_xKTHtomvRHAwcXuggHU-AJ97mLtqQdPkyHzDfP7rtDAeQcI3VBSUkL57bqEmMqKVJOS0gmZVgM0rNi0Kui0-rxE4xjXhOTBKaUNH6LvtyQTFN4ULcgutTjTtpfJeoe9wZ1Nrd32xbFVMiUIFiLeRutWWOIvCA46HLebjQ8J70AnH3AvdWsd4LR1sMTqkAcd7HG-s8vPMuBVkAe8953Bslv5kL_or9GFkV2E8V8doY_Hh_f5c7F4fXqZ3y8KXTWzVDRMkbrRjawrBVoZujS05lRpzU0uijOqTW0a1TCuGJ1xZrhmoHNexkmj2QjR014dfIwBjNiEHDccBCXi6E-sRTYgjv7EyV9mZv8YbdOvoRSk7c6SdycScqSdhSCituA0LG3IrsTS2zP0D8X2ke0 | 
    
| CitedBy_id | crossref_primary_10_1109_ACCESS_2025_3533137 | 
    
| Cites_doi | 10.1149/1945-7111/acc09f 10.1016/j.energy.2023.128677 10.1016/j.energy.2021.120116 10.1016/j.est.2024.111656 10.1115/1.4054128 10.1016/j.electacta.2020.136094 10.1016/j.rser.2020.110015 10.1016/j.energy.2023.129768 10.1016/j.ress.2024.110450 10.1016/j.apenergy.2021.117922 10.1016/j.est.2023.109884 10.1016/j.measurement.2021.110293 10.1016/j.energy.2020.119078 10.1038/s41467-020-15235-7 10.1016/j.est.2023.110063 10.1038/s41467-021-26894-5 10.1109/TIE.2020.3034855 10.1109/ACCESS.2020.3026552 10.1016/j.engappai.2020.104015 10.1016/j.electacta.2023.142270 10.1038/s41467-022-29837-w 10.1002/aenm.202101126 10.1109/TVT.2020.3014932 10.1016/j.est.2023.107557 10.1016/j.jclepro.2021.128015 10.1109/TIE.2021.3066946 10.1149/1945-7111/ac7102 10.1016/j.measurement.2023.113341 10.1016/j.est.2023.109069 10.1109/TIE.2023.3247735 10.1016/j.energy.2023.128794 10.1016/j.jpowsour.2020.229154 10.1016/j.energy.2022.125380 10.1016/j.engappai.2021.104407 10.3390/en15186665 10.1016/j.energy.2023.126706 10.1109/TTE.2022.3162164 10.1109/TIM.2021.3125108 10.1016/j.est.2024.110678 10.1109/TTE.2021.3129479  | 
    
| ContentType | Journal Article | 
    
| Copyright | 2024 Elsevier Ltd | 
    
| Copyright_xml | – notice: 2024 Elsevier Ltd | 
    
| DBID | AAYXX CITATION  | 
    
| DOI | 10.1016/j.est.2024.114052 | 
    
| DatabaseName | CrossRef | 
    
| DatabaseTitle | CrossRef | 
    
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Engineering | 
    
| ExternalDocumentID | 10_1016_j_est_2024_114052 S2352152X24036387  | 
    
| GroupedDBID | --M 0R~ 457 4G. 7-5 AACTN AAEDT AAEDW AAHCO AAKOC AALRI AAOAW AAQFI AARIN AAXKI AAXUO ABJNI ABMAC ACDAQ ACGFS ACRLP ADBBV ADEZE AEBSH AFJKZ AFKWA AFTJW AGHFR AGUBO AHJVU AIEXJ AIKHN AITUG AJOXV AKRWK ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ APLSM AXJTR BELTK BJAXD BKOJK BLXMC EBS EFJIC FDB FIRID FYGXN KOM O9- OAUVE ROL SPC SPCBC SSB SSD SSR SST SSZ T5K ~G- AATTM AAYWO AAYXX ACLOT ACVFH ADCNI AEIPS AEUPX AFPUW AIGII AIIUN AKBMS AKYEP ANKPU APXCP CITATION EFKBS EFLBG EJD  | 
    
| ID | FETCH-LOGICAL-c297t-93b089c9a82becbf1df1861bcc6f61bb631cf8f9b936b31763f6c3ec0163609c3 | 
    
| IEDL.DBID | AIKHN | 
    
| ISSN | 2352-152X | 
    
| IngestDate | Thu Apr 24 22:54:16 EDT 2025 Wed Oct 01 01:34:13 EDT 2025 Sat Nov 16 15:58:36 EST 2024  | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Keywords | Lithium-ion battery State of health Nonlinear gray wolf algorithm Machine learning Electrochemical impedance spectroscopy Kernel support vector regression  | 
    
| Language | English | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c297t-93b089c9a82becbf1df1861bcc6f61bb631cf8f9b936b31763f6c3ec0163609c3 | 
    
| ParticipantIDs | crossref_primary_10_1016_j_est_2024_114052 crossref_citationtrail_10_1016_j_est_2024_114052 elsevier_sciencedirect_doi_10_1016_j_est_2024_114052  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2024-11-15 | 
    
| PublicationDateYYYYMMDD | 2024-11-15 | 
    
| PublicationDate_xml | – month: 11 year: 2024 text: 2024-11-15 day: 15  | 
    
| PublicationDecade | 2020 | 
    
| PublicationTitle | Journal of energy storage | 
    
| PublicationYear | 2024 | 
    
| Publisher | Elsevier Ltd | 
    
| Publisher_xml | – name: Elsevier Ltd | 
    
| References | Li, Tian, Li (bb0230) 2023; 67 Dong, Han, Wang (bb0125) 2021; 68 Zhou, Qiu, Zhu, Armaghani, Li, Nguyen, Yagiz (bb0215) 2021; 97 Li, Lyu, Li, Gao, Liu, Zhang (bb0120) 2023; 282 Wu, Fang, Dong, Lin (bb0150) 2023; 262 Lin, Wu, Meng, Wang, Wu (bb0140) 2023; 268 Wang, Zhai, Liu, Zheng, Zhibin, Chen (bb0130) 2024; 77 Liu, Wang, Hu, Qin, Wang, Kong (bb0225) 2022; 187 Li, Yang, Li, Wang, Wang (bb0205) 2022; 15 Zhu, Wang, Huang, Bhushan Gopaluni, Cao, Heere, Ehrenberg (bb0070) 2022; 13 Yang, Wang, Kong (bb0220) 2021; 70 He, Bai, Wang, Wu, Ding (bb0085) 2024; 83 Gou, Xu, Feng (bb0145) 2020; 69 Zhang, Tang, Zhang, Wang, Stimming, Lee (bb0165) 2020; 11 Jiao, Wang, Yang, Liu (bb0115) 2021; 104 Chang, Wang, Jiang, Gao, Jiang (bb0185) 2022; 19 Wu, Meng, Lin, Wang, Wu, Stroe (bb0200) 2024; 252 Zhang, Li, Luo, Fan, Du (bb0010) 2021; 238 Liu, Wang, Li, Wang (bb0160) 2023; 8 Chang, Pan, Wang, Jiang, Tian, Gao, Jiang, Wu (bb0210) 2024; 288 Li, Yang, Li, Zhang, Zhou, Meng, Zhao, Wang, Zhang, Li, Lv (bb0050) 2024; 86 Wang, Tian, Sun, Wang, Xu, Li, Chen (bb0040) 2020; 131 Zhang, Wang, Yang, Cui, Li (bb0045) 2020; 343 Zou, Lin, Li, Liu (bb0020) 2023; 73 Mawonou, Eddahech, Dumur, Beauvois, Godoy (bb0075) 2021; 484 Li, Yuan, Wang (bb0090) 2021; 484 Vignesh, Che, Selvaraj, Tey (bb0035) 2024; 89 Gaberscek (bb0155) 2021; 12 Long, Wang, Cao, Zhou, Fernandez (bb0055) 2023; 450 Ni, Xu, Zhu, Pei (bb0025) 2022; 305 Bavand, Khajehoddin, Ardakani, Tabesh (bb0060) 2022; 8 Luo, Syed, Nicholls, Gray (bb0180) 2023; 170 Shu, Li, Wang, Han, Li, Tang (bb0065) 2024; 9 Xiong, Mo, Yan (bb0100) 2021; 9 Penjuru, Reddy, Nair, Sahoo, Mayan, Jiang, Ahmed, Wang, Roy (bb0175) 2022; 169 Babaeiyazdi, Rezaei-Zare, Shokrzadeh (bb0170) 2021; 223 Wu, Cui, Meng, Peng, Lin (bb0105) 2024; 71 Buchicchio, De Angelis, Santoni, Carbone (bb0195) 2023; 220 Camboim, Moreira, Rosolem, Beck, Arioli, Omae, Ding (bb0190) 2024; 78 Chen, Wang, Liu, Wang, Ding, Pan (bb0110) 2021; 215 Yang, Zhang, Jiang, Zhang, Zhang, Wang (bb0015) 2021; 314 Gao, Liu, Zhu, Zhang, Zhang (bb0030) 2020; 69 Wang, Wu, Takyi-Aninakwa, Fernandez, Stroe, Huang (bb0135) 2023; 284 Weiss, Ruess, Kasnatscheew, Levartovsky, Levy, Minnmann, Stolz, Waldmann, Wohlfahrt-Mehrens, Aurbach, Winter, Ein-Eli, Janek (bb0005) 2021; 11 She, Li, Zou, Wik, Wang, Sun (bb0080) 2022; 8 Zuo, Liang, Zhang, Wei, Zhu, Tan (bb0095) 2023; 282 Babaeiyazdi (10.1016/j.est.2024.114052_bb0170) 2021; 223 Zhang (10.1016/j.est.2024.114052_bb0045) 2020; 343 Mawonou (10.1016/j.est.2024.114052_bb0075) 2021; 484 Wu (10.1016/j.est.2024.114052_bb0200) 2024; 252 Li (10.1016/j.est.2024.114052_bb0120) 2023; 282 Liu (10.1016/j.est.2024.114052_bb0160) 2023; 8 Zhu (10.1016/j.est.2024.114052_bb0070) 2022; 13 Penjuru (10.1016/j.est.2024.114052_bb0175) 2022; 169 Zuo (10.1016/j.est.2024.114052_bb0095) 2023; 282 Jiao (10.1016/j.est.2024.114052_bb0115) 2021; 104 Vignesh (10.1016/j.est.2024.114052_bb0035) 2024; 89 Chang (10.1016/j.est.2024.114052_bb0210) 2024; 288 Shu (10.1016/j.est.2024.114052_bb0065) 2024; 9 Zhang (10.1016/j.est.2024.114052_bb0010) 2021; 238 Gou (10.1016/j.est.2024.114052_bb0145) 2020; 69 Yang (10.1016/j.est.2024.114052_bb0220) 2021; 70 Wang (10.1016/j.est.2024.114052_bb0040) 2020; 131 Wang (10.1016/j.est.2024.114052_bb0130) 2024; 77 She (10.1016/j.est.2024.114052_bb0080) 2022; 8 Xiong (10.1016/j.est.2024.114052_bb0100) 2021; 9 Dong (10.1016/j.est.2024.114052_bb0125) 2021; 68 Ni (10.1016/j.est.2024.114052_bb0025) 2022; 305 Bavand (10.1016/j.est.2024.114052_bb0060) 2022; 8 Wu (10.1016/j.est.2024.114052_bb0105) 2024; 71 He (10.1016/j.est.2024.114052_bb0085) 2024; 83 Zhou (10.1016/j.est.2024.114052_bb0215) 2021; 97 Lin (10.1016/j.est.2024.114052_bb0140) 2023; 268 Zou (10.1016/j.est.2024.114052_bb0020) 2023; 73 Chang (10.1016/j.est.2024.114052_bb0185) 2022; 19 Li (10.1016/j.est.2024.114052_bb0230) 2023; 67 Luo (10.1016/j.est.2024.114052_bb0180) 2023; 170 Camboim (10.1016/j.est.2024.114052_bb0190) 2024; 78 Li (10.1016/j.est.2024.114052_bb0090) 2021; 484 Yang (10.1016/j.est.2024.114052_bb0015) 2021; 314 Gaberscek (10.1016/j.est.2024.114052_bb0155) 2021; 12 Zhang (10.1016/j.est.2024.114052_bb0165) 2020; 11 Weiss (10.1016/j.est.2024.114052_bb0005) 2021; 11 Gao (10.1016/j.est.2024.114052_bb0030) 2020; 69 Chen (10.1016/j.est.2024.114052_bb0110) 2021; 215 Liu (10.1016/j.est.2024.114052_bb0225) 2022; 187 Li (10.1016/j.est.2024.114052_bb0050) 2024; 86 Wu (10.1016/j.est.2024.114052_bb0150) 2023; 262 Long (10.1016/j.est.2024.114052_bb0055) 2023; 450 Wang (10.1016/j.est.2024.114052_bb0135) 2023; 284 Li (10.1016/j.est.2024.114052_bb0205) 2022; 15 Buchicchio (10.1016/j.est.2024.114052_bb0195) 2023; 220  | 
    
| References_xml | – volume: 314 year: 2021 ident: bb0015 article-title: Review on state-of-health of lithium-ion batteries: characterizations, estimations and applications publication-title: J. Clean. Prod. – volume: 9 start-page: 52 year: 2024 end-page: 64 ident: bb0065 article-title: Online collaborative estimation technology for SOC and SOH of frequency regulation of a lead-carbon battery in a power system with a high proportion of renewable energy publication-title: Prot. Contr. Mod. Pow. – volume: 67 year: 2023 ident: bb0230 article-title: Remaining useful life prediction of lithium-ion batteries using a spatial temporal network model based on capacity self-recovery effect publication-title: J. Energy Storage – volume: 131 year: 2020 ident: bb0040 article-title: A comprehensive review of battery modeling and state estimation approaches for advanced battery management systems publication-title: Renew. Sustain. Energy Rev. – volume: 8 start-page: 3673 year: 2022 end-page: 3685 ident: bb0060 article-title: Online estimations of Li-ion battery SOC and SOH applicable to partial charge/discharge publication-title: IEEE T. Transp. Electr. – volume: 89 year: 2024 ident: bb0035 article-title: State of health indicators for second life battery through non-destructive test approaches from repurposer perspective publication-title: J. Energy Storage – volume: 215 year: 2021 ident: bb0110 article-title: Battery state-of-health estimation based on a metabolic extreme learning machine combining degradation state model and error compensation publication-title: Energy – volume: 69 start-page: 10854 year: 2020 end-page: 10867 ident: bb0145 article-title: State-of-health estimation and remaining-useful-life prediction for lithium-ion battery using a hybrid data-driven method publication-title: IEEE T. Veh. Technol. – volume: 288 year: 2024 ident: bb0210 article-title: Fast EIS acquisition method based on SSA-DNN prediction model publication-title: Energy – volume: 19 year: 2022 ident: bb0185 article-title: Lithium-ion battery state of health estimation based on electrochemical impedance spectroscopy and cuckoo search algorithm optimized Elman neural network publication-title: J. Electrochem. En. Conv. Stor. – volume: 282 year: 2023 ident: bb0095 article-title: Intelligent estimation on state of health of lithium-ion power batteries based on failure feature extraction publication-title: Energy – volume: 268 year: 2023 ident: bb0140 article-title: State of health estimation with attentional long short-term memory network for lithium-ion batteries publication-title: Energy – volume: 12 start-page: 6513 year: 2021 ident: bb0155 article-title: Understanding Li-based battery materials via electrochemical impedance spectroscopy publication-title: Nat. Commun. – volume: 8 start-page: 1604 year: 2022 end-page: 1618 ident: bb0080 article-title: Offline and online blended machine learning for lithium-ion battery health state estimation publication-title: IEEE T. Transp. Electr. – volume: 223 year: 2021 ident: bb0170 article-title: State of charge prediction of EV Li-ion batteries using EIS: a machine learning approach publication-title: Energy – volume: 13 start-page: 2261 year: 2022 ident: bb0070 article-title: Data-driven capacity estimation of commercial lithium-ion batteries from voltage relaxation publication-title: Nat. Commun. – volume: 97 year: 2021 ident: bb0215 article-title: Optimization of support vector machine through the use of metaheuristic algorithms in forecasting TBM advance rate publication-title: Eng. Appl. Artif. Intel. – volume: 68 start-page: 10949 year: 2021 end-page: 10958 ident: bb0125 article-title: Dynamic Bayesian network-based lithium-ion battery health prognosis for electric vehicles publication-title: IEEE T. Ind. Electron. – volume: 77 year: 2024 ident: bb0130 article-title: Open access dataset, code library and benchmarking deep learning approaches for state-of-health estimation of lithium-ion batteries publication-title: J. Energy Storage – volume: 78 year: 2024 ident: bb0190 article-title: State of health estimation of second-life batteries through electrochemical impedance spectroscopy and dimensionality reduction publication-title: J. Energy Storage – volume: 187 year: 2022 ident: bb0225 article-title: Development of a new NIR-machine learning approach for simultaneous detection of diesel various properties publication-title: Measurement – volume: 86 year: 2024 ident: bb0050 article-title: SOH estimation method for lithium-ion batteries based on an improved equivalent circuit model via electrochemical impedance spectroscopy publication-title: J. Energy Storage – volume: 8 start-page: 41601 year: 2023 ident: bb0160 article-title: State-of-health estimation of lithium-ion batteries based on electrochemical impedance spectroscopy: a review publication-title: Prot. Contr. Mod. Pow. – volume: 170 year: 2023 ident: bb0180 article-title: An SVM-based health classifier for offline Li-ion batteries by using EIS technology publication-title: J. Electrochem. Soc. – volume: 69 start-page: 2684 year: 2020 end-page: 2696 ident: bb0030 article-title: Co-estimation of state-of-charge and state-of health for lithium-ion batteries using an enhanced electrochemical model publication-title: IEEE T. Ind. Electron. – volume: 262 year: 2023 ident: bb0150 article-title: State of health estimation of lithium-ion battery with improved radial basis function neural network publication-title: Energy – volume: 9 start-page: 1870 year: 2021 end-page: 1881 ident: bb0100 article-title: Online state-of-health estimation for second-use lithium-ion batteries based on weighted least squares support vector machine publication-title: IEEE Access – volume: 71 start-page: 604 year: 2024 end-page: 614 ident: bb0105 article-title: Data-driven transfer-stacking-based state of health estimation for lithium-ion batteries publication-title: IEEE T. Ind. Electron. – volume: 343 year: 2020 ident: bb0045 article-title: Electrochemical model of lithium-ion battery for wide frequency range applications publication-title: Electrochim. Acta – volume: 284 year: 2023 ident: bb0135 article-title: Improved singular filtering-Gaussian process regression-long short-term memory model for whole-life-cycle remaining capacity estimation of lithium-ion batteries adaptive to fast aging and multi-current variations publication-title: Energy – volume: 73 year: 2023 ident: bb0020 article-title: Advancements in artificial neural networks for health management of energy storage lithium-ion batteries: a comprehensive review publication-title: J. Energy Storage – volume: 282 year: 2023 ident: bb0120 article-title: Lithium-ion battery state of health estimation based on multi-source health indicators extraction and sparse Bayesian learning publication-title: Energy – volume: 450 year: 2023 ident: bb0055 article-title: An improved variable forgetting factor recursive least square-double extend Kalman filtering based on global mean particle swarm optimization algorithm for collaborative state of energy and state of health estimation of lithium-ion batteries publication-title: Electrochim. Acta – volume: 484 year: 2021 ident: bb0075 article-title: State-of-health estimators coupled to a random forest approach for lithium-ion battery aging factor ranking publication-title: J. Power Sources – volume: 169 year: 2022 ident: bb0175 article-title: Machine learning aided predictions for capacity fade of Li-ion batteries publication-title: J. Electrochem. Soc. – volume: 83 year: 2024 ident: bb0085 article-title: SOH estimation for lithium-ion batteries: an improved GPR optimization method based on the developed feature extraction publication-title: J. Energy Storage – volume: 15 start-page: 6665 year: 2022 ident: bb0205 article-title: Electrochemical impedance spectroscopy based on the state of health estimation for lithium-ion batteries publication-title: Energies – volume: 252 year: 2024 ident: bb0200 article-title: Lithium-ion battery state of health estimation using a hybrid model with electrochemical impedance spectroscopy publication-title: Reliab. Eng. Syst. Safe. – volume: 104 year: 2021 ident: bb0115 article-title: More intelligent and robust estimation of battery state-of-charge with an improved regularized extreme learning machine publication-title: Eng. Appl. Artif. Intel. – volume: 11 start-page: 1706 year: 2020 ident: bb0165 article-title: Identifying degradation patterns of lithium ion batteries from impedance spectroscopy using machine learning publication-title: Nat. Commun. – volume: 220 year: 2023 ident: bb0195 article-title: Uncertainty characterization of a CNN method for Lithium-ion batteries state of charge estimation using EIS data publication-title: Measurement – volume: 70 start-page: 2517011 year: 2021 ident: bb0220 article-title: Remaining useful life prediction of lithium-ion batteries based on a mixture of ensemble empirical mode decomposition and GWO-SVR model publication-title: IEEE T. Instrum. Meas. – volume: 238 year: 2021 ident: bb0010 article-title: A review on thermal management of lithium-ion batteries for electric vehicles publication-title: Energy – volume: 484 year: 2021 ident: bb0090 article-title: Multi-time-scale framework for prognostic health condition of lithium battery using modified Gaussian process regression and nonlinear regression publication-title: J. Power Sources – volume: 11 start-page: 2101126 year: 2021 ident: bb0005 article-title: Fast charging of lithium-ion batteries: a review of materials aspects publication-title: Adv. Energy Mater. – volume: 305 year: 2022 ident: bb0025 article-title: Accurate residual capacity estimation of retired LiFePO4 batteries based on mechanism and data-driven model publication-title: Appl. Energy – volume: 170 year: 2023 ident: 10.1016/j.est.2024.114052_bb0180 article-title: An SVM-based health classifier for offline Li-ion batteries by using EIS technology publication-title: J. Electrochem. Soc. doi: 10.1149/1945-7111/acc09f – volume: 86 issue: A year: 2024 ident: 10.1016/j.est.2024.114052_bb0050 article-title: SOH estimation method for lithium-ion batteries based on an improved equivalent circuit model via electrochemical impedance spectroscopy publication-title: J. Energy Storage – volume: 284 year: 2023 ident: 10.1016/j.est.2024.114052_bb0135 article-title: Improved singular filtering-Gaussian process regression-long short-term memory model for whole-life-cycle remaining capacity estimation of lithium-ion batteries adaptive to fast aging and multi-current variations publication-title: Energy doi: 10.1016/j.energy.2023.128677 – volume: 223 year: 2021 ident: 10.1016/j.est.2024.114052_bb0170 article-title: State of charge prediction of EV Li-ion batteries using EIS: a machine learning approach publication-title: Energy doi: 10.1016/j.energy.2021.120116 – volume: 89 year: 2024 ident: 10.1016/j.est.2024.114052_bb0035 article-title: State of health indicators for second life battery through non-destructive test approaches from repurposer perspective publication-title: J. Energy Storage doi: 10.1016/j.est.2024.111656 – volume: 484 year: 2021 ident: 10.1016/j.est.2024.114052_bb0090 article-title: Multi-time-scale framework for prognostic health condition of lithium battery using modified Gaussian process regression and nonlinear regression publication-title: J. Power Sources – volume: 19 issue: 3 year: 2022 ident: 10.1016/j.est.2024.114052_bb0185 article-title: Lithium-ion battery state of health estimation based on electrochemical impedance spectroscopy and cuckoo search algorithm optimized Elman neural network publication-title: J. Electrochem. En. Conv. Stor. doi: 10.1115/1.4054128 – volume: 343 year: 2020 ident: 10.1016/j.est.2024.114052_bb0045 article-title: Electrochemical model of lithium-ion battery for wide frequency range applications publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2020.136094 – volume: 131 year: 2020 ident: 10.1016/j.est.2024.114052_bb0040 article-title: A comprehensive review of battery modeling and state estimation approaches for advanced battery management systems publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2020.110015 – volume: 288 year: 2024 ident: 10.1016/j.est.2024.114052_bb0210 article-title: Fast EIS acquisition method based on SSA-DNN prediction model publication-title: Energy doi: 10.1016/j.energy.2023.129768 – volume: 8 start-page: 41601 issue: 1 year: 2023 ident: 10.1016/j.est.2024.114052_bb0160 article-title: State-of-health estimation of lithium-ion batteries based on electrochemical impedance spectroscopy: a review publication-title: Prot. Contr. Mod. Pow. – volume: 252 year: 2024 ident: 10.1016/j.est.2024.114052_bb0200 article-title: Lithium-ion battery state of health estimation using a hybrid model with electrochemical impedance spectroscopy publication-title: Reliab. Eng. Syst. Safe. doi: 10.1016/j.ress.2024.110450 – volume: 305 year: 2022 ident: 10.1016/j.est.2024.114052_bb0025 article-title: Accurate residual capacity estimation of retired LiFePO4 batteries based on mechanism and data-driven model publication-title: Appl. Energy doi: 10.1016/j.apenergy.2021.117922 – volume: 77 year: 2024 ident: 10.1016/j.est.2024.114052_bb0130 article-title: Open access dataset, code library and benchmarking deep learning approaches for state-of-health estimation of lithium-ion batteries publication-title: J. Energy Storage doi: 10.1016/j.est.2023.109884 – volume: 187 year: 2022 ident: 10.1016/j.est.2024.114052_bb0225 article-title: Development of a new NIR-machine learning approach for simultaneous detection of diesel various properties publication-title: Measurement doi: 10.1016/j.measurement.2021.110293 – volume: 215 year: 2021 ident: 10.1016/j.est.2024.114052_bb0110 article-title: Battery state-of-health estimation based on a metabolic extreme learning machine combining degradation state model and error compensation publication-title: Energy doi: 10.1016/j.energy.2020.119078 – volume: 11 start-page: 1706 issue: 1 year: 2020 ident: 10.1016/j.est.2024.114052_bb0165 article-title: Identifying degradation patterns of lithium ion batteries from impedance spectroscopy using machine learning publication-title: Nat. Commun. doi: 10.1038/s41467-020-15235-7 – volume: 78 year: 2024 ident: 10.1016/j.est.2024.114052_bb0190 article-title: State of health estimation of second-life batteries through electrochemical impedance spectroscopy and dimensionality reduction publication-title: J. Energy Storage doi: 10.1016/j.est.2023.110063 – volume: 12 start-page: 6513 issue: 1 year: 2021 ident: 10.1016/j.est.2024.114052_bb0155 article-title: Understanding Li-based battery materials via electrochemical impedance spectroscopy publication-title: Nat. Commun. doi: 10.1038/s41467-021-26894-5 – volume: 68 start-page: 10949 issue: 11 year: 2021 ident: 10.1016/j.est.2024.114052_bb0125 article-title: Dynamic Bayesian network-based lithium-ion battery health prognosis for electric vehicles publication-title: IEEE T. Ind. Electron. doi: 10.1109/TIE.2020.3034855 – volume: 9 start-page: 1870 year: 2021 ident: 10.1016/j.est.2024.114052_bb0100 article-title: Online state-of-health estimation for second-use lithium-ion batteries based on weighted least squares support vector machine publication-title: IEEE Access doi: 10.1109/ACCESS.2020.3026552 – volume: 238 year: 2021 ident: 10.1016/j.est.2024.114052_bb0010 article-title: A review on thermal management of lithium-ion batteries for electric vehicles publication-title: Energy – volume: 97 year: 2021 ident: 10.1016/j.est.2024.114052_bb0215 article-title: Optimization of support vector machine through the use of metaheuristic algorithms in forecasting TBM advance rate publication-title: Eng. Appl. Artif. Intel. doi: 10.1016/j.engappai.2020.104015 – volume: 450 year: 2023 ident: 10.1016/j.est.2024.114052_bb0055 article-title: An improved variable forgetting factor recursive least square-double extend Kalman filtering based on global mean particle swarm optimization algorithm for collaborative state of energy and state of health estimation of lithium-ion batteries publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2023.142270 – volume: 13 start-page: 2261 issue: 1 year: 2022 ident: 10.1016/j.est.2024.114052_bb0070 article-title: Data-driven capacity estimation of commercial lithium-ion batteries from voltage relaxation publication-title: Nat. Commun. doi: 10.1038/s41467-022-29837-w – volume: 11 start-page: 2101126 issue: 33 year: 2021 ident: 10.1016/j.est.2024.114052_bb0005 article-title: Fast charging of lithium-ion batteries: a review of materials aspects publication-title: Adv. Energy Mater. doi: 10.1002/aenm.202101126 – volume: 69 start-page: 10854 issue: 10 year: 2020 ident: 10.1016/j.est.2024.114052_bb0145 article-title: State-of-health estimation and remaining-useful-life prediction for lithium-ion battery using a hybrid data-driven method publication-title: IEEE T. Veh. Technol. doi: 10.1109/TVT.2020.3014932 – volume: 67 year: 2023 ident: 10.1016/j.est.2024.114052_bb0230 article-title: Remaining useful life prediction of lithium-ion batteries using a spatial temporal network model based on capacity self-recovery effect publication-title: J. Energy Storage doi: 10.1016/j.est.2023.107557 – volume: 282 year: 2023 ident: 10.1016/j.est.2024.114052_bb0120 article-title: Lithium-ion battery state of health estimation based on multi-source health indicators extraction and sparse Bayesian learning publication-title: Energy – volume: 314 year: 2021 ident: 10.1016/j.est.2024.114052_bb0015 article-title: Review on state-of-health of lithium-ion batteries: characterizations, estimations and applications publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2021.128015 – volume: 69 start-page: 2684 issue: 3 year: 2020 ident: 10.1016/j.est.2024.114052_bb0030 article-title: Co-estimation of state-of-charge and state-of health for lithium-ion batteries using an enhanced electrochemical model publication-title: IEEE T. Ind. Electron. doi: 10.1109/TIE.2021.3066946 – volume: 169 issue: 5 year: 2022 ident: 10.1016/j.est.2024.114052_bb0175 article-title: Machine learning aided predictions for capacity fade of Li-ion batteries publication-title: J. Electrochem. Soc. doi: 10.1149/1945-7111/ac7102 – volume: 220 year: 2023 ident: 10.1016/j.est.2024.114052_bb0195 article-title: Uncertainty characterization of a CNN method for Lithium-ion batteries state of charge estimation using EIS data publication-title: Measurement doi: 10.1016/j.measurement.2023.113341 – volume: 73 year: 2023 ident: 10.1016/j.est.2024.114052_bb0020 article-title: Advancements in artificial neural networks for health management of energy storage lithium-ion batteries: a comprehensive review publication-title: J. Energy Storage doi: 10.1016/j.est.2023.109069 – volume: 71 start-page: 604 issue: 1 year: 2024 ident: 10.1016/j.est.2024.114052_bb0105 article-title: Data-driven transfer-stacking-based state of health estimation for lithium-ion batteries publication-title: IEEE T. Ind. Electron. doi: 10.1109/TIE.2023.3247735 – volume: 282 year: 2023 ident: 10.1016/j.est.2024.114052_bb0095 article-title: Intelligent estimation on state of health of lithium-ion power batteries based on failure feature extraction publication-title: Energy doi: 10.1016/j.energy.2023.128794 – volume: 484 year: 2021 ident: 10.1016/j.est.2024.114052_bb0075 article-title: State-of-health estimators coupled to a random forest approach for lithium-ion battery aging factor ranking publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2020.229154 – volume: 262 year: 2023 ident: 10.1016/j.est.2024.114052_bb0150 article-title: State of health estimation of lithium-ion battery with improved radial basis function neural network publication-title: Energy doi: 10.1016/j.energy.2022.125380 – volume: 104 year: 2021 ident: 10.1016/j.est.2024.114052_bb0115 article-title: More intelligent and robust estimation of battery state-of-charge with an improved regularized extreme learning machine publication-title: Eng. Appl. Artif. Intel. doi: 10.1016/j.engappai.2021.104407 – volume: 15 start-page: 6665 year: 2022 ident: 10.1016/j.est.2024.114052_bb0205 article-title: Electrochemical impedance spectroscopy based on the state of health estimation for lithium-ion batteries publication-title: Energies doi: 10.3390/en15186665 – volume: 268 year: 2023 ident: 10.1016/j.est.2024.114052_bb0140 article-title: State of health estimation with attentional long short-term memory network for lithium-ion batteries publication-title: Energy doi: 10.1016/j.energy.2023.126706 – volume: 9 start-page: 52 issue: 1 year: 2024 ident: 10.1016/j.est.2024.114052_bb0065 article-title: Online collaborative estimation technology for SOC and SOH of frequency regulation of a lead-carbon battery in a power system with a high proportion of renewable energy publication-title: Prot. Contr. Mod. Pow. – volume: 8 start-page: 3673 issue: 2 year: 2022 ident: 10.1016/j.est.2024.114052_bb0060 article-title: Online estimations of Li-ion battery SOC and SOH applicable to partial charge/discharge publication-title: IEEE T. Transp. Electr. doi: 10.1109/TTE.2022.3162164 – volume: 70 start-page: 2517011 year: 2021 ident: 10.1016/j.est.2024.114052_bb0220 article-title: Remaining useful life prediction of lithium-ion batteries based on a mixture of ensemble empirical mode decomposition and GWO-SVR model publication-title: IEEE T. Instrum. Meas. doi: 10.1109/TIM.2021.3125108 – volume: 83 year: 2024 ident: 10.1016/j.est.2024.114052_bb0085 article-title: SOH estimation for lithium-ion batteries: an improved GPR optimization method based on the developed feature extraction publication-title: J. Energy Storage doi: 10.1016/j.est.2024.110678 – volume: 8 start-page: 1604 issue: 2 year: 2022 ident: 10.1016/j.est.2024.114052_bb0080 article-title: Offline and online blended machine learning for lithium-ion battery health state estimation publication-title: IEEE T. Transp. Electr. doi: 10.1109/TTE.2021.3129479  | 
    
| SSID | ssj0001651196 | 
    
| Score | 2.3376505 | 
    
| Snippet | The computer-aided estimation of battery state of health (SOH) has been regarded as an active field of energy management because of the high demand for... | 
    
| SourceID | crossref elsevier  | 
    
| SourceType | Enrichment Source Index Database Publisher  | 
    
| StartPage | 114052 | 
    
| SubjectTerms | Electrochemical impedance spectroscopy Kernel support vector regression Lithium-ion battery Machine learning Nonlinear gray wolf algorithm State of health  | 
    
| Title | State-of-health estimation of lithium-ion batteries using a kernel support vector machine tuned by a new nonlinear gray wolf algorithm | 
    
| URI | https://dx.doi.org/10.1016/j.est.2024.114052 | 
    
| Volume | 102 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier ScienceDirect Freedom Collection Journals issn: 2352-152X databaseCode: ACRLP dateStart: 20150601 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: true ssIdentifier: ssj0001651196 providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals [SCFCJ] - NZ issn: 2352-152X databaseCode: AIKHN dateStart: 20150601 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: true ssIdentifier: ssj0001651196 providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals issn: 2352-152X databaseCode: AKRWK dateStart: 20150601 customDbUrl: isFulltext: true mediaType: online dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001651196 providerName: Library Specific Holdings  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEA66XvQgPvHNHDwJYds0zaZHEWVV9KLC3kqTTdbVfVF3Ff-Av9uZPnyAevBUUjJNmQkzX5LJN4wdOkH0kqLFMxtILqUxXHunuXVSemW6sSxqA15dq_advOjEnTl2Ut-FobTKyveXPr3w1tWbZqXN5qTfb94IxA4YfTrEKIezqDXPFjD-aN1gC8fnl-3rz60WRYdlZZm5WHCSqc83i0wvdL-4UBSSeHODWPwcob5EnbMVtlzBRTgu_2iVzbnRGlv6QiK4zt4KvMjHnpd3GoF4M8oLiTD2gDD7vj8bcmqagkwT18ZA6e49yODR5SM3gKfZhHA4PBd7-DAsMiwdTGfohMG8YkdE3zAqaTWyHHp59gov44GHbNAb5zjEcIPdnZ3enrR5VV2BW5G0pjyJTKATm2RaoB2ND7s-1Co01iqPD6Oi0HrtE5NEyiDKUJFXNnIWdRapILHRJmvguG6LAZW46kYtl4RE79cNstgSI3ngJH5UarHNglqjqa2ox6kCxiCtc8weUtRNSkZISyNss6MPkUnJu_FXZ1mbKf02eVKMC7-L7fxPbJctUosuJIbxHmtM85nbR2QyNQfVzHsHGwrihg | 
    
| linkProvider | Elsevier | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwELYWOACHqkArti1lDpyQrE1sx0mOCHW1FNgLIO0tir32dmFfSndb8Qf43czkAVSiHDhFeUwczTjjz_bMN4wdOUH0kiLmuQ0UV8oYnniXcOuU8toMI1XWBrzs696N-jmIBi122uTCUFhl7fsrn1566_pKp9ZmZzEed64EYgccfQbEKIe9KF5jGyqSMf6dGydn573-81KLps2yqsxcJDjJNPubZaQXul-cKApFvLlBJF4foV6MOt2P7EMNF-Gk-qId1nKzXbb9gkRwjz2UeJHPPa9yGoF4M6qERJh7QJj9a7yacjo1JZkmzo2Bwt1HkMOdK2ZuAr9XC8Lh8Kdcw4dpGWHpYLlCJwzmHh9E9A2zilYjL2BU5Pfwdz7xkE9G8wKbmH5iN90f16c9XldX4Fak8ZKn0gRJatM8EWhH48OhDxMdGmu1x4PRMrQ-8alJpTaIMrT02kpnUWdSB6mVn9k6tuv2GVCJq6GMXRoSvd8wyCNLjOSBU_hSlYg2CxqNZramHqcKGJOsiTG7zVA3GRkhq4zQZsdPIouKd-Oth1VjpuyfzpPhuPB_sS_vEztkm73ry4vs4qx__pVt0R1KTgyjb2x9WazcAaKUpfle98JHwr7lZw | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=State-of-health+estimation+of+lithium-ion+batteries+using+a+kernel+support+vector+machine+tuned+by+a+new+nonlinear+gray+wolf+algorithm&rft.jtitle=Journal+of+energy+storage&rft.au=Liu%2C+Shiyu&rft.au=Fang%2C+Lide&rft.au=Zhao%2C+Xiaoyu&rft.au=Wang%2C+Shutao&rft.date=2024-11-15&rft.pub=Elsevier+Ltd&rft.issn=2352-152X&rft.volume=102&rft_id=info:doi/10.1016%2Fj.est.2024.114052&rft.externalDocID=S2352152X24036387 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2352-152X&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2352-152X&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2352-152X&client=summon |