GGA: A modified genetic algorithm with gradient-based local search for solving constrained optimization problems

In the last few decades, genetic algorithms (GAs) demonstrated to be an effective approach for solving real-world optimization problems. However, it is known that, in presence of a huge solution space and many local optima, GAs cannot guarantee the achievement of global optimality. In this work, in...

Full description

Saved in:
Bibliographic Details
Published inInformation sciences Vol. 547; pp. 136 - 162
Main Authors D’Angelo, Gianni, Palmieri, Francesco
Format Journal Article
LanguageEnglish
Published Elsevier Inc 08.02.2021
Subjects
Online AccessGet full text
ISSN0020-0255
1872-6291
DOI10.1016/j.ins.2020.08.040

Cover

Abstract In the last few decades, genetic algorithms (GAs) demonstrated to be an effective approach for solving real-world optimization problems. However, it is known that, in presence of a huge solution space and many local optima, GAs cannot guarantee the achievement of global optimality. In this work, in order to make GAs more effective in finding the global optimal solution, we propose a hybrid GA which combines the classical genetic mechanisms with the gradient-descent (GD) technique for local searching and constraints management. The basic idea is to exploit the GD capability in finding local optima to refine search space exploration and to place individuals in areas that are more favorable for achieving convergence. This confers to GAs the capability of escaping from the discovered local optima, by progressively moving towards the global solution. Experimental results on a set of test problems from well-known benchmarks showed that our proposal is competitive with other more complex and notable approaches, in terms of solution precision as well as reduced number of individuals and generations.
AbstractList In the last few decades, genetic algorithms (GAs) demonstrated to be an effective approach for solving real-world optimization problems. However, it is known that, in presence of a huge solution space and many local optima, GAs cannot guarantee the achievement of global optimality. In this work, in order to make GAs more effective in finding the global optimal solution, we propose a hybrid GA which combines the classical genetic mechanisms with the gradient-descent (GD) technique for local searching and constraints management. The basic idea is to exploit the GD capability in finding local optima to refine search space exploration and to place individuals in areas that are more favorable for achieving convergence. This confers to GAs the capability of escaping from the discovered local optima, by progressively moving towards the global solution. Experimental results on a set of test problems from well-known benchmarks showed that our proposal is competitive with other more complex and notable approaches, in terms of solution precision as well as reduced number of individuals and generations.
Author D’Angelo, Gianni
Palmieri, Francesco
Author_xml – sequence: 1
  givenname: Gianni
  surname: D’Angelo
  fullname: D’Angelo, Gianni
  email: giadangelo@unisa.it
  organization: Department of Computer Science, University of Salerno, Fisciano, SA, Italy
– sequence: 2
  givenname: Francesco
  orcidid: 0000-0003-1760-5527
  surname: Palmieri
  fullname: Palmieri, Francesco
  email: fpalmieri@unisa.it
  organization: Department of Computer Science, University of Salerno, Fisciano, SA, Italy
BookMark eNp9kL9OwzAQhy0EEm3hAdj8AgnnpIldmKoKClIlFpgtx39SV4ld2VYRPD0uZWLocjfc7zvdfVN06bzTCN0RKAmQ9n5XWhfLCioogZUwhws0IYxWRVstyCWaQJ4UUDXNNZrGuAOAOW3bCdqv18sHvMSjV9ZYrXCvnU5WYjH0Pti0HfFnrrgPQlntUtGJmFODl2LAUYsgt9j4gKMfDtb1WHoXUxDW5ZDfJzvab5Gsd3gffDfoMd6gKyOGqG__-gx9PD-9r16Kzdv6dbXcFLJa0FQwVTHaEEOJVFLWrJ3TjtaggNSGLBpTC61I_omCqIEZQ6UBSnKs7hgIAvUM0dNeGXyMQRsubfo95XjewAnwozi-41kcP4rjwHgWl0nyj9wHO4rwdZZ5PDE6v3SwOvAosy6plQ1aJq68PUP_AF2QicE
CitedBy_id crossref_primary_10_3233_JHS_210670
crossref_primary_10_3390_math9040420
crossref_primary_10_1016_j_measurement_2024_115830
crossref_primary_10_1016_j_ast_2021_106642
crossref_primary_10_1007_s10462_021_09984_0
crossref_primary_10_1016_j_asoc_2023_110680
crossref_primary_10_1007_s00500_022_07383_3
crossref_primary_10_1016_j_ins_2022_04_043
crossref_primary_10_1007_s10710_024_09493_3
crossref_primary_10_3390_app14125045
crossref_primary_10_1080_16878507_2021_1885950
crossref_primary_10_1016_j_eswa_2023_121710
crossref_primary_10_3389_fenrg_2021_706782
crossref_primary_10_1016_j_eswa_2023_121312
crossref_primary_10_3390_app14219698
crossref_primary_10_3390_s21082628
crossref_primary_10_1007_s42943_023_00086_y
crossref_primary_10_1109_TMC_2023_3316167
crossref_primary_10_1016_j_jclepro_2022_132709
crossref_primary_10_3233_JHS_210669
crossref_primary_10_1016_j_asoc_2024_112446
crossref_primary_10_3390_electronics10232984
crossref_primary_10_1109_ACCESS_2023_3240569
crossref_primary_10_2174_1573405620666230825113344
crossref_primary_10_1016_j_mtcomm_2022_104380
crossref_primary_10_1002_int_22495
crossref_primary_10_1016_j_ins_2022_08_001
crossref_primary_10_1016_j_ins_2022_11_021
crossref_primary_10_1109_TGRS_2024_3452120
crossref_primary_10_1007_s13042_022_01545_3
crossref_primary_10_1016_j_engfracmech_2021_108027
crossref_primary_10_1002_smll_202205122
crossref_primary_10_1007_s00500_021_05987_9
crossref_primary_10_1142_S0217595923400134
crossref_primary_10_1016_j_ins_2022_07_162
crossref_primary_10_1007_s00607_022_01079_0
crossref_primary_10_1016_j_asoc_2024_112159
crossref_primary_10_1007_s11227_023_05775_2
crossref_primary_10_1016_j_aej_2021_04_098
crossref_primary_10_1016_j_ins_2021_12_067
crossref_primary_10_32604_cmc_2022_019291
crossref_primary_10_1016_j_matcom_2022_12_020
crossref_primary_10_1016_j_rico_2025_100542
crossref_primary_10_1016_j_chaos_2021_111783
crossref_primary_10_1108_EC_02_2024_0166
crossref_primary_10_1007_s42235_022_00278_x
crossref_primary_10_1080_00207179_2021_2005260
crossref_primary_10_1115_1_4066923
crossref_primary_10_1016_j_engappai_2023_106630
crossref_primary_10_1109_ACCESS_2025_3545478
crossref_primary_10_1016_j_oceaneng_2021_109816
crossref_primary_10_1016_j_jrmge_2024_08_007
crossref_primary_10_1088_1402_4896_ad92ae
crossref_primary_10_1016_j_jnca_2023_103583
crossref_primary_10_1038_s42005_023_01360_4
crossref_primary_10_1177_16878132221106296
crossref_primary_10_1007_s00521_023_08632_8
crossref_primary_10_1016_j_jksuci_2022_01_002
crossref_primary_10_1016_j_ins_2022_03_041
crossref_primary_10_1016_j_ins_2022_06_015
crossref_primary_10_1016_j_energy_2024_133365
crossref_primary_10_3390_s21072293
crossref_primary_10_1016_j_cose_2023_103423
crossref_primary_10_1016_j_isatra_2021_06_032
crossref_primary_10_1007_s00500_022_07385_1
crossref_primary_10_1155_2021_7761993
crossref_primary_10_1016_j_rcim_2023_102603
crossref_primary_10_1016_j_asr_2022_02_027
crossref_primary_10_1186_s12874_024_02392_2
crossref_primary_10_1049_cim2_70020
crossref_primary_10_1007_s00500_024_09869_8
crossref_primary_10_1007_s00339_023_06593_2
crossref_primary_10_23919_CSMS_2021_0010
crossref_primary_10_1016_j_compositesa_2025_108758
crossref_primary_10_1016_j_engappai_2023_106215
crossref_primary_10_3390_app142412005
crossref_primary_10_1016_j_patcog_2023_110206
crossref_primary_10_1038_s41598_024_51902_1
crossref_primary_10_1016_j_cor_2024_106622
crossref_primary_10_1016_j_ins_2022_09_001
crossref_primary_10_1016_j_istruc_2023_104993
crossref_primary_10_1007_s00500_023_09033_8
crossref_primary_10_1108_JGOSS_02_2021_0010
crossref_primary_10_1016_j_asoc_2022_109081
crossref_primary_10_1016_j_future_2022_04_007
crossref_primary_10_1007_s10489_024_05990_1
crossref_primary_10_1016_j_oceaneng_2024_119805
crossref_primary_10_1093_jcde_qwae047
crossref_primary_10_1109_TNNLS_2024_3378805
crossref_primary_10_1186_s43093_024_00339_z
crossref_primary_10_1080_00207543_2021_2007310
crossref_primary_10_1016_j_ins_2023_119302
crossref_primary_10_3390_math10050800
crossref_primary_10_1016_j_ijsolstr_2024_113024
crossref_primary_10_1016_j_asoc_2022_109392
crossref_primary_10_1016_j_ins_2021_02_055
crossref_primary_10_1016_j_jmapro_2022_10_057
crossref_primary_10_1016_j_marstruc_2024_103598
crossref_primary_10_1080_00401706_2024_2315937
crossref_primary_10_1007_s10639_024_13045_8
crossref_primary_10_1007_s44196_022_00171_9
crossref_primary_10_1080_17455030_2023_2241917
crossref_primary_10_1007_s00521_021_05913_y
crossref_primary_10_3390_sym17010114
crossref_primary_10_3390_app12199892
crossref_primary_10_23919_CSMS_2022_0018
crossref_primary_10_35848_1882_0786_ad2afe
crossref_primary_10_1016_j_asoc_2023_110024
crossref_primary_10_1109_ACCESS_2023_3240467
Cites_doi 10.1016/j.asoc.2016.06.011
10.1109/TEVC.2003.819944
10.1016/j.swevo.2018.10.006
10.1109/TEVC.2008.920670
10.1016/S0305-0548(03)00198-9
10.1016/j.ins.2017.09.002
10.1007/s10845-017-1294-6
10.1016/j.ins.2011.11.025
10.2514/3.10834
10.1007/s10589-012-9468-9
10.4018/IJAMC.2019010101
10.1155/2013/103591
10.1016/S1474-0346(02)00011-3
10.1007/978-3-030-02357-7_21
10.1109/TEVC.2007.895272
10.1016/j.ins.2009.11.015
10.1162/106365601750190398
10.1016/j.ins.2013.04.015
10.1007/s13042-017-0711-7
10.1115/1.3438995
10.1016/S0167-8191(05)80052-3
10.1007/s00500-017-2777-2
10.1016/j.asoc.2012.08.035
10.1016/j.jelechem.2003.11.060
10.1016/j.swevo.2019.03.014
10.1016/j.ins.2012.01.008
10.1016/j.swevo.2018.10.014
ContentType Journal Article
Copyright 2020 Elsevier Inc.
Copyright_xml – notice: 2020 Elsevier Inc.
DBID AAYXX
CITATION
DOI 10.1016/j.ins.2020.08.040
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Library & Information Science
EISSN 1872-6291
EndPage 162
ExternalDocumentID 10_1016_j_ins_2020_08_040
S0020025520308069
GroupedDBID --K
--M
--Z
-~X
.DC
.~1
0R~
1B1
1RT
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
9JO
AAAKF
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARIN
AAXUO
AAYFN
ABAOU
ABBOA
ABFNM
ABJNI
ABMAC
ABUCO
ABYKQ
ACAZW
ACDAQ
ACGFS
ACRLP
ACZNC
ADBBV
ADEZE
ADGUI
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIGVJ
AIKHN
AITUG
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
APLSM
ARUGR
AXJTR
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HAMUX
IHE
J1W
JJJVA
KOM
LG9
LY1
M41
MHUIS
MO0
MS~
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
ROL
RPZ
SDF
SDG
SDP
SES
SPC
SPCBC
SSB
SSD
SST
SSV
SSW
SSZ
T5K
TN5
TWZ
WH7
XPP
ZMT
~02
~G-
1OL
29I
77I
AAAKG
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABEFU
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADJOM
ADMUD
ADNMO
ADVLN
AEIPS
AEUPX
AFFNX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
EJD
FEDTE
FGOYB
HLZ
HVGLF
HZ~
H~9
R2-
SBC
SDS
SEW
UHS
WUQ
YYP
ZY4
~HD
ID FETCH-LOGICAL-c297t-8d28751f71cdcc38647b730d013f195f3aed102070a308ff7cf0718643b80a103
IEDL.DBID .~1
ISSN 0020-0255
IngestDate Wed Oct 01 05:17:06 EDT 2025
Thu Apr 24 23:05:47 EDT 2025
Fri Feb 23 02:45:54 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Gradient descent
Hybrid genetic algorithms
Evolutionary algorithms
Heuristics
Constrained optimization
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c297t-8d28751f71cdcc38647b730d013f195f3aed102070a308ff7cf0718643b80a103
ORCID 0000-0003-1760-5527
PageCount 27
ParticipantIDs crossref_citationtrail_10_1016_j_ins_2020_08_040
crossref_primary_10_1016_j_ins_2020_08_040
elsevier_sciencedirect_doi_10_1016_j_ins_2020_08_040
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-02-08
PublicationDateYYYYMMDD 2021-02-08
PublicationDate_xml – month: 02
  year: 2021
  text: 2021-02-08
  day: 08
PublicationDecade 2020
PublicationTitle Information sciences
PublicationYear 2021
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References Cui, Li, Zhu, Lin, Wong, Chen, Lu, Lu (b0030) 2018; 422
Tang, Tseng (b0220) 2013; 13
Gancarski, Blansche (b0050) 2008; 12
Brest, Zumer, Maucec (b0015) 2006
A.W. Mohamed, H.Z. Sabry, Constrained optimization based on modified differential evolution algorithm, Inf. Sci. 194 (2012) 171–208. Intelligent Knowledge-Based Models and Methodologies for Complex Information Systems.
Kora, Yadlapalli (b0075) 2017; 162
Poláková, Tvrdík, Bujok (b0175) 2019; 50
Jamil, Yang (b0065) 2013; 4
Sinha, Srinivasan, Deb (b0200) 2006
Molga, Smutnicki (b0145) 2005
Christu, Stephen (b0020) 2018; 9
Deb, Srivastava (b0040) 2012; 53
Noman, Iba (b0165) 2008; 12
Mohamed, Mohamed (b0125) 2019; 10
Stanovov, Akhmedova, Semenkin (b0205) 2019; 50
J. Liang, T. Runarsson, E. Mezura-Montes, M. Clerc, P. Suganthan, A.C. Coello, K. Deb, Problem definitions and evaluation criteria for the cec 2006 special session on constrained real-parameter optimization. Nangyang Technological University, Singapore, Tech. Rep, 41, 2006.
Mohamed, Hadi, Mohamed (b0120) 2019
W. Wan, J.B. Birch, An improved hybrid genetic algorithm with a new local search procedure, J. Appl. Math. (2013) 1–10, Article ID 103591.
Mohamed, Hadi, Jambi (b0115) 2019; 50
Tanabe, Fukunaga (b0215) 2014
Rao (b0185) 2009
Deb (b0035) 1991; 29
Coello, Montes (b0025) 2002; 16
S. Ruder, An overview of gradient descent optimization algorithms, 2016. arXiv preprint arXiv:1609.04747.
Nikolaus Hansen (b0160) 2001; 9
Ong, Keane (b0170) 2004; 8
N. Awad, M. Ali, J. Liang, B. Qu, P. Suganthan, Problem definitions and evaluation criteria for the CEC 2017 special session and competition on single objective real-parameter numerical optimization. Technical report, Nanyang Technological University, Singapore, May 2005 and KanGAL Report n. 2005005, IIT Kanpur, India, 2016.
Blum, Puisa, Riedel, Wintermantel (b0010) 2001
Ragsdell, Phillips (b0180) 1976; 98
Zielinski, Laur (b0250) 2006
Neri, Cotta, Moscato (b0155) 2012
Siddall (b0195) 1972
Kasprzyk, Jaskula (b0070) 2004; 567
Mohamed (b0110) 2018; 29
Hinton, Nowlan (b0055) 1996
Iacca, Neri, Mininno, Ong, Lim (b0060) 2012; 188
A. Mohamed, A. Mohamed, Real-parameter unconstrained optimization based on enhanced agde algorithm, in: A., H., editor, Machine Learning Paradigms: Theory and Application. Studies in Computational Intelligence, vol. 801, Springer, Cham, 2019, pp. 431–450.
Mohamed, Mohamed, Elfeky, Saleh (b0130) 2019; 10
Wang, Wu (b0230) 2004; 31
El-Mihoub, Hopgood (b0045) 2006; 13
Yeniay (b0235) 2005; 10
Li, Lin, Cui, Du, Liang, Chen, Lu, Ming (b0080) 2016; 47
Malan, Engelbrecht (b0090) 2013; 241
Michalewicz (b0095) 1996
Mohamed, Suganthan (b0140) 2018; 22
Mühlenbein, Schomisch, Born (b0150) 1991; 17
Misevicius (b0100) 2004
Tanabe, Fukunaga (b0210) 2013
Yuan (b0240) 2010; 180
Zhou, Pei (b0245) 2010; 5
Ong (10.1016/j.ins.2020.08.040_b0170) 2004; 8
10.1016/j.ins.2020.08.040_b0105
10.1016/j.ins.2020.08.040_b0225
Rao (10.1016/j.ins.2020.08.040_b0185) 2009
Michalewicz (10.1016/j.ins.2020.08.040_b0095) 1996
Molga (10.1016/j.ins.2020.08.040_b0145) 2005
Brest (10.1016/j.ins.2020.08.040_b0015) 2006
Hinton (10.1016/j.ins.2020.08.040_b0055) 1996
Kasprzyk (10.1016/j.ins.2020.08.040_b0070) 2004; 567
Deb (10.1016/j.ins.2020.08.040_b0040) 2012; 53
10.1016/j.ins.2020.08.040_b0190
Tanabe (10.1016/j.ins.2020.08.040_b0215) 2014
Mühlenbein (10.1016/j.ins.2020.08.040_b0150) 1991; 17
El-Mihoub (10.1016/j.ins.2020.08.040_b0045) 2006; 13
Misevicius (10.1016/j.ins.2020.08.040_b0100) 2004
Mohamed (10.1016/j.ins.2020.08.040_b0125) 2019; 10
Siddall (10.1016/j.ins.2020.08.040_b0195) 1972
Zhou (10.1016/j.ins.2020.08.040_b0245) 2010; 5
Li (10.1016/j.ins.2020.08.040_b0080) 2016; 47
Stanovov (10.1016/j.ins.2020.08.040_b0205) 2019; 50
10.1016/j.ins.2020.08.040_b0085
Malan (10.1016/j.ins.2020.08.040_b0090) 2013; 241
Yeniay (10.1016/j.ins.2020.08.040_b0235) 2005; 10
Cui (10.1016/j.ins.2020.08.040_b0030) 2018; 422
Tang (10.1016/j.ins.2020.08.040_b0220) 2013; 13
Zielinski (10.1016/j.ins.2020.08.040_b0250) 2006
Neri (10.1016/j.ins.2020.08.040_b0155) 2012
Kora (10.1016/j.ins.2020.08.040_b0075) 2017; 162
Deb (10.1016/j.ins.2020.08.040_b0035) 1991; 29
Iacca (10.1016/j.ins.2020.08.040_b0060) 2012; 188
Yuan (10.1016/j.ins.2020.08.040_b0240) 2010; 180
10.1016/j.ins.2020.08.040_b0005
Mohamed (10.1016/j.ins.2020.08.040_b0115) 2019; 50
Nikolaus Hansen (10.1016/j.ins.2020.08.040_b0160) 2001; 9
10.1016/j.ins.2020.08.040_b0135
Tanabe (10.1016/j.ins.2020.08.040_b0210) 2013
Mohamed (10.1016/j.ins.2020.08.040_b0140) 2018; 22
Ragsdell (10.1016/j.ins.2020.08.040_b0180) 1976; 98
Blum (10.1016/j.ins.2020.08.040_b0010) 2001
Coello (10.1016/j.ins.2020.08.040_b0025) 2002; 16
Mohamed (10.1016/j.ins.2020.08.040_b0110) 2018; 29
Christu (10.1016/j.ins.2020.08.040_b0020) 2018; 9
Wang (10.1016/j.ins.2020.08.040_b0230) 2004; 31
Jamil (10.1016/j.ins.2020.08.040_b0065) 2013; 4
Gancarski (10.1016/j.ins.2020.08.040_b0050) 2008; 12
Sinha (10.1016/j.ins.2020.08.040_b0200) 2006
Poláková (10.1016/j.ins.2020.08.040_b0175) 2019; 50
Mohamed (10.1016/j.ins.2020.08.040_b0130) 2019; 10
Noman (10.1016/j.ins.2020.08.040_b0165) 2008; 12
Mohamed (10.1016/j.ins.2020.08.040_b0120) 2019
References_xml – year: 2001
  ident: b0010
  article-title: Adaptive mutation strategies for evolutionary algorithms
  publication-title: The annual conference: EVEN at Weimarer Optimierungsund Stochastiktage 2.0
– start-page: 3
  year: 2004
  end-page: 16
  ident: b0100
  article-title: An improved hybrid genetic algorithm: new results for the quadratic assignment problem
  publication-title: Research and Development in Intelligent Systems XX
– start-page: 239
  year: 2006
  end-page: 245
  ident: b0200
  article-title: A population-based, parent centric procedure for constrained real-parameter optimization
  publication-title: 2006 IEEE International Conference on Evolutionary Computation
– start-page: 443
  year: 2006
  end-page: 450
  ident: b0250
  article-title: Constrained single-objective optimization using particle swarm optimization
  publication-title: 2006 IEEE International Conference on Evolutionary Computation
– year: 1972
  ident: b0195
  article-title: Analytical Decision-Making in Engineering Design
– reference: N. Awad, M. Ali, J. Liang, B. Qu, P. Suganthan, Problem definitions and evaluation criteria for the CEC 2017 special session and competition on single objective real-parameter numerical optimization. Technical report, Nanyang Technological University, Singapore, May 2005 and KanGAL Report n. 2005005, IIT Kanpur, India, 2016.
– year: 2009
  ident: b0185
  article-title: Engineering Optimization: Theory and Practice
– volume: 4
  year: 2013
  ident: b0065
  article-title: A literature survey of benchmark functions for global optimization problems
  publication-title: Int. J. Math. Model. Numer. Optim.
– reference: W. Wan, J.B. Birch, An improved hybrid genetic algorithm with a new local search procedure, J. Appl. Math. (2013) 1–10, Article ID 103591.
– reference: J. Liang, T. Runarsson, E. Mezura-Montes, M. Clerc, P. Suganthan, A.C. Coello, K. Deb, Problem definitions and evaluation criteria for the cec 2006 special session on constrained real-parameter optimization. Nangyang Technological University, Singapore, Tech. Rep, 41, 2006.
– volume: 9
  start-page: 10
  year: 2018
  end-page: 20
  ident: b0020
  article-title: Cost minimization of welded beam design problem using PSO, SA, PS, Godlike, Cuckoo, FF, FP, ALO, GSA and MVO
  publication-title: Int. J. Mech. Eng. Technol.
– volume: 53
  start-page: 869
  year: 2012
  end-page: 902
  ident: b0040
  article-title: A genetic algorithm based augmented lagrangian method for constrained optimization
  publication-title: Comput. Optim. Appl.
– volume: 31
  start-page: 2453
  year: 2004
  end-page: 2471
  ident: b0230
  article-title: Hybrid genetic algorithm for optimization problems with permutation property
  publication-title: Comput. Oper. Res.
– volume: 241
  start-page: 148
  year: 2013
  end-page: 163
  ident: b0090
  article-title: A survey of techniques for characterising fitness landscapes and some possible ways forward
  publication-title: Inf. Sci.
– start-page: 1
  year: 2005
  end-page: 43
  ident: b0145
  article-title: Test functions for optimization needs
  publication-title: Comput. Inform. Sci.
– volume: 12
  start-page: 617
  year: 2008
  end-page: 629
  ident: b0050
  article-title: Darwinian, lamarckian, and baldwinian (co)evolutionary approaches for feature weighting in k-means-based algorithms
  publication-title: IEEE Trans. Evol. Comput.
– volume: 162
  start-page: 34
  year: 2017
  end-page: 36
  ident: b0075
  article-title: Crossover operators in genetic algorithms: a review
  publication-title: Int. J. Comput. Appl.
– reference: A.W. Mohamed, H.Z. Sabry, Constrained optimization based on modified differential evolution algorithm, Inf. Sci. 194 (2012) 171–208. Intelligent Knowledge-Based Models and Methodologies for Complex Information Systems.
– reference: A. Mohamed, A. Mohamed, Real-parameter unconstrained optimization based on enhanced agde algorithm, in: A., H., editor, Machine Learning Paradigms: Theory and Application. Studies in Computational Intelligence, vol. 801, Springer, Cham, 2019, pp. 431–450.
– volume: 5
  start-page: 965
  year: 2010
  end-page: 972
  ident: b0245
  article-title: A hybrid co-evolutionary particle swarm optimization algorithm for solving constrained engineering design problems
  publication-title: JCP
– start-page: 1658
  year: 2014
  end-page: 1665
  ident: b0215
  article-title: Improving the search performance of shade using linear population size reduction
  publication-title: 2014 IEEE Congress on Evolutionary Computation (CEC)
– year: 2012
  ident: b0155
  article-title: Handbook of Memetic Algorithms. Studies in Computational Intelligence
– volume: 22
  start-page: 3215
  year: 2018
  end-page: 3235
  ident: b0140
  article-title: Real-parameter unconstrained optimization based on enhanced fitness-adaptive differential evolution algorithm with novel mutation
  publication-title: Soft. Comput.
– volume: 47
  start-page: 577
  year: 2016
  end-page: 599
  ident: b0080
  article-title: A novel hybrid differential evolution algorithm with modified code and jade
  publication-title: Appl. Soft Comput.
– start-page: 71
  year: 2013
  end-page: 78
  ident: b0210
  article-title: Success-history based parameter adaptation for differential evolution
  publication-title: 2013 IEEE Congress on Evolutionary Computation
– volume: 567
  start-page: 39
  year: 2004
  end-page: 66
  ident: b0070
  article-title: Application of the hybrid genetic-simplex algorithm for deconvolution of electrochemical responses in sdlsv method
  publication-title: J. Electroanal. Chem.
– volume: 188
  start-page: 17
  year: 2012
  end-page: 43
  ident: b0060
  article-title: Ockham’s razor in memetic computing: three stage optimal memetic exploration
  publication-title: Inf. Sci.
– volume: 50
  year: 2019
  ident: b0175
  article-title: Differential evolution with adaptive mechanism of population size according to current population diversity
  publication-title: Swarm Evol. Comput.
– start-page: 215
  year: 2006
  end-page: 222
  ident: b0015
  article-title: Self-adaptive differential evolution algorithm in constrained real-parameter optimization
  publication-title: 2006 IEEE International Conference on Evolutionary Computation
– volume: 180
  start-page: 640
  year: 2010
  end-page: 652
  ident: b0240
  article-title: A hybrid genetic algorithm with the baldwin effect
  publication-title: Inf. Sci.
– volume: 13
  start-page: 124
  year: 2006
  end-page: 137
  ident: b0045
  article-title: Hybrid genetic algorithms: a review
  publication-title: Eng. Lett.
– year: 2019
  ident: b0120
  article-title: Gaining-sharing knowledge based algorithm for solving optimization problems: a novel nature-inspired algorithm
  publication-title: Int. J. Mach. Learn. Cybern.
– reference: S. Ruder, An overview of gradient descent optimization algorithms, 2016. arXiv preprint arXiv:1609.04747.
– volume: 8
  start-page: 99
  year: 2004
  end-page: 110
  ident: b0170
  article-title: Meta-lamarckian learning in memetic algorithms
  publication-title: IEEE Trans. Evol. Comput.
– volume: 10
  start-page: 253
  year: 2019
  end-page: 277
  ident: b0125
  article-title: Adaptive guided differential evolution algorithm with novel mutation for numerical optimization
  publication-title: Int. J. Mach. Learn. Cybern.
– volume: 13
  start-page: 600
  year: 2013
  end-page: 614
  ident: b0220
  article-title: Adaptive directed mutation for real-coded genetic algorithms
  publication-title: Appl. Soft Comput.
– volume: 10
  start-page: 45
  year: 2005
  end-page: 56
  ident: b0235
  article-title: Penalty function methods for constrained optimization with genetic algorithms
  publication-title: Math. Comput. Appl.
– year: 1996
  ident: b0095
  article-title: Genetic Algorithms + Data Structures = Evolution Programs
– volume: 17
  start-page: 619
  year: 1991
  end-page: 632
  ident: b0150
  article-title: The parallel genetic algorithm as function optimizer
  publication-title: Parallel Comput.
– volume: 50
  year: 2019
  ident: b0205
  article-title: Selective pressure strategy in differential evolution: exploitation improvement in solving global optimization problems
  publication-title: Swarm Evol. Comput.
– volume: 98
  start-page: 1021
  year: 1976
  end-page: 1025
  ident: b0180
  article-title: Optimal design of a class of welded structures using geometric programming
  publication-title: ASME.J. Eng. Ind.
– volume: 422
  start-page: 122
  year: 2018
  end-page: 143
  ident: b0030
  article-title: Adaptive multiple-elites-guided composite differential evolution algorithm with a shift mechanism
  publication-title: Inf. Sci.
– start-page: 447
  year: 1996
  end-page: 454
  ident: b0055
  article-title: How learning can guide evolution
  publication-title: Adaptive Individuals in Evolving Populations
– volume: 29
  start-page: 2013
  year: 1991
  end-page: 2015
  ident: b0035
  article-title: Optimal design of a welded beam via genetic algorithms
  publication-title: AIAA J.
– volume: 9
  start-page: 159
  year: 2001
  end-page: 195
  ident: b0160
  article-title: Completely derandomized self-adaptation in evolution strategies
  publication-title: Evol. Comput.
– volume: 12
  start-page: 107
  year: 2008
  end-page: 125
  ident: b0165
  article-title: Accelerating differential evolution using an adaptive local search
  publication-title: IEEE Trans. Evol. Comput.
– volume: 16
  start-page: 193
  year: 2002
  end-page: 203
  ident: b0025
  article-title: Constraint-handling in genetic algorithms through the use of dominance-based tournament selection
  publication-title: Adv. Eng. Inform.
– volume: 50
  year: 2019
  ident: b0115
  article-title: Novel mutation strategy for enhancing shade and lshade algorithms for global numerical optimization
  publication-title: Swarm Evol. Comput.
– volume: 10
  start-page: 1
  year: 2019
  end-page: 28
  ident: b0130
  article-title: Enhanced directed differential evolution algorithm for solving constrained engineering optimization problems
  publication-title: Int. J. Appl. Metaheuristic Comput.
– volume: 29
  start-page: 659
  year: 2018
  end-page: 692
  ident: b0110
  article-title: A novel differential evolution algorithm for solving constrained engineering optimization problems
  publication-title: J. Intell. Manuf.
– year: 1972
  ident: 10.1016/j.ins.2020.08.040_b0195
– volume: 13
  start-page: 124
  issue: 2
  year: 2006
  ident: 10.1016/j.ins.2020.08.040_b0045
  article-title: Hybrid genetic algorithms: a review
  publication-title: Eng. Lett.
– volume: 47
  start-page: 577
  year: 2016
  ident: 10.1016/j.ins.2020.08.040_b0080
  article-title: A novel hybrid differential evolution algorithm with modified code and jade
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2016.06.011
– volume: 8
  start-page: 99
  issue: 2
  year: 2004
  ident: 10.1016/j.ins.2020.08.040_b0170
  article-title: Meta-lamarckian learning in memetic algorithms
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2003.819944
– year: 2009
  ident: 10.1016/j.ins.2020.08.040_b0185
– volume: 9
  start-page: 10
  issue: 9
  year: 2018
  ident: 10.1016/j.ins.2020.08.040_b0020
  article-title: Cost minimization of welded beam design problem using PSO, SA, PS, Godlike, Cuckoo, FF, FP, ALO, GSA and MVO
  publication-title: Int. J. Mech. Eng. Technol.
– volume: 50
  year: 2019
  ident: 10.1016/j.ins.2020.08.040_b0115
  article-title: Novel mutation strategy for enhancing shade and lshade algorithms for global numerical optimization
  publication-title: Swarm Evol. Comput.
  doi: 10.1016/j.swevo.2018.10.006
– volume: 12
  start-page: 617
  issue: 5
  year: 2008
  ident: 10.1016/j.ins.2020.08.040_b0050
  article-title: Darwinian, lamarckian, and baldwinian (co)evolutionary approaches for feature weighting in k-means-based algorithms
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2008.920670
– volume: 31
  start-page: 2453
  issue: 14
  year: 2004
  ident: 10.1016/j.ins.2020.08.040_b0230
  article-title: Hybrid genetic algorithm for optimization problems with permutation property
  publication-title: Comput. Oper. Res.
  doi: 10.1016/S0305-0548(03)00198-9
– year: 2019
  ident: 10.1016/j.ins.2020.08.040_b0120
  article-title: Gaining-sharing knowledge based algorithm for solving optimization problems: a novel nature-inspired algorithm
  publication-title: Int. J. Mach. Learn. Cybern.
– volume: 10
  start-page: 45
  issue: 1
  year: 2005
  ident: 10.1016/j.ins.2020.08.040_b0235
  article-title: Penalty function methods for constrained optimization with genetic algorithms
  publication-title: Math. Comput. Appl.
– volume: 422
  start-page: 122
  year: 2018
  ident: 10.1016/j.ins.2020.08.040_b0030
  article-title: Adaptive multiple-elites-guided composite differential evolution algorithm with a shift mechanism
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2017.09.002
– start-page: 3
  year: 2004
  ident: 10.1016/j.ins.2020.08.040_b0100
  article-title: An improved hybrid genetic algorithm: new results for the quadratic assignment problem
– year: 1996
  ident: 10.1016/j.ins.2020.08.040_b0095
– ident: 10.1016/j.ins.2020.08.040_b0190
– start-page: 1
  year: 2005
  ident: 10.1016/j.ins.2020.08.040_b0145
  article-title: Test functions for optimization needs
  publication-title: Comput. Inform. Sci.
– volume: 29
  start-page: 659
  issue: 3
  year: 2018
  ident: 10.1016/j.ins.2020.08.040_b0110
  article-title: A novel differential evolution algorithm for solving constrained engineering optimization problems
  publication-title: J. Intell. Manuf.
  doi: 10.1007/s10845-017-1294-6
– start-page: 71
  year: 2013
  ident: 10.1016/j.ins.2020.08.040_b0210
  article-title: Success-history based parameter adaptation for differential evolution
– volume: 188
  start-page: 17
  year: 2012
  ident: 10.1016/j.ins.2020.08.040_b0060
  article-title: Ockham’s razor in memetic computing: three stage optimal memetic exploration
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2011.11.025
– start-page: 1658
  year: 2014
  ident: 10.1016/j.ins.2020.08.040_b0215
  article-title: Improving the search performance of shade using linear population size reduction
– volume: 29
  start-page: 2013
  year: 1991
  ident: 10.1016/j.ins.2020.08.040_b0035
  article-title: Optimal design of a welded beam via genetic algorithms
  publication-title: AIAA J.
  doi: 10.2514/3.10834
– volume: 53
  start-page: 869
  issue: 3
  year: 2012
  ident: 10.1016/j.ins.2020.08.040_b0040
  article-title: A genetic algorithm based augmented lagrangian method for constrained optimization
  publication-title: Comput. Optim. Appl.
  doi: 10.1007/s10589-012-9468-9
– start-page: 215
  year: 2006
  ident: 10.1016/j.ins.2020.08.040_b0015
  article-title: Self-adaptive differential evolution algorithm in constrained real-parameter optimization
– volume: 10
  start-page: 1
  issue: 1
  year: 2019
  ident: 10.1016/j.ins.2020.08.040_b0130
  article-title: Enhanced directed differential evolution algorithm for solving constrained engineering optimization problems
  publication-title: Int. J. Appl. Metaheuristic Comput.
  doi: 10.4018/IJAMC.2019010101
– ident: 10.1016/j.ins.2020.08.040_b0225
  doi: 10.1155/2013/103591
– volume: 16
  start-page: 193
  issue: 3
  year: 2002
  ident: 10.1016/j.ins.2020.08.040_b0025
  article-title: Constraint-handling in genetic algorithms through the use of dominance-based tournament selection
  publication-title: Adv. Eng. Inform.
  doi: 10.1016/S1474-0346(02)00011-3
– ident: 10.1016/j.ins.2020.08.040_b0105
  doi: 10.1007/978-3-030-02357-7_21
– ident: 10.1016/j.ins.2020.08.040_b0005
– volume: 12
  start-page: 107
  issue: 1
  year: 2008
  ident: 10.1016/j.ins.2020.08.040_b0165
  article-title: Accelerating differential evolution using an adaptive local search
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2007.895272
– volume: 180
  start-page: 640
  issue: 5
  year: 2010
  ident: 10.1016/j.ins.2020.08.040_b0240
  article-title: A hybrid genetic algorithm with the baldwin effect
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2009.11.015
– volume: 162
  start-page: 34
  issue: 10
  year: 2017
  ident: 10.1016/j.ins.2020.08.040_b0075
  article-title: Crossover operators in genetic algorithms: a review
  publication-title: Int. J. Comput. Appl.
– start-page: 447
  year: 1996
  ident: 10.1016/j.ins.2020.08.040_b0055
  article-title: How learning can guide evolution
– volume: 5
  start-page: 965
  year: 2010
  ident: 10.1016/j.ins.2020.08.040_b0245
  article-title: A hybrid co-evolutionary particle swarm optimization algorithm for solving constrained engineering design problems
  publication-title: JCP
– volume: 9
  start-page: 159
  issue: 2
  year: 2001
  ident: 10.1016/j.ins.2020.08.040_b0160
  article-title: Completely derandomized self-adaptation in evolution strategies
  publication-title: Evol. Comput.
  doi: 10.1162/106365601750190398
– volume: 241
  start-page: 148
  year: 2013
  ident: 10.1016/j.ins.2020.08.040_b0090
  article-title: A survey of techniques for characterising fitness landscapes and some possible ways forward
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2013.04.015
– volume: 10
  start-page: 253
  issue: 2
  year: 2019
  ident: 10.1016/j.ins.2020.08.040_b0125
  article-title: Adaptive guided differential evolution algorithm with novel mutation for numerical optimization
  publication-title: Int. J. Mach. Learn. Cybern.
  doi: 10.1007/s13042-017-0711-7
– start-page: 443
  year: 2006
  ident: 10.1016/j.ins.2020.08.040_b0250
  article-title: Constrained single-objective optimization using particle swarm optimization
– year: 2001
  ident: 10.1016/j.ins.2020.08.040_b0010
  article-title: Adaptive mutation strategies for evolutionary algorithms
– volume: 98
  start-page: 1021
  issue: 3
  year: 1976
  ident: 10.1016/j.ins.2020.08.040_b0180
  article-title: Optimal design of a class of welded structures using geometric programming
  publication-title: ASME.J. Eng. Ind.
  doi: 10.1115/1.3438995
– ident: 10.1016/j.ins.2020.08.040_b0085
– volume: 17
  start-page: 619
  issue: 6
  year: 1991
  ident: 10.1016/j.ins.2020.08.040_b0150
  article-title: The parallel genetic algorithm as function optimizer
  publication-title: Parallel Comput.
  doi: 10.1016/S0167-8191(05)80052-3
– volume: 22
  start-page: 3215
  issue: 10
  year: 2018
  ident: 10.1016/j.ins.2020.08.040_b0140
  article-title: Real-parameter unconstrained optimization based on enhanced fitness-adaptive differential evolution algorithm with novel mutation
  publication-title: Soft. Comput.
  doi: 10.1007/s00500-017-2777-2
– volume: 13
  start-page: 600
  issue: 1
  year: 2013
  ident: 10.1016/j.ins.2020.08.040_b0220
  article-title: Adaptive directed mutation for real-coded genetic algorithms
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2012.08.035
– volume: 4
  year: 2013
  ident: 10.1016/j.ins.2020.08.040_b0065
  article-title: A literature survey of benchmark functions for global optimization problems
  publication-title: Int. J. Math. Model. Numer. Optim.
– year: 2012
  ident: 10.1016/j.ins.2020.08.040_b0155
– start-page: 239
  year: 2006
  ident: 10.1016/j.ins.2020.08.040_b0200
  article-title: A population-based, parent centric procedure for constrained real-parameter optimization
– volume: 567
  start-page: 39
  issue: 1
  year: 2004
  ident: 10.1016/j.ins.2020.08.040_b0070
  article-title: Application of the hybrid genetic-simplex algorithm for deconvolution of electrochemical responses in sdlsv method
  publication-title: J. Electroanal. Chem.
  doi: 10.1016/j.jelechem.2003.11.060
– volume: 50
  year: 2019
  ident: 10.1016/j.ins.2020.08.040_b0175
  article-title: Differential evolution with adaptive mechanism of population size according to current population diversity
  publication-title: Swarm Evol. Comput.
  doi: 10.1016/j.swevo.2019.03.014
– ident: 10.1016/j.ins.2020.08.040_b0135
  doi: 10.1016/j.ins.2012.01.008
– volume: 50
  year: 2019
  ident: 10.1016/j.ins.2020.08.040_b0205
  article-title: Selective pressure strategy in differential evolution: exploitation improvement in solving global optimization problems
  publication-title: Swarm Evol. Comput.
  doi: 10.1016/j.swevo.2018.10.014
SSID ssj0004766
Score 2.6591818
Snippet In the last few decades, genetic algorithms (GAs) demonstrated to be an effective approach for solving real-world optimization problems. However, it is known...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 136
SubjectTerms Constrained optimization
Evolutionary algorithms
Gradient descent
Heuristics
Hybrid genetic algorithms
Title GGA: A modified genetic algorithm with gradient-based local search for solving constrained optimization problems
URI https://dx.doi.org/10.1016/j.ins.2020.08.040
Volume 547
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1872-6291
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004766
  issn: 0020-0255
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier ScienceDirect Complete Freedom Collection
  customDbUrl:
  eissn: 1872-6291
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004766
  issn: 0020-0255
  databaseCode: ACRLP
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals [SCFCJ]
  customDbUrl:
  eissn: 1872-6291
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004766
  issn: 0020-0255
  databaseCode: AIKHN
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect (Elsevier)
  customDbUrl:
  eissn: 1872-6291
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004766
  issn: 0020-0255
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1872-6291
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004766
  issn: 0020-0255
  databaseCode: AKRWK
  dateStart: 19681201
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8MwDI6mcYEDggFiwCYfEAeksrTN-uBWTWwDpJ2YtFvVps0o2tZplCu_HbtNYUjAgWvlVJHt2J8TPxi79IVvpnhsjDRV0hAOV0Zs-5GBvsSTTuzaUVomyE6c8VQ8zPqzBhvUtTCUVqltf2XTS2utv_Q0N3vrLKMaX6tExBa1XOEOFfEJ4dIUg5v3rzQP4VbvlRQmEXX9slnmeGUr6tht8bKLJ91__OSbtvzN8IDta6AIQbWXQ9ZIVy22t9U-sMU6uugArkBXFRGXQR_XI7YejYJbCGCZJ5lCqAmoLFSzCNFinm-y4nkJdA0L802Z91UY5NISKN0bVEcA8LeA6knXDiAJS9JICSTK0dQsdQ0n6Kk0r8dsOrx7GowNPWHBkJbvFoaXYMDUN5VrykRK23OEi-LhCeJCZfp9hZJKEIGgWYiQx0q5UiEkQTI79nhkcvuENVf5Kj1lgDjHUk7fdyTGOAlGjR4CgyiKzcSOOMqlzXjN21Dq9uO05UVY55m9hCiOkMQR0mRMwdvs-nPJuuq98RexqAUWflOgEH3D78vO_rfsnO1alNxC6dveBWsWm7e0g-ikiLul-nXZTnD_OJ58ANhf5CY
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8QwDLZ4DMCA4ADxxgNiQCqXtumL7YQ4DjiYQGKr2rQ5iriHjrLy27HblIcEDKyVU0W2Y39O_AA4jGRk53RsrDzXypK-0FbqRolFviRUfhq4SV4lyN76vXt59eA9zMBZUwvDaZXG9tc2vbLW5kvbcLM9KQqu8XUqROxwyxXhR7MwLz0n4Ajs5O0zz0MG9YMlx0lM3jxtVklexYhbdjuiauPJFyA_OacvDqe7AssGKWKn3swqzOSjFix96R_Ygj1TdYBHaMqKmM1ozusaTC4uOqfYweE4KzRhTSRt4aJFTJ4H42lRPg6R72FxMK0Sv0qLfVqGlX_D-gwg_RZJP_neARWDSZ4pQURjsjVDU8SJZizNyzrcd8_vznqWGbFgKScKSivMKGLybB3YKlPKDX0ZkHxERsBQ25GnSVQZQRCyCwkxWetAacIkROamoUhs4W7A3Gg8yjcBCeg42vciX1GQk1HYGBIySJLUztxESBlsgWh4GyvTf5y3_Bw3iWZPMYkjZnHEPBpTii04_lgyqZtv_EUsG4HF3zQoJufw-7Lt_y07gIXe3U0_7l_eXu_AosOZLpzLHe7CXDl9zfcIqpTpfqWK7zW45bs
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=GGA%3A+A+modified+genetic+algorithm+with+gradient-based+local+search+for+solving+constrained+optimization+problems&rft.jtitle=Information+sciences&rft.au=D%E2%80%99Angelo%2C+Gianni&rft.au=Palmieri%2C+Francesco&rft.date=2021-02-08&rft.issn=0020-0255&rft.volume=547&rft.spage=136&rft.epage=162&rft_id=info:doi/10.1016%2Fj.ins.2020.08.040&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_ins_2020_08_040
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0020-0255&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0020-0255&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0020-0255&client=summon