GGA: A modified genetic algorithm with gradient-based local search for solving constrained optimization problems
In the last few decades, genetic algorithms (GAs) demonstrated to be an effective approach for solving real-world optimization problems. However, it is known that, in presence of a huge solution space and many local optima, GAs cannot guarantee the achievement of global optimality. In this work, in...
Saved in:
| Published in | Information sciences Vol. 547; pp. 136 - 162 |
|---|---|
| Main Authors | , |
| Format | Journal Article |
| Language | English |
| Published |
Elsevier Inc
08.02.2021
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 0020-0255 1872-6291 |
| DOI | 10.1016/j.ins.2020.08.040 |
Cover
| Abstract | In the last few decades, genetic algorithms (GAs) demonstrated to be an effective approach for solving real-world optimization problems. However, it is known that, in presence of a huge solution space and many local optima, GAs cannot guarantee the achievement of global optimality. In this work, in order to make GAs more effective in finding the global optimal solution, we propose a hybrid GA which combines the classical genetic mechanisms with the gradient-descent (GD) technique for local searching and constraints management. The basic idea is to exploit the GD capability in finding local optima to refine search space exploration and to place individuals in areas that are more favorable for achieving convergence. This confers to GAs the capability of escaping from the discovered local optima, by progressively moving towards the global solution. Experimental results on a set of test problems from well-known benchmarks showed that our proposal is competitive with other more complex and notable approaches, in terms of solution precision as well as reduced number of individuals and generations. |
|---|---|
| AbstractList | In the last few decades, genetic algorithms (GAs) demonstrated to be an effective approach for solving real-world optimization problems. However, it is known that, in presence of a huge solution space and many local optima, GAs cannot guarantee the achievement of global optimality. In this work, in order to make GAs more effective in finding the global optimal solution, we propose a hybrid GA which combines the classical genetic mechanisms with the gradient-descent (GD) technique for local searching and constraints management. The basic idea is to exploit the GD capability in finding local optima to refine search space exploration and to place individuals in areas that are more favorable for achieving convergence. This confers to GAs the capability of escaping from the discovered local optima, by progressively moving towards the global solution. Experimental results on a set of test problems from well-known benchmarks showed that our proposal is competitive with other more complex and notable approaches, in terms of solution precision as well as reduced number of individuals and generations. |
| Author | D’Angelo, Gianni Palmieri, Francesco |
| Author_xml | – sequence: 1 givenname: Gianni surname: D’Angelo fullname: D’Angelo, Gianni email: giadangelo@unisa.it organization: Department of Computer Science, University of Salerno, Fisciano, SA, Italy – sequence: 2 givenname: Francesco orcidid: 0000-0003-1760-5527 surname: Palmieri fullname: Palmieri, Francesco email: fpalmieri@unisa.it organization: Department of Computer Science, University of Salerno, Fisciano, SA, Italy |
| BookMark | eNp9kL9OwzAQhy0EEm3hAdj8AgnnpIldmKoKClIlFpgtx39SV4ld2VYRPD0uZWLocjfc7zvdfVN06bzTCN0RKAmQ9n5XWhfLCioogZUwhws0IYxWRVstyCWaQJ4UUDXNNZrGuAOAOW3bCdqv18sHvMSjV9ZYrXCvnU5WYjH0Pti0HfFnrrgPQlntUtGJmFODl2LAUYsgt9j4gKMfDtb1WHoXUxDW5ZDfJzvab5Gsd3gffDfoMd6gKyOGqG__-gx9PD-9r16Kzdv6dbXcFLJa0FQwVTHaEEOJVFLWrJ3TjtaggNSGLBpTC61I_omCqIEZQ6UBSnKs7hgIAvUM0dNeGXyMQRsubfo95XjewAnwozi-41kcP4rjwHgWl0nyj9wHO4rwdZZ5PDE6v3SwOvAosy6plQ1aJq68PUP_AF2QicE |
| CitedBy_id | crossref_primary_10_3233_JHS_210670 crossref_primary_10_3390_math9040420 crossref_primary_10_1016_j_measurement_2024_115830 crossref_primary_10_1016_j_ast_2021_106642 crossref_primary_10_1007_s10462_021_09984_0 crossref_primary_10_1016_j_asoc_2023_110680 crossref_primary_10_1007_s00500_022_07383_3 crossref_primary_10_1016_j_ins_2022_04_043 crossref_primary_10_1007_s10710_024_09493_3 crossref_primary_10_3390_app14125045 crossref_primary_10_1080_16878507_2021_1885950 crossref_primary_10_1016_j_eswa_2023_121710 crossref_primary_10_3389_fenrg_2021_706782 crossref_primary_10_1016_j_eswa_2023_121312 crossref_primary_10_3390_app14219698 crossref_primary_10_3390_s21082628 crossref_primary_10_1007_s42943_023_00086_y crossref_primary_10_1109_TMC_2023_3316167 crossref_primary_10_1016_j_jclepro_2022_132709 crossref_primary_10_3233_JHS_210669 crossref_primary_10_1016_j_asoc_2024_112446 crossref_primary_10_3390_electronics10232984 crossref_primary_10_1109_ACCESS_2023_3240569 crossref_primary_10_2174_1573405620666230825113344 crossref_primary_10_1016_j_mtcomm_2022_104380 crossref_primary_10_1002_int_22495 crossref_primary_10_1016_j_ins_2022_08_001 crossref_primary_10_1016_j_ins_2022_11_021 crossref_primary_10_1109_TGRS_2024_3452120 crossref_primary_10_1007_s13042_022_01545_3 crossref_primary_10_1016_j_engfracmech_2021_108027 crossref_primary_10_1002_smll_202205122 crossref_primary_10_1007_s00500_021_05987_9 crossref_primary_10_1142_S0217595923400134 crossref_primary_10_1016_j_ins_2022_07_162 crossref_primary_10_1007_s00607_022_01079_0 crossref_primary_10_1016_j_asoc_2024_112159 crossref_primary_10_1007_s11227_023_05775_2 crossref_primary_10_1016_j_aej_2021_04_098 crossref_primary_10_1016_j_ins_2021_12_067 crossref_primary_10_32604_cmc_2022_019291 crossref_primary_10_1016_j_matcom_2022_12_020 crossref_primary_10_1016_j_rico_2025_100542 crossref_primary_10_1016_j_chaos_2021_111783 crossref_primary_10_1108_EC_02_2024_0166 crossref_primary_10_1007_s42235_022_00278_x crossref_primary_10_1080_00207179_2021_2005260 crossref_primary_10_1115_1_4066923 crossref_primary_10_1016_j_engappai_2023_106630 crossref_primary_10_1109_ACCESS_2025_3545478 crossref_primary_10_1016_j_oceaneng_2021_109816 crossref_primary_10_1016_j_jrmge_2024_08_007 crossref_primary_10_1088_1402_4896_ad92ae crossref_primary_10_1016_j_jnca_2023_103583 crossref_primary_10_1038_s42005_023_01360_4 crossref_primary_10_1177_16878132221106296 crossref_primary_10_1007_s00521_023_08632_8 crossref_primary_10_1016_j_jksuci_2022_01_002 crossref_primary_10_1016_j_ins_2022_03_041 crossref_primary_10_1016_j_ins_2022_06_015 crossref_primary_10_1016_j_energy_2024_133365 crossref_primary_10_3390_s21072293 crossref_primary_10_1016_j_cose_2023_103423 crossref_primary_10_1016_j_isatra_2021_06_032 crossref_primary_10_1007_s00500_022_07385_1 crossref_primary_10_1155_2021_7761993 crossref_primary_10_1016_j_rcim_2023_102603 crossref_primary_10_1016_j_asr_2022_02_027 crossref_primary_10_1186_s12874_024_02392_2 crossref_primary_10_1049_cim2_70020 crossref_primary_10_1007_s00500_024_09869_8 crossref_primary_10_1007_s00339_023_06593_2 crossref_primary_10_23919_CSMS_2021_0010 crossref_primary_10_1016_j_compositesa_2025_108758 crossref_primary_10_1016_j_engappai_2023_106215 crossref_primary_10_3390_app142412005 crossref_primary_10_1016_j_patcog_2023_110206 crossref_primary_10_1038_s41598_024_51902_1 crossref_primary_10_1016_j_cor_2024_106622 crossref_primary_10_1016_j_ins_2022_09_001 crossref_primary_10_1016_j_istruc_2023_104993 crossref_primary_10_1007_s00500_023_09033_8 crossref_primary_10_1108_JGOSS_02_2021_0010 crossref_primary_10_1016_j_asoc_2022_109081 crossref_primary_10_1016_j_future_2022_04_007 crossref_primary_10_1007_s10489_024_05990_1 crossref_primary_10_1016_j_oceaneng_2024_119805 crossref_primary_10_1093_jcde_qwae047 crossref_primary_10_1109_TNNLS_2024_3378805 crossref_primary_10_1186_s43093_024_00339_z crossref_primary_10_1080_00207543_2021_2007310 crossref_primary_10_1016_j_ins_2023_119302 crossref_primary_10_3390_math10050800 crossref_primary_10_1016_j_ijsolstr_2024_113024 crossref_primary_10_1016_j_asoc_2022_109392 crossref_primary_10_1016_j_ins_2021_02_055 crossref_primary_10_1016_j_jmapro_2022_10_057 crossref_primary_10_1016_j_marstruc_2024_103598 crossref_primary_10_1080_00401706_2024_2315937 crossref_primary_10_1007_s10639_024_13045_8 crossref_primary_10_1007_s44196_022_00171_9 crossref_primary_10_1080_17455030_2023_2241917 crossref_primary_10_1007_s00521_021_05913_y crossref_primary_10_3390_sym17010114 crossref_primary_10_3390_app12199892 crossref_primary_10_23919_CSMS_2022_0018 crossref_primary_10_35848_1882_0786_ad2afe crossref_primary_10_1016_j_asoc_2023_110024 crossref_primary_10_1109_ACCESS_2023_3240467 |
| Cites_doi | 10.1016/j.asoc.2016.06.011 10.1109/TEVC.2003.819944 10.1016/j.swevo.2018.10.006 10.1109/TEVC.2008.920670 10.1016/S0305-0548(03)00198-9 10.1016/j.ins.2017.09.002 10.1007/s10845-017-1294-6 10.1016/j.ins.2011.11.025 10.2514/3.10834 10.1007/s10589-012-9468-9 10.4018/IJAMC.2019010101 10.1155/2013/103591 10.1016/S1474-0346(02)00011-3 10.1007/978-3-030-02357-7_21 10.1109/TEVC.2007.895272 10.1016/j.ins.2009.11.015 10.1162/106365601750190398 10.1016/j.ins.2013.04.015 10.1007/s13042-017-0711-7 10.1115/1.3438995 10.1016/S0167-8191(05)80052-3 10.1007/s00500-017-2777-2 10.1016/j.asoc.2012.08.035 10.1016/j.jelechem.2003.11.060 10.1016/j.swevo.2019.03.014 10.1016/j.ins.2012.01.008 10.1016/j.swevo.2018.10.014 |
| ContentType | Journal Article |
| Copyright | 2020 Elsevier Inc. |
| Copyright_xml | – notice: 2020 Elsevier Inc. |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.ins.2020.08.040 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Library & Information Science |
| EISSN | 1872-6291 |
| EndPage | 162 |
| ExternalDocumentID | 10_1016_j_ins_2020_08_040 S0020025520308069 |
| GroupedDBID | --K --M --Z -~X .DC .~1 0R~ 1B1 1RT 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN 9JO AAAKF AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AARIN AAXUO AAYFN ABAOU ABBOA ABFNM ABJNI ABMAC ABUCO ABYKQ ACAZW ACDAQ ACGFS ACRLP ACZNC ADBBV ADEZE ADGUI ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIGVJ AIKHN AITUG AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD APLSM ARUGR AXJTR BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ HAMUX IHE J1W JJJVA KOM LG9 LY1 M41 MHUIS MO0 MS~ N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 ROL RPZ SDF SDG SDP SES SPC SPCBC SSB SSD SST SSV SSW SSZ T5K TN5 TWZ WH7 XPP ZMT ~02 ~G- 1OL 29I 77I AAAKG AAQXK AATTM AAXKI AAYWO AAYXX ABEFU ABWVN ABXDB ACLOT ACNNM ACRPL ACVFH ADCNI ADJOM ADMUD ADNMO ADVLN AEIPS AEUPX AFFNX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN CITATION EFKBS EJD FEDTE FGOYB HLZ HVGLF HZ~ H~9 R2- SBC SDS SEW UHS WUQ YYP ZY4 ~HD |
| ID | FETCH-LOGICAL-c297t-8d28751f71cdcc38647b730d013f195f3aed102070a308ff7cf0718643b80a103 |
| IEDL.DBID | .~1 |
| ISSN | 0020-0255 |
| IngestDate | Wed Oct 01 05:17:06 EDT 2025 Thu Apr 24 23:05:47 EDT 2025 Fri Feb 23 02:45:54 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Gradient descent Hybrid genetic algorithms Evolutionary algorithms Heuristics Constrained optimization |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c297t-8d28751f71cdcc38647b730d013f195f3aed102070a308ff7cf0718643b80a103 |
| ORCID | 0000-0003-1760-5527 |
| PageCount | 27 |
| ParticipantIDs | crossref_citationtrail_10_1016_j_ins_2020_08_040 crossref_primary_10_1016_j_ins_2020_08_040 elsevier_sciencedirect_doi_10_1016_j_ins_2020_08_040 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2021-02-08 |
| PublicationDateYYYYMMDD | 2021-02-08 |
| PublicationDate_xml | – month: 02 year: 2021 text: 2021-02-08 day: 08 |
| PublicationDecade | 2020 |
| PublicationTitle | Information sciences |
| PublicationYear | 2021 |
| Publisher | Elsevier Inc |
| Publisher_xml | – name: Elsevier Inc |
| References | Cui, Li, Zhu, Lin, Wong, Chen, Lu, Lu (b0030) 2018; 422 Tang, Tseng (b0220) 2013; 13 Gancarski, Blansche (b0050) 2008; 12 Brest, Zumer, Maucec (b0015) 2006 A.W. Mohamed, H.Z. Sabry, Constrained optimization based on modified differential evolution algorithm, Inf. Sci. 194 (2012) 171–208. Intelligent Knowledge-Based Models and Methodologies for Complex Information Systems. Kora, Yadlapalli (b0075) 2017; 162 Poláková, Tvrdík, Bujok (b0175) 2019; 50 Jamil, Yang (b0065) 2013; 4 Sinha, Srinivasan, Deb (b0200) 2006 Molga, Smutnicki (b0145) 2005 Christu, Stephen (b0020) 2018; 9 Deb, Srivastava (b0040) 2012; 53 Noman, Iba (b0165) 2008; 12 Mohamed, Mohamed (b0125) 2019; 10 Stanovov, Akhmedova, Semenkin (b0205) 2019; 50 J. Liang, T. Runarsson, E. Mezura-Montes, M. Clerc, P. Suganthan, A.C. Coello, K. Deb, Problem definitions and evaluation criteria for the cec 2006 special session on constrained real-parameter optimization. Nangyang Technological University, Singapore, Tech. Rep, 41, 2006. Mohamed, Hadi, Mohamed (b0120) 2019 W. Wan, J.B. Birch, An improved hybrid genetic algorithm with a new local search procedure, J. Appl. Math. (2013) 1–10, Article ID 103591. Mohamed, Hadi, Jambi (b0115) 2019; 50 Tanabe, Fukunaga (b0215) 2014 Rao (b0185) 2009 Deb (b0035) 1991; 29 Coello, Montes (b0025) 2002; 16 S. Ruder, An overview of gradient descent optimization algorithms, 2016. arXiv preprint arXiv:1609.04747. Nikolaus Hansen (b0160) 2001; 9 Ong, Keane (b0170) 2004; 8 N. Awad, M. Ali, J. Liang, B. Qu, P. Suganthan, Problem definitions and evaluation criteria for the CEC 2017 special session and competition on single objective real-parameter numerical optimization. Technical report, Nanyang Technological University, Singapore, May 2005 and KanGAL Report n. 2005005, IIT Kanpur, India, 2016. Blum, Puisa, Riedel, Wintermantel (b0010) 2001 Ragsdell, Phillips (b0180) 1976; 98 Zielinski, Laur (b0250) 2006 Neri, Cotta, Moscato (b0155) 2012 Siddall (b0195) 1972 Kasprzyk, Jaskula (b0070) 2004; 567 Mohamed (b0110) 2018; 29 Hinton, Nowlan (b0055) 1996 Iacca, Neri, Mininno, Ong, Lim (b0060) 2012; 188 A. Mohamed, A. Mohamed, Real-parameter unconstrained optimization based on enhanced agde algorithm, in: A., H., editor, Machine Learning Paradigms: Theory and Application. Studies in Computational Intelligence, vol. 801, Springer, Cham, 2019, pp. 431–450. Mohamed, Mohamed, Elfeky, Saleh (b0130) 2019; 10 Wang, Wu (b0230) 2004; 31 El-Mihoub, Hopgood (b0045) 2006; 13 Yeniay (b0235) 2005; 10 Li, Lin, Cui, Du, Liang, Chen, Lu, Ming (b0080) 2016; 47 Malan, Engelbrecht (b0090) 2013; 241 Michalewicz (b0095) 1996 Mohamed, Suganthan (b0140) 2018; 22 Mühlenbein, Schomisch, Born (b0150) 1991; 17 Misevicius (b0100) 2004 Tanabe, Fukunaga (b0210) 2013 Yuan (b0240) 2010; 180 Zhou, Pei (b0245) 2010; 5 Ong (10.1016/j.ins.2020.08.040_b0170) 2004; 8 10.1016/j.ins.2020.08.040_b0105 10.1016/j.ins.2020.08.040_b0225 Rao (10.1016/j.ins.2020.08.040_b0185) 2009 Michalewicz (10.1016/j.ins.2020.08.040_b0095) 1996 Molga (10.1016/j.ins.2020.08.040_b0145) 2005 Brest (10.1016/j.ins.2020.08.040_b0015) 2006 Hinton (10.1016/j.ins.2020.08.040_b0055) 1996 Kasprzyk (10.1016/j.ins.2020.08.040_b0070) 2004; 567 Deb (10.1016/j.ins.2020.08.040_b0040) 2012; 53 10.1016/j.ins.2020.08.040_b0190 Tanabe (10.1016/j.ins.2020.08.040_b0215) 2014 Mühlenbein (10.1016/j.ins.2020.08.040_b0150) 1991; 17 El-Mihoub (10.1016/j.ins.2020.08.040_b0045) 2006; 13 Misevicius (10.1016/j.ins.2020.08.040_b0100) 2004 Mohamed (10.1016/j.ins.2020.08.040_b0125) 2019; 10 Siddall (10.1016/j.ins.2020.08.040_b0195) 1972 Zhou (10.1016/j.ins.2020.08.040_b0245) 2010; 5 Li (10.1016/j.ins.2020.08.040_b0080) 2016; 47 Stanovov (10.1016/j.ins.2020.08.040_b0205) 2019; 50 10.1016/j.ins.2020.08.040_b0085 Malan (10.1016/j.ins.2020.08.040_b0090) 2013; 241 Yeniay (10.1016/j.ins.2020.08.040_b0235) 2005; 10 Cui (10.1016/j.ins.2020.08.040_b0030) 2018; 422 Tang (10.1016/j.ins.2020.08.040_b0220) 2013; 13 Zielinski (10.1016/j.ins.2020.08.040_b0250) 2006 Neri (10.1016/j.ins.2020.08.040_b0155) 2012 Kora (10.1016/j.ins.2020.08.040_b0075) 2017; 162 Deb (10.1016/j.ins.2020.08.040_b0035) 1991; 29 Iacca (10.1016/j.ins.2020.08.040_b0060) 2012; 188 Yuan (10.1016/j.ins.2020.08.040_b0240) 2010; 180 10.1016/j.ins.2020.08.040_b0005 Mohamed (10.1016/j.ins.2020.08.040_b0115) 2019; 50 Nikolaus Hansen (10.1016/j.ins.2020.08.040_b0160) 2001; 9 10.1016/j.ins.2020.08.040_b0135 Tanabe (10.1016/j.ins.2020.08.040_b0210) 2013 Mohamed (10.1016/j.ins.2020.08.040_b0140) 2018; 22 Ragsdell (10.1016/j.ins.2020.08.040_b0180) 1976; 98 Blum (10.1016/j.ins.2020.08.040_b0010) 2001 Coello (10.1016/j.ins.2020.08.040_b0025) 2002; 16 Mohamed (10.1016/j.ins.2020.08.040_b0110) 2018; 29 Christu (10.1016/j.ins.2020.08.040_b0020) 2018; 9 Wang (10.1016/j.ins.2020.08.040_b0230) 2004; 31 Jamil (10.1016/j.ins.2020.08.040_b0065) 2013; 4 Gancarski (10.1016/j.ins.2020.08.040_b0050) 2008; 12 Sinha (10.1016/j.ins.2020.08.040_b0200) 2006 Poláková (10.1016/j.ins.2020.08.040_b0175) 2019; 50 Mohamed (10.1016/j.ins.2020.08.040_b0130) 2019; 10 Noman (10.1016/j.ins.2020.08.040_b0165) 2008; 12 Mohamed (10.1016/j.ins.2020.08.040_b0120) 2019 |
| References_xml | – year: 2001 ident: b0010 article-title: Adaptive mutation strategies for evolutionary algorithms publication-title: The annual conference: EVEN at Weimarer Optimierungsund Stochastiktage 2.0 – start-page: 3 year: 2004 end-page: 16 ident: b0100 article-title: An improved hybrid genetic algorithm: new results for the quadratic assignment problem publication-title: Research and Development in Intelligent Systems XX – start-page: 239 year: 2006 end-page: 245 ident: b0200 article-title: A population-based, parent centric procedure for constrained real-parameter optimization publication-title: 2006 IEEE International Conference on Evolutionary Computation – start-page: 443 year: 2006 end-page: 450 ident: b0250 article-title: Constrained single-objective optimization using particle swarm optimization publication-title: 2006 IEEE International Conference on Evolutionary Computation – year: 1972 ident: b0195 article-title: Analytical Decision-Making in Engineering Design – reference: N. Awad, M. Ali, J. Liang, B. Qu, P. Suganthan, Problem definitions and evaluation criteria for the CEC 2017 special session and competition on single objective real-parameter numerical optimization. Technical report, Nanyang Technological University, Singapore, May 2005 and KanGAL Report n. 2005005, IIT Kanpur, India, 2016. – year: 2009 ident: b0185 article-title: Engineering Optimization: Theory and Practice – volume: 4 year: 2013 ident: b0065 article-title: A literature survey of benchmark functions for global optimization problems publication-title: Int. J. Math. Model. Numer. Optim. – reference: W. Wan, J.B. Birch, An improved hybrid genetic algorithm with a new local search procedure, J. Appl. Math. (2013) 1–10, Article ID 103591. – reference: J. Liang, T. Runarsson, E. Mezura-Montes, M. Clerc, P. Suganthan, A.C. Coello, K. Deb, Problem definitions and evaluation criteria for the cec 2006 special session on constrained real-parameter optimization. Nangyang Technological University, Singapore, Tech. Rep, 41, 2006. – volume: 9 start-page: 10 year: 2018 end-page: 20 ident: b0020 article-title: Cost minimization of welded beam design problem using PSO, SA, PS, Godlike, Cuckoo, FF, FP, ALO, GSA and MVO publication-title: Int. J. Mech. Eng. Technol. – volume: 53 start-page: 869 year: 2012 end-page: 902 ident: b0040 article-title: A genetic algorithm based augmented lagrangian method for constrained optimization publication-title: Comput. Optim. Appl. – volume: 31 start-page: 2453 year: 2004 end-page: 2471 ident: b0230 article-title: Hybrid genetic algorithm for optimization problems with permutation property publication-title: Comput. Oper. Res. – volume: 241 start-page: 148 year: 2013 end-page: 163 ident: b0090 article-title: A survey of techniques for characterising fitness landscapes and some possible ways forward publication-title: Inf. Sci. – start-page: 1 year: 2005 end-page: 43 ident: b0145 article-title: Test functions for optimization needs publication-title: Comput. Inform. Sci. – volume: 12 start-page: 617 year: 2008 end-page: 629 ident: b0050 article-title: Darwinian, lamarckian, and baldwinian (co)evolutionary approaches for feature weighting in k-means-based algorithms publication-title: IEEE Trans. Evol. Comput. – volume: 162 start-page: 34 year: 2017 end-page: 36 ident: b0075 article-title: Crossover operators in genetic algorithms: a review publication-title: Int. J. Comput. Appl. – reference: A.W. Mohamed, H.Z. Sabry, Constrained optimization based on modified differential evolution algorithm, Inf. Sci. 194 (2012) 171–208. Intelligent Knowledge-Based Models and Methodologies for Complex Information Systems. – reference: A. Mohamed, A. Mohamed, Real-parameter unconstrained optimization based on enhanced agde algorithm, in: A., H., editor, Machine Learning Paradigms: Theory and Application. Studies in Computational Intelligence, vol. 801, Springer, Cham, 2019, pp. 431–450. – volume: 5 start-page: 965 year: 2010 end-page: 972 ident: b0245 article-title: A hybrid co-evolutionary particle swarm optimization algorithm for solving constrained engineering design problems publication-title: JCP – start-page: 1658 year: 2014 end-page: 1665 ident: b0215 article-title: Improving the search performance of shade using linear population size reduction publication-title: 2014 IEEE Congress on Evolutionary Computation (CEC) – year: 2012 ident: b0155 article-title: Handbook of Memetic Algorithms. Studies in Computational Intelligence – volume: 22 start-page: 3215 year: 2018 end-page: 3235 ident: b0140 article-title: Real-parameter unconstrained optimization based on enhanced fitness-adaptive differential evolution algorithm with novel mutation publication-title: Soft. Comput. – volume: 47 start-page: 577 year: 2016 end-page: 599 ident: b0080 article-title: A novel hybrid differential evolution algorithm with modified code and jade publication-title: Appl. Soft Comput. – start-page: 71 year: 2013 end-page: 78 ident: b0210 article-title: Success-history based parameter adaptation for differential evolution publication-title: 2013 IEEE Congress on Evolutionary Computation – volume: 567 start-page: 39 year: 2004 end-page: 66 ident: b0070 article-title: Application of the hybrid genetic-simplex algorithm for deconvolution of electrochemical responses in sdlsv method publication-title: J. Electroanal. Chem. – volume: 188 start-page: 17 year: 2012 end-page: 43 ident: b0060 article-title: Ockham’s razor in memetic computing: three stage optimal memetic exploration publication-title: Inf. Sci. – volume: 50 year: 2019 ident: b0175 article-title: Differential evolution with adaptive mechanism of population size according to current population diversity publication-title: Swarm Evol. Comput. – start-page: 215 year: 2006 end-page: 222 ident: b0015 article-title: Self-adaptive differential evolution algorithm in constrained real-parameter optimization publication-title: 2006 IEEE International Conference on Evolutionary Computation – volume: 180 start-page: 640 year: 2010 end-page: 652 ident: b0240 article-title: A hybrid genetic algorithm with the baldwin effect publication-title: Inf. Sci. – volume: 13 start-page: 124 year: 2006 end-page: 137 ident: b0045 article-title: Hybrid genetic algorithms: a review publication-title: Eng. Lett. – year: 2019 ident: b0120 article-title: Gaining-sharing knowledge based algorithm for solving optimization problems: a novel nature-inspired algorithm publication-title: Int. J. Mach. Learn. Cybern. – reference: S. Ruder, An overview of gradient descent optimization algorithms, 2016. arXiv preprint arXiv:1609.04747. – volume: 8 start-page: 99 year: 2004 end-page: 110 ident: b0170 article-title: Meta-lamarckian learning in memetic algorithms publication-title: IEEE Trans. Evol. Comput. – volume: 10 start-page: 253 year: 2019 end-page: 277 ident: b0125 article-title: Adaptive guided differential evolution algorithm with novel mutation for numerical optimization publication-title: Int. J. Mach. Learn. Cybern. – volume: 13 start-page: 600 year: 2013 end-page: 614 ident: b0220 article-title: Adaptive directed mutation for real-coded genetic algorithms publication-title: Appl. Soft Comput. – volume: 10 start-page: 45 year: 2005 end-page: 56 ident: b0235 article-title: Penalty function methods for constrained optimization with genetic algorithms publication-title: Math. Comput. Appl. – year: 1996 ident: b0095 article-title: Genetic Algorithms + Data Structures = Evolution Programs – volume: 17 start-page: 619 year: 1991 end-page: 632 ident: b0150 article-title: The parallel genetic algorithm as function optimizer publication-title: Parallel Comput. – volume: 50 year: 2019 ident: b0205 article-title: Selective pressure strategy in differential evolution: exploitation improvement in solving global optimization problems publication-title: Swarm Evol. Comput. – volume: 98 start-page: 1021 year: 1976 end-page: 1025 ident: b0180 article-title: Optimal design of a class of welded structures using geometric programming publication-title: ASME.J. Eng. Ind. – volume: 422 start-page: 122 year: 2018 end-page: 143 ident: b0030 article-title: Adaptive multiple-elites-guided composite differential evolution algorithm with a shift mechanism publication-title: Inf. Sci. – start-page: 447 year: 1996 end-page: 454 ident: b0055 article-title: How learning can guide evolution publication-title: Adaptive Individuals in Evolving Populations – volume: 29 start-page: 2013 year: 1991 end-page: 2015 ident: b0035 article-title: Optimal design of a welded beam via genetic algorithms publication-title: AIAA J. – volume: 9 start-page: 159 year: 2001 end-page: 195 ident: b0160 article-title: Completely derandomized self-adaptation in evolution strategies publication-title: Evol. Comput. – volume: 12 start-page: 107 year: 2008 end-page: 125 ident: b0165 article-title: Accelerating differential evolution using an adaptive local search publication-title: IEEE Trans. Evol. Comput. – volume: 16 start-page: 193 year: 2002 end-page: 203 ident: b0025 article-title: Constraint-handling in genetic algorithms through the use of dominance-based tournament selection publication-title: Adv. Eng. Inform. – volume: 50 year: 2019 ident: b0115 article-title: Novel mutation strategy for enhancing shade and lshade algorithms for global numerical optimization publication-title: Swarm Evol. Comput. – volume: 10 start-page: 1 year: 2019 end-page: 28 ident: b0130 article-title: Enhanced directed differential evolution algorithm for solving constrained engineering optimization problems publication-title: Int. J. Appl. Metaheuristic Comput. – volume: 29 start-page: 659 year: 2018 end-page: 692 ident: b0110 article-title: A novel differential evolution algorithm for solving constrained engineering optimization problems publication-title: J. Intell. Manuf. – year: 1972 ident: 10.1016/j.ins.2020.08.040_b0195 – volume: 13 start-page: 124 issue: 2 year: 2006 ident: 10.1016/j.ins.2020.08.040_b0045 article-title: Hybrid genetic algorithms: a review publication-title: Eng. Lett. – volume: 47 start-page: 577 year: 2016 ident: 10.1016/j.ins.2020.08.040_b0080 article-title: A novel hybrid differential evolution algorithm with modified code and jade publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2016.06.011 – volume: 8 start-page: 99 issue: 2 year: 2004 ident: 10.1016/j.ins.2020.08.040_b0170 article-title: Meta-lamarckian learning in memetic algorithms publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/TEVC.2003.819944 – year: 2009 ident: 10.1016/j.ins.2020.08.040_b0185 – volume: 9 start-page: 10 issue: 9 year: 2018 ident: 10.1016/j.ins.2020.08.040_b0020 article-title: Cost minimization of welded beam design problem using PSO, SA, PS, Godlike, Cuckoo, FF, FP, ALO, GSA and MVO publication-title: Int. J. Mech. Eng. Technol. – volume: 50 year: 2019 ident: 10.1016/j.ins.2020.08.040_b0115 article-title: Novel mutation strategy for enhancing shade and lshade algorithms for global numerical optimization publication-title: Swarm Evol. Comput. doi: 10.1016/j.swevo.2018.10.006 – volume: 12 start-page: 617 issue: 5 year: 2008 ident: 10.1016/j.ins.2020.08.040_b0050 article-title: Darwinian, lamarckian, and baldwinian (co)evolutionary approaches for feature weighting in k-means-based algorithms publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/TEVC.2008.920670 – volume: 31 start-page: 2453 issue: 14 year: 2004 ident: 10.1016/j.ins.2020.08.040_b0230 article-title: Hybrid genetic algorithm for optimization problems with permutation property publication-title: Comput. Oper. Res. doi: 10.1016/S0305-0548(03)00198-9 – year: 2019 ident: 10.1016/j.ins.2020.08.040_b0120 article-title: Gaining-sharing knowledge based algorithm for solving optimization problems: a novel nature-inspired algorithm publication-title: Int. J. Mach. Learn. Cybern. – volume: 10 start-page: 45 issue: 1 year: 2005 ident: 10.1016/j.ins.2020.08.040_b0235 article-title: Penalty function methods for constrained optimization with genetic algorithms publication-title: Math. Comput. Appl. – volume: 422 start-page: 122 year: 2018 ident: 10.1016/j.ins.2020.08.040_b0030 article-title: Adaptive multiple-elites-guided composite differential evolution algorithm with a shift mechanism publication-title: Inf. Sci. doi: 10.1016/j.ins.2017.09.002 – start-page: 3 year: 2004 ident: 10.1016/j.ins.2020.08.040_b0100 article-title: An improved hybrid genetic algorithm: new results for the quadratic assignment problem – year: 1996 ident: 10.1016/j.ins.2020.08.040_b0095 – ident: 10.1016/j.ins.2020.08.040_b0190 – start-page: 1 year: 2005 ident: 10.1016/j.ins.2020.08.040_b0145 article-title: Test functions for optimization needs publication-title: Comput. Inform. Sci. – volume: 29 start-page: 659 issue: 3 year: 2018 ident: 10.1016/j.ins.2020.08.040_b0110 article-title: A novel differential evolution algorithm for solving constrained engineering optimization problems publication-title: J. Intell. Manuf. doi: 10.1007/s10845-017-1294-6 – start-page: 71 year: 2013 ident: 10.1016/j.ins.2020.08.040_b0210 article-title: Success-history based parameter adaptation for differential evolution – volume: 188 start-page: 17 year: 2012 ident: 10.1016/j.ins.2020.08.040_b0060 article-title: Ockham’s razor in memetic computing: three stage optimal memetic exploration publication-title: Inf. Sci. doi: 10.1016/j.ins.2011.11.025 – start-page: 1658 year: 2014 ident: 10.1016/j.ins.2020.08.040_b0215 article-title: Improving the search performance of shade using linear population size reduction – volume: 29 start-page: 2013 year: 1991 ident: 10.1016/j.ins.2020.08.040_b0035 article-title: Optimal design of a welded beam via genetic algorithms publication-title: AIAA J. doi: 10.2514/3.10834 – volume: 53 start-page: 869 issue: 3 year: 2012 ident: 10.1016/j.ins.2020.08.040_b0040 article-title: A genetic algorithm based augmented lagrangian method for constrained optimization publication-title: Comput. Optim. Appl. doi: 10.1007/s10589-012-9468-9 – start-page: 215 year: 2006 ident: 10.1016/j.ins.2020.08.040_b0015 article-title: Self-adaptive differential evolution algorithm in constrained real-parameter optimization – volume: 10 start-page: 1 issue: 1 year: 2019 ident: 10.1016/j.ins.2020.08.040_b0130 article-title: Enhanced directed differential evolution algorithm for solving constrained engineering optimization problems publication-title: Int. J. Appl. Metaheuristic Comput. doi: 10.4018/IJAMC.2019010101 – ident: 10.1016/j.ins.2020.08.040_b0225 doi: 10.1155/2013/103591 – volume: 16 start-page: 193 issue: 3 year: 2002 ident: 10.1016/j.ins.2020.08.040_b0025 article-title: Constraint-handling in genetic algorithms through the use of dominance-based tournament selection publication-title: Adv. Eng. Inform. doi: 10.1016/S1474-0346(02)00011-3 – ident: 10.1016/j.ins.2020.08.040_b0105 doi: 10.1007/978-3-030-02357-7_21 – ident: 10.1016/j.ins.2020.08.040_b0005 – volume: 12 start-page: 107 issue: 1 year: 2008 ident: 10.1016/j.ins.2020.08.040_b0165 article-title: Accelerating differential evolution using an adaptive local search publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/TEVC.2007.895272 – volume: 180 start-page: 640 issue: 5 year: 2010 ident: 10.1016/j.ins.2020.08.040_b0240 article-title: A hybrid genetic algorithm with the baldwin effect publication-title: Inf. Sci. doi: 10.1016/j.ins.2009.11.015 – volume: 162 start-page: 34 issue: 10 year: 2017 ident: 10.1016/j.ins.2020.08.040_b0075 article-title: Crossover operators in genetic algorithms: a review publication-title: Int. J. Comput. Appl. – start-page: 447 year: 1996 ident: 10.1016/j.ins.2020.08.040_b0055 article-title: How learning can guide evolution – volume: 5 start-page: 965 year: 2010 ident: 10.1016/j.ins.2020.08.040_b0245 article-title: A hybrid co-evolutionary particle swarm optimization algorithm for solving constrained engineering design problems publication-title: JCP – volume: 9 start-page: 159 issue: 2 year: 2001 ident: 10.1016/j.ins.2020.08.040_b0160 article-title: Completely derandomized self-adaptation in evolution strategies publication-title: Evol. Comput. doi: 10.1162/106365601750190398 – volume: 241 start-page: 148 year: 2013 ident: 10.1016/j.ins.2020.08.040_b0090 article-title: A survey of techniques for characterising fitness landscapes and some possible ways forward publication-title: Inf. Sci. doi: 10.1016/j.ins.2013.04.015 – volume: 10 start-page: 253 issue: 2 year: 2019 ident: 10.1016/j.ins.2020.08.040_b0125 article-title: Adaptive guided differential evolution algorithm with novel mutation for numerical optimization publication-title: Int. J. Mach. Learn. Cybern. doi: 10.1007/s13042-017-0711-7 – start-page: 443 year: 2006 ident: 10.1016/j.ins.2020.08.040_b0250 article-title: Constrained single-objective optimization using particle swarm optimization – year: 2001 ident: 10.1016/j.ins.2020.08.040_b0010 article-title: Adaptive mutation strategies for evolutionary algorithms – volume: 98 start-page: 1021 issue: 3 year: 1976 ident: 10.1016/j.ins.2020.08.040_b0180 article-title: Optimal design of a class of welded structures using geometric programming publication-title: ASME.J. Eng. Ind. doi: 10.1115/1.3438995 – ident: 10.1016/j.ins.2020.08.040_b0085 – volume: 17 start-page: 619 issue: 6 year: 1991 ident: 10.1016/j.ins.2020.08.040_b0150 article-title: The parallel genetic algorithm as function optimizer publication-title: Parallel Comput. doi: 10.1016/S0167-8191(05)80052-3 – volume: 22 start-page: 3215 issue: 10 year: 2018 ident: 10.1016/j.ins.2020.08.040_b0140 article-title: Real-parameter unconstrained optimization based on enhanced fitness-adaptive differential evolution algorithm with novel mutation publication-title: Soft. Comput. doi: 10.1007/s00500-017-2777-2 – volume: 13 start-page: 600 issue: 1 year: 2013 ident: 10.1016/j.ins.2020.08.040_b0220 article-title: Adaptive directed mutation for real-coded genetic algorithms publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2012.08.035 – volume: 4 year: 2013 ident: 10.1016/j.ins.2020.08.040_b0065 article-title: A literature survey of benchmark functions for global optimization problems publication-title: Int. J. Math. Model. Numer. Optim. – year: 2012 ident: 10.1016/j.ins.2020.08.040_b0155 – start-page: 239 year: 2006 ident: 10.1016/j.ins.2020.08.040_b0200 article-title: A population-based, parent centric procedure for constrained real-parameter optimization – volume: 567 start-page: 39 issue: 1 year: 2004 ident: 10.1016/j.ins.2020.08.040_b0070 article-title: Application of the hybrid genetic-simplex algorithm for deconvolution of electrochemical responses in sdlsv method publication-title: J. Electroanal. Chem. doi: 10.1016/j.jelechem.2003.11.060 – volume: 50 year: 2019 ident: 10.1016/j.ins.2020.08.040_b0175 article-title: Differential evolution with adaptive mechanism of population size according to current population diversity publication-title: Swarm Evol. Comput. doi: 10.1016/j.swevo.2019.03.014 – ident: 10.1016/j.ins.2020.08.040_b0135 doi: 10.1016/j.ins.2012.01.008 – volume: 50 year: 2019 ident: 10.1016/j.ins.2020.08.040_b0205 article-title: Selective pressure strategy in differential evolution: exploitation improvement in solving global optimization problems publication-title: Swarm Evol. Comput. doi: 10.1016/j.swevo.2018.10.014 |
| SSID | ssj0004766 |
| Score | 2.6591818 |
| Snippet | In the last few decades, genetic algorithms (GAs) demonstrated to be an effective approach for solving real-world optimization problems. However, it is known... |
| SourceID | crossref elsevier |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 136 |
| SubjectTerms | Constrained optimization Evolutionary algorithms Gradient descent Heuristics Hybrid genetic algorithms |
| Title | GGA: A modified genetic algorithm with gradient-based local search for solving constrained optimization problems |
| URI | https://dx.doi.org/10.1016/j.ins.2020.08.040 |
| Volume | 547 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1872-6291 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0004766 issn: 0020-0255 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier ScienceDirect Complete Freedom Collection customDbUrl: eissn: 1872-6291 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0004766 issn: 0020-0255 databaseCode: ACRLP dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals [SCFCJ] customDbUrl: eissn: 1872-6291 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0004766 issn: 0020-0255 databaseCode: AIKHN dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: ScienceDirect (Elsevier) customDbUrl: eissn: 1872-6291 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0004766 issn: 0020-0255 databaseCode: .~1 dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1872-6291 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0004766 issn: 0020-0255 databaseCode: AKRWK dateStart: 19681201 isFulltext: true providerName: Library Specific Holdings |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8MwDI6mcYEDggFiwCYfEAeksrTN-uBWTWwDpJ2YtFvVps0o2tZplCu_HbtNYUjAgWvlVJHt2J8TPxi79IVvpnhsjDRV0hAOV0Zs-5GBvsSTTuzaUVomyE6c8VQ8zPqzBhvUtTCUVqltf2XTS2utv_Q0N3vrLKMaX6tExBa1XOEOFfEJ4dIUg5v3rzQP4VbvlRQmEXX9slnmeGUr6tht8bKLJ91__OSbtvzN8IDta6AIQbWXQ9ZIVy22t9U-sMU6uugArkBXFRGXQR_XI7YejYJbCGCZJ5lCqAmoLFSzCNFinm-y4nkJdA0L802Z91UY5NISKN0bVEcA8LeA6knXDiAJS9JICSTK0dQsdQ0n6Kk0r8dsOrx7GowNPWHBkJbvFoaXYMDUN5VrykRK23OEi-LhCeJCZfp9hZJKEIGgWYiQx0q5UiEkQTI79nhkcvuENVf5Kj1lgDjHUk7fdyTGOAlGjR4CgyiKzcSOOMqlzXjN21Dq9uO05UVY55m9hCiOkMQR0mRMwdvs-nPJuuq98RexqAUWflOgEH3D78vO_rfsnO1alNxC6dveBWsWm7e0g-ikiLul-nXZTnD_OJ58ANhf5CY |
| linkProvider | Elsevier |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8QwDLZ4DMCA4ADxxgNiQCqXtumL7YQ4DjiYQGKr2rQ5iriHjrLy27HblIcEDKyVU0W2Y39O_AA4jGRk53RsrDzXypK-0FbqRolFviRUfhq4SV4lyN76vXt59eA9zMBZUwvDaZXG9tc2vbLW5kvbcLM9KQqu8XUqROxwyxXhR7MwLz0n4Ajs5O0zz0MG9YMlx0lM3jxtVklexYhbdjuiauPJFyA_OacvDqe7AssGKWKn3swqzOSjFix96R_Ygj1TdYBHaMqKmM1ozusaTC4uOqfYweE4KzRhTSRt4aJFTJ4H42lRPg6R72FxMK0Sv0qLfVqGlX_D-gwg_RZJP_neARWDSZ4pQURjsjVDU8SJZizNyzrcd8_vznqWGbFgKScKSivMKGLybB3YKlPKDX0ZkHxERsBQ25GnSVQZQRCyCwkxWetAacIkROamoUhs4W7A3Gg8yjcBCeg42vciX1GQk1HYGBIySJLUztxESBlsgWh4GyvTf5y3_Bw3iWZPMYkjZnHEPBpTii04_lgyqZtv_EUsG4HF3zQoJufw-7Lt_y07gIXe3U0_7l_eXu_AosOZLpzLHe7CXDl9zfcIqpTpfqWK7zW45bs |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=GGA%3A+A+modified+genetic+algorithm+with+gradient-based+local+search+for+solving+constrained+optimization+problems&rft.jtitle=Information+sciences&rft.au=D%E2%80%99Angelo%2C+Gianni&rft.au=Palmieri%2C+Francesco&rft.date=2021-02-08&rft.issn=0020-0255&rft.volume=547&rft.spage=136&rft.epage=162&rft_id=info:doi/10.1016%2Fj.ins.2020.08.040&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_ins_2020_08_040 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0020-0255&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0020-0255&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0020-0255&client=summon |